スマート製造の柔軟性、 生産性、持続可能性を高める

著者: Maurice O'Brien、ストラテジック・マーケティング・マネージャ

スマート製造を支える インテリジェントなモーション制御

スマート製造 (Smart Manufacturing) の中核的な構成要素と しては、インテリジェントなモーション制御が挙げられます。 それにより、効率が高く柔軟性に優れた製造を実現することが 可能になるからです。インテリジェントなモーション制御は、 高精度なフィードバック、高度なセンシング、高性能な制御、 シームレスな接続を組み合わせることで実現されます。その結 果、デタミニスティックなモーション制御が行えるソリューショ ンが得られます。動きに関する知見をPLC (Programmable Logic Controller) や製造実行システム (MES: Manufacturing Execution System) にシームレスに引き渡すことで、高度な分 析を行い、製造フローを最適化し、製造ラインが停止する前に潜 在的な問題を特定することが可能になります。インテリジェント なモーション制御を適用したスマート製造では、迅速に再構成を 実施できるようになります。それによって、バッチ・サイズ1の 製造など、よりアジャイルでスケーラブルな製造に対応すること が可能になります。製造の工程が完了するまでの時間を短縮し、 製造フローを最適化してスループットを高めることにより、エネ ルギーの消費量を削減し、より持続可能なスマート製造を実現で きるようになります。インテリジェントなモーション制御を適用 する対象としては、以下のようなものが挙げられます。

- ▶ ポンプ
- ▶ ファン
- ▶ ホイスト
- ▶ HVAC(暖房、換気、空 調)
- ▶ コンベア
- ▶ 巻き上げ機

- ▶ 印刷機
- ▶ 押出機
- ▶ 工作機械
- ▶ □ボット
- ▶ ピック&プレース
- ▶ ハンドリング

インテリジェントなモーション制御 ソリューションの進化

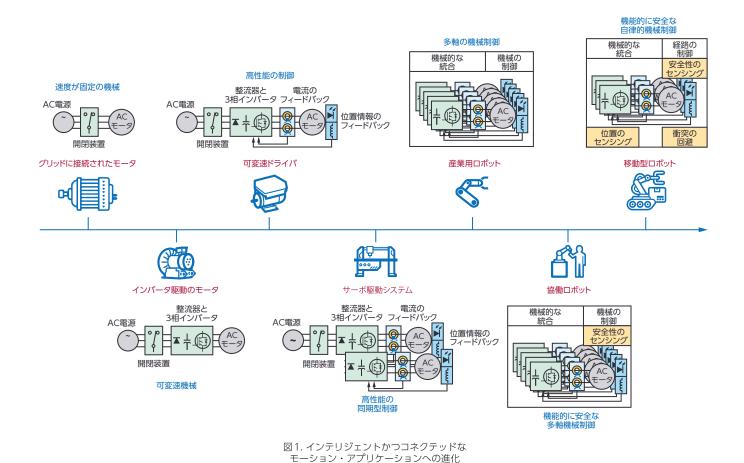
モーション制御は、グリッドに接続された単純なモータから、工 作機械や産業用ロボット向けの複雑な多軸サーボ・ドライバへと 徐々に進化してきました。スマート製造の時代を迎え、その進化 はより一層加速されてきました。但し、それには、生産性、柔軟 性、自律性のレベルを高めるためにオートメーション機構がより 複雑になるという代償が伴いました(図1)。

グリッドに接続されたモータ

最も基本的なモーション制御のソリューションは、グリッドまた はAC電源に接続された、速度が固定の3相モータをベースとし たものです。このソリューションでは、開閉装置を使用してオ ン/オフ制御と保護回路を実現します。このような基本的なソ リューションは、負荷の変動には関係なく、比較的固定された速 度で動作します。出力の抑制は、機械的な制御によって実現され ます。スロット、ダンパ、ギア、バルブ、ポンプ、ファンなどが 代表的なアセット(設備)の例です。

インバータ駆動のモータ

グリッド/AC電源に整流器、DCバス、3相インバータ段を追加 して周波数と電圧が可変の電源を構成し、それをモータに接続す れば、可変速度の制御を行えるようになります。このようなイン バータ駆動のモータでは、アプリケーションや負荷に応じた最適 な速度でモータを回転させることによって、エネルギーの消費量 を大幅に削減することができます。高効率のポンプやファンがそ の実装例です。



可変速ドライバ

より高い性能が求められるモーション制御アプリケーションで は、可変速ドライバ (VSD: Variable Speed Drive) が使用さ れます。それにより、正確なトルク、速度、位置の制御が可能に なるからです。これを実現するには、基本的なオープンループの インバータ駆動機構に電流と位置の測定機能を追加します。それ により、モータの速度、位置、トルクをより正確に制御できるよ うになります。コンベア、巻き上げ機、印刷機、押出成形機は、 そうしたアプリケーションの代表的な例です。

サーボ駆動システム

より複雑な動きが必要なアプリケーションでは、同期型の 多軸サーボ駆動システムが使用されます。工作機械やCNC (Computerized Numerical Control) 加工機では、極めて正確 に位置の情報をフィードバックし、複数の軸の同期をとらなけれ ばなりません。一般に、CNC加工機では5軸の協調動作が行わ れます。工具とワークの両方が空間内で相互に移動する場合には、 最大12軸の動作が必要になることもあります。

産業用ロボット、協働ロボット、移動型ロボット

産業用ロボットでは、3次元空間の複雑な位置決めを実現するた めに、高度な機械制御アルゴリズムを組み合わせた多軸サーボ 駆動を導入すると共に、機械的な統合を行う必要があります。通 常、ロボットは協調的な制御が必要な6つの軸を備えています。 ロボットがレールに沿って移動する場合には、7つの軸が必要に なることもあります。協働ロボット(コボット)には、産業用ロ ボットのソリューションをベースとしてPFL (Power and Force Limiting)機能が追加されます。それにより、機能的に安全な多 軸機械制御を実現し、オペレータがコボットと一緒に安全に作業 を行えるようにします。また、移動型ロボットには、安全性を確 保するために位置情報のセンシング機能と衝突の回避機能を備え た自動操縦型の機械制御が適用されます。

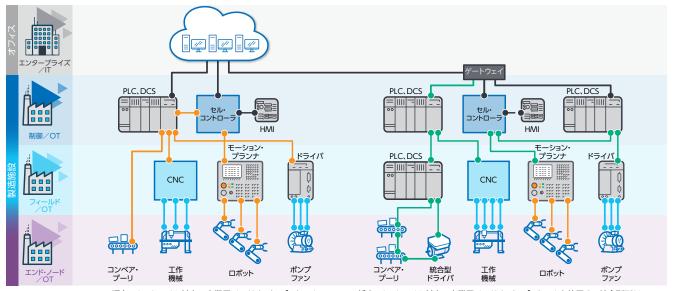
インテリジェントなモーション制御が 進化した要因

インテリジェントなモーション制御の進化は、主に4つの要因に よって加速されています。すなわち、エネルギー消費量の削減、 アジャイルな製造、デジタル・トランスフォーメーション、新た なビジネス・モデルへの移行の4つです。新たなビジネス・モデ ルとしては、スマート製造におけるダウンタイムの低減とアセッ トの利用率の向上を目的としたサービス・ベースのものが登場し ています。以下、これら4つの要因について詳しく説明します。

(1) エネルギー消費量の削減

産業分野では、消費電力の約70%が電気モータ・システムで費 やされていることがわかっています¹。インテリジェントなモー ション制御のソリューションは、エネルギー効率に関する規制を 背景として発展してきました。より多くのアプリケーションにお いて、速度が固定のモータから高効率のモータや可変速ドライバ への移行を進めることにより、エネルギー消費量を大幅に削減す ることができます。このトレンドは今後も続く見込みです。エネ ルギーの消費量を削減することにより、より持続可能な製造を実 現することが可能になります。スマート製造では、動きに関する 知見を取得して製造フローを最適化することにより、エネルギー の消費量をより一層削減できるようにします。

(2) アジャイルな製造


現在、多くの業界では、消費者の需要や購入者の行動の変化に遅 れることなく適応するための取り組みが行われています。その結 果、カスタマイズ性を高めつつ TAT (Turn-around Time) の短 縮を実現するために、再構成が可能な製造ラインをベースとする アジャイルな製造が求められるようになりました。つまり、消費 者の需要に応えるべく、少品種大量生産から多品種少量生産へ の移行が進んでいるということです。これを実現するためには、 工場の製造フロアをより柔軟性の高いものにしなければなりませ ん。複雑な作業、反復作業、危険な作業は産業用のロボットによっ て行われるようにすることで、スループットと生産性の向上が実 現されています。アジャイルな製造では、トラブルが発生した際 のレジリエンスも高められます。更に、変化する顧客のニーズに 対して迅速に対応できるようになります。

(3) デジタル・トランスフォーメーション

デジタル・トランスフォーメーションに対しては、2023年まで に6.8兆米ドル(約770兆円)に達する投資が行われる見込みで す²。可変速ドライバやサーボ駆動システムでは、電圧、電流、 位置、温度、出力、エネルギー消費量などのデータと、振動をは じめとするプロセス変数を監視する外部センサーを組み合わせて 使用します。モーション制御のアプリケーションでは、IT/OT (情 報技術/運用技術)向けに統合されたイーサネット・ネットワー クによってデータや知見をやり取りします。そのため、動きに関 するデータや知見をより取得しやすくなります。また、強力なク ラウド・コンピューティングとAIによって分析を行うことで、製 造フローを最適化し、あらゆるアセットの健全性を監視すること が可能になります (図2)。

(4) 配備済みのアセットを対象とする 新たなビジネス・モデル

アセット(設備)のメーカーは、単に製品を販売するだけではな く、製品に関連するビジネス・モデルを新たに創出したいと考え ています。生産性やアセットの利用率に基づいたアフターサービ スを受託するといった具合です。例えば、ポンプのメーカーは、 単にポンプを販売するだけでなく、新たな予知保全サービスも 提供したいと考えています。ポンプで送り出す液体(水や燃料な ど)の容量に基づき、1m³ごとに課金するといった形態も想定 できます。今後の5年間で、ポンプ・メーカーの総売上高のうち 50%~60%は、そうしたサービスによって生み出されると予想 されています³。システム・インテグレータも、単にアセットの 初期導入に対して代金を請求するだけではなくなります。つまり、 設置したアセットの稼働時間に基づいて課金を行いたいと考えて います。新たに提供されるインテリジェントなモーション制御ソ リューションには、状態監視機能が統合されます。例えば、アセッ トの健全性をリアルタイムで監視する機能を導入することによ り、メンテナンスの計画(スケジュール)を立てられるようにな ります。このような監視を行うことにより、アセットの予期せぬ ダウンタイムを回避し、生産性とアセットの利用率を改善するこ とができます。インテリジェントなモーション制御を適用したシ ステムは、サービス・ベースの新たなビジネスの基盤になります。

現在: リアルタイム対応の産業用イーサネット・プロトコル

将来: リアルタイム対応の産業用イーサネット・プロトコルを使用する統合型TSN

- RS-485 ● 標準的なイーサネット
- 100Mbpsの産業用イーサネット 1Gbps/TSN対応の産業用イーサネット

図2. デジタル・トランスフォーメーションの例。 産業用イーサネットによるシームレスな接続によって実現されます。

インテリジェントなモーション制御の要件

スマート製造において、生産性と持続可能性のレベルを高めるに は、インテリジェントなモーション制御ソリューションを導入し、 先ほど説明した4つの要因によるメリットが得られるようにしな ければなりません。インテリジェントなモーション制御に求めら れる主な要件を図3にまとめました。

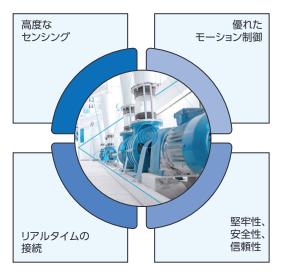


図3. インテリジェントな モーション制御の要件

優れたモーション制御

優れたモーション制御を導入すれば、製造の工程が完了するまで に要する時間を短縮することができます。スループットと生産性 が高められ、エネルギーの消費量を削減することが可能になりま す。例えば、位置やトルクを高い精度で制御することにより、部 品の複雑な加工に必要な工程の数や時間を削減することができ ます。つまり、高速/高品質の機械加工を実現できるということ です。優れたモーション制御を実現するためには、いくつかの主 要な要件を満たす必要があります。例えば、制御ループの性能の 向上、過酷な産業環境向けの堅牢なソリューション、信頼性が高 く小型のフォーム・ファクタを実現できる高レベルの統合といっ たことが挙げられます。これらの要件を実現するには、低遅延、 低ドリフト、多相電流/位置のセンシング、トランジェントに対 する高い耐性、集積度の高いコンポーネントから成るシグナル・ チェーンなどが必要になります。

堅牢性、安全性、信頼性

信頼性が高く堅牢なソリューションを導入すれば、アセットの耐 用年数を延ばすことができます。そうしたソリューションは、よ り持続可能なスマート製造を実現する上での鍵になります。ア セットの寿命を延ばすことができれば、交換用のアセットを製造 するための原材料とエネルギーの消費量を大幅に削減することが 可能になります。電源のレギュレーションと保護を実現するには、 パワー・マネージメントのソリューションが必要です。そうした ソリューションも、信頼性が高く堅牢なアセットを実現する上で 重要な意味を持ちます。パワー・マネージメントの要件としては、 IGBT (Insulated Gate Bipolar Transistor) 用のハイサイドの 電源、FPGAやプロセッサ用の電力密度の高いソリューション、 パワー・マネージメント用のテレメトリに対応するデジタルPoL (Point of Load)、EMC(Electromagnetic Compatibility) 性能、 高い周囲温度での動作、高電圧からユーザを保護するためのデー タ/電源の絶縁などが挙げられます。SiCやGaNなどのワイド・ バンド・ギャップのパワー・トランジスタ(スイッチ)を高い信 頼性で使用できるようにするには、過電流保護システムの高速化 など、堅牢な動作を実現するための新たな課題や要件が加わりま す。

リアルタイムの接続

多軸対応で同期型の高性能なモーション制御では、制御のタイミ ングについて、高精度、デタミニスティック、タイム・クリティ カルであることが求められます。特に、制御サイクルの時間が短 く、制御アルゴリズムの複雑さが増大している場合には、エンド toエンドの遅延を最小限に抑えなければなりません。そうした 高性能のアプリケーションで複雑なモーション制御を行うには、 ネットワークのサイクル時間をミリ秒以下に抑えたリアルタイム の接続が必要です。スマート製造では、モーション制御システム と共にビジョン・システムを使用し、製造品質を監視しつつ安全 性を高めます。そのため、リアルタイムかつデタミニスティック なモーション制御用のトラフィックと、ビジョン・システムのベ スト・エフォート型のトラフィックが、産業用イーサネットを採 用し、帯域幅が最大ギガビット・レベルに達するネットワーク上 で共存できるようにしなければなりません。また、製造施設全体 にわたってシームレスなデータ・フローを構築し、上位の管理シ ステムに対するデータの透明性を確保するためには、ネットワー クに接続された機器やコントローラの相互運用性が重要になりま す。加えて、コミッショニング時間を短縮し、ネットワークの柔 軟性とスケーラビリティを向上させる必要があります。IT/OTを 統合したイーサネット・ベースのネットワークにより、上位の管 理ソフトウェア・システムが、動きに関する知見をシームレスに 取得/分析できるようにすることが重要です。それにより、製造 フローを最適化し、デジタル・トランスフォーメーションを加速 することが可能になります。

高度なセンシング

高度なセンシング・ソリューションを活用すれば、動きに関する 知見を生成することができます。そうした知見を活用することに より、製造フローを最適化し、故障の兆候を早期に検知すること が可能になります。センシングの対象になるものとしては、位置、 電流、電圧、磁界、温度、振動、衝撃などが挙げられます。高度 なセンシングを適用することにより、アセットの健全性をリアル タイムで監視し、稼働時間に基づく予知保全サービスを提供する といった新たなビジネス・モデルが生み出されます。高度なセン シングの要件としては、過酷な産業環境(ほこりが多い、など) に対する堅牢性、位置の正確なセンシング、大電流の非接触の センシング、電流/振動の広帯域幅のセンシング、ソリューショ ンの精度を確保するためのキャリブレーション回数の削減、エン コーダを使用するアプリケーション向けの小型のソリューション といった事柄が挙げられます。

モーション制御の付加価値を迅速に 高めるための技術

現在は、スマート製造向けにインテリジェントな次世代のモー ション制御ソリューションが開発されている状況にあります。そ うしたソリューションでは、複数の技術を組み合わせなければな りません。それにより、過酷な産業環境に適した堅牢で高精度の モーション制御を実現することができます。その結果として、高 度なセンシングにより、システムに関する知見を取得することが 可能になります(図4)。

高精度の測定

複雑なモーション制御を実現するには、高い精度で電流のフィー ドバックを行えるようにしなければなりません。そのためには、 高精度の変換技術が必要になります。電流のフィードバックは、 絶縁型/非絶縁型の両ソリューションを利用し、高精度で高速な 過渡応答が得られる制御ループを実現するために行われます。こ れは、駆動性能を向上するための基盤になる技術だと言えます。 それによって全体の制御帯域幅と応答時間が決まるからです。電 流のフィードバックに関する主な要件としては、PWM (Pulse Width Modulation)のサイクルと同期をとった測定、絶縁型の 測定または高いコモンモード電圧に対応した測定、トルクのリッ プルを最小限に抑えるための小さなオフセット・ドリフト、分解 能が14~18ビットで低遅延の同時サンプリングによって実現さ れる位相電流の測定などが挙げられます。高精度の変換技術は、 エンコーダを使用するリニア・トラックのアプリケーションにお いて、正確に位置を測定するためにも必要になります。それによ り、スループットと生産性の向上が図れます。

絶縁技術とインターフェース技術

複雑なモーション制御を実現可能にする次世代のドライバと モータには、デジタル・データ向けの絶縁技術が必要です。そ れにより、RS-485、USB、LVDS (Low Voltage Differential Signaling) などの通信インターフェースの絶縁を実現できます。 ハイサイド/ローサイドのパワー・トランジスタを駆動し、安全 規格に準拠する堅牢性/信頼性の高いアセットを提供するために は、絶縁型のゲート・ドライバも必要になります。

図4. モーション制御ソリューションの価値を高めるための主要な技術。 システムに関する知見を得るために利用されます。

ゲート・ドライバは、ロジックレベルに対応するPWM信号をパ ワー・トランジスタの制御に使用するために、ハイサイドを基準 とした信号に変換する役割を担います。多くの場合、高電圧に対 応するインバータ・アプリケーションでは、パワー・トランジス タとしてIGBTが使われます。但し、今後はSiCやGaNをベース とするトランジスタを採用し、スイッチング周波数を高くしたり、 スイッチング損失を低減したりすることが多くなるでしょう。な お、低電圧を扱うアプリケーションでは、MOSFETベースのス イッチが使用されます。ゲート・ドライバの主な要件としては、 速度が速い、伝搬遅延が小さい、遅延スキューが小さい、堅牢性 が高い、コモンモード過渡耐圧が高い、スイッチの保護機能を備 えるといったことが挙げられます。最後に挙げたスイッチの保護 機能としては、DESAT (非飽和)検出、ミラー・クランプ、ソ フト・シャットダウン、UVLO (Under Voltage Lock Out)、 スイッチング制御(可変スルー・レートなど)などが必要になり ます。多くのドライバにおいて、標準的なデジタル・アイソレー タは高電圧のパワー・エレクトロニクス領域と安全な超低電圧 (SELV: Safety Extra Low Voltage) 領域の間で、PWMなど の方式で信号を伝送する役割を担います。具体的な例としては、 IPM (Integrated Power Module) 用の絶縁型信号伝送などが 挙げられます。完全に統合された絶縁型のパワー・ソリューショ ンは、デジタル・アイソレータを含む絶縁手法と組み合わせて使 用されます。デジタル・アイソレータを採用すれば、ディスクリー トのトランスを使用するソリューションと比べて大幅な小型化を 実現できます。

産業用イーサネット

インテリジェントなモーション制御アプリケーション(サーボや ドライバ)には、デタミニスティックなリアルタイム通信が必 要になります。そのためには、ミリ秒以下のサイクル時間とい うネットワーク性能を備えた産業用イーサネットを採用するこ とになるでしょう。100Mbps~1Gbpsのデータ転送速度に対 応する堅牢性の高い物理層 (PHY) のデバイスを、EtherCAT、 PROFINET, EtherNet/IP, IEEEのTSN (Time Sensitive Networking) といったレイヤ2の産業用イーサネット・プロト コルと組み合わせることにより、デタミニスティックなイーサ ネット接続が実現されます。次世代の設計では、複数種のトラ フィック、制御用のサイクリック通信、ベスト・エフォート型の トラフィック(ビジョン・システムや監視システムのトラフィッ クなど) に対応する非サイクリックな通信をサポートする必要が あります。そうした統合型のネットワークでは、ギガビット対応 のTSNが使われるようになるはずです。多軸アプリケーション でサイクル時間を短縮するためには、遅延の小さい産業用イーサ ネットのソリューションが必要です。そうしたデタミニスティッ クなソリューションを採用することで、より複雑なモーション制 御が可能になり、製造施設における生産性と柔軟性のレベルを高 めることができます。

磁気のセンシング

磁気のセンシング用のソリューションでは、AMR(Anisotropic MagnetoResistance) を利用した位置センサーがよく使われま す。それにより、エンコーダを使用するアプリケーションにおい て堅牢性が高く正確な位置の検出を実現することができます。位 置情報のフィードバックは、直接的に位置を制御したり、回転速 度を推定してサーボ・ドライバで機械の速度を制御したりする場 合に使用されます。磁気のセンシングを利用すれば、ほこりや振 動の影響を受けやすい産業用アプリケーションにおいて、光学式 のエンコーダを使用する場合よりもコストを抑えつつ、より堅牢 なソリューションを実現できます。

パワー・マネージメント

通常、インテリジェントなモーション制御アプリケーションは、 過酷な産業環境に配備されます。そのため、周囲温度が高い場 合でも適切に動作し、伝導ノイズや高電圧のトランジェントに対 する耐性を備えることが求められます。一部の分散型アプリケー ションでは、ドライバは小さな筐体内でモータの近くに配置され ます。アプリケーションによっては、ドライバとモータは一体化 されます。フォーム・ファクタが小さくインテリジェントなモー ション制御アプリケーションを実現するには、高い周囲温度で動 作することが可能で、より電力密度が高いパワー・マネージメン ト・ソリューションが必要になります。

機械の健全性

機械の健全性は、振動センサーや衝撃センサーを使用してアセッ トをリアルタイムで監視することによって把握します。それによ り、予期せぬダウンタイムを回避し、アセットの耐用年数を延 ばすと共にメンテナンスにかかるコストを削減することができま す。また、機械の健全性を監視する機能をモーション制御アプリ ケーションに統合すれば、新たな収入源を生み出すことも可能で す。デジタル化の戦略を通じ、稼働時間を保証して生産性のレベ ルを高め、それに関連するサービスをベースとした新たなビジネ ス・モデルを創出するということです。アセットの健全性は、振 動、衝撃、温度に関するデータの形で取得されます。それらのデー タは、エッジに実装されたAIによって、アセットの健全性に関す る知見に変換されます。その結果は、有線/無線のソリューショ ンを介して管理/制御用のソフトウェアに伝達されます。このよ うにすることで、主要なアセットの健全性に関する情報をリアル タイムに提供することが可能になります。

まとめ

消費者の需要の変化に迅速に応え、バッチ・サイズ1の製造にも 対応できるように効率を高めるためには、アジャイルな製造環境 を構築しなければなりません。アジャイルな製造は、ネットワー クに接続され、迅速に再構成できるインテリジェントなアセット を配備することによって実現されます。それらのアセットは、リ アルタイムにデータを共有することが可能です。共有されたデー タを活用して製造上のボトルネックを特定すると共に、アセット の健全性を監視することによって、予期せぬダウンタイムを回 避し、運用に関するパフォーマンスを高めることができます。 スマート製造は、そうしたインテリジェントなモーション制御ソ リューションに基づいて実現されます。消費エネルギーを削減し つつ、より複雑なモーション制御が行えるので、柔軟性、生産性、 持続可能性のレベルを高めることが可能になります。アナログ・ デバイセズは、インテリジェントなモーション制御向けの技術や プラットフォームを提供しています。また、お客様やパートナー がモーション制御の価値を迅速に高められるよう支援を行って います。そうした取り組みの詳細については、analog.com/jp/ intelligentmotionをご覧ください。また、ソリューションの構築 に役立つ各種の製品については、以下に示す付録をご覧ください。

参考資料1:インテリジェントな モーション制御ソリューション

アナログ・デバイセズは、インテリジェントなモーション制御ア プリケーション向けの技術やシステム・レベルのソリューション を提供しています。それらを活用すれば、性能のレベルを高め、 エネルギーの消費量とダウンタイムを削減することが可能になり

ます。図5に示したのは、標準的なモータ制御システムのシグナ ル・チェーンです。このシグナル・チェーンは、6つの主要なブ ロックによって構成されています。以下、各ブロックの概要や利 用できる製品について説明します。

パワー・エレクトロニクス

パワー・エレクトロニクスは、モータ駆動システムにおいて電力 変換に使用されます。高電圧(100V以上)を扱うシステムの場 合、絶縁型のゲート・ドライバを使用してパワー・トランジスタ を駆動します。図5に示した「ADuM4122」は、1つのゲート・ デバイスを駆動するための絶縁型ゲート・ドライバであり、3A の短絡電流(30以下)に対応します。EMI(Electromagnetic Interference) と電力損失を最適化するためのスルー・レート 制御機能を備えており、最大で約800VのDCバスに対する機 能絶縁/強化絶縁をサポートします。また、パワー・トランジ スタとしてSiC/GaNデバイスを使用する場合にも対応できる高 いCMTI (Common-mode Transient Immunity) と小さい伝 搬遅延が実現されています。アナログ・デバイセズは、マルチ チャンネルに対応するデジタル・アイソレータ「ADuM160N」 も提供しています。これを採用した場合、ゲート・ドライバと パワー・トランジスタを一体化したIPMで使用されるPWM信 号に絶縁を施すことができます。絶縁型のDC/DCコンバータ 「ADuM6028」は、デジタル・アイソレータ、絶縁型トランシー バー、絶縁型データ・コンバータなどと組み合わせて使用する製 品です。安全規格に準拠した非常に小さな8ピンのソリューショ ンであり、入手後にすぐに使用することができます。

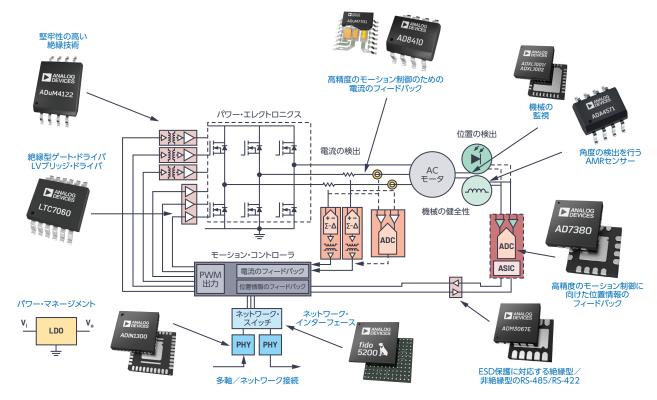


図5. インテリジェントなモーション制御アプリケーション向けのソリューション。 主にアナログ・デバイセズの製品を使用して構成しています。

比較的低い電圧(100V以下)を扱うシステムでは、「LTC7060」 や「LTC7000」を使用するとよいでしょう。LTC7060は、 100Vに対応可能なハーフブリッジ・ドライバです。フローティ ング・グラウンドに対応し、デッド・タイムのプログラム機能を 備えています。一方のLTC7000は、ハイサイドのNMOS用の静 的スイッチ・ドライバであり、150Vに対応します。PassThru™ 技術が適用されていることに加え、適応型のシュートスルー機能 をはじめとする保護機能を備えています。これらのドライバICを 使用することで、比較的低い電圧に対応するパワー・トランジス タを駆動することができます。なお、LTC7000は、効率を最適 化するために使用するプログラム可能なデッド・タイム機能、強 化された電流制御機能、EMIを低減するためのスルー・レート制 御機能も備えています。

電流の検出

絶縁型の電流検出/測定向けには、2次のシグマ・デルタ ($\Sigma \Delta$) モジュレータ「ADuM7701」を提供しています。これを使用す れば、アナログ入力信号を1ビットの高速データ・ストリームに 変換することができます。このICは、iCoupler®技術を採用した デジタル・アイソレータを内蔵しています。また、絶縁型の $\Sigma\Delta$ ADC「ADuM7703」は、オフセット・ドリフトが小さいことを 特徴とします (最大 $0.6\mu V/\mathbb{C}$)。そのため、トルクのリップルを 抑制することが可能です。コンパクトな8ピンのパッケージを採 用していることに加え、LDO(低ドロップ・アウト)レギュレー タを内蔵しているので、電源設計の簡素化と基板面積の削減に 貢献できます。CMTIの定格は最小150V/ナノ秒なので、GaN/ SiCデバイスと共に使用することが可能です。

「AD8410」は、高電圧に対応する電流検出アンプです。ゲイン が高く(20V/V、50V/V、100V/V)、オフセット・ドリフトが 小さい(約 $1\mu V/\mathbb{C}$)ことに加え、帯域幅が広い(2MHz)という 特徴を備えています。そのため、最適な電流制御を実現すること ができます。また、同ICは、双方向の電流測定向けに最大100V に対応可能なコモンモード入力を備えています。[LTC6102] は、 高精度かつゼロドリフトの電流検出アンプです。同ICは、広範な 動作条件にわたって精度を維持します。シャント方式の電流検出 アプリケーションでは、最大100Vのハイサイド電圧から給電す ることが可能です。

位置の検出

位置情報のフィードバックは、直接的に位置を制御したい場合 や、回転速度を推定して機械の速度を制御したい場合に使用され ます。「ADA4570」と「ADA4571」は、シグナル・コンディ ショニング回路を内蔵したAMR方式の角度センサーICです。こ れを使用すれば、モータ・ドライバやサーボ・ドライバのアプリ ケーションにおいて、絶対精度の高い位置検出を実現することが できます (誤差は0.1°未満、寿命期間/全温度範囲で0.5°未満)。 これらの製品は、磁気の面で過酷な環境でも堅牢性を発揮しま す。ホール素子やGMR(Giant Magneto Resistive effect)セ ンサー、TMR (Tunnel Magneto Resistance) センサーとは異 なり、角度の測定誤差を増大させることなく、広いエア・ギャッ プの公差に対応可能です。そのため、システム設計における検 討が簡素化されます。また、光学センサーと比べてほこりや汚れ の影響を受けにくいので、産業用途に適しています。市場で普及 しているキャリブレーション・エンジン内蔵型のデジタル出力ソ リューションと比較しても、遅延が非常に小さく抑えられていま す。ADA4571は、周囲の磁界の角度を表すシングルエンドのア ナログ出力を2つ生成します(正弦と余弦)。一方、ADA4570 は、2系統の差動アナログ出力に対応する信号を生成します。 ADA4571のデュアルバージョンである「ADA4571-2」も提供 しています。この製品は、安全性が極めて重要なアプリケーショ ンにおいて完全な冗長性を実現したい場合に利用するとよいで

[AD7380] は、分解能が16ビットの逐次比較型 (SAR) ADC です。4MSPSのデュアル同時サンプリングに対応します。これ を使用すれば、エンコーダのアプリケーションを高い精度、高い スループット、最小のサイズで実現することができます。小型の パッケージ (3mm×3mm) を採用しているので、エンコーダの アプリケーションの小型化に適しています。また、4MSPSのス ループットが得られるので、最小の遅延と制御ループの高速な過 渡応答を実現できます。同ICはオーバーサンプリング・エンジン を備えているので、低速動作の条件下でも高い精度が得られます。

機械の健全性

アセットの健全性に関する知見を得たい場合には、エンコー ダやモータに振動センサー、衝撃センサーを統合します。 「ADXL1002」は、±50gに対応するMEMS加速度センサーで す。超低ノイズ(± 50 gのレンジで 25μ g/ \sqrt{Hz})で高い周波数 に対応することを特徴とします。21kHzの共振周波数に対応し、 最高11kHz(3dBポイント)の広いデータ帯域幅にわたって振 動の検出が行えます。圧電センサーに代わる、低コスト、低消費 電力のMEMS加速度センサーだと言えます。同製品を使用すれ ば、低速(DCまで)で回転する機器の監視が可能になります。 また、圧電センサーを使用する場合と比べてキャリブレーション の必要性も低減できます。「ADXL354」は、低ノイズ、低消費電 力の3軸MEMS加速度センサーです。小型のパッケージ(6mm ×6mm) を採用しており、3線/4線のSPI (Serial Peripheral Interface)、I²Cの各デジタル・インターフェースをサポートしま す。そのため、エンコーダに振動検出機能を統合する場合でもソ リューションの小型化を実現できます。

アナログ・デバイセズは、 $OtoSense^{TM}$ を採用したスマート・モー タ・センサーも提供しています。モータの状態監視に向けたハー ドウェアとソフトウェアで構成されており、AIをベースとする完 全なターンキー・ソリューションとなっています。これを利用す れば、クラス最高のセンシング技術と最先端のデータ解析機能が 得られます。三相誘導モータに特化することにより、最も重要な 診断に対応することができ、データを基に実際に利用が可能な知 見を導き出すことができます。それらの知見を活用することで、 メンテナンスのサイクルを予測し、予期せぬダウンタイムを回避 することが可能になります。

ネットワーク・インターフェース

スマート製造は、インテリジェントなモーション制御アプリケー ションのネットワークをベースとして実現されます。そのアプリ ケーションでは、アセットと上位の制御/管理ネットワークとの 間でデータの共有が行われます。アナログ・デバイセズは、こ の用途向けのPHYデバイスとして10Mbps/100Mbpsに対応す る「ADIN1200」と、10Mbps/100Mbps/1Gbpsに対応する 「ADIN1300」を提供しています。いずれも、堅牢性が高く、消 費電力が少なく、遅延が小さいことを特徴とします。また、周囲 温度が最高105℃に達しても適切に動作します。過酷な産業環 境で利用できるよう広範な条件でテストされており、EMCの規 格や堅牢性に関する規格に準拠することが保証されています。 遅延の小さいPHYデバイスを採用すれば、サイクル時間の短い ネットワークを実現できます。そのため、ネットワークに接続さ れたより多くの機器に対応すると共に、複雑で性能の高いデタミ ニスティックなモーション制御アプリケーションのタイミングに 関する要件を満たすことが可能です。デタミニスティックな産業 用イーサネットの接続に向けては、レイヤ2の産業用イーサネッ トに対応する組み込み型の2ポート・スイッチ [fido5100]、 [fido5200] を提供しています。これらの製品は、任意のプロセッ サ、プロトコル、スタックに対応します。産業用イーサネットの プロトコルとしては、PROFINET、EtherNet/IP、EtherCAT、 Modbus TCP、Ethernet POWERLINKをサポートしています。

モーション・コントローラ

モーション・コントローラは、パワー・トランジスタの駆動用の PWM信号を生成する処理エンジンを提供します。電流と位置情 報のフィードバックを受け取り、モータの速度とトルクを制御し

ます。モーション・コントローラに電力を供給するためには、堅 牢性、動作温度、電力密度が高いパワー・マネージメント用のソ リューションが必要です。多くの場合、モーション・コントロー ラとしては、オプションの電源投入シーケンスと電力に関するテ レメトリ機能を備えたFPGAまたはプロセッサが使用されます。 アナログ・デバイセズは、数多くのPower by Linear™製品を 提供しています。同ファミリのパワー・マネージメントICやパ ワー・モジュールは、現在/将来のインテリジェントなモーショ ン制御アプリケーションに電力を供給するための基盤として使用 できます。多くの場合、モーション・コントローラは中央のラッ クに配置されているので、距離の離れた位置にあるエンコーダ との間で通信を行う必要があります。そのような場合には、絶 縁型/非絶縁型のRS-485対応トランシーバーを使用するとよい でしょう。そうすれば、モーション・コントローラに対し、エン コーダからフィードバックされる位置情報をシリアル通信によっ て伝送できます。「ADM3066E」は、50Mbpsの全二重伝送が 可能なRS-485対応トランシーバーです。IEC規格で定められた ±12kVのESDに対する保護機能を備えています。高い周囲温度 (125℃) に対応して帯域幅の広い堅牢な通信ソリューションを 提供します。3mm×3mmの小型パッケージを採用しているの で、エンコーダのアプリケーションに最適です。

参考資料2

¹ João Fong, Fernando J.T.E. Ferreira, André M. Silva, Aníbal T. de Almeida [IEC 61800-9 System Standards as a Tool to Boost the Efficiency of Electric Motor Driven Systems Worldwide(モータ駆動システムの効率向上に向けた ツールとして機能するIEC 61800-9)」Inventions、2020年3

² Shawn Fitzgerald、Daniel-Zoe Jimenez、Serge Findling、 Yukiharu Yorifuji, Megha Kumar, Lianfeng Wu, Giulia Carosella, Sandra Ng, Robert Parker, Philip Carter, Meredith Whalen [IDC FutureScape: Worldwide Digital Transformation 2021 Predictions (IDC FutureScape:世 界のデジタル・トランスフォーメーション、2021年の予測)」 IDC、2020年10月

³ [2025 Vision: Future of Pumps in a Connected World (2025年のビジョン:コネクテッドな世界におけるポンプの未 来)」Frost & Sullivan、2020年6月

著者について

Maurice O'Brien (maurice.obrien@analog.com) は、ア ナログ・デバイセズのストラテジック・マーケティング・マ ネージャです。産業用オートメーションに焦点を絞ったシ ステム・レベルのソリューション提供を担当しています。 以前は、産業用イーサネットに関する業務に3年間従事。ま た、パワー・マネージメント部門で15年間にわたりアプリ ケーション/マーケティングに関する業務に携わっていま した。アイルランドのリムリック大学で電子工学の学士号 を取得しています。

EngineerZone® オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

► ADI EngineerZone™

SUPPORT COMMUNITY

Visit ez.analog.com

*英語版ソート・リーダーシップ記事はこちらよりご覧いただけ ます。

com/jp/contact をご覧ください。