ステッピング・モーター
Microstepping for Smooth and Precise Movements
Stepper motors typically use a permanently magnetized rotor and motor coils as a stator. By sending an electrical current through the motor coils, an electromagnetic field is created that forces the magnetic rotor into the desired position. A typical hybrid stepper has 50 magnetic pol pairs that allow the motor to approach 200 full steps, meaning 200 positions per full 360° revolution. However, smaller steps like half steps or microsteps can be generated using additional current states. This increases the accuracy, torque, and efficiency of the motor while reducing step loss, vibrations, and noise.


Microstepping for Smooth and Precise Movements
Stepper motors typically use a permanently magnetized rotor and motor coils as a stator. By sending an electrical current through the motor coils, an electromagnetic field is created that forces the magnetic rotor into the desired position. A typical hybrid stepper has 50 magnetic pol pairs that allow the motor to approach 200 full steps, meaning 200 positions per full 360° revolution. However, smaller steps like half steps or microsteps can be generated using additional current states. This increases the accuracy, torque, and efficiency of the motor while reducing step loss, vibrations, and noise.
{{modalTitle}}
{{modalDescription}}
{{dropdownTitle}}
- {{defaultSelectedText}} {{#each projectNames}}
- {{name}} {{/each}} {{#if newProjectText}}
-
{{newProjectText}}
{{/if}}
{{newProjectTitle}}
{{projectNameErrorText}}