NRZテストパターン のスペクトル

ディジタル通信システムにおけるデータの送信では、 NRZ(非ゼロ復帰)方式が広く使われています。そのため、 さまざまなNRZテストパターンが作られ、システムの テストや検証で用いられています。テストパターンとして は、実データをシミュレーションするものや、システム のある側面を特に重視したものが使われます。あるシス テムにとって、異なるテストパターンがどのような影響 を持つかを理解するためには、テストパターンとテスト 対象システムの周波数特性を理解する必要があります。

このアーティクルでは、NRZテストパターンのデータ レートやパターン長など時間領域特性と周波数領域スペ クトル成分との間にある関係をわかりやすく説明します。 NRZテストパターンの概要からはじまり、パワースペク トルの計算方法、パワースペクトルの測定方法、そして、 このような概念をどのように使えばシステムを理解できる のかまでを説明します。

NRZテストパターンの概要

NRZ方式では、各バイナリビットに対し、ビットピリオド (T_b)という長さが割り当てられます。信号は、各ビット ピリオドを通じて、ハイ(1を表す)かロー(0を表す)の いずれかになります。NRZ波形は、時間の関数として 定義・測定されます。このように、NRZ信号は時間領域 信号です。

ランダムなNRZデータストリームでは、シーケンスに 含まれる個別ビットが1になる確率と0になる確率は等しく、 その前にどのようなビットがきても関係なく、いずれも 50%です。言い換えると、CID(連続同一ビット)が延々と 続く可能性があります。このようなCIDが延々と続く長い シーケンスは非常に低い周波数成分を持つため、高速 システムでランダムデータを取り扱うことができるように するのは困難となることがあります。

ランダムデータは、多くの場合、エンコーディングや スクランブルといわれる方法でフォーマットし、管理の しやすい形に整えます。高速システムでよく使われる エンコーディング方式の1つが、イーサネットやファイバ チャネル、高速ビデオアプリケーションなどで使われる 8b10bというものです。8b10bエンコーディングでは、 8ビットのデータを10ビットのシンボルに変換します。 追加ビットによってパターンのバランスをとり(一定の ビット間隔で1と0の数が等しくなるようにする)、CIDの 最大長を短くします。このエンコーディングアルゴリズム はまた、8ビットデータを10ビット信号空間内の特定の シンボル(他の10ビットシンボルとはっきり区別できる シンボル)にマッピングするため、BER(ビットエラー レート)も改善されます。この他に、スクランブルと呼ば れる64b66bエンコーディングも、SONETやSDHという テレコミュニケーションシステムで広く使われています。 スクランブルや64b66bエンコーディングは8b10bよりも CID長が長くなる可能性はありますが、これらもパターン のバランスをとり、BERを改善することができます。

特定のパフォーマンスやシステムコンポーネントを重視 したさまざまなテストパターンが、1つのアプリケーション に対して存在する場合もあります。たとえば、8b10b エンコーディングを使うシステムの確定ジッタ性能テスト では、K28.5±パターン(11000001010011111010) がよく利用されます。同様に、エンコード・スクランブル されたランダムNRZアプリケーションの汎用テスト パターンとしては、PRBS(pseudorandom bit stream) が用いられます。

PRBSは、通常、2^X-1 PRBSと書き表されます。指数 (X)は、パターン生成に用いるシフトレジスタ長です。 各2^X-1 PRBSでは、X個のビットにより可能な組み合わせ のすべてが用いられます(例外として1は使われません)。 イーサネットやファイバチャネル、高速ビデオアプリ ケーションでは、2⁷-1 PRBS(127ビット)などのショート PRBSがよく用いられます。理由は、8b10bエンコード されたNRZデータストリームにかなり近い結果が得られ るためです。SONETやSDHでは、通常、2²³-1(≈840万 ビット)PRBSが使用されます。低周波数成分を持ち、 スクランブルNRZデータやランダムNRZデータを高い 精度で表現できるテストパターンが必要だからです。

NRZテストパターンの パワースペクトルの算出

NRZテストパターンのPSD(パワースペクトル密度)を 見ると、パターンのパワーが周波数成分にどのように 分布しているかがわかります。PSDの算出方法には、 基本的に、(a)パターンをフーリエ変換し、その大きさを 自乗するという方法と(b)パターンが持つ自己相関関数¹の フーリエ変換を行うという方法の2つがあります。数学的 に有限で閉じた形に書き表せる信号の場合は(たとえば $s[t] = Acos[2\pif_0t]など)、(a)のほうがシンプルです。$ NRZデータ長が長いケース(テストパターンなど)やランダムビットストリームなど、信号が複雑な場合には(b)が使われます。このような方法を実際に使用するため、まず、フーリエ解析²の基礎を確認しておきましょう。

- デルタ関数、Að(t)は、面積がAの無限に狭い矩形パルス だと考えることができます。この関数は、引数がゼロの 瞬間だけ非ゼロの値を返すもので、図上では上向きの 矢印で表されます。
- 櫛形関数、A∑_nδ(t-nT)は、面積一定のデルタ関数が 等間隔(T)で無限に並んだものです。

- 櫛形関数は、フーリエ変換しても櫛形関数です。ただし、 間隔は逆数(n/T)となり、デルタ関数の面積は間隔の 逆数をかけたもの(A/T)になります。
- 時間領域におけるたたみ込み(*で表す)は周波数領域に おける乗算に相当し、逆もまた成立します。
- 信号をデルタ関数でたたみ込むと、デルタ関数の位置 にシフトした信号が得られます。
- 信号にデルタ関数をかけると(サンプリングすると)、 デルタ関数の位置に、信号振幅に比例する面積を持つ デルタ関数が得られます。

上記ルールの適用例として、NRZテストパターンのPSDを 算出しました(図1)。テストパターンは、T_b長のハイと ロー(1と0を意味する)がトータルでL=nT_bというパターン 長にわたって続くシーケンスだと言うことができます。 まず、有限長のテストパターンに対し、パターン長と 等しい間隔を持つ櫛形関数でたたみ込みを行い、パターン の無限反復を得ます(図1a)。次に、テストパターンの 構成要素ごとに自己相関関数を算出します(図1b)。テスト パターンの自己相関は、三角形で近似できることに注意 してください(近似精度は、パターンの長さや「ランダム 度合い」が改善されると高くなります)。最後に、自己相関 関数のフーリエ変換を行い、パワースペクトルを得ます (図1c)。

図1の例で得たパワースペクトルは、離散形スペクトル線 (デルタ関数)が "sinc²(f)" エンベロープでスケーリング され、無限にくり返されるシーケンスとなっています (sinc(f)の定義はsin(πf)/(πf)です)。テストパターンに ついては、一般に以下が成立します。(a)データレートの 整数倍でsinc²(f)エンベロープがヌルになります。(b) スペクトル線は、パターン長の逆数間隔で等間隔に並び ます。(c)データレートやパターン長が増大するとsinc²(f) エンベロープが小さくなります(「平ら」になります)。 パターン長無限の極限をとると、スペクトル線間隔は 無限小となり、スペクトル全体が連続したsinc²(f)関数 に近づきます。

たとえば、図1aの6ビットパターンを1.25Gbpsのデータ レートで送信すると、スペクトル線の間隔と振幅、スペク トルヌル値は**図2**のように算出されます。図2のsinc²(f) エンベロープが6ビットパターンの近似となっていること に注意してください。近似精度は、パターンの長さや ランダム度合いが改善されると高くなります。

スペクトラムアナライザによる測定

前述の数式や原理は、測定によって確認することができ ます。そのためには高速なパターン発生器を使ってテスト パターンを生成し、その信号のPDSをスペクトラムアナ ライザで測定します。まず、簡単な例を見てみましょう。 1.25Gbpsで送信した4ビットパターン(1110テストパ ターン)のスペクトラムを測定した結果です(図3)。スペ クトルがヌル値になるのは1.25GHz(1/Tb)と2.5GHz (2/Tb)であり、ライン間隔は312.5MHz(1/L)です。

図1. NRZ符号化方式の時間領域(a)、自己相関(b)、パワースペクトル(c)を表すテストパターン

パワースペクトルエンベロープが約sinc²(f)で あることもわかります。大きさが若干異なっているのは、 測定例では短いパターンを使ったためです。

パターン長を20ビット(K28.5±テストパターン)まで のばし、伝送速度を1.25Gbpsのままにすえおくと(図4)、 同じ位置(1.25GHzと2.5GHz)でスペクトルがヌル値に なります。ただし、パターン長が長くなった結果、スペ クトル間隔は125MHzと短くなります。スペクトル線 エンベロープも、4ビットパターンと比較して、sinc²(f) 関数によりよく一致しています。

K28.5±テストパターンからおもしろいことがわかります。 これは20ビットのパターンです。しかし、1.25Gbpsで 伝送されたとき、スペクトル間隔は125MHzと10ビット テストパターンに相当する数値になっています。この 理由は、K28.5±パターンがK28.5+シーケンス (1100000101)とそれを反転したK28.5-シーケンス (0011111010)で構成されているからです。周波数 領域において、K28.5-シーケンスはK28.5+シーケンスと 同じスペクトル情報を持ちます。つまり、スペクトル的 には10ビットごとにくり返すパターンとなっているため、 図4のスペクトル間隔が125MHzとなっています。

パターン長をさらに長くすると、sinc²(f)エンベロープが 顕著になります。これは、図5を見るとよくわかります。 これは、2⁷-1 PRBSパターン(127ビット)を2.5Gbpsで 伝送した結果です。このパターン長では、19.7MHz程度 までデルタ間隔が短くなります。また、データレートの 上昇に呼応して、スペクトルがヌル値となる位置も 2.5GHzと5GHzとなっています。データレートに対して 相対的にスペクトル間隔が小さいことから、パワースペ クトル(図5)でsinc²(f)エンベロープとスペクトルヌルを はっきりと確認することができます。

図2. 6ビットNRZパターンの概算パワースペクトル。スペクトル間隔と $sinc^{2}(f)$ エンベロープが示されています。

図6に、2⁷-1 PRBSパターンのスペクトルの大きさと 間隔を、1.25Gbpsと2.5Gbpsのケースについて示します。 この図からわかるように、同一周波数で測定すると、 データ伝送速度が1.25Gbpsよりも2.5Gbpsのほうが スペクトルの大きさと間隔は大きくなります。

アプリケーション例

NRZテストパターンのパワースペクトルを把握すると、 ディジタル通信システムの設計を大幅に改善することが できます。実例を、レシーバ帯域と適応型イコライザ、 電磁干渉(EMI)という3種類のアプリケーションについて 見てみましょう。

図3. 4ビットパターンのパワースペクトルでは、スペクトルの大きさが sinc²(f)エンベロープから若干ずれています。パターン長を長く すると、この差は小さくなります。

図4. K28.5±テストパターンでパワースペクトルを測定すると、sinc²(f) エンベロープがよりよく近似されること、また、パターン長の延長 を反映してスペクトル間隔が短くなることがわかります。

レシーバ帯域

レシーバの設計では、どの程度の帯域が必要なのかという 問題を避けて通ることはできません。帯域が狭すぎると、 受信信号の高周波成分が減衰し信号が歪みます。帯域が 広すぎると、不要なノイズが混入し信号対雑音比(SN比) が低下します。広い帯域を実現するためには³システムが 複雑になりコストがかかるという問題もあります。受信 する信号のスペクトル成分がわかれば、必要なスペクトル 成分のみをカバーするように帯域を設定することができ ます。

適応型イコライザ

適応型イコライザとは、送信メディアが非理想的である ために発生した歪みを打ち消すためのものです。たとえば、 適応型ケーブルイコライザのMAX3800は、銅ケーブルの 表皮効果損失によって発生した歪みを、3.2Gbps⁴という 高いデータレートでも打ち消すことができます。この ような処理を行うため、2つの周波数(f1=200MHzと f2=600MHz)で入力信号のパワーを比較します。3.2GHz に最初のヌル値を持つパワースペクトルのsinc²(T_{b} f) エンベロープから、これらの周波数における電力比は $sinc^{2}(T_{b}f_{1})/sinc^{2}(T_{b}f_{2}) = 0.987/0.890 = 1.112$ なければならないことがわかります。実際の比率がこの 値と異なると、イコライザは表皮効果補償量を変化させ、 正しい比率に補正します。この方法は、データレートが 高くデータパターンが長い場合に適しています。ただし、 NRZテストパターンのスペクトル成分についての検討 からもわかるように、パターンによっては問題が起きる おそれがあります。

たとえば、データレートを622Mbpsまで落とすと、 622MHzに最初のヌル値を持つsinc²(f)エンベロープ

図5. 2⁷-1 PRBS(127ビット)のパワースペクトルでは、スペクトルヌル とsinc²(f)エンベロープがはっきりと認識することができます。 から、200MHzと600MHzのパワーディテクタ比率が 0.703/0.00134 = 525と前述の1.11とは大きく異なり ます。イコライザは電力比が1.11になるように補正し ようとするため、逆に出力が歪んでしまうおそれがあり ます。もう1つの例として、10ビットのパターン長を持つ 短いテストパターンを考えてみましょう。パターンが短い とスペクトル線の間隔が広くなります。データレート 3.2Gbpsの10ビットパターンでは、スペクトル線の間隔 は320MHzとなります。つまり、0MHz、320MHz、 640MHzとなびます。このようなパターンとデータレート では、200MHzや600MHzにはほとんど出力がないこと になります。その結果、イコライザは正しく補正する ことができず、出力信号が歪みます。

電磁干渉(EMI)

パワースペクトルの大きさや周波数を変えることにより、 システムに対するEMIを削減したりゼロにできることが あります。実際には、データレートやパターン長を調節 します。

データレートを高めると、スペクトラムヌルの間隔が開き ます。また、電力の一部が高周波数側に移動するため、 各スペクトルの大きさは小さくなります。電力を広い 周波数帯域に分散させると、対象周波数に含まれる電力は 小さくなります。このような効果が得られる方法として、 データストリームに余分なビットを付加し実効データ レートを高めるという方法が考えられます。

パターン長が変化するとスペクトルの大きさと間隔も変化 するため、EMIについてはパターン長も意味を持ちます。 パターンを長くすると大きさと間隔が小さくなり、逆に 短くすると大きさと間隔が大きくなります。パターン長 を適切に設定し、特に影響を受けやすい周波数帯域に

図6. 1.25Gbpsと2.5Gbpsで送信された2⁷-1 PRBSパターンのパワー スペクトルの測定結果から(725MHzから825MHzの範囲を表示)、 データレートが変化するとスペクトルの大きさと間隔が変化する ことがよくわかります。 スペクトル成分がないようにすると、特定の周波数に おけるEMIを削減することができます。パターンを長くして EMIの大きさを小さくするという方法も考えられます。

まとめ

高速ディジタル通信システムを正しく設計するためには、 NRZデータの周波数領域におけるスペクトル成分を理解 することが必要です。このアーティクルで紹介した方法 を使えば、NRZデータの時間領域特性(パターン長や データレートなど)と対応する周波数領域特性(スペクトル の大きさ、エンベロープ、スペクトル間隔)との基本的な 関係を把握することができます。この方法は、フィルタ やイコライザ、EMIなど、回路設計のさまざまな問題に 応用することができます。

リファレンス

1. J.W. Goodman, Statistical Optics, John Wiley & Sons, New York, NY, 1985.

2. J.D. Gaskill; Linear Systems, Fourier Transforms, and Optics; John Wiley & Sons, New York, NY, 1978.

3. HFAN-09.0.1 NRZ Bandwidth-HF Cutoff vs. SNR, Maxim Integrated Products, Inc., 2002.

4. MAX3800 data sheet, Maxim Integrated Products, Inc., 2001.