コントローラ IC の性能領域に挑む 24V15A モノリシック・スイッチング・レギュレータ

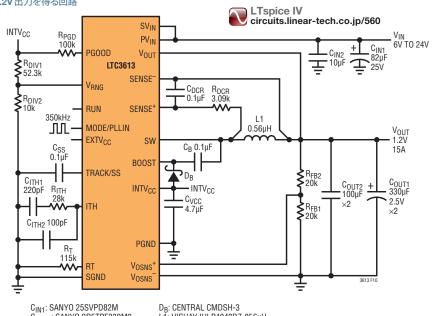
Stephanie Dai

現在の DC/DC コンバータの主役は、モノリシック・スイッチング・レギュレータとスイッチング・コントロー ラの2つです。一般に、それぞれの用途が重なることはあまりありません。コントローラ方式が採用される ケースは、電力損失と熱伝導性能が優先される、高性能、大電力アプリケーションです。一方、モノリシッ ク・レギュレータ方式が支持されるのは、小型に組み上げなければならない低消費電力アプリケーションで す。通常はコントローラの方がモノリシック・ソリューションより機能が豊富ですが、ソリューション・サイズ の点では大幅に不利です。モノリシック・レギュレータは、占有面積は小さくなりますが、通常は機能と効 率が犠牲となり、さらに内蔵の MOSFET に依存するので電力に関して実用上の制限があります。

LTC3613 モノリシック・レギュレータは、機能 の充実した高性能コントローラと RDS(ON) の低 い内蔵の MOSFET を組み合わせることによ り、コントローラのアプリケーションとモノリ シック・レギュレータのアプリケーションとの 間に引かれた境界線に挑みます。

特長

LTC3613の入力電圧範囲は4.5V~24Vで、0.6V ~5.5Vの出力電圧範囲をサポートします。内 蔵の上側 MOSFET および下側 MOSFET は、 それぞれおよそ 7mΩ および 5mΩ という低い R_{DS(ON)}を特長としており、電力損失が低く抑え られるので、LTC3613 は最大 15A の負荷電流 を供給できます。


LTC3613 は、真のリモートセンス電圧検出機 能を備えています。これにより、最大負荷電 流を流し、グランド・プレーンを共有にした 場合でも、出力の正確なレギュレーションが 可能になります。この機能は、出力電圧の低 いアプリケーションで重要です。こうしたアプ リケーションでは、基板配線上での寄生 IR 電圧降下によってわずかな電圧誤差が生じて も、レギュレーション精度が数%低下する可 能性があるからです。リモートセンス電圧検 出機能と、LTC3613 の高精度内部リファレン スの組み合わせにより、入力電圧、負荷、お よび温度に対する優れた出力レギュレーショ ン精度が得られます。レギュレーション精度

は、25°Cで ±0.25%、0°C~85°Cで ±0.67%、 -40°C ~ 125°C ° 1% ° 5°.

LTC3613 の最小オン時間は 60ns なので、高 いスイッチング周波数で降圧比を高くするこ とができます。高度なオン時間制御、谷電流 モード・アーキテクチャにより、オン時間は、 入力電圧および負荷が定常状態の条件でス イッチング周波数が一定になるように制御さ れます。また、LTC3613 は大きい負荷ステッ

プからわずか数サイクル以内に回復できます。 このアーキテチャにより、複数の LTC3613 間 で適切にバランスのとれた電流分担を実現で きるので、大電力アプリケーションでは簡単 に並列化できます。このデバイスは、外部ク ロックに同期するためのフェーズロックループ (PLL) 回路を内蔵しており、並列化された 位相の交互配置によって出力電圧リップルを 最小限に抑えることができる大電流、低出力 電圧のアプリケーションには特に有用です。

図1. インダクタの DCR 検出を使用してソリューション・サイズおよびコストを最小限に抑え、効率を最大限に高める、 24V入力から1.2V出力を得る回路

C_{OUT1}: SANYO 2R5TPE330M9

L1: VISHAY IHLP4040DZ-056µH

	LTC3608	LTC3609	LTC3610	LTC3611	LTC3613
PV _{IN(MAX)}	18V	32V	24V	32V	24V
ILOAD(MAX)	8A	6A	12A	10A	15A
周波数同期					✓
高精度差動出力 検出	±1%	±1%	±1%	±1%	±0.67%
正確な電流検出	下側 FET の R _{DS(ON)}	下側 FET の R _{DS(ON)}	下側 FET の R _{DS(ON)}	下側 FET の R _{DS(ON)}	R _{SENSE} または DCR による検出
MOSFET の R _{DS(ON)} 上側 / 下側	$10 \text{m}\Omega/8 \text{m}\Omega$	$18 \text{m}\Omega/13 \text{m}\Omega$	12m Ω /6.5m Ω	15m Ω /9m Ω	7.5 m $\Omega/5.5$ m Ω
パッケージ	7mm × 8mm × 0.9mm 64 ピン	7mm × 8mm × 0.9mm 64 ピン	9mm × 9mm × 0.9mm 52 ピン	9mm × 9mm × 0.9mm 52 ピン	7mm × 9mm × 0.9mm 56ピン

表 1. 大電力モノリシック・レギュレータ・ファミリ

LTC3613 は、過電圧保護や電流制限フォー ルドバックなど、いくつかの安全機能および 保護機能を内蔵しています。出力が設定値の 7.5% を超えると、これは過電圧 (OV) 状態 とみなされ、上側 MOSFET は即座にオフし、 下側 MOSFET は OV 状態が解消されるまで オンします。デバイスが 0.6V リファレンス電 圧の ±7.5% の枠から外れるとフラグが立つパ ワーグッド出力モニタも使用できます。出力 が短絡した場合、出力電圧が50%より大きく 低下すると、最大検出電圧はその最大限の値 の約4分の1に減少し、インダクタ電流レベ ルを最大値の4分の1に制限します。

LTC3613 は、その出力電圧トラッキング機能 およびソフトスタート機能を通じて、起動シー ケンス中およびシャットダウン・シーケンス中 も、出力を高精度に制御します。外部 Vcc 入 カピンを備えているので、大電力アプリケー ションで効率上のメリットを得るために、デバ イス内部の LDO をバイパスすることができま

LTC3613 は、直列接続の検出抵抗 R_{SENSE} ま たはインダクタの DCR 検出回路網を介してイ ンダクタ電流を検出するように構成できます。 2つの電流検出方式のどちらを選ぶかは、主 としてコスト、消費電力、および精度によっ て決まります。 DCR による検出は、センス抵 抗が不要なのでローコストかつ低損失という メリットがあります。一方、電流センスの精度 を最も高めるためにはセンス抵抗方式が優れ ています。

LTC3613 の標準的なアプリケーションを図 1 に示します。このアプリケーションは、24V 入力から 1.2V を出力する、降圧比の高いソ リューションでの DCR 検出向けに構成されて おり、350kHzの外部クロックに同期していま す。効率を図2に示し、トランジェント性能を 図3に示します。

まとめ

LTC3613 は、ソフトスタート、設定可能な周 波数、外部クロックへの同期、調整可能な電 流制限、選択可能な軽負荷動作モードなど、 ユーザが設定可能なさまざまな機能を内蔵し ているので、標準的なモノリシック・スイッチ ング・レギュレータと比較してはるかに優れた 設計の柔軟性があります。過電圧保護、フォー ルドバック電流制限を備えた設定可能な電流 制限などの重要な安全機能により、デバイス の堅牢性が向上します。大電力アプリケーショ ン向けに、外部 Vcc 入力が用意されています。 小型ソリューション・サイズ、多彩な機能セッ ト、および高性能の機能群により、従来のモ ノリシック・ソリューションと比較して使用範 囲が広がっており、従来コントローラを検討 するしかなかった分野でも使用することが可 能です。アプリケーションに最適です。

図2. 図1のレギュレータの効率

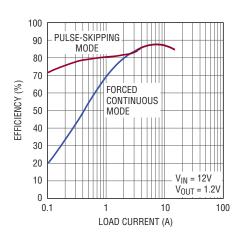
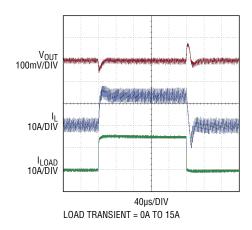



図3. 図1の回路の負荷トランジェント応答

