

昇圧回路の性能を高める より低いバッテリ電圧を基に 重い負荷を駆動

著者: Simon Bramble、スタッフ・フィールド・アプリケーション・エンジニア

概要

ほとんどの昇圧コンバータには、ブートストラップを適用する ことができます。この手法を使えば、低い入力電圧を基に昇圧 コンバータを動作させ、重い負荷を駆動することができます。 多くの場合、携帯型機器の設計では、低いバッテリ電圧を基に して高い電圧を得るために昇圧コンバータが使用されます。し かし、バッテリの電圧が低下するにつれ、昇圧コンバータ回路 のFETを強く駆動することができなくなり、出力できる電流の 量が減少してしまうことがあります。この問題を解消するため に使われるのがブートストラップです。この手法を利用すれば、 重い負荷を駆動する場合の効率を高められます。また、バッテ リをより長く使用できるようになります。

昇圧は利用するためにある(These Boosts Are Made for Workin'*)

本稿で例にとるのは、アナログ・デバイセズの [ADP1612] です。 これは、1.3MHzのスイッチング周波数で動作する昇圧コンバー タICです。効率が高く低コストの製品であり、サイズを抑えるこ とが求められる民生用機器での利用に適しています。ADP1612 は、入力電圧が1.8Vに低下しても機能するシャットダウン・ピ ンを備えています。これを使えば、自己消費電流を2µAまで削減 することが可能です。そのため、バッテリ駆動の機器にとって理 想的です。但し、バッテリの電圧が低下すると、ピーク電流も少 なくなります。このことは、バッテリが切れる直前の数時間は慎 重に扱うことが義務づけられている機器であればメリットになり 得ます。しかし、バッテリからの低い入力電圧を基にして重い負 荷を駆動しなければならない場合には問題が生じます。ブートス トラップはこの問題を解決します。バッテリの電圧がかなり低い レベルでも昇圧回路が機能するよう維持しつつ、高い効率で多く の出力電流を供給できるようになります。

* These Boots Are Made for Walkin'(ブーツは歩くためにある[にくい 貴方]) — Nancy Sinatra、1966年

昇圧コンバータによってバッテリの寿命を延ばす

図1に示したのは、ADP1612の評価用キットで使われている回 路です。入力電流を測定するために、バッテリからADP1612の 入力部への経路に200mΩの電流検出抵抗が直列に配置されてい ます。

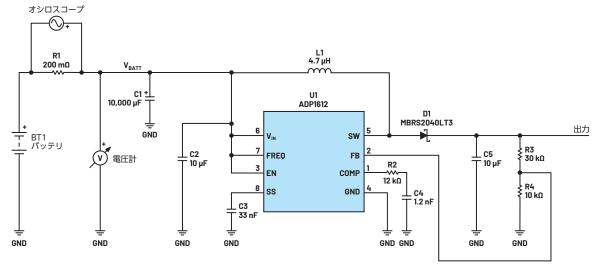


図 1. ADP1612の評価用回路

また、インダクタのピーク電流を滑らかにするために大容量の電 解コンデンサも付加されています。これにより、電流検出抵抗の 両端の電圧を基にしてバッテリの平均電流を高い精度で測定でき るようになっています。また、バッテリの電圧をデジタル電圧計 で測定します。ADP1612の入力電力は、バッテリの電圧と入力 電流の積として求められます。この回路の出力には抵抗負荷が接 続されることになります。DC/DCコンバータの効率は、出力電 力を入力電力で割ることによって求められます。

スイッチ・ノード (SWピン) の信号について検討すれば、DC/ DCコンバータの動作を把握しやすくなります。図2に示したの は、バッテリの電圧が2Vの場合にスイッチ・ノードに現れる信 号波形です。これは、ブートストラップを適用していない回路(以 下、通常の回路)における例です。スイッチ・ノードの電圧波形 の底部では、ピーク値が約180mVになっています。ADP1612 が内蔵するFETがオンになると、インダクタの電流は増加しま す。FETのオン抵抗の値に比例して、スイッチ・ノードの電圧波 形の底部は高くなります。逆に言えば、この電圧が低いほど、 FETのオン抵抗の値は小さいということになります。したがって、 FETと電流によって生じる損失も少なくなります。

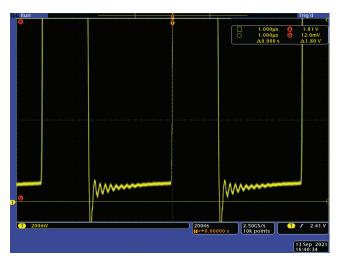


図 2. スイッチ・ノードの電圧。 バッテリの電圧は2Vです。ブートストラップを適用していない 通常の回路で取得しました。

バッテリの電圧を3Vに上げると、スイッチ・ノードの電圧波形 は図3に示すようになります。バッテリの電圧が高くなったため、 デューティ・サイクルが短くなっています。また、スイッチ・ノー ドの電圧波形の底部は明らかにレベルが下がっています。ピーク 値は約80mVまで低下しています。但し、バッテリ電圧が3Vの 場合、FETを流れる電流は、バッテリ電圧が2Vの場合より少な くなります。そのため、オン抵抗の値が低下したのかどうかを確 認するのは困難です。

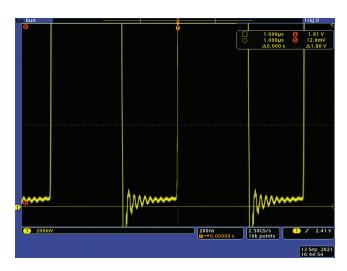


図 3. スイッチ・ノードの電圧。 バッテリの電圧は 3V です。ブートストラップを適用していない 通常の回路で取得しました。

次に、図1の回路にブートストラップ用の構成を適用してみます。 具体的には、ADP1612の V_N ピンに回路の出力を接続します(図 4)。この回路が起動すると、ADP1612には、出力からより高い 電圧が供給されることになります。そのため、ADP1612はバッ テリの電圧レベルを把握することなく、高い電圧でFETを駆動し ます。

ADP1612のイネーブル・ピン (ENピン) は、バッテリ電圧 V_{ratt}と出力電圧のうちいずれかに接続できるようになっていま す。バッテリ電圧に接続した場合、その値が約1.7Vより低くな ると、UVLO (Undervoltage Lockout) 機能がアサートされま す。一方、出力電圧に接続した場合には、バッテリ電圧がかなり 低くなってもADP1612はスイッチング動作を継続します。

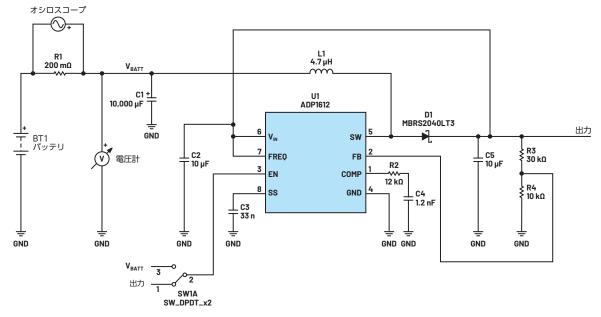


図4. ブートストラップを適用した回路。 V_{IN}ピンに出力を接続しています。

図5は、バッテリ電圧が2V、出力電圧の測定値が4.95Vの場合 の効率を示したものです。ブートストラップを適用した回路と通 常の回路の効率を比較しています。

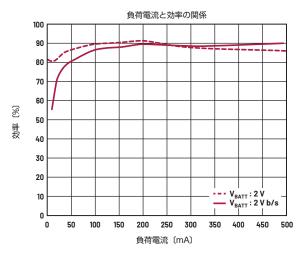


図5. ADP1612の効率。バッテリ電圧は2Vです。 プートストラップを適用した回路 (実線) と通常の回路 (破線) を 比較しています。

図5では、ブートストラップを適用した回路の効率を実線で示し ています。ご覧のように、負荷が軽い場合には明らかに効率が低 下しています。その主な原因は、出力電圧に起因するADP1612 の自己消費電流(約4mA)です。この電流の値は、実質的に出 力電圧に比例する形で決まります。

$$\frac{V_{OUT}}{V_{IN} \times [効率]} \tag{1}$$

ブートストラップを適用した回路では、FETが強く駆動されるの で、バッテリの電圧が低くても出力電流を確保できます。図5か ら、多くの負荷電流(約260mA以上)が必要な場合の効率を高 められることがわかります。

図6、図7に示したのは、ブートストラップを適用した回路のス イッチ・ノードの電圧波形です。重要なのは、ブートストラップ はコントローラICへの供給電圧だけに影響を与えるということで す。電力経路(インダクタと出力ダイオード)には影響は及びま せん。図2と図6を見比べれば、バッテリ電圧が2Vの場合にブー トストラップの有無によってスイッチ・ノードの電圧にどのよう な差が出るのかを確認できます。同様に、図3と図7を見れば、 バッテリ電圧が3Vの場合の比較が行えます。

バッテリの電圧が低い場合には、ブートストラップを適用した回 路の方が明らかに有利です。バッテリの電圧が2Vという条件の 場合、通常の回路におけるスイッチ・ノードの電圧波形の底部で はピーク値が180mVになっていました。一方、ブートストラッ プを適用した回路ではその値が100mVに抑えられます。これは、 FETのオン抵抗の値が小さいということを意味しています。その 結果として、損失が削減されます。バッテリの電圧が3Vという 条件では、どちらのスイッチ・ノードでもピーク値は約80mVに なります。仮に、ブートストラップによって改善が得られている としても、その効果は非常に小さいと考えられます。

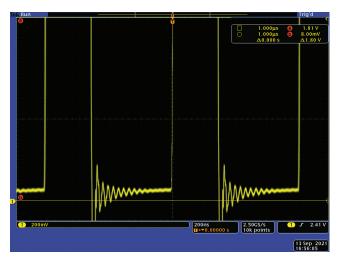


図6. スイッチ・ノードの電圧。 ブートストラップを適用した場合の結果です。 バッテリの電圧は2Vです。

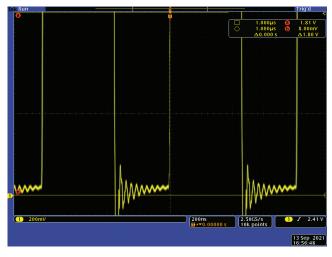


図7. スイッチ・ノードの電圧。 ブートストラップを適用した場合の結果です。 バッテリの電圧は3Vです。

バッテリの電圧は、どこまで下がっても 問題ないのか?

もう1つ有益な実験を行ってみましょう。その実験では、バッテ リの電圧がどこまで下がったら、出力電圧がレギュレートされな くなるのかを確認します。

図8は、ブートストラップを適用した回路と通常の回路を比較し たものです。青色で示したのは、通常の回路の特性です。ご覧の ように、バッテリの電圧が約1.7V未満になると、UVLO回路が アクティブになることがわかります。ここで、ブートストラップ を適用した回路(図4)を再度ご覧ください。ENピンとVIIIピン は、いずれも出力電圧(5V)に接続されています。そのため、 UVLOは働かず、回路全体はかなり低い電圧でも動作します。と はいえ、適切な入力が存在しなくても、いくらでも電力を生成で きるということではありません。ADP1612のピーク電流には制 限があります。そのため、多くの負荷電流が必要であれば、バッ テリの電圧を高くし、スイッチの固定ピーク電流によって負荷電 流を供給しなければなりません。図8の赤色の曲線(ブートスト ラップを適用した場合) を見ると、負荷電流の増加に伴ってほぼ 直線的な増加を示していることがわかります。

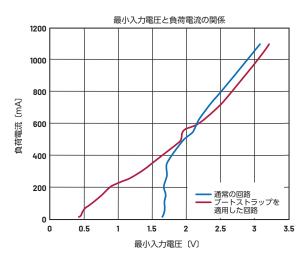


図8. 最小入力電圧と負荷電流の関係

DC/DCコンバータの最小動作電圧は、その最大デューティ・サ イクルによって決まります。この例の場合、最大デューティ・サ イクルは約90%です。ここで次式をご覧ください。

$$[\vec{\mathcal{F}}$$
ューティ・サイクル] $\approx \frac{V_{OUT} - V_{IN}}{V_{OUT}}$ (2)

出力が5Vで最大デューティ・サイクルが90%であるとすると、 最小バッテリ電圧は0.5Vになります。つまり、図8に示した結 果とほぼ一致しています。

図8を見ると、意外な事実に気づきます。それは、バッテリの電 圧が2.2Vより高くなると、通常の回路の方がブートストラップ を適用した回路よりも多くの負荷電流を供給できることです。こ れは、ブートストラップを適用した回路は出力電圧を基に動作す るという原理に起因しています。つまり、より高い電圧が供給さ れることで、ADP1612の自己消費電流が増えているということ です。

また、ADP1612の効率が100%に達することはないので、所定 の負荷電流を得るために必要な入力電流も更に増加します。その ため、ブートストラップを適用した回路では、通常の回路と比べ て、必要な電圧がわずかに高くなります(約150mV)。先述した ように、バッテリの電圧が高くなるとブートストラップのメリッ トはそれほど大きくなくなります。また、ゲートを強く駆動でき るという利点は、回路の自己消費電流の増加によってもたらされ る損失の増加を補うには不十分だと言えます。

他のメリット、デメリット

ブートストラップの構成は、回路の起動電圧にも影響を及ぼしま す。ADP1612のV_{IN}ピンには出力から電力を供給するので、通 常の回路と比べて、1個のショットキー・ダイオードによる電圧 降下の分だけバッテリの電圧が高くなければなりません。ショッ トキー・ダイオードで生じる電圧降下は、電流値に依存して様々 な値をとります。電流が50μAの場合は約100mV、より電流が 多い場合には200mV以上といった具合です。通常の回路の起 動電圧は(UVLOのスレッショルドと等しい)約1.75Vです。 それに対し、ブートストラップを適用した回路では起動電圧が約 1.95Vになります。このことは実験で確認できています。

まとめ

ブートストラップは、ほとんどの昇圧コンバータに適用できます。 例外は、起動時にバッテリの電圧を出力から切り離すタイプのア プリケーションです。ブートストラップを適用すると、負荷が軽 い場合には効率が低下します。しかし、その影響は自己消費電流 が非常に少ないレギュレータ製品を選択することで軽減できま す。バッテリが全く充電されていない状態で回路の起動が要求さ れることは滅多にありません。したがって、通常の回路よりも高 い起動電圧が必要になることはそれほど問題にはならないでしょ う。

比較的負荷が軽い状態が続くアプリケーションや、十分に高い バッテリ電圧が得られるアプリケーションの場合、ブートスト ラップを採用する必要はないかもしれません。しかし、負荷が重 く、バッテリが空になる直前まで動作を継続させなければなら ない場合には、ブートストラップの適用を検討してみるとよいで しょう。

著者について

Simon Bramble (simon.bramble@analog.com) は、ア ナログ・デバイセズのスタッフ・フィールド・アプリケー ション・エンジニアです。以前はLinear Technology (現 在はアナログ・デバイセズに統合) でアナログ技術者とし て業務に従事していました。ロンドンのブルネル大学でア ナログ技術とパワー技術を専攻。1991年に電気工学と電子 工学の学位を取得しました。

EngineerZone® オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

SUPPORT COMMUNITY

Visit ez.analog.com

*英語版技術記事はこちらよりご覧いただけます。

com/jp/contact をご覧ください。