

O-RANを採用した ワイヤレス・ソリューション のための5G対応デバイス

著者: Brad Brannon、システム・エンジニア

概要

O-RANとは、オープンな無線アクセス・ネットワークを実現 するための仕様です。その背景には、3GPP (3rd Generation Partnership Project) が掲げる5G関連の目標があります¹。 その達成に向けて、ワイヤレス・コミュニティを変革し、ワイ ヤレス装置の新たな構築スタイルを導入して、イノベーション を実現するための触媒としてO-RANは策定されました。高い 費用対効果を実現しつつ成功に結び付けるには、オープン・ ソース化された無線装置や最適化された5G対応デバイスを利 用できるようにする必要があります。本稿では、電力効率に優 れたソリューションを設計/構築するための方法を紹介します。

5Gが抱える課題

無線技術者やネットワーク技術者は、5Gに関連して掲げられて いる目標を達成するために複数の手法を取り入れています。例 えば、データ・サービスをネットワークのエッジに移したり、 Massive MIMOとスモール・セルを活用したりすることで、 通信容量とスループットの両方を高めるといった具合です。 Massive MIMOでは、アレイ状に配置された多数のアンテナを 使用します。それにより、通信容量を増加させるだけでなく、中 央のロケーションにとってのカバレッジの拡大に貢献します。ま た、従来のマクロセルと同様に、中央のロケーションを中心とし て比較的広い範囲をカバーします。但し、Massive MIMOでは、 2.6GHz以上といったより高い周波数を使用します。そのため、 電波がうまく建物を通過することができません。そこで、到達が 難しい屋外のエリアや屋内をカバーするためにスモール・セルが 使用されます。一般家庭や企業の施設、商業施設、競技場など、 屋内外には、果たしてどれだけ多くのエリアが存在するのでしょ うか。そのように考えれば、5Gを成功に導くには、スモール・ セルの活用が不可欠であることがわかります。ただ、このことは、 1つのネットワークに膨大な数のスモール・セルが含まれるとい うことを意味します。また、多様な配備方法も用意しなければな りません。そのため、そうした設備を低コストで導入/運用でき るか否かが成功の鍵を握ることになります。

利用可能な技術

ここ数年の間に、5G向けのソリューションを実現する方向で様々 な技術が進化しました。まず、ベースバンドの領域では、引き 続きムーアの法則に従ってゲートあたりのコストが低下していま す。それだけでなく、より複雑な機能を無線技術に組み込めるよ うになっています。現在では、デジタル・プリディストーション (DPD: Digital Predistortion) のような機能を含む制御アルゴ リズムの多くを、無線システムに直接組み込むことができます。 新世代の無線の利用が進めば、それ以外にも多くの可能性が生ま

もう1つ、強力な動きを見せているのがO-RAN²などの業界団体 です。そうした団体は、スケール・メリットを活かしてコストの 低減を実現しようとしています。また、サプライ・チェーンのセ キュリティを高め、ワイヤレス・ネットワークによる新たなマネ タイズの方法を提供することを目指して、ワイヤレス業界全体で 連携して取り組みを進めています。稿末に示した参考資料3には、 「O-RAN Allianceは要件を明確に定義し、目標の達成に必要なエ コシステム/サプライ・チェーンの構築を支援するために、事業 者によって設立されました。O-RAN Allianceは、目標の達成に 向けて(オープン化とインテリジェンス化という原則の)具現化 に取り組みます」と記されています。同アライアンスは、3GPP の仕様に対応する物理インターフェースの定義を行っています。 それにより、業界全体で相互運用が可能なホワイト・ボックス・ ソリューションとしてそのインターフェースを標準化/実装でき るようにすることに焦点を絞って活動を行っています。また、同 アライアンスは、ハードウェアに関する要件の定義や、O-CU/ O-DU/O-RU (O-RANの定義に基づく、オープンな集約ユニット、 オープンな分散ユニット、オープンな無線ユニット)のリファレ ンス設計の提供も行っています。そうしたすべての活動によって、 フロントホールとベースバンド・プロセッサの標準化が可能にな り、ソリューションの更なるコスト低減を実現しようとしていま す。それらに、無線ICをはじめとする5G対応のICを組み合わせ ることで、スモール・セルのあるべき姿が定まり、標準規格に対 応する実装が可能になります。このような業界団体の取り組みは 非常に重要です。

加えて、ここ数年の間に無線技術も急速に進化しました。現在 では、3GPPが38.104仕様や稿末の参考資料1の中で定めてい る性能の要件を満たす無線技術が複数の形態で提供されていま す。そうした技術は高度に統合された状態で製品化されており、 アナログ部品やRF部品だけでなく、DPD、CFR (Crest Factor Reduction) といった重要なアルゴリズムも備えています。そう したデバイスはCMOSの微細プロセスで製造されますが、RFフ ロント・エンドについても技術の進化が見てとれます。低コスト のRF向けプロセス (SiGe、SOI、GaN、GaAsなど) によって、 上記の標準規格で定められた要件を満たす集積度の高いLNA(低 ノイズ・アンプ)や大出力/高性能のPA(パワー・アンプ)が 実現されています。

もう1つ、大きな進化を遂げているのが、集積度が高く効率的な パワー・ソリューションです。そうしたソリューションは、サイ ズを抑えて電力を供給できるPoE (Power over Ethernet) や、 標準的なパワー・デバイス、監視機能、保護機能などに対応して います。無線環境において非常に高い効率やノイズ性能を実現し つつ、PAなどの主要なデバイスを保護するためのオプションも 備えているということです。

これらの技術を組み合わせることによって、高性能/低コストの スモール・セル向けプラットフォームを実現できます。そうした プラットフォームは、小電力/大電力のシステムの両方に対応で きるので、通信事業者のネットワーク全体にわたって効率的に配 備することが可能です。

システムの概要

図1は、5Gに対応するスモール・セルのブロック図です。ここ では、4T4R(4つのトランスミッタ、4つのレシーバー)という 標準的な構成を例にとっています。実際には、2T2Rの構成をと ることもできますし、24dBm以上の電力クラスに対応すること も可能です。以下では、この図を基に、オープンな無線ユニット (O-RU) で扱う様々な帯域や電力レベルに応じて簡単にスケーリ ングできる5G対応デバイスについて説明します。

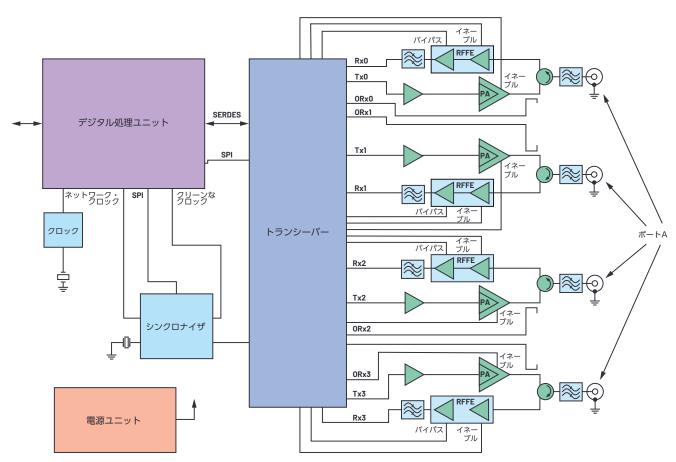


図 1. スモール・セルのブロック図

無線の主要な要素

ここ10年の間に、トランシーバーICは高性能なプラット フォームへと進化しました。例えば、アナログ・デバイセズの RadioVerseTMファミリには、最高200MHzの占有帯域幅をサ ポートし、DPDなどの高度な機能を搭載するものなど、多様な トランシーバーICが含まれています。また、この製品ファミリは、 5Gに対応するデバイスに求められるニーズを満たすだけではあ りません。これまでどおり、LTEやマルチキャリアGSM (Global System for Mobile Communications)の要件にも対応します。 このような製品については、絶えず新世代品が開発されています。 その最新製品の1つが、4T4R構成の「ADRV9029」です(図2)。 これ以外にも、DPDを搭載するものや搭載しないもの、2T2Rの 構成のものなど、多様な製品が提供されています。

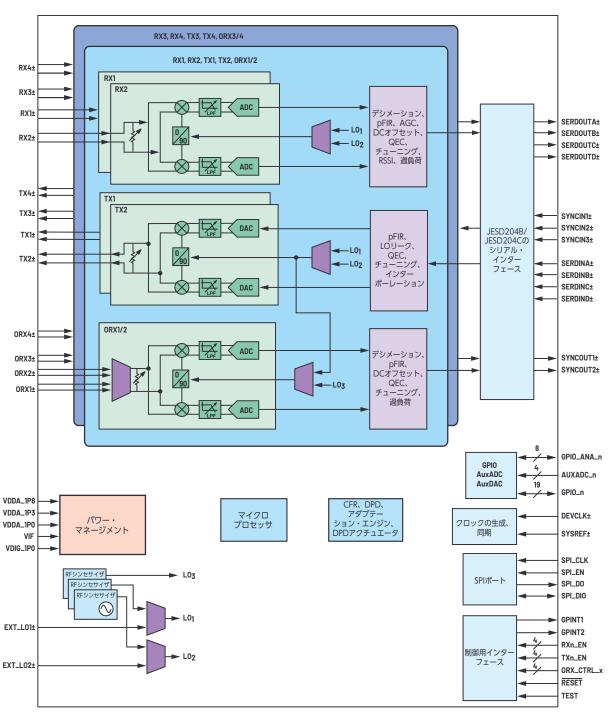


図 2. ADRV9029のブロック図

各RadioVerse製品には、LNAとPAを除き、無線システム全体 を構築するために必要なあらゆるものが含まれています。例え ば、送受信に必要なすべての回路、シンセサイザ、クロックなど を網羅しています。また、AGC(自動利得制御)とゲイン制御ア ンプの実行に必要なステート・マシン、VGA(可変ゲイン・アン プ)も内蔵しています。RadioVerse製品は、最高6GHzの広い 帯域に対応します。LNAとPAについては、そのような仕様に対 応する高性能品は存在せず、必要な帯域または周波数範囲に応じ て適切な製品を選択しなければなりません。そのため、システム を完成させるためには、RadioVerse製品とLNA/PAを組み合わ せる必要があります。以下では、5G NR (New Radio) に対応 するスモール・セルの設計において送受信に使用するシグナル・ チェーンについて説明します。また、その構成要素となるデバイ スの選択に関する知見を提供します。

レシーバーのシグナル・チェーン

ADRV9029とレシーバー用のフロント・エンド・モジュール 「ADRF5545A」(図3)を組み合わせれば、それら2つのICだけ でほぼレシーバーを構築できることになります。ADRF5545Aの 代わりに、ピン互換の「ADRF5515」を使用することも可能です。 わずかな数の受動部品を追加することにより、図4のようなシグ ナル・チェーンを構成できます。結果として、非常にコンパクト で高性能なレシーバーが実現されます。このアーキテクチャがも たらす最大のメリットは、高い集積度によって得られます。すな わち、非常に少ないコストで実装できるだけでなく、消費電力も 最小限に抑えられます⁴。

RadioVerseファミリのアーキテクチャによって、従来のレシー バーの設計に必要だった多くの要素を排除することが可能になり ます。一部のRF信号を増幅/フィルタリングするためのコンポー ネントに加え、チャンネル・フィルタ(アナログ、デジタル)や ベースバンド・アンプなど、多くの無線機能が不要になるのです。 一般に、それらはシステムの中でサイズと消費電力が最も大きい 要素だと言えます。そのため、ダイレクトRFサンプリングなど のアーキテクチャを採用する場合と比べて、占有面積と消費電力 が大幅に削減されます。

ADRF5545A

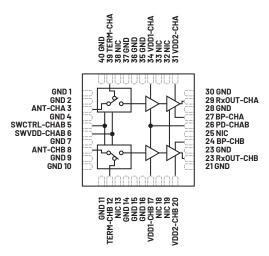


図3. ADRF5545Aの内部構造。TDDに対応する デュアルチャンネルのレシーバー用フロント・エンドです。

図4に示すように、このスモール・セル用のレシーバーは、主 にTDD (Time Division Duplex) 向けのサーキュレータ、 ADRF5545A、SAW/BAW(表面弾性波/バルク弾性波)フィ ルタまたはモノブロック・フィルタ、バラン、トランシーバーか ら成ります。ADRV9029をはじめとするRadioVerse製品は、 ノイズ性能が高く、入力1dB圧縮ポイントが小さいので、アン プやVGAを追加する必要はありません。このシグナル・チェー ンを使用すれば、アンテナからビットまで(RF信号からデジタ ル・データまで)に至るシステム全体のノイズ指数 (NF: Noise Figure)を2dBにまでに抑えることができます。この設計では、 ADRF5545Aという集積型のRFフロント・エンド・モジュール (FEM)を採用しています。ただ、ディスクリート構成の回路を 採用することによってメリットが得られる設計も少なくありませ ん。FEMでは高い集積度が得られるわけですが、それと引き換え に、アンテナ用のフィルタの要件がやや厳しくなるというトレー ドオフがあるからです。それでも、Massive MIMOやその他の TDDシステムなどを設計する際には、集積度の高いソリューショ ンは魅力的な選択肢になります。一般に、ディスクリート構成の フロント・エンドは、FDD (Frequency Division Duplex) シス テムの設計に適しています。

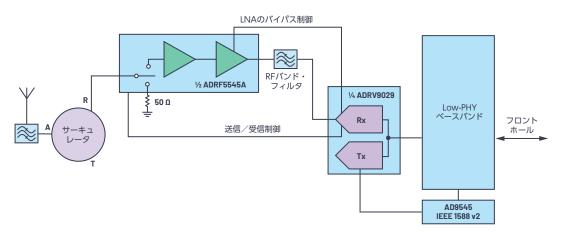


図4. レシーバーのシグナル・チェーンの構成要素

ここで、LNAまでの損失が約0.5dB、バンド・フィルタにおける 損失が1dBであると仮定しましょう。そうすると、2つのアクティ ブ・デバイスのデータシートに記載された値から、レシーバー のシグナル・チェーン全体の公称NFは約2dBになるはずです。 信号/ノイズ + 歪み (SINAD) がMCS-4と同じくOdBである と仮定すると、5GのG-FR1-A1-1の搬送波(約5MHz)に対す るリファレンスの感度は約-104.3dBmとなります。これだけの 感度があれば、38.104のセクション7.2.2に定められているワ イド・エリアの伝導要件も、マージンを十分に確保して満たすこ とができます。ここで、表1をご覧ください。同じ条件下でロー カル・エリア/スモール・セルの設計に求められる感度は-93.7 dBmです。こちらに対しては、十分すぎるほどの余裕がありま す。性能が高くない一部のスモール・セル・アプリケーションに 対しては、「GRF2093」(Guerrilla RF製) といった1段構成の LNAとSAWフィルタを組み合わせることで対応できる可能性も あります。

表 1. 38.104 におけるレシーバーの分類

	ワイド・エリア (dBm)	ミッドレンジ (dBm)	ローカル・エリア (dBm)
5MHz BW/15kHz	-101.7	-96.7	-93.7
20MHz BW/15kHz	-95.3	-90.3	-87.3
50MHz BW/30kHz	-95.6	-90.6	-87.6
100MHz BW/30kHz	-95.6	-90.6	-87.6

また、38.104のセクション7.4.1では、(ワイド・エリアにおい て)-52dBmの干渉信号の下で、レシーバーの感度の低下を6dB 以下に抑えるACS (Adjacent Channel Selectivity) ブロッキ ング性能を求めています。図5に示したNFと入力レベルの関係 から、-52dBmにおいては、それよりも低いレベルと比べてノイ ズはほとんど増加しません。実際、ノイズ・フロアは-40dBmの 手前まで上昇していないことが見てとれます。ACSの要件として -44dBmが求められるローカル・エリアに対しても理想的です。

一般的なブロッキングの要件(7.4.2)としては、(ローカル・エ リアにおいて)-35dBmの干渉信号を、±7.5MHzのオフセット で帯域内のレシーバーに印加した場合に、感度の低下を6dB以 下に抑えることが求められます。図5に示したように、アナログ・ デバイセズの製品で構成したシグナル・チェーンでは、感度は約 0.9dBしか低下しません。挟帯域のブロッキングは、やや電力の 小さいCWに似たスティミュラスになりますが、それについても 問題はありません。

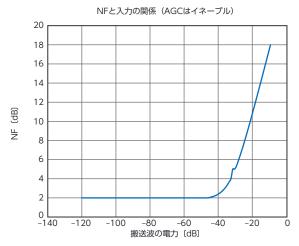


図5. レシーバーにおける NF と入力レベルの関係

更に興味深い課題は、セクション7.5.2の帯域外ブロッキングで す。ここでは、-15dBmの干渉信号がアンテナの入力に印加され るケースを想定します。動作帯域幅が200MHz未満のスモール・ セルの場合、この信号とその帯域端との周波数の差は、最も近 い場合で20MHzとなります。このテストでは、動作周波数から 20MHz以内の帯域を除いて、1MHz~12.75GHzの掃引を実施 することが求められます。このような条件に対し、図4のシグナ ル・チェーンには有利な点が複数存在します。

まず、サーキュレータの帯域幅が有限であり、帯域外の信号の 多くが除去されるということが挙げられます。但し、動作帯域 に近い信号に対しては大きな効果は働きません。もう1つは、 ADRF5545Aの後段のフィルタによって、いくらかのフィルタリ ングが行われることです。一般的には、20MHzの帯域外信号に 対して、約20dBの除去性能が得られます。更に、アナログ・デ バイセズのトランシーバー・ファミリは、そのアーキテクチャに 固有で、なおかつ非常に有効な独自機能として、帯域外成分の除 去機能を内蔵しています。アプリケーション・ノート [AN-1354] の図20を見れば、その本質的な帯域外除去性能を確認できます。 具体的には、感度の低下については、通過帯域からどちらの方向 に周波数を掃引しても、より大きな信号を許容できることがわか ります。帯域端の近くでは、6dBの感度の低下に対して約10dB に対応できます。それ以上離れると、内蔵するフィルタによって 帯域外の信号が大きく減衰します。その信号は、帯域内に折り返 す (エイリアス) ことなく、オンチップのフィルタと外付けのフィ ルタによってほぼ減衰されます。

シグナル・チェーン全体で見ると、20MHzの除外帯域までは、 -15dBmの帯域外信号が約-40dBm~-45dBmに抑えられます。 それ以上離れた場合には、除去性能は更に高くなるでしょう。図 5から、このレベルであれば、感度はほとんど低下しないと考え られます。

おそらく、より大きな問題になるのはFEMの直線性です。この レベルでは、3次相互変調歪み (IM3) がかなり大きくなると予 想されます。使用するFEMによっては、帯域選択フィルタを2つ 目のLNAの前に移動し、一般的に大きな相互変調歪みを生成す る帯域外信号から保護することが望ましいかもしれません。一方、 ここで採用しているタイプのFEMでは、2つの段の間にフィルタ を配置するのは不可能です。そのため、代替策を講じることにな ります。

図3に示したように、標準的なFEMには、2段目のLNAをバイ パスするためのスイッチが用意されています。これは、帯域外に 大きな干渉信号が存在する場合に、相互変調歪みの影響を抑え るために使われます。ゲインを抑えることで、2段目のLNAが、 非直線性が増す方向に駆動されないように保護するということで す。LNAのゲインの切り替えによって、シグナル・チェーンのS/ N比は1dB低下します。しかし、大きな干渉信号によって引き起 こされる相互変調歪みを抑えることにより、全体的なダイナミッ ク・レンジは維持されます。つまり、ノイズ性能の損失を上回る 効果が得られるということです。それによってワーストケースの NFは約5.7dBとなりますが、それでもまだローカル・エリア(ス モール・セル)におけるリファレンスの感度の要件の範囲内に収 まります。それ以外のフィルタリングの要件には、アンテナ部の フィルタによって対応します。干渉信号の除去性能は、レシー バー用のFEMのゲイン圧縮ポイントと3次インターセプト・ポイ ントによって決まります。

トランスミッタのシグナル・チェーン

ADRV9029に、RF対応の適切なドライバ(駆動アンプ)または VGA (選択肢については analog.com/jp/rf を参照) と適切な PAを組み合わせれば、屋内向けのピコセル、屋外向けのピコセ ル、屋外向けのマイクロセルを簡単に構築できます⁵。それらに 加え、わずかな数の受動部品を使用するだけで、非常にコンパク トで効率的なトランスミッタを構成することが可能です。そのシ グナル・チェーンは図6のようになります。このアーキテクチャ の最大のメリットは、高い集積度が実現されていることです。言 い換えれば、非常に低いコストで実装できます。また、アナログ・ デバイセズの一部のトランシーバー製品が備えるDPD機能を活 用すれば、消費電力も最小限に抑えることが可能です。

図6に示したスモール・セル向けのトランスミッタは、主にサー キュレータ、PA、フィルタ、トランシーバーで構成されていま す。また、PAの出力部にカプラを付加しています。このカプラ は、出力の歪みのモニタリングに使用します(アンテナのVSWR [電圧定在波比] とフォワード電力のモニタリングにも使用でき ます)。これをDPDと組み合わせて使用すれば、送信機能の動 作効率とスプリアス性能を向上させることが可能です。外付けの DPD機能(FPGAなど)も利用できますが、アナログ・デバイセ ズのトランシーバーが備えるDPD機能を使用する場合、同機能 を動作させても消費電力は最大で350mWしか増加しません。 なお、消費電力の増加量は、PAに必要な補正量に依存します。 低消費電力のPAを選択した場合、必要な補正量も小さく抑えら れるので、DPD機能による消費電力も少なくなります。また、 DPD機能を内蔵している場合、オブザベーション・レシーバー のSERDES (Serializer/Deserializer) のレーンが完全に不要に なります。そのため、SERDESのレーン数は、外付けのベースバ ンドICを使用する場合の半分になります。加えて、DPDの帯域 幅の拡張が完全にトランシーバー内で処理されるので、トラン シーバーのペイロードが低減されます。仮に、同等のDPD機能 をFPGAに実装したとすると、消費電力は約10倍になります。 つまり、その方法は、低消費電力であることが求められるスモー ル・セルやMassive MIMOに対しては、電力効率が低くすぎて 適切ではありません。一方、トランシーバーが内蔵するDPD機 能であれば、非常に少ない消費電力でコスト効率良くスモール・ セルに適用することができます。つまり、効率の面でメリットが あることに加え、外付けのコンポーネントに大きな演算負荷をか けることなく、送信側の直線性を高めることができます。

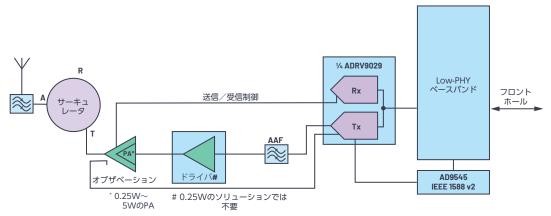


図6. トランスミッタのシグナル・チェーンの構成要素

図7、図8は、消費電力が少ないスモール・セルと中程度のスモー ル・セルの評価結果です。アナログ・デバイセズのトランシーバー が内蔵するDPD機能をアプリケーションに適用した場合の例を 表しています。ご覧のように、5つの隣接する20MHzのLTE搬 送波(合計100MHz)に対するスティミュラスが示されていま す。一般に、LTEでは最小45dBのACLR(Adjacent Channel Leakage Ratio:隣接チャンネル漏洩電力比)が必要になります。 実際、多くの実装ではそれ以上の性能が求められます。アナロ グ・デバイセズのテスト用の施設では、あらゆる電力クラスの新 たなPAの試験が常に行われています。アナログ・デバイセズが 提供するDPD技術の最新情報とPA製品の最新のリストについて は、「Power Amplifier Test Report」をご覧ください。

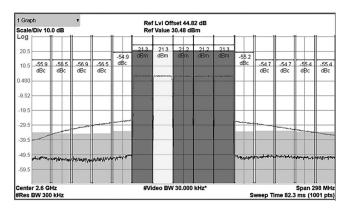


図7. DPDあり/なしの場合のPAのスペクトル (合計RFは26dBm)

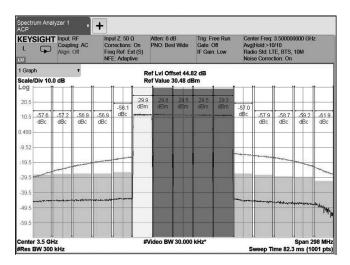


図8. DPDあり/なしの場合のPAのスペクトル (合計RFは37dBm)

全体の構成

図9に示したのは、シグナル・チェーンの全体像です。この図に は、送信/受信制御に必要な信号の一部が含まれています。そ れらの信号は、電力効率を高めるために、TDD方式に対応して アンプをそれぞれのサイクルで有効/無効にするために使用し ます。また、この回路をFDD方式で使用する場合には、未使用 のスロットの電源をオフにすることで消費電力を削減できます。 LNAには、送信電力がコア・アンプの入力ではなく終端に返って くることを防ぐための入力スイッチが必要です。そうした様々な 信号を、ASIC、FPGA、トランシーバーなどによって生成し、制 御を実現します。

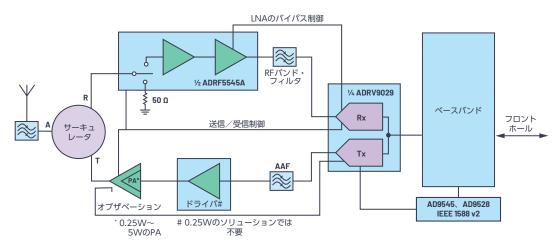


図9. トランシーバーのシグナル・チェーンの全体像

レシーバーのシグナル・チェーンには、アナログ信号のゲインの 低下に応じてデジタル・データのストリームに変更を加える機能 が含まれています。それにより、Low-PHYを経て下流のベース バンドに引き渡される信号の絶対レベルが維持されます。

ここで示したアプリケーションは、シングル・バンドに対応する ものです。トランシーバーは広帯域に対応しており、6GHzまで のあらゆる周波数を使用できます。しかし、シグナル・チェーン を構成するすべてのデバイスがそのような特質を備えているわけ ではありません。前述したように、LNAやPAなどのデバイスは、 一般的に対応可能な帯域が限定されており、使用する帯域に基 づいて製品の選定を行う必要があります。通常は、ピン互換の複 数の製品によって6GHz以下の一般的な帯域全体が網羅されてお り、簡単に置換できるようになっています。つまり、5Gの帯域 やO-RANで提案されている帯域を含めて、TDD/FDDの一般的 な帯域全体がサポートされています。

クロック・ツリー

クロック・ツリーについては、システムに応じて複数の異なる構 成を適用できます。タイミングの正確なアライメントが求められ る場合には、2段構成のクロック合成が必要になります。最初の 段は、無線信号をデジタル化する際のタイミング調整を正確に行 うASIC、FPGA、またはコントローラを介してベースバンド・ブ ロックに接続しなければなりません。本稿のアプリケーション例 では、フロントホールまたはローカルのGPSレシーバーから供給 されるPTP (Precision Time Protocol) 情報の処理が必要にな ります。それによって、無線システムとベースバンド・プロセッ サは、無線フレームがいつ処理されるべきなのかを正確に把握し ます。

「AD9545」は、メイン・クロックの周波数、位相、時間を、無 線システムに対応させて正確に調整する処理に最適な製品です。 この製品ファミリは、リファレンスを使用することなく一時的 に動作するように構成することができます。この使い方には、 TCXO (Temperature Compensated Crystal Oscillator:温 度補償水晶発振器)またはOCXO (Oven Controlled Crystal Oscillator: 恒温槽付水晶発振器)を併用する場合、リファレン ス・クロックに障害や中断が生じても精度を維持できるというメ リットがあります。

タイミングのアライメントに高い精度が求められない構成、 または正確なアライメントが必要な構成の2つ目の段には、ク ロック分配デバイスが必要です。同デバイスの役割は、無線 システム全体で使用する一連のクロックを生成することです。 それには、JESD204、eCPRI (Enhanced Common Public Radio Interface)、イーサネット、SFP (Small Form-factor Pluggable) や、無線システム全体にわたるその他の主要な信号 に必要なクロックが含まれます。「AD9528」は、最大14の異な るレートに対応して低ジッタのクロックを供給可能なクロック・ ジェネレータです。JESD204B/JESD204Cのデバイス・クロッ クやSYSREF信号などをサポートします。

2段構成のクロック回路のブロック図を図10に示しました。 タイミングについて高い精度のアライメントが求められないア プリケーションについては、AD9545を削除/バイパスし、 AD9528だけで対応しても構いません。システムに対する入力ク ロックは、ネットワークの基本的なタイミングに基づき、イーサ ネット機能を実現するブロックまたはFPGA内(アーキテクチャ によって異なります)のベースバンド/ネットワーク機能によっ て再生されます。無線システムの具体的な要件に応じ、これ以外 にも多くの構成が可能です。図10に示したのは、代表的な構成 例にすぎません。

図10. クロック・ツリーの例

消費電力

消費電力には多くの要素が寄与します。例えば、選択するFPGA や実装する機能、使用するトランシーバー、有効にするオプショ ン、必要なクロック・ツリー、生成されるRF電力などによって 消費電力は決まります。

標準的なミッドレンジのFPGA (SoC) に、O-RANのCUS-Plane/M-Planeの処理とIEEE 1588 v2 PTPのスタックの同期 処理を実装したとします。その場合の消費電力は約15Wです。 TDD/FDDのうちどちらかの方式を採用してADRV9029を動作 させた場合、消費電力は、どのようなDFE機能をイネーブルに するかによって、5W~8Wの範囲で変動します。システムの消 費電力については、これにクロッキング、レシーバー、トランス ミッタ、その他の消費電力を加算する必要があります。表2に示 したのは、トランスミッタ側のシグナル・チェーンを除いたシス テムの消費電力の例です。トランスミッタのシグナル・チェーン の消費電力は、出力電力のクラスに応じて大きく異なります。

表 2. 消費電力の概算

デバイス	必要な個数	TDD、70:30の標準的な 消費電力(4T4R)
ミッドレンジの FPGA (SoC)	1	約15W
ADRV9xxx	1	約5W
ADRF5545A	2	0.6 W
AD9545	1	0.7 W
AD9528	1	1.4 W
PA用のドライバ	4	1.2 W
その他	1	2 W
合計	14	26W~29W

この無線システムにおいて、Tx:Rxのデューティ・サイクルが 70:30であったとします。そのトータルの消費電力は、(正確 な構成によって異なりますが)PAに伴う電力を除くと26W~ 29Wとなります。表3には、PAの消費電力の例を示しました。 クラスABの一部のPAは、主にトランジスタの線形領域で動作 します。そのため、効率は20%~50%になると考えられます。 ここで大きな効果を発揮するのが、トランシーバーICが内蔵する DPD機能です。帯域幅が狭く消費電力の少ないPAであっても、 DPDを利用すれば効率を高めることが可能です。DPDによって 数十mWの電力が消費されますが、それを十分に相殺できるだ けのメリットが得られます。

表3. PAの消費電力

デバイス	必要な個数	TDD、70:30の標準的な 消費電力(4T4R)
PA (アンテナあたり +24dBm)	4	約2.5W
PA (アンテナあたり +37dBm)	4	約47W

低消費電力のスモール・セルの場合、約2.5Wの消費電力が追加 されると、トータルの消費電力は約30Wに達します。しかし、 PoEソリューションによって給電される受動冷却式の屋内向けス モール・セルにとっては問題のない数値です。

PoEソリューションの1つの実装例を図11に示しました。この ソリューションでは、ブリッジ・コントローラ [LT4321] を使 用しています。同ICを使えば、整流器の代わりにMOSトランジ スタを理想ダイオードとして使用することが可能になります。そ の結果、効率が大幅に改善されます。LT4321の後段には、IEEE 802.3bt に準拠する PD (受電装置) インターフェース [LT4295] を配置しています。同ICの後段には、ここまでに示した消費電力 の要件を満たすローカルのレギュレータを配置します。必要に応 じて、最大90W超の電力を供給することになります。

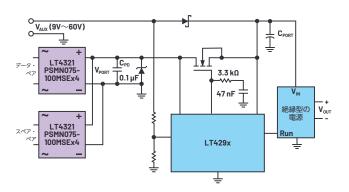


図11. スモール・セル向けのPoEソリューション。 絶縁型電源を採用しています。

PoE向けの変換デバイス以外にも、スモール・セルのリファ レンス設計に使用できる製品は数多く存在します。例えば、 「ADP5054」ファミリは、アナログ・デバイセズ製のトランシー バーへの給電を対象として特別に設計された統合型の電源ICで す。それ以外にも、多くの降圧コンバータや低ノイズのLDO(低 ドロップアウト) レギュレータを提供しています (図12)。

オプション

本稿で紹介した無線アーキテクチャには、柔軟性が高いという長 所があります。つまり、様々な市場の要件に対応できるというこ とです。このアーキテクチャは、FDDとTDDの両方を含む様々 なアプリケーションに対して最適化されています。ロー・バン ド、ミッド・バンド、ハイ・バンドに対して同等に優れた性能を 示し、スモール・セルにもMassive MIMOにも対応できるプラッ トフォームとして利用できます。また、トランスミッタとレシー バーの両方の回路において、様々なトレードオフにより、コスト、 サイズ、重量、消費電力を最適化できます。本稿では、性能と集 積度の高さに焦点を絞って解説を行いました。しかし、少し異な る選択によってコストを削減するといった、シンプルなトレード オフを行うことも可能です。

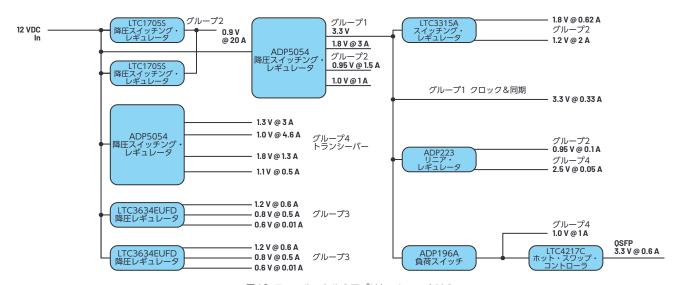
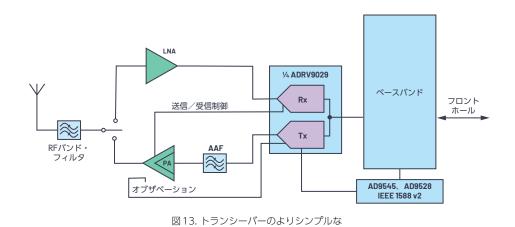


図12. スモール・セルのアプリケーション向けの 標準的なパワー・ツリー


例えば、一部の低消費電力のPAについてはドライバは必要なく、 削除しても構わないはずです。また、スモール・セルのアプリケー ションの多くは、小さなRF電力しか扱いません。そのため、サー キュレータをシンプルなTRスイッチに置き換えられる可能性が あります。更に、ローカル・エリアにおける性能だけが求められ る場合には、2段のLNAをシンプルな1段のLNAに置き換える ことが可能です。そうすれば、良好な無線性能を提供しつつ、コ ストを抑えることができます(図13)。それ以外にも、広範な周 波数と電力に関するオプションを様々に組み合わせることで、多 様なケースに対応することが可能になります。

まとめ

本稿で紹介した5G対応のデバイスは、通信アプリケーションを 対象として提供されています。特に、O-RANのO-RUに適した 低コストの実装を可能にします。具体的には、RadioVerseファ ミリの製品や、RFアンプ、クロックの再生/同期、PoE、POL (Point of Load) レギュレータなどを紹介しました。このような 集積度の高いデバイスを組み合わせることで、5Gに対応するス モール・セル、マクロセル、マイクロセル、Massive MIMOな どのアプリケーションを実現できます。

FPGA、eASIC (ストラクチャードASIC)、ASICで提供される適 切な物理層とソフトウェアを組み合わせることにより、O-RU向 けのソリューションを開発することができます(図14)。このソ リューションは、Intel®、Comcores、Whizz Systems との連携 によって開発しました。

こうしたソリューションは、RF特性に関する要件だけでなく、高 性能なO-RANプラットフォームを配備するために必要なコスト や消費電力の要件も満たします。

シグナル・チェーン

図14.5G向けのプロトタイピング用プラットフォーム。 帯域の変更が可能なRFフロント・エンドを採用しています。

参考資料

¹ ftp://ftp.3gpp.org/specs/latest/Rel-15/38_series/

² O-RAN Alliance

³ [O-RAN: Towards an Open and Smart RAN (O-RAN: オー プンでスマートなRANを目指す)」O-RAN Alliance、2018年 10月

⁴ Brad Brannon 「ゼロIFアーキテクチャがもたらすメリット、 実装面積は50%に、コストは1/3に Analog Dialogue、Vol. 50、No. 3、2016年9月

著者について

Brad Brannon (brad.brannon@analog.com) は、アナ ログ・デバイセズのシステム・エンジニアです。ノースカ ロライナ州立大学を卒業後、37年間にわたり、設計、テス ト、アプリケーション開発、システム・エンジニアリング を担当してきました。現在は、O-RANに対応するリファレ ンス設計の開発、それを利用する顧客のサポートに従事。 A/DコンバータやD/Aコンバータのクロック処理、無線設 計、ADCのテストなどに関する記事やアプリケーション・ ノートの執筆も担当しています。

EngineerZone® オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

SUPPORT COMMUNITY

Visit ez.analog.com

VISIT ANALOG.COM/JP

⁵ Specifications (仕様)、O-RAN Alliance

^{*}英語版技術記事はこちらよりご覧いただけます。