**Technical Article** 



# フラットパネル型フェーズド ・アレイ・アンテナの設計を 可能にするIC技術

著者: Jeff Lane、プロダクト・マーケティング・エンジニア

#### 概要

フェーズド・アレイ・アンテナは、より広範な用途で活用さ れるようになりました。その背景にあるのは半導体技術の 進化です。機械的に制御されるアンテナからAESA(Active Electronically Scanned Antenna) への移行は、防衛分 野で何年も前に始まりました。最近では、移動式衛星通信 (SATCOM on-the-move) や5Gにおいて、AESAの採用が 急速に進んでいます。小型のAESAには、高速に制御できる、 複数の放射パターンを生成できる、信頼性が高いといった長所 があります。ただ、広く利用可能な小型のAESAを実現するに は、IC技術の著しい進化を待つ必要がありました。フラットパ ネル(平面)型のフェーズド・アレイには、消費電力が少なく 高い効率で動作する集積度の高いデバイスが必要です。許容可 能なレベルまで発熱を抑えつつ、各種のコンポーネントをアン テナ・アレイの背面に配置できるようにしなければならないか らです。本稿では、フラットパネル型のフェーズド・アレイ・ アンテナの実現を可能にするIC技術について説明します。こ の用途に向けたチップセットの進化について簡単に説明した上 で、いくつかの具体例を紹介します。

#### はじめに

アンテナによる信号の送受において、指向性が重視されるケース があります。従来、そうした場合には、主にパラボラ・アンテナ (ディッシュ・アンテナ)が使われていました。長年にわたる最 適化を経た結果、そうしたシステムの多くは、比較的低コストで 適切に動作するようになりました。しかし、機械的に制御される パラボラ・アンテナには、いくつかの欠点があります。例えば、 サイズが大きい、制御に時間がかかる、長期的な信頼性が低い、 1つの放射パターンやデータ・ストリームにしか対応できないと いった具合です。 機械的に操作される従来のアンテナと比べると、電気的に制御さ れるフェーズド・アレイ・アンテナは、数多くの長所を備えてい ます。小型かつ軽量で、長期的な信頼性が高く、高速に制御でき、 複数のビームに対応できるからです。フェーズド・アレイ・アン テナの設計においては、アンテナ素子の間隔が重要な意味を持ち ます。多くのアレイでは、素子の間隔として、対象とする信号の 約半波長分が必要になります。そのため、信号の周波数が高くな ると特に設計が難しくなります。例えば、高い周波数に対応する ICには、より高い集積度が求められます。また、パッケージング・ ソリューションにも一層の高度化が要求されます。

フェーズド・アレイ・アンテナは、より多様なアプリケーション で利用できる可能性があります。ただ、従来はIC技術の限界が その実現を阻む要因になっていました。IC技術が進化を遂げた現 在では、その問題は解消されつつあります。実際、デジタル制御、 メモリ、RFなど、あらゆる機能を実現するトランジスタ回路を 単一のチップに集積した高度なシリコンICが登場しています。ま た、GaN技術によってパワー・アンプの電力密度が著しく高まっ たことから、実装面積も大幅に縮小されています。

#### フェーズド・アレイ技術

市場では、アンテナ・アレイの小型化と軽量化が強く求められて います。通常、厚板を使った従来のアーキテクチャでは、電子部 品を搭載した小さなプリント基板(厚板)がアンテナのプリント 基板の背面に垂直に配置されます。このアーキテクチャについて は、20年間にわたり、厚板のサイズを縮小してアンテナの奥行 きを抑えるために絶えず改良が加えられてきました。次世代の 設計では、この厚板を使うアーキテクチャに代わってフラットパ ネルが使われるようになります。そうすれば、アンテナの奥行き が大幅に抑えられ、携帯型のアプリケーションや飛行型のアプリ ケーションでも利用しやすくなるからです。そのようなサイズの 縮小を実現するには、アンテナの背面に配置できるように、各IC の集積度を十分に高めなければなりません。

フラットパネル型のアレイの設計において、ICを配置できるアン テナ背面のスペースは、アンテナ素子の間隔によって制限されま す。例えば、60°の走査角までにグレーティング・ローブが現れ ないようにするためには、アンテナ素子の間隔を最大0.54λに 抑える必要があります。図1は、アンテナ素子の間隔(単位:イ ンチ)の最大値と周波数の関係を示したものです。ご覧のように、 対象とする周波数が高くなるにつれて、素子の間隔はかなり狭く 設定する必要があります。その結果、ICを実装できるアンテナ背 面のスペースはほんのわずかになります。



図1.アンテナ素子の間隔と周波数の関係。ボアサイトから 60の走査角までにグレーティング・ローブが現れないように するためには、間隔をグラフの値以下に抑える必要があります。

図2の左側は、プリント基板の上面の写真です。金色のパッチ・ アンテナ素子が実装されていることがわかります。一方、図2の 右側には、プリント基板の背面を示しました。ご覧のように、ア ンテナのアナログ・フロント・エンドが実装されます。一般的に は、周波数変換段や分配回路を実装したレイヤが、これに追加さ れることになります。ICの集積度を高めれば、アンテナを設計す る際に、必要な間隔を非常に確保しやすくなることは容易に理解 できるでしょう。より多くの電子部品をより小さな面積で実装で きれば、アンテナを小型化できることは明らかです。逆に言えば、 適切なソリューションを実現するためには、新たな半導体技術と パッケージング技術が必要になるということです。



プリント基板の上面

図2.フラットパネル型のアレイを構成するプリント基板。 上面にはパッチ・アンテナが配置され、背面にはICが実装されます。

#### 半導体技術とパッケージング技術

図3に示したのは、フェーズド・アレイ・アンテナのRFフロン ト・エンドです。マイクロ波/ミリ波対応のICによって構成さ れています。ビームフォーミングのセクションでは、アッテネー タ(ATN)によって各アンテナ素子における電力レベルを調整し ます。それにより、アンテナ・パターンのサイドローブを低減し ます。続く位相シフタ(PHS)は、各アンテナ素子の位相を調整 することで、アンテナのメインのビームを制御します。スイッチ (SWT)は、送信パスと受信パスを切り替える役割を果たします。 フロント・エンドにのセクションでは、パワー・アンプ (PA) に よって信号が送信され、低ノイズ・アンプ (LNA) によって信号 が受信されます。このセクションにもスイッチ(T/R)が存在し、 送信と受信の切り替えが行われます。従来は、各ICが個別にパッ ケージングされたデバイスとして提供されていました。より高度 なソリューションでは、集積度が高いシングルチャンネルのモノ リシック型GaAs ICが使用されることもあります。図では省略し ていますが、多くのアレイでは、ビームフォーマの前段にRF対 応のパッシブ・コンバイナ、レシーバー/励振器、シグナル・プ ロセッサが配置されます。



繰り返しになりますが、フェーズド・アレイ・アンテナの近年の 普及を支えているのは半導体技術の進化です。SiGe BiCMOS、 SOI (Silicon on Insulator)、バルクCMOSの先進的な微細プロ セス・ノードにより、デジタル回路とRF回路が1つのICとして 統合されるようになりました。そうしたICを使えば、アレイにお いてデジタル処理を実行しながらRF信号パスを制御することに より、位相と振幅に所望の調整を加えることができます。今日で は、最大32チャンネルを備えるミリ波対応システムをターゲッ トとし、ゲインと位相の調整を担う4つのチャンネルを内蔵した ビームフォーミング用のICを実現することが可能です。上記す べての機能を備えつつ、消費電力の削減に焦点を絞ったシリコ ン・ベースのICがモノリシック型のソリューションとして提供さ れているケースもあります。また、大出力のアプリケーション向 けには、電力密度が非常に高く、フェーズド・アレイ・アンテナ のユニット・セルに搭載可能なGaNベースのPAが提供されてい ます。従来、この用途には、進行波管(TWT: Traveling Wave Tube)をベースとするPAか、比較的出力の小さいGaAsベース のPAが使われていました。

飛行型のアプリケーションにおいては、GaN技術による電力付 加効率 (PAE: Power Added Efficiency) のメリットを活かし たフラットパネル型のアーキテクチャが選ばれる傾向がありま す。GaN技術が進化したことから、大規模な地上配備型のレー ダーにおいても、TWTを使用するパラボラ・アンテナからGaN ベースのICを採用したフェーズド・アレイ・アンテナへ移行する ことが可能になりました。現在では、GaNベースのモノリシッ クICにより、50%を超えるPAEで100Wを超える出力を達成 できるようになっています。このレベルのPAEと、レーダー・ア プリケーションの低いデューティ・サイクルを組み合わせれば、 生成される熱をパッケージの底面から放散できる表面実装型の ソリューションを実現することが可能になります。表面実装型の PAを使用できれば、アンテナ・アレイのサイズ、重量、コスト を大幅に削減できます。GaNには、純粋に出力が大きいという 特徴があります。また、GaNベースのICを採用すれば、GaAs ベースの既存のICと比べてサイズを縮小することができます。 例えば、出力が6W~8WでXバンドに対応するGaNベースの PAであれば、GaAsベースのものと比べて実装面積を50%以上 削減できます。フェーズド・アレイ・アンテナのユニット・セル にこうした電子デバイスを収めたい場合、この実装面積の差は大 きな意味を持ちます。

パッケージング技術の進化も、フラットパネル型アーキテクチャ における実装コストの削減に大きく貢献します。筐体については、 信頼性を高めるために金メッキを施したハーメチック・シール筐 体が使われることがあります。それにより、チップやワイヤから 成る内部のインターコネクトを覆うということです。この種の筐 体を採用すれば、過酷な環境に対する堅牢性を高められます。但 し、サイズが大きくなり、コストも増大します。これについては、 マルチチップ・モジュール (MCM: Multichip Module) が1 つの解決策になります。MCMとは、複数のMMICと受動部品 を比較的低コストの表面実装型パッケージにまとめて搭載したデ バイスのことです。複数の半導体技術を組み合わせられるので、 スペースを大幅に削減しつつ、各デバイスの性能を最大限に引き 出すことができます。例えば、フロント・エンドICには、PA、 LNA、T/Rスイッチなどが含まれています。この種のICでは、 パッケージの底面に設けられたサーマル・ビアや銅スラグによっ て放熱します。現在、民生分野や航空宇宙/防衛分野の多くのア プリケーションでは、コストの削減を目的として非常に低コスト の表面実装型パッケージが使われるようになっています。

フェーズド・アレイ・ビームフォーマICの具体例

集積度の高いアナログ・ビームフォーマICはコア・チップとも 呼ばれます。この種のICは、レーダー、衛星通信、5Gなどのア プリケーション向けに開発されています。その主要な機能は、各 チャンネルの相対的なゲインと位相を正確に設定することです。 それにより、信号は所望の方向のアンテナのメイン・ビームにコ ヒーレントに結合されます。このような機能を実現するICは、ア ナログ・フェーズド・アレイや、アナログ・ビームフォーミング とデジタル・ビームフォーミングを組み合わせたハイブリッド・ アレイ向けに開発されています。

「ADAR1000」は、X/Kuバンドに対応するビームフォーマICで す。トランスミッタとレシーバーを集積しており、4チャンネル の送受信に対応します(図4)。TDD(Time Division Duplex) モードにより、8GHz~16GHzの周波数範囲をサポートします。 受信モードでは、4つの受信チャンネルを経由した入力信号が合 成されます。合成後の信号は、共通のRF\_IOピンから出力されま す。送信モードでは、RF\_IOから入力された信号が4つに分割さ れ、各送信チャンネルから転送されます。





図5. ADAR1000のゲインと位相。左の図は送信側のゲインとリターン損失を表しています。 右の図はゲインの設定と位相の変動の関係を表しています(周波数は11.5GHz)。

ADAR1000が内蔵するレジスタは、シンプルな4線式のSPI (Serial Peripheral Interface) によって制御できます。また、2 つのアドレス・ピンを使うことにより、共通のシリアル・ライン によって最大4つのデバイスをSPIで制御することが可能です。 専用の送信ピンと受信ピンにより、同一アレイ内のすべてのコ ア・チップの同期がとられます。また、1本のピンによって、送 信モードと受信モードの迅速なスイッチング制御を実現できま す。パッケージは、フラットパネル型のアレイに搭載しやすい 7mm×7mmの表面実装型QFNです。このICは、集積度が高 くパッケージが小型なので、チャンネル数の多いフェーズド・ア レイ・アーキテクチャの課題の解決に役立ちます。つまり、サイ ズ、重量、消費電力の削減に貢献できるということです。同ICの チャンネル当たりの消費電力は、送信モードで240mW、受信 モードで160mWです。送信チャンネルと受信チャンネルは、直 接外部と接続することが可能であり、フロント・エンドICに適合 するように設計されています。

図5は、ADAR1000のゲインと位相について示したものです。 同ICは、360°の位相全体を2.8°未満の位相分解能でカバーしま す。ゲインは30dB以上にわたって調整可能です。また、同ICは、 最大121のビームの状態を保存できるだけのメモリを内蔵してい ます。ここで言う1つの状態には、IC全体のゲイン/位相の設定 が含まれます。トランスミッタの飽和電力は15dBm、ゲインは 約19dBです。レシーバーのゲインは約14dBとなっています。 ゲインの設定に伴う位相の変化は、20dBの範囲で約3°です。同 様に、位相の設定に伴うゲインの変動は、360°の位相範囲全体 で約0.25dBです。これについては、簡単にキャリブレーション することができます。

ビームフォーマICであるADAR1000は、フロント・エンドIC [ADTR1107] と組み合わせることができます。ADTR1107 は、6GHz~18GHzに対応するコンパクトな製品であり、PA、 LNA、SPDT(単極双投)反射スイッチを内蔵しています(図6)。



ADTR1107の送信側における飽和出力電力P<sub>SAT</sub>は25dBm、小信 号利得は22dBです。受信側における小信号利得は18dBで、(T/ Rスイッチを含む) ノイズ指数は2.5dBです。電力の検出に用い るディレクショナル・カプラを備えており、入出力(I/O)は同 ICの内部において50Ωでマッチングしています。パッケージは 5mm×5mmの24ピンLGAです。



図7. ADTR1107のゲインとリターン損失。 送信側と受信側の周波数特性を示しました。

図8に示すように、ADTR1107はADAR1000と簡単に接続で きます。コア・チップである1つのADAR1000により、4つの ADTR1107を駆動することが可能です。わかりやすくするため に、図8では1つのADTR1107との接続だけを示しています。

ADAR1000は、フロント・エンドICに対するシームレスなイン ターフェースを備えています。それにより、必要なすべてのゲー ト・バイアス電圧と制御信号を供給します。ADTR1107自身が LNA用のゲート電圧を供給している場合には、ADAR1000から その電圧を制御することも可能です。ADTR1107のPAに対する ゲート電圧もADAR1000から供給できます。1つのADAR1000 によって4つのADTR1107を駆動するので、ADAR1000はPA のゲート・バイアス用に4つの独立した負の電圧を生成する必 要があります。各電圧は、8ビットのD/Aコンバータを利用し て生成されます。それらの電圧は、ADAR1000のTRピンに対 する入力か、SPIによる制御データによってアサートされます。 ADAR1000がアサートされたら、TRピンによって受信モード と送信モードを切り替えられます。TR\_SW\_POSピンを使え ば最大4つのスイッチのゲートを駆動することが可能なので、 ADTR1107が備えるSPDTスイッチの制御に使用できます。

ADAR1000の4つのRFディテクタ入力(DET1~DET4)のうち1つにADTR1107のCPLR\_OUTピン(カプラ出力)を接続すれば、送信出力電力を測定することが可能です。RFディテクタはダイオードをベースとしたものであり、-20dBm~10dBmの入力範囲に対応します。ADTR1107が備えるディレクショナル・カプラの結合係数は、28dB(6GHz時)~18dB(18GHz時)です。



図8. ADTR1107とADAR1000の接続。 前者はフロント・エンドICであり、後者はX/Kuバンドに対応するビームフォーマICです。

ADTR1107へのパルスの印加は、ドレインを一定の値に保ちな がらADAR1000によってゲート電圧を駆動することで実現しま す。この方法は、ドレインにパルスを印加する方法よりも優れて います。ドレインにパルスを印加するには、大電力に対応可能な MOSFETとゲート駆動用のデバイスが必要になります。それに 対し、ゲートを駆動する方法であれば電流量を抑えられます。な お、ADAR1000は、送信モードではADTR1107を飽和させるほ どの電力を出力します。またADTR1107は、アンテナが短絡し た場合に総反射電力に耐えられるように設計されています。

ADTR1107とADAR1000を組み合わせた回路全体では、どの ような性能が得られるのでしょうか。それを示したものが図9で す。この図は、8GHz~16GHzの周波数範囲における送信/受 信モードの性能を表しています。送信モードでは、ゲインが約 40dB、飽和電力が26dBmとなります。一方、受信モードでは、 ノイズ指数が約2.9dB、ゲインが25dBです。

図10に示したのは、4個のADAR1000で16個のADTR1107を 駆動する場合の回路例です。ご覧のように、シンプルな4線式の SPIによって、ADAR1000が備えるすべてのレジスタを制御でき ます。共通のシリアル・ラインによって最大4つのADAR1000 のうちどれをSPI制御の対象にするかは、2つのアドレス・ピン によって決定します。また、TX\_LOADピンとRX\_LOADピンに より、同一アレイ内のすべてのコア・チップの同期がとられます。 更に1本のTRピンによって、送信モードと受信モードを迅速に スイッチング制御することが可能です。

#### トランシーバーのチップセットと関連製品

集積度の高いRFトランシーバーICは、アンテナにおける実装密 度の向上に貢献します。「ADRV9009」はそうしたICの一例です。 同製品は、トランスミッタとレシーバーを2チャンネルずつ搭載 しています。また、シンセサイザ機能とデジタル信号処理機能も 集積されています。レシーバーは最先端のダイレクト・コンバー ジョン方式を採用しています。また、高いダイナミック・レンジ、 広い帯域幅に対応し、エラー補正用の回路とデジタル・フィルタ も備えています。

ADRV9009は、補助機能用のA/DコンバータとD/Aコンバー タも内蔵しています。更に、PAとRFフロント・エンドの制御に 使用できるGPIO(General Purpose Input/Output)ピンも備 えています。トランスミッタとレシーバーの信号パスに対しては、 フラクショナルN方式の合成が可能な高性能のフェーズ・ロッ ク・ループ(PLL)により、RF周波数信号が供給されます。通常 動作を行っているとき以外の消費電力をより低減するために、包 括的なパワーダウン・モードも用意されています。パッケージは、 12mm×12mm、196ボールのCSP\_BGAです。



図 9. ADTR1107とADAR1000を組み合わせた回路 (シングルチャンネル)の送受信性能



図10.4個のADAR1000で16個のADTR1107を駆動する場合の回路例



図11.フェーズド・アレイ・アンテナ向けの製品群

アナログ・デバイセズは、フェーズド・アレイ・アンテナの設計 に必要なあらゆる製品を提供しています。そのカバー範囲は、ア ンテナからビット・データまでのシグナル・チェーン全体を網羅 しています(図11)。お客様が製品を市場に投入するまでの時間 を短縮できるように、各ICはフェーズド・アレイ・アンテナ向け に最適化されています。IC技術の進化は、アンテナの設計に変化 をもたらしました。それだけでなく、複数の業界にわたる変化を 促進する原動力となっています。

アナログ・デバイセズのフェーズド・アレイ技術については、 analog.com/jp/phasedarrayをご覧ください。

#### 著者について

Jeff Lane (jeff.lane@analog.com) は、アナログ・デバ イセズのプロダクト・マーケティング・エンジニアです。 2001年に入社しました。航空宇宙/防衛/RF製品グルー プで、主にRF/マイクロ波に対応するMMICアンプ製品を 担当しています。これまでに、マイクロ波に対応するアン テナの設計、システム・エンジニアリング、セールス、マー ケティングなどの業務を経験してきました。マサチュー セッツ大学で電気工学の修士号を取得しています。

#### EngineerZone<sup>®</sup> オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

## SUPPORT COMMUNITY

Visit ez.analog.com

\*英語版技術記事はこちらよりご覧いただけます。



### アナログ・デバイセズ株式会社

お住いの地域の本社、販売代理店などの情報は、<u>analog.</u> com/jp/contact をご覧ください。

オンラインサポートコミュニティ<u>EngineerZone</u>では、アナ ログ・デパイセズのエキスパートへの質問、FAQの閲覧がで きます。

©2020 Analog Devices, Inc. All rights reserved. 本紙記載の商標および登録商標は、各社の所有に属します。 Ahead of What's Possibleはアナログ・デバイセズの商標です。 VISIT ANALOG.COM/JP