

MAX98388/MAX98389

概要

MAX98388/MAX98389 は、IV 帰還を内蔵した小型でコスト効率 に優れたモノラル・デジタル入力アンプです。本デバイスは、 2.3V~10V の広い電源電圧範囲で動作します。この電源範囲で は、両バージョンとも1セル、2セル、外部レギュレーション/ ブースト型のポータブル・アプリケーションをサポートしてい ます。MAX98388 は最大 5.5V のアプリケーション (1 セル)、 MAX98389 は 5V~10V のアプリケーション (2 セル) に最適化 されています。

D級再生アンプは、AB級レベルのオーディオ性能と、ポータブ ル・アプリケーション用のバッテリー長寿命化に必要な効率を 共に備えています。アクティブ・エミッション制限回路 (AEL) とエッジ・レート制限回路をスペクトラム拡散変調(SSM)方 式と組み合わせることで、EMI を低減し、従来の D級アンプに 必要とされていた出力フィルタ処理を不要にしました。

本デバイスは、高精度出力電流検出チャンネルと出力電圧帰還 チャンネルを備えています。これらのチャンネルで収集された データは、オーディオ・データ出力で伝送することができ、 オーディオ・エンハンスメント、バス・ブースト、スピーカ保 護、ハプティック機能などのアルゴリズムをホストのオーディ オ DSP で実行することができます。

本デバイスはスレッショルドが設定可能な再生チャンネル ALC を搭載しており、ポータブル・システムのバッテリーにブラウ ンアウト保護を提供すると共に、デバイスの損傷を防ぐための 堅牢な過熱および過電流保護を提供しています。

また、オーディオ再生と IV 帰還データ用の PCM インター フェースと、デバイス制御とステータス読出し用の標準I²Cイン ターフェースを備えています。PCM インターフェースは、I²S、 左詰め、および TDM タイミングなどの一般的なオーディオ・ データフォーマットをサポートしています。独自のクロッキン グ構成により、外付けの高周波リファレンス・クロックが不要 です。このクロックを不要とすることで、デバイスのサイズと 端子数を削減するだけでなく、高速スイッチングによる EMI の リスクや潜在的な基板カップリングの問題を軽減しながら、イ ンターフェースの電力を節約できます。

パッケージの接続はエッジ配線だけで済むように設計されてい るため、高価なバンプ・ビアを必要とせず、コスト効率の高い ウェーハレベル・パッケージ (WLP) が使用可能となっていま す。本デバイスは、0.4mm ピッチの 16 バンプ WLP パッケージ で提供され、-40℃~+85℃ の拡張温度範囲で仕様規定されてい ます。

SMBus は、Intel Corp.の商標です。

機能と利点

- ・ 広いアンプ電源範囲: 2.3V~10V ・ 1 セルと 2 セルの両方をサポート
- 高性能 D 級アンプ
 - ダイナミックレンジ:最大 111dB(A 特性周波数重み付け)
 - 出力ノイズ: 10µV_{RMS} (1セル・モード)
 - 出力ノイズ: 14.5µV_{RMS} (2 セル・モード)
- 高出カパワー(THD+N≤1%)
 - 4Ωに対する出力パワー: 1.32W (V_{PVDD} = 3.7V)
 - 4Ωに対する出力パワー: 2.4W (V_{PVDD} = 5V)
 - 4Ωに対する出力パワー: 5.15W (V_{PVDD} = 7.4V)
 - 4Ωに対する出力パワー: 9.1W (V_{PVDD} = 10V)
- 高いアンプ効率(再生専用パワー)
 - 4Ωに対する 0.1W での効率: 76%(V_{PVDD} = 5V)
 - 4Ωに対する 1W での効率: 85.5% (V_{PVDD} = 5V)
 - 8Ωに対する 1W での効率:90%(V_{PVDD} = 5V)
- ピーク THD+N: -83dB 以下(1kHz 時)
- 低い総自己消費電力
 - 9.3mW (V_{PVDD} = 3.7V、IV 帰還ディスエーブル時)
 - 13.9mW (V_{PVDD} = 3.7V、IV 帰還イネーブル時)
 - 16.1mW (V_{PVDD} = 5V、IV 帰還イネーブル時)
 - 22.5mW (V_{PVDD} = 7.4V、IV 帰還イネーブル時)
- 低いソフトウェア・シャットダウン電力:5µW 未満
- ターンオン時間: 1ms (f_s = 48kHz、ランプをディスエーブル
- 再生遅延:5サンプル(f_S < 50kHz、f_{IN} = 1kHz)
- 外部のリファレンス・クロックが不要
- 再生サンプル・レート: 8kHz~96kHz
- EMI対策として D級スイッチング周波数をトリミング
- 強力なクリック/ポップ抑制回路
- ブラウンアウト保護用プログラマブル ALC
- 堅牢な短絡および過熱保護
- 省スペース・パッケージでの提供:
 - 2.93mm²、16 ピン WLP(0.4mm ピッチ)

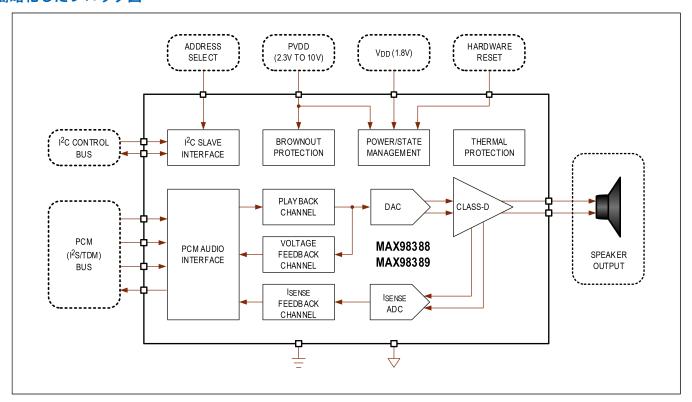
アプリケーション

- AR/VR ウェアラブル
- LRA ハプティック・ドライブ
- スマート・ウォッチおよび IoT デバイス
- ゲーミング・デバイス
- ノートブック・コンピュータおよびタブレット

オーダー情報はデータシート末尾に記載されています。

©2023 Analog Devices, Inc. All rights reserved. 商標および登録商標は各社の所有に属します。

社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 10F


電話 03(5402)8200

大 阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F

電話 06(6350)6868

名古屋営業所/〒451-6038 愛知県名古屋市西区牛島町 6-1 名古屋ルーセントタワー 38F 電話 052 (569) 6300

簡略化したブロック図

MAX98388/MAX98389

IV 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

絶対最大定格

GND~PGND	−0.1V~+0.1V	(OUTP または OI
V _{PVDD} ~PGND	−0.3V~+12V	短絡持続時間
V _{DD} ~GND	−0.3V~+2.2V	連続消費電力(TA
OUTP、OUTN~PGND	$-0.3V \sim V_{PVDD} + 0.3V$	ディレーティング
BCLK, LRCLK, DIN, DOUT?	\sim GND0.3V \sim V _{DD} + 0.3V	ジャンクション温
ADDR、I.C.~GND	$-0.3V \sim V_{DD} + 0.3V$	動作温度範囲
他の全端子~GND	0.3V~+2.2V	保存温度範囲
OUTP~OUTN の短絡持続時間	連続	けんだ処理温度(

(OUTP \pm \pm \pm \pm OUTN) \sim (PGND、PVDD \pm \pm \pm \pm \pm \pm \pm \pm \pm
短絡持続時間連続
連続消費電力(TA=+70℃、+70℃ 超では 13.7mW/℃で
ディレーティング)1.38W
ジャンクション温度+150°C
動作温度範囲40℃~+85℃
保存温度範囲65℃~+150℃
はんだ処理温度 (リフロー)+260℃

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒久的な損傷を与えることがあります。これらの規定はストレス定格のみを定めたものであり、この仕様の動作セクションに記載する 規定値以上でデバイスが正常に動作することを意味するものではありません。デバイスを長時間絶対最大定格状態に置くとデバイスの信頼性に影響を与えます。

パッケージ情報

WLP

Package code	W161P1Z+1
Outline Number	21-100636
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	57.93°C/W
Junction-to-Case Thermal Resistance (θ_{JC})	N/A

最新のパッケージ外形図とランド・パターン(フットプリント)に関しては、www.maximintegrated.com/packages で確認してください。パッケージ・コードの「+」、「#」、「-」は RoHS 対応状況のみを示します。パッケージ図面は異なる末尾記号が示されている場合がありますが、図面は RoHS 状況に関わらず該当のパッケージについて図示しています。

パッケージの熱抵抗は、JEDEC 規格 JESD51-7 に記載の方法で 4 層基板を使用して求めたものです。パッケージの熱に対する考慮事項の詳細については、www.maxim-ic.com/thermal-tutorial を参照してください。

電気的特性

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V (2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS	
SYSTEM-LEVEL			<u>.</u>					
		Guaranteed by PSRR test	Two-cell/ boosted mode	5		10		
PVDD Supply Voltage	V_{PVDD}	test	Single-cell mode	3.0		5.5	$_{ m V}$	
Range	V PVDD		est, single-cell mode, the parametric performance is	2.3			V	
V _{DD} Supply Voltage Range	V_{DD}	Guaranteed by PSRR te	Guaranteed by PSRR test		1.8	1.89	V	
PVDD Undervoltage	37	Single-cell mode	V _{PVDD} falling	1.9		2.2	V	
Lockout	$V_{ m UVLO_PVDD}$	Two-cell mode	V _{PVDD} falling	4.4		4.7	7 ·	
PVDD UVLO		Single-cell mode (Note	4)	150	200		**	
Hysteresis		Two-cell mode (Note 4))	120	150		mV	
V _{DD} Undervoltage Lockout	$V_{\text{UVLO_VDD}}$	V _{DD} falling		1.3		1.6	V	
V _{DD} UVLO Hysteresis		Note 4		20	40		mV	
V _{DD} Supply Ramp Rate				0.1			V/ms	
Thermal Shutdown Temperature		THERMSHDN_THRES	S = 0x2		155		°C	
Thermal Shutdown Hysteresis							°C	
Thermal Warning Temperature		THERMWARN_THRE	THERMWARN_THRES = 0x2		115		°C	
Thermal Warning Hysteresis					15		°C	
POWER CONSUMPTION	N / QUIESCEN	T POWER CONSUMPT	TON					
		Both supplies, IV feedback disabled	$V_{PVDD} = 3.7V$		9.3			
Total Quiescent Power			$V_{PVDD} = 3.7V$		13.9		mW	
*		Both supplies, IV feedback enabled	$V_{PVDD} = 5V$		16.1		1	
		leedback enabled	$V_{PVDD} = 7.4V$		22.5			
PVDD Quiescent Current		IV feedback disabled	$V_{PVDD} = 3.7V$		1.37		mA	
V _{DD} Quiescent Current		IV feedback disabled			2.38		mA	
			$V_{PVDD} = 3.7V$		1.42	2		
PVDD Quiescent Current		IV feedback enabled	$V_{PVDD} = 5V$		1.59	2.2	mA	
Current			$V_{PVDD} = 7.4V$		1.86	2.5	1	
V _{DD} Quiescent Current		IV feedback enabled	,		4.83	6.8	mA	
POWER CONSUMPTION	N / SOFTWARE	SHUTDOWN POWER	CONSUMPTION					
PVDD Software	_	No toggling on PCM	V _{PVDD} = 3.7V, single-cell mode		0.3	4		
Shutdown Current	nt I _{PVDD_SWSD}		interface pins, $T_A = +25$ °C	$V_{PVDD} = 7.4V,$ two-cell mode		0.4	5	μΑ

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
V _{DD} Software Shutdown Current	I_{VDD_SWSD}	No toggling on PCM interface pins, $T_A = +25$ °C			1.5	6	μΑ
POWER CONSUMPTION	ON / HARDWAR	E SHUTDOWN POWER	CONSUMPTION				
PVDD Hardware		$T_A = +25$ °C	$V_{PVDD} = 3.7V$, single-cell mode		0.3	4	4
Shutdown Current	I _{PVDD_HWSD}	1 _A = +23 C	$V_{PVDD} = 7.4V$, two-cell mode		0.4	5	μΑ
V _{DD} Hardware Shutdown Current	I_{VDD_HWSD}	$T_A = +25$ °C			0.2	1	μΑ
ENABLE / DISABLE TIM	ИING						
			Volume ramp disabled, $f_S \ge 44.1 kHz$		0.6	1	
T. O. T.		Software-shutdown state to active state	Volume ramp disabled, f _S < 44.1kHz (Note 4)		1.1	2.3	
Turn-On Time	t _{ON} (device t	(device ready to receive audio data)	Volume ramp enabled, $f_S \ge 44.1 kHz$		2.3	2.7	ms
			Volume ramp enabled, f _S < 44.1kHz (Note 4)		2.9	4.2	
	t _{OFF} ope	From full-active state operation to software- shutdown state (power down done status)	Volume ramp disabled		70	100	μs
Turn-Off Time			Volume ramp enabled, $f_S \ge 44.1 \text{kHz}$		4.3	4.6	
			Volume ramp enabled, f _S < 44.1kHz		6.7	8	ms
Hardware Enable Time	t _{HW_EN}		hardware- shutdown state to the software-shutdown			1.5	ms
Hardware Reset Time	t _{HW_RES}	software reset bit) until	tware reset (write 1 to the the device is reset and nutdown state (I ² C ready)			0.4	ms
Hardware Disable Assert Time	$t_{ m HW_DIS}$	Minimum time RESET input must be asserted low to ensure the device transitions to the hardware-shutdown state			1		μs
SPEAKER DIGITAL AU	DIO CHANNEL	/ DAC DIGITAL FILTER	CHARACTERISTICS (fL	_{RCLK} < 50kHz) (N	Note 2)		
Passband Cutoff	f	Ripple $\leq \delta_P$		$0.452 \times f_S$			Hz
Frequency	f_{PLP}	Droop < -3dB		$0.457 \times f_S$			IIZ
Passband Ripple	δ_{P}	$f_{IN} < f_{PLP}$, referenced to significant response only	gnal level at 1kHz, digital	-0.1		+0.1	dB
Stopband Cutoff Frequency	f_{SLP}	Attenuation $> \delta_S$				$0.49 \times f_S$	Hz

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Stopband Attenuation	δ_{S}	$f_{IN} > f_{SLP}$	75			dB	
Group Delay		$f_{IN} = 1kHz$		5		samples	
SPEAKER DIGITAL AU	DIO CHANNEL	DAC DIGITAL FILTER	CHARACTERISTICS (fL	_{RCLK} ≥ 50kHz) (N			
Passband Cutoff	f_{PLP}	Ripple $< \delta_P$		$0.227 \times f_S$			Hz
Frequency		Droop < -3dB		$0.314 \times f_S$			пх
Passband Ripple	$\delta_{ ext{P}}$	$f_{IN} < f_{PLP}$, referenced to si filter response only	gnal level at 1kHz, digital	-0.1		+0.1	dB
Stopband Cutoff Frequency	f_{SLP}	Attenuation $< \delta_S$				$0.49 \times f_{\text{S}}$	Hz
Stopband Attenuation	δ_{S}	$f_{IN} \ge f_{SLP}$		80			dB
Group Delay		$f_{IN} = 1kHz$			5.5		samples
SPEAKER DIGITAL AU	DIO CHANNEL	DC BLOCKING DIGITA	AL FILTER CHARACTER	RISTICS (Note 2	2)		
DC Attenuation				80			dB
DC Blocking Filter	£	$f_S = 8kHz$, $16kHz$, $32kHz$	z, 48kHz, and 96kHz		1.872		Ша
-3dB Cutoff Frequency	$ m f_{C}$	$f_S = 44.1 \text{kHz}, 88.2 \text{kHz}$			1.72		Hz
SPEAKER CLASS-D A	MPLIFIER						
Output Offset Voltage	V_{OS}	$T_A = +25$ °C		-3	±0.3	+3	mV
	$\begin{array}{c c} & & Aweighte \\ 32 \ sample \\ digital \ sil \\ input \ sign \end{array}$	Peak voltage, Aweighted,	Amp output power down, single-cell mode		-77		
Click and Dan Laval			Amp output power down, two-cell mode		-71		dBV
Click-and-Pop Level		input signal, $Z_{SPK} = 8\Omega + 33\mu H$ or	Amp output powerup, single-cell mode		-76		db v
		$4\Omega + 33\mu H$	Amp output powerup, two-cell mode		-70		
		A waighted 24 hit or	Single-cell mode, DAC low-power mode		10		
Output Noise	e _N A-weighted, 24-bit, or 32-bit data	Two-cell mode, DAC high-performance mode		14.5		$\mu V_{ m RMS}$	
		A-weighted, 24-bit or	$Z_{SPK} = 4\Omega + 33\mu H$		110		
	DR 32-bit data, single-cell mode, DAC low power mode (Note 3) A-weighted, 24-bit or 32-bit data, two-cell mode, V _{PVDD} = 7.4V, DAC highperformance mode (Note 3)	mode, DAC low power	$Z_{SPK} = 8\Omega + 33\mu H$		110.5		
Dynamic Range		$Z_{SPK} = 8\Omega + 33\mu H$		111		dB	

MAX98388/MAX98389

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
		$f_{IN} = 1 \text{kHz},$ $T_A = +25 \text{°C},$	$\begin{split} P_{OUT} &= 1W, \\ Z_{SPK} &= 4\Omega + 33 \mu H \end{split}$		-87			
Total Harmonic Distortion + Noise	THD+N	THD+N V _{rv}	single-cell mode, $V_{PVDD} = 5V$	$\begin{split} P_{OUT} &= 0.7 W, \\ Z_{SPK} &= 8\Omega + 33 \mu H \end{split}$		-85	-73	dB
		$f_{IN} = 1 \text{kHz}, T_A = +25 \text{°C}$ $V_{PVDD} = 7.4 \text{V}, POUT = \text{(Note 4)}$	C, two-cell mode, = 1.4W, $Z_{SPK} = 8\Omega + 33\mu H$		-83	-74		
Full-Scale Output	EC	Single-cell mode, +12d	lB gain		12.4		4DV	
Voltage	FS	Two-cell mode, +18dE	gain		18.4		dBV	
			THD+N = 10%		92			
		$f_{IN} = 1 \text{kHz},$	$P_{OUT} = 1W$		90		1	
		$Z_{SPK} = 8\Omega + 33\mu H,$ $V_{PVDD} = 5V$	$P_{OUT} = 0.1 W$		80		1	
Efficiency	η	V PVDD 3 V	$P_{OUT} = 0.05W$		72		%	
		$f_{IN} = 1 \text{kHz},$	$P_{OUT} = 1W$		85.5		1	
		$Z_{SPK} = 4\Omega + 33\mu H$	$P_{OUT} = 0.1 W$		76		1	
		$V_{PVDD} = 5V$	$P_{OUT} = 0.05W$		69		1	
			V _{PVDD} = 3.7V, single-cell mode		1.32			
		$\begin{split} f_{\rm IN} &= 1 \text{kHz}, \\ THD+N &\leq 1\%, \\ Z_{\rm SPK} &= 4\Omega + 33 \mu \text{H} \end{split}$ $\begin{split} f_{\rm IN} &= 1 \text{kHz}, \\ THD+N &\leq 10\%, \\ Z_{\rm SPK} &= 4\Omega + 33 \mu \text{H} \end{split}$	V _{PVDD} = 5V, single-cell mode		2.4			
			$V_{PVDD} = 7.4V$, two-cell mode		5.15			
			V _{PVDD} = 8.4V, two-cell mode		6.54			
			$V_{PVDD} = 3.7V$, single-cell mode		1.65			
			$V_{PVDD} = 5V$, single-cell mode		3.0			
			$V_{PVDD} = 7.4V$, two-cell mode		6.35			
0			$V_{PVDD} = 8.4V,$ two-cell mode		8.02		Ī	
Output Power	P_{OUT}	Power P _{OUT}		V _{PVDD} = 3.7V, single-cell mode		0.77		W
		$f_{IN} = 1kHz$,	$V_{PVDD} = 5V$, single-cell mode		1.4			
		THD+N \leq 1%, $Z_{SPK} = 8\Omega + 33\mu H$	$V_{PVDD} = 7.4V$, two-cell mode		3.05			
			$V_{PVDD} = 8.4V,$ two-cell mode		3.87			
			$V_{PVDD} = 3.7V$, single-cell mode		0.95			
		$\begin{split} f_{\text{IN}} &= 1 \text{kHz}, \\ THD+N &\leq 10\%, \\ Z_{\text{SPK}} &= 8\Omega + 33 \mu \text{H} \end{split}$	$V_{PVDD} = 5V$, single-cell mode		1.72			
			$V_{PVDD} = 7.4V$, two-cell mode		3.75			
			$V_{PVDD} = 8.4V,$ two-cell mode		4.84			

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Class-D Switching Frequency	$f_{\rm SW}$			285	300	315	kHz
Spread-Spectrum Bandwidth	$f_{\rm SSM}$				±14		kHz
Intermodulation Distortion	IMD	ITU-R, $19kHz/20kHz$, $12kHz = 8\Omega + 33\mu H$	ITU-R, $19kHz/20kHz$, $1:1$, $V_{IN} = -3dBFS$, $Z_{SPK} = 8\Omega + 33\mu H$		-70		dB
Frequency Response		Full response from digitathe amplifier output	al audio interface input to	-0.25		+0.25	dB
Output Stage On-Resistance	R _{ON}	PMOS + NMOS (Full H	-Bridge), $T_A = +25$ °C		0.38		Ω
Output Current Limit	I_{LIM}			3.5			A
Output Current Limit Auto-Restart Time					20		ms
Minimum Load Resistance	$R_{\rm L}$	Nominal 4Ω load minus	25%		3		Ω
Maximum Device-to- Device Speaker Channel Phase Mismatch			een multiple devices from all sample rates and DAI		1.5		deg
Minimum Load Inductance		In series with a 4Ω load			0		μН
Maximum Load Inductance		In series with a 4Ω load			100		μН
SPEAKER CLASS-D A	MPLIFIER / POV	VER-SUPPLY REJECTION	ON				
PVDD DC Power Supply Rejection Ratio	PSRR	DC level, $V_{PVDD} = 2.3V$ digital silence used for in		70	85		dB
		$V_{RIPPLE} = 200 \text{mV}_{PP},$	$f_{RIPPLE} = 217Hz$		85		
PVDD AC Power		$T_A = +25^{\circ}C,$	$f_{RIPPLE} = 1kHz$		85		
Supply Rejection Ratio	PSRR	digital silence used for input signal, $Z_{SPK} = 8\Omega + 33\mu H$ or $4\Omega + 33\mu H$	$f_{RIPPLE} = 10kHz$		70		dB
V _{DD} DC Power Supply Rejection Ratio	PSRR	DC level, $V_{DD} = 1.71 \text{V t}$ digital silence used for in		70	85		dB
		$V_{RIPPLE} = 100 \text{mV}_{PP},$	$f_{RIPPLE} = 217Hz$		90		
V _{DD} AC Power Supply	DCDD	$T_A = +25$ °C, digital	$f_{RIPPLE} = 1kHz$		90		
Rejection Ratio	PSRR	silence used for input signal, $Z_{SPK} = 8\Omega +$ $33\mu H$ or $4\Omega + 33\mu H$	$f_{RIPPLE} = 10kHz$	80			dB
SPEAKER CLASS-D AN	MPLIFIER / POV	VER-SUPPLY INTERMO	DULATION				•
Power-Supply		$T_A = +25^{\circ}\text{C},$ $f_{IN} = 1 \text{kHz},$ $P_{OUT} = 400 \text{mW}$	$\begin{aligned} P_{\mathrm{VDD}} & supply, \\ f_{\mathrm{RIPPLE}} &= 217 Hz, \\ V_{\mathrm{RIPPLE}} &= 200 mV_{PP} \end{aligned}$	-80			dB
Intermodulation	$\begin{aligned} P_{OUT} &= 400 mW, \\ Z_{SPK} &= 8\Omega + 33 \mu H \text{ or } \\ 4\Omega + 33 \mu H \end{aligned}$		$\begin{split} &V_{DD} \text{ supply,} \\ &f_{RIPPLE} = 217 Hz, \\ &V_{RIPPLE} = 100 mV_{PP} \end{split}$		-80		ub

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SPEAKER OUTPUT VO	OLTAGE FEEDE	BACK (Note 2)				
Resolution				16		Bits
Sample Rate	f_{S_VFB}		8		96	kHz
V-14 D	37	Single-cell mode	±5.5			V
Voltage Range	V_{SPK}	Two-cell mode		±11		v
Power Supply Feedthrough	PSF	No input signal, AC relative to PVDD or V_{DD} , $f_{RIPPLE} = 1kHz$, $V_{RIPPLE} = 100mVP-P$		-100		dB
Max Device to Device Voltage Feedback Channel Phase Mismatch		$f_{IN} = 1 \text{kHz}$		0.05		Samples
SPEAKER OUTPUT VO	OLTAGE FEEDE	BACK / DIGITAL FILTER CHARACTERISTICS (1	t_s < 50kHz) (Note	e 2)		
Passband Ripple		$f_{IN} < f_{PLP}$, referenced to the signal level at 1kHz	-0.225		+0.225	dB
Lowpass Filter Cutoff	f_{PLP}	Ripple $< \delta_P$	$0.44 \times f_S$			Hz
Frequency		Droop < -3dB	$0.45 \times f_{S}$			112
Lowpass Filter Stopband Frequency	f_{SLP}	-40dB limit			$0.58 \times f_{\text{S}}$	Hz
Lowpass Filter Stopband Attenuation			40			dB
Group Delay		$f_{IN} = 1kHz$		8		Samples
SPEAKER OUTPUT VO	OLTAGE FEEDE	BACK / DIGITAL FILTER CHARACTERISTIC S ($f_S \ge 50 \text{kHz}$) (Not	e 2)		
Passband Ripple		$f_{IN} \le f_{PLP}$, referenced to the signal level at 1kHz	-0.225		+0.225	dB
Lowpass Filter Cutoff	f_{PLP}	Ripple $< \delta_P$, $88.2kHz \le f_S \le 96kHz$	$0.235 \times f_S$			11-
Frequency		Droop < -3 dB, 88.2 kHz $\le f_S \le 96$ kHz	$0.29 \times f_S$			Hz
Lowpass Filter Stopband Frequency	f_{SLP}	-40dB limit			$0.58 \times f_S$	Hz
Lowpass Filter Stopband Attenuation			40			dB
Group Delay		$f_{IN} = 1kHz$		9		Samples
SPEAKER OUTPUT CO	JRRENT SENS	E ADC (Note 2)				
Resolution				16		Bits
Sample Rate	f_{S_ISNS}		8		96	kHz
Current Range	I _{SPK}			±3		A

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V (2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Dynamic Range	DNR	$f_{IN} = 1$ kHz, unweighted			73		dB	
		$f_{\mathrm{IN}} = 1 \mathrm{kHz},$		$\begin{aligned} & \text{Single-cell mode,} \\ & V_{\text{PVDD}} = 5V, \\ & I_{\text{SPK}} = 0.6A_{\text{RMS}} \end{aligned}$		-59		
Total Harmonic	THEAT	$Z_{LOAD} = 4\Omega + 33\mu H$	$Two\text{-cell mode}, \\ V_{PVDD} = 7.4V, \\ I_{SPK} = 1A_{RMS}$		-63		- dB	
Distortion + Noise	THD⊤N	THD+N $f_{IN} = 1kHz,$	Single-cell mode, $V_{PVDD} = 5V$, $I_{SPK} = 0.3A_{RMS}$		-54		ав	
		$Z_{LOAD} = 8\Omega + 33\mu H$	Two-cell mode, $V_{PVDD} = 7.4V$, $I_{SPK} = 0.5A_{RMS}$		-59			
Differential Mode Gain		Open loop current sense	channel response	0.98		1.02		
Differential Mode Gain Variability		Across supply, $T_A = -40$)°C to +85°C (Note 4)	-2.5		+2.5	%	
Maximum Common Mode Gain					-60		dB	
Highpass Cutoff Frequency		-3dB limit, across all sa	mple rates	2			Hz	
		DC blocking filter enabl	DC blocking filter enabled, $T_A = +25$ °C			+0.12		
DC Offset Current		DC blocking filter disabled, $T_A = +25$ °C	$MAX98388, V_{PVDD} = 3.7V, single-cell mode$	-2		+2	mA	
		DC blocking filter disabled, T _A = +25°C	$MAX98389, V_{PVDD} = 7.4V, two-cell mode$	-4		+4		
Voltage and Current Accuracy Drift Tracking		$T_A = 0$ °C to +85°C, rela	tive to +25°C		0.4		%	
Speaker Amplifier Voltage to Current		MAX98388, f _{IN} = 1kHz	Single-cell mode		-80		dB	
Sense Crosstalk		$MAX98389,$ $f_{IN} = 1kHz$	Two-cell mode		-75		ав	
Power Supply Feedthrough	PSF	No input signal, AC rela $f_{RIPPLE} = 1 \text{kHz}$, $V_{RIPPLE} =$			65		dB	
Max Current Sense to Voltage Feedback Channel Phase Mismatch		$f_{IN} = 1 \text{kHz}$			0.05		Samples	
Max Device to Device Current Sense Channel Phase Mismatch		$f_{IN} = 1kHz$			0.05		Samples	
SPEAKER OUTPUT CU	IRRENT ADC /	DIGITAL FILTER CHAR	ACTERISTICS (f _s < 50	kHz) (Note 2)				
Passband Ripple		$f_{IN} \leq f_{PLP}$		-0.225		+0.225	dB	
Lowpass Filter Cutoff Frequency	f_{PLP}	−3dB limit		$0.44 \times f_S$			Hz	

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Lowpass Filter Stopband Frequency	$ m f_{SLP}$	-40dB limit				$0.58 \times f_{\text{S}}$	Hz	
Lowpass Filter Stopband Attenuation				40			dB	
Max Group Delay		$f_{IN} = 1kHz$			8		Samples	
SPEAKER OUTPUT CU	JRRENT ADC / I	DIGITAL FILTER CHAR	ACTERISTICS (f _S ≥ 50kł	Hz) (Note 2)				
Passband Ripple		$f_{\text{IN}} \leq f_{\text{PLP}}$		-0.225		+0.225	dB	
Lowpass Filter Cutoff Frequency	$f_{ ext{PLP}}$	Droop < -3dB, 88.2kHz	$z \le f_S \le 96 \text{kHz}$	$0.23 \times f_s$			Hz	
Lowpass Filter Stopband Frequency	$ m f_{SLP}$	-40dB limit				$0.58 \times f_S$	Hz	
Lowpass Filter Stopband Attenuation				40			dB	
Max Group Delay		$f_{IN} = 1kHz$			9		Samples	
BROWNOUT PROTECT	TION ALC	1		1				
Brownout Response Time		From PVDD below vo	oltage threshold event to		12		μs	
		PVDD falling,	Minimum threshold setting		2.5			
Brownout Voltage		-	Maximum threshold setting		3.625		V	
Threshold Range		PVDD falling,	Minimum threshold setting		5		V	
		two-cell mode	Maximum threshold setting		7.25			
Brownout Voltage		Single-cell mode, MAX	98388 (Note 4)	60	75		***	
Threshold Hysteresis		Two-cell mode, MAX98	3389 (Note 4)	120	150		mV	
Brownout Voltage		All brownout voltage	Single-cell mode, MAX98388	-3		+3	0/	
Threshold Accuracy		threshold settings	Two-cell mode, MAX98389	-3		+3	%	
DIGITAL I/O / INPUT—I	DIN, BCLK, LRC	LK						
Input Voltage High	V_{IH}			$0.7 \times V_{DD}$			V	
Input Voltage Low	$V_{\rm IL}$					$0.3 \times V_{\text{DD}}$	V	
Input Leakage Current				-1		+1	μΑ	
Input Hysteresis	V _{HYS}	Note 4	·	75			mV	
Maximum Input Capacitance	C_{IN}				10		pF	
Internal Pull-Down Resistance	R_{PD}	BCLK, LRCLK, and DI	N		3		ΜΩ	
DIGITAL I/O / INPUT—	RESET							
Input Voltage High	V_{IH}			$0.75 \times V_{VDD}$			V	
Input Voltage Low	$V_{\rm IL}$		_			$0.25 \times V_{VDD}$	V	

 $(V_{PVDD}=5V~(1~\text{セル・モード})$ または 7.4V~(2~セル・モード) 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=0V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、 $Z_{SPK}=\infty$ (OUTP \sim OUTN) 、1~セル・モード、AC 測定帯域幅 $=20Hz\sim20kHz$ 、 $T_A=T_{MIN}\sim T_{MAX}$ 、代表値は $T_A=+25\%$ での値)(Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current			-1		+1	μΑ
Input Hysteresis	V_{HYS}	Note 4	75			mV
Maximum Input Capacitance	C _{IN}			10		pF
DIGITAL I/O / INPUT—S	SCL, SDA, ADD	R				
Input Voltage High	V_{IH}		$0.7 \times V_{DD}$			V
Input Voltage Low	V_{IL}				$0.3 \times V_{DD}$	V
Input Leakage Current		$T_A = +25$ °C, input high	-1		+1	μΑ
Input Hysteresis	V_{HYS}	Note 4	75			mV
Maximum Input Capacitance	C_{IN}			10		pF
DIGITAL I/O / OPEN DF	RAIN OUTPUT-	-SDA				
Output Voltage Low	V_{OL}	$I_{SINK} = 3mA$			0.4	V
Output High Leakage Current	I_{OH}	$T_A = +25$ °C	-1		+1	μΑ
DIGITAL I/O / PUSH-PU	JLL OUTPUT—I	DOUT				
Output Voltage High	V_{OH}	$I_{OH} = 3mA$	$V_{DD} - 0.3$			V
Output Voltage Low	V_{OL}	$I_{OL} = 3mA$			0.3	V
		Maximum-drive mode		8		
0 4 4 6 4	I_{OH}	High-drive mode		6		
Output Current		Normal-drive mode	2		mA	
		Reduced-drive mode				
PCM DIGITAL AUDIO II	NTERFACE / CI	LOCK CHARACTERISTICS				
LRCLK Frequency Range	f_{LRCLK}	All DAI operating modes	8		96	kHz
BCLK Frequency	£	I ² S/left-justified modes	0.256		12.288	MHz
Range	$f_{ m BCLK}$	TDM mode	0.256		24.576	MHZ
BCLK Duty Cycle	DC		45		55	%
BCLK Period	4	I ² S/left-justified modes	81.3			
BCLK Period	$t_{ m BCLK}$	TDM mode	40			ns
Maximum BCLK Input Low-Frequency Jitter		Maximum allowable jitter before a −20dBFS, 20kHz input has a 1dB reduction in THD+N, RMS jitter ≤ 40kHz		0.2		ns
Maximum BCLK Input High-Frequency Jitter		Maximum allowable jitter before a -60dBFS, 20kHz input has a 1dB reduction in THD+N, RMS jitter > 40kHz		1		ns
	NTERFACE / CI	LOCK AND DATA INPUT TIMING				
LRCLK to BCLK Active Edge Setup Time	$t_{SYNCSET}$		4			ns
LRCLK to BCLK Active Edge Hold Time	$t_{SYNCHOLD}$		4			ns

MAX98388/MAX98389

IV 帰還およびブラウンアウト保護内蔵 デジタル入力 D級アンプ

 $(V_{PVDD} = 5V \ (1 \ \forall \mathcal{N} \cdot \Xi - F) \ \ \sharp \, \dot{\tau} \, \dot{\tau} \, 4V \ \ (2 \ \forall \mathcal{N} \cdot \Xi - F) \ \ , \ \ V_{DD} = 1.8V \ , \ \ V_{GND} = V_{PGND} = 0V \ , \ \ C_{PVDD} = 10 \mu F + 0.1 \mu F \ , \ C_{VDD} = 1 \mu F \ , \ \ \dot{\tau} \, \dot{\tau} \,$ f_{BCLK} = 3.072MHz、f_{LRCLK} = 48kHz、Z_{SPK} = ∞(OUTP~OUTN)、1 セル・モード、AC 測定帯域幅 = 20Hz~20kHz、T_A = T_{MIN}~T_{MAX}、代表 値は T_A = +25℃ での値) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIN to BCLK Active Edge Setup Time	t_{SETUP}		4			ns
DIN to BCLK Active Edge Hold Time	t_{HOLD}		4			ns
DIN Frame Delay After LRCLK Edge		Measured in the number of BCLK cycles, set by selected TDM mode	0		2	cycles
PCM DIGITAL AUDIO IN	NTERFACE / DA	ATA OUTPUT TIMING				
BCLK Inactive Edge to DOUT Delay	$t_{\rm CLKTX}$				14	ns
BCLK Active Edge to DOUT Hi-Z Delay	$t_{ m HIZ}$		4		18	ns
BCLK Inactive Edge to DOUT Active Delay	t_{ACTV}		0		14	ns
I ² C INTERFACE TIMINO	3					
Serial Clock Frequency	f_{SCL}				1000	kHz
Bus Free Time Between STOP and START Conditions	$t_{ m BUF}$		0.5			μs
Hold Time (Repeated) START Condition	$t_{\rm HD,STA}$		0.26			μs
SCL Pulse-Width Low	t_{LOW}		0.5			μs
SCL Pulse-Width High	t_{HIGH}		0.26			μs
Setup Time for a Repeated START Condition	$t_{\rm SU,STA}$		0.26			μs
Data Hold Time	$t_{\rm HD,DAT}$		0		450	ns
Data Setup Time	$t_{SU,DAT}$		50			ns
SDA and SCL Receiving Rise Time	t_{R}	Note 4	20		120	ns
SDA and SCL Receiving Fall Time	$t_{\rm F}$	Note 4	$\begin{array}{c} 20 \times \\ V_{DD}/5.5 V \end{array}$		120	ns
SDA Transmitting Fall Time	t_{F}		$20 \times V_{DD}/5.5V$		120	ns
Setup Time for STOP Condition	t _{SU,STO}		0.26			μs
Bus Capacitance	C_B				550	pF
Pulse Width of Suppressed Spike	t_{SP}		0		50	ns

Note 1: 限界値は $T_A = +25$ °C で 100%テストされています。動作温度範囲および関連する電源電圧範囲における限界値は、設計および特性評価により確 保されています。

Note 2: デジタル・フィルタの性能は温度に対して不変であり、 $T_A = +25^{\circ}$ Cで製造テストされています。

Note 3: 1% THD+N での出力パワーを基準とし、1kHzにて-60dBFS の出力信号を EIAJ 方式で測定しています。 Note 4: 最小および最大の限界値は、設計およびデバイス特性データの統計解析により確保されています。この仕様は製造テストによる裏付けはありま せん。

タイミング図

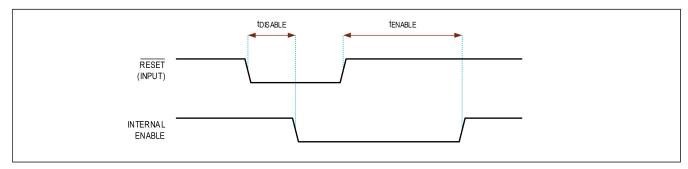


図 1. ハードウェア・イネーブル/ディスエーブルのタイミング図

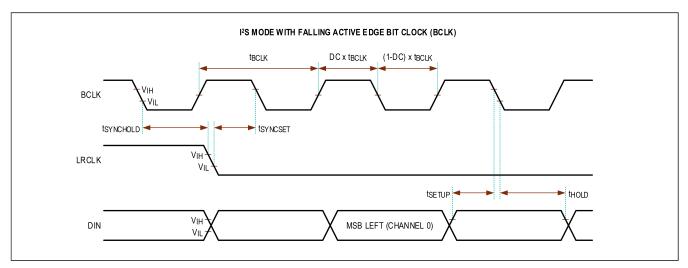


図 2. I²S モードにおける PCM インターフェースのタイミング図

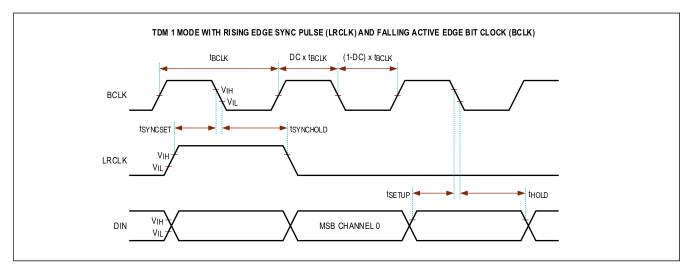


図 3. TDM 1 モードにおける PCM インターフェースのタイミング図

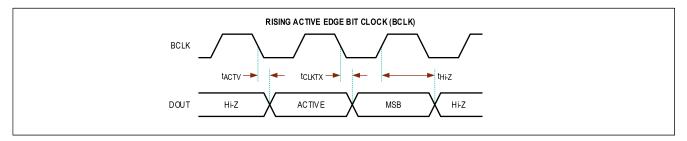


図 4. PCM インターフェースのデータ出力タイミング図

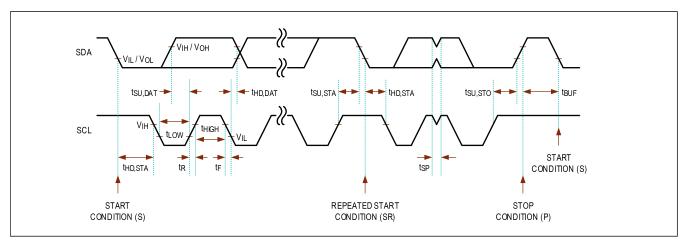
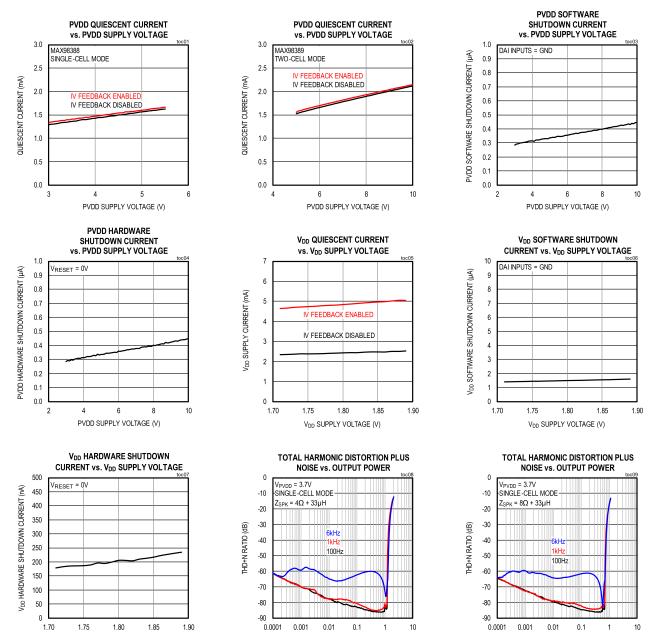


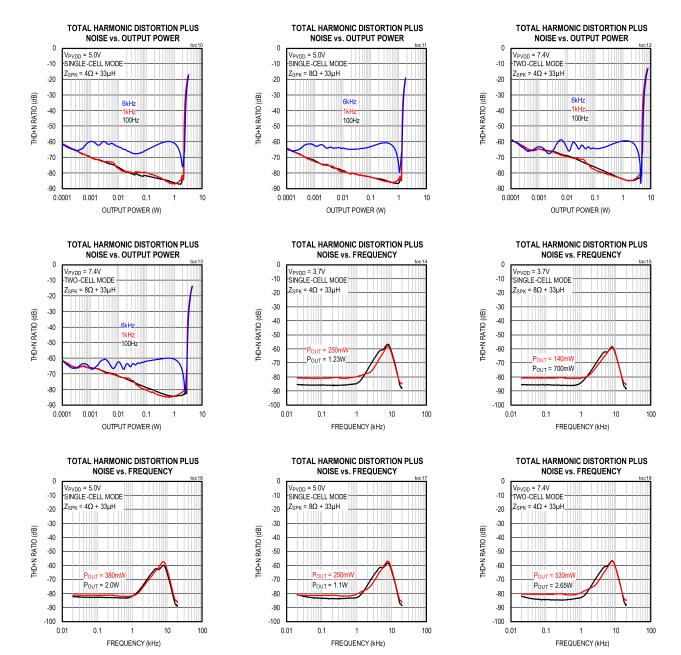
図 5.12C ペリフェラル・デバイス制御インターフェースのタイミング図

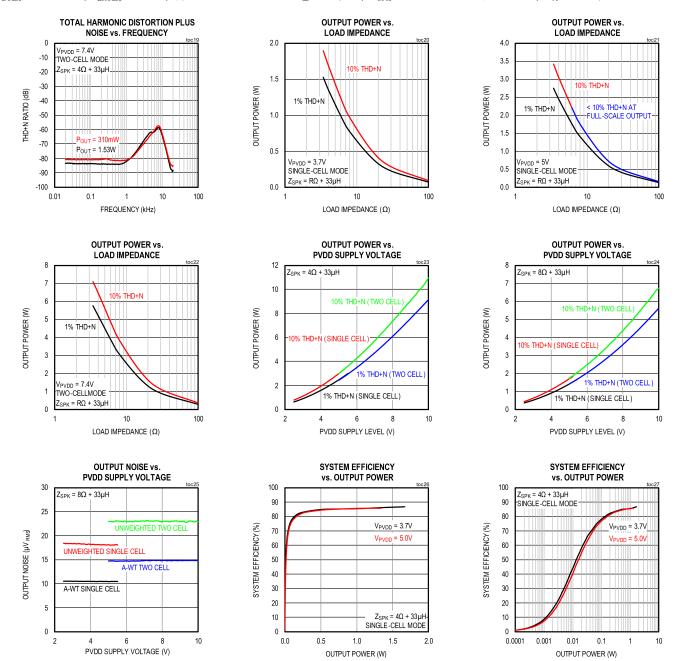

V_{DD} SUPPLY VOLTAGE (V)

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

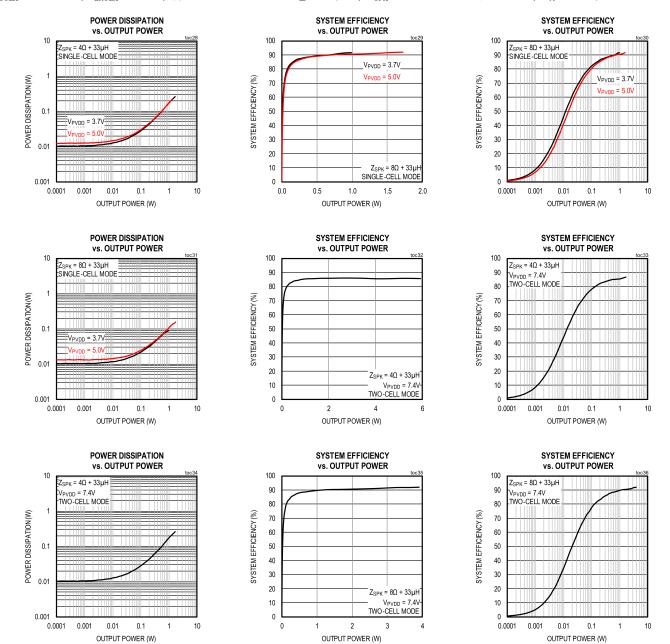
OUTPUT POWER (W)

標準動作特性


 $(V_{PVDD}=5V\ (1\, \mbox{t} \mbox{ν}\cdot \mbox{t}-\mbox{F})$ または 7.4 $V\ (2\, \mbox{$t$} \mbox{$\nu$}\cdot \mbox{$t$}-\mbox{$F$})$ 、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ $\geq 24\, \mbox{$t$}' \mbox{$v$}$ ト、 $Z_{SPK}=OUTP\sim OUTN\, \mbox{v} \mbox{v}-\mbox{v}^2 \mbox{v}$ 、 $T_A=+25^{\circ}C$)

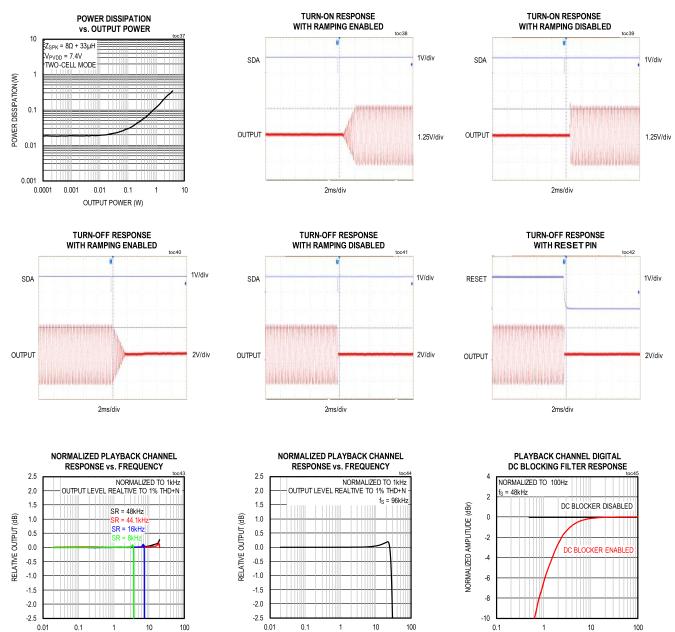

analog.com.jp Analog Devices | 16

OUTPUT POWER (W)


 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)

 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)

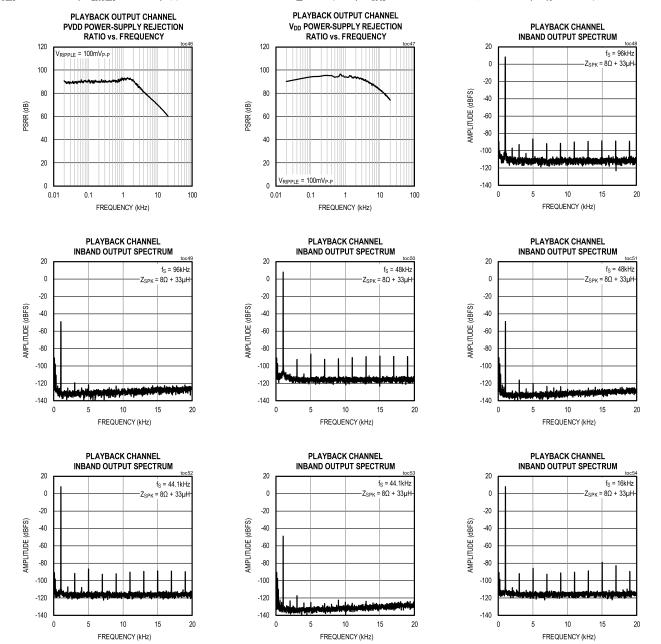
 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)

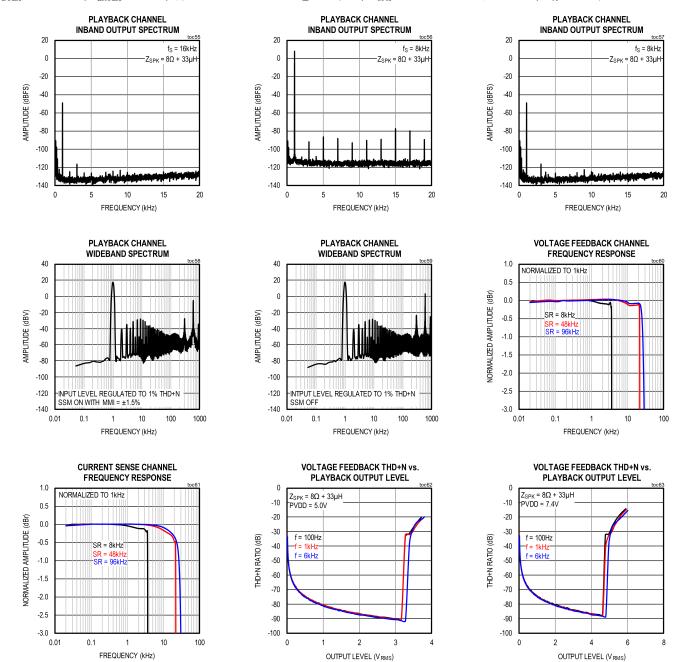


FREQUENCY (kHz)

IV 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

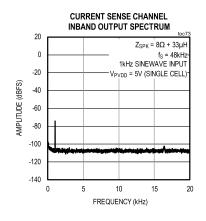
FREQUENCY (Hz)

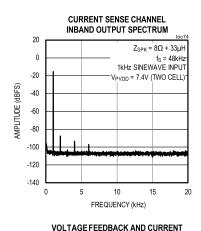

 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)

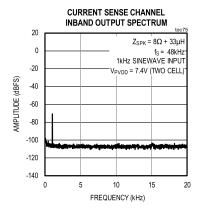

analog.com.jp Analog Devices | 20

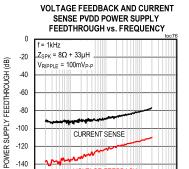
FREQUENCY (kHz)


 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)

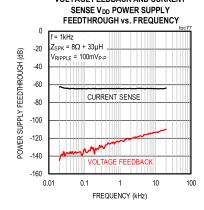

 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)



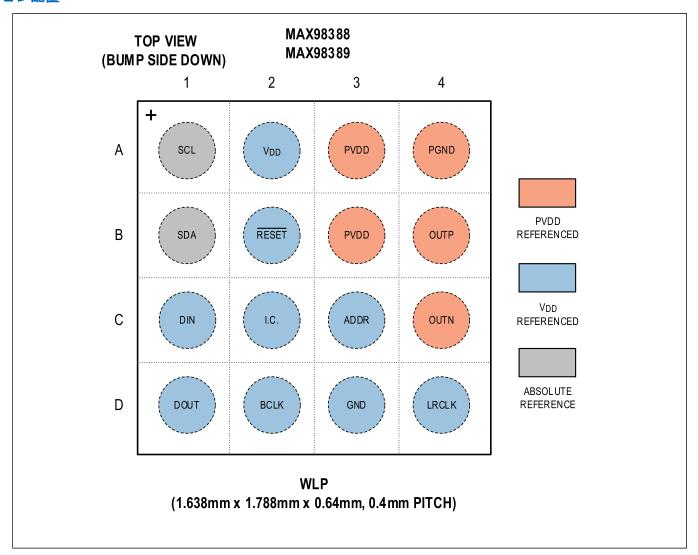

 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)



 $(V_{PVDD}=5V~(1$ セル・モード)または 7.4V~(2 セル・モード)、 $V_{DD}=1.8V$ 、 $V_{GND}=V_{PGND}=1.8V$ 、 $C_{PVDD}=10\mu F+0.1\mu F$ 、 $C_{VDD}=1\mu F$ 、 $f_{BCLK}=3.072MHz$ 、 $f_{LRCLK}=48kHz$ 、再生データワードサイズ \geq 24 ビット、 $Z_{SPK}=OUTP\sim OUTN$ をオープン、 $T_A=+25^{\circ}C$)



VOLTAGE FEEDBACK

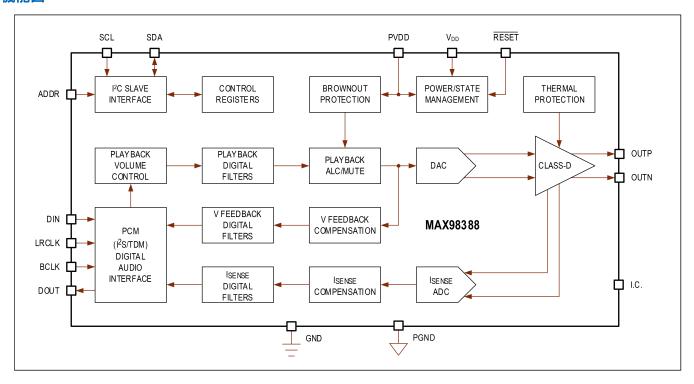

FREQUENCY (kHz)

100

-160 L 0.01

ピン配置

端子説明


ピン	名称	説明	リファレンス 電源	タイプ
A3, B3	PVDD	スピーカ・アンプの電源入力。電源入力のできるだけ近くに $10\mu F$ のコンデンサと $0.1\mu F$ のコンデンサを配置して、 $PGND$ にバイパスします。	_	Supply
A4	PGND	電源グランド。D級アンプのグランド接続です。GNDと同じグランド・プレーンに直接接続します。	_	Supply
A2	V_{DD}	内部低電圧電源の入力。電源入力のできるだけ近い場所に 1μF のコンデンサを配置して、GNDにバイパスします。最高の性能を得るには、PCB レイアウトにおけるリターン・ループのインダクタンスを最小化するように注意します。	_	Supply
D3	GND	グランド。内部の低電圧アナログおよびデジタル用のグランド接続です。 PGNDと同じグランド・プレーンに直接接続します。	_	Supply
B4	OUTP	正のD級アンプ出力。	PVDD	Analog Output

MAX98388/MAX98389

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

C4	OUTN	負の D 級アンプ出力。	PVDD	Analog Output
СЗ	ADDR	PC ペリフェラル・デバイスのアドレス。4 つの PC アドレスのうちの 1 つを 選択します。	VDD	Digital Input
В1	SDA	I^2C 互換のシリアル・データ入出力。 V_{DD} ヘプルアップ抵抗を接続すると出力がフルスイングします。	VDD	Digital Input/Output
A1	SCL	PC対応のシリアル・クロック入力。VDDへプルアップ抵抗を接続すると出力がフルスイングします。	VDD	Digital Input
В2	RESET	ハードウェア・リセット入力。ローにすると、デバイスはリセットされ、ハードウェア・シャットダウン状態に保持されます(デバイスの全てのデジタル部分と全てのレジスタをデフォルトの PoR 設定にリセットします)。ハイ(V_{DD})にすると、 V_{DD} が $UVLO$ スレッショルドを上回った場合に、デバイスはハードウェア・シャットダウンを終了できます。	VDD	Digital Input
D2	BCLK	PCM インターフェースのビット・クロック($BCLK$)入力。内部で R_{PD} を介して GND にプルダウンされています。	VDD	Digital Input
D4	LRCLK	PCM インターフェースのフレーム・クロック (LRCLK) 入力。周波数は再生サンプル・レートに一致します。内部で R_{PD} を介して GND にプルダウンされています。	VDD	Digital Input
C1	DIN	PCM インターフェースのデータ入力(DIN)。内部で R_{PD} を介して GND にプルダウンされています。	VDD	Digital Input
D1	DOUT	PCM インターフェースのデータ出力(DOUT)。	VDD	Digital Output
C2	I.C.	内部で接続されています。通常のデバイス動作では使用しません。オープンにしておくか、外部で V_{DD} または GND に接続します。ADDR はこのバンプを介して \overline{RESET} と V_{DD} に接続できます。	VDD	_

機能図

詳細

デバイス状態の制御

デバイスには、ハードウェア・シャットダウン状態、ソフトウェア・シャットダウン状態、およびアクティブ状態の 3 つの異なる電源状態があります。デバイスが状態間を正常に移行する場合、状態移行条件に基づいて、常にハードウェア・シャットダウン状態、ソフトウェア・シャットダウン状態、アクティブ状態の順(またはその逆)に移行します。ソフトウェア・シャットダウン状態とアクティブ状態の間の正常な移行は、進行中の移行が完了するのを待つことなく、可逆的に行われます。フォールト状態、電源切断、およびリセット状態を原因とする状態移行は可逆的ではなく、(いったん開始すると)必ず完了させてデバイスを保護します。デバイスをパワーアップする際、各電源に適用されるシーケンスに条件はありません。

ハードウェア・シャットダウン状態

ハードウェア・シャットダウン状態は、消費電力が最も低い構成です。この状態にある時、デバイス全体がリセット状態に保持されます。その結果、IPC制御インターフェースはディスエーブルになり、全てのデバイス・レジスタは PoR 状態にリセットされます。

最初にデバイスをパワーアップすると、常にハードウェア・シャットダウン状態に初期化されます。また、ハードウェア・リセット (RESET)入力をロジックローに駆動) またはソフトウェア・リセット (RST ビット・フィールド) のイベントが発生した後、あるいは V_{DD} 電源が UVLO スレッショルドを下回った場合は常時、ハードウェア・シャットダウン状態に移行します。ハードウェア・シャットダウン状態への移行は、ソフトウェア・シャットダウン状態からのみ行う必要があり、アクティブ状態から開始した場合、スピーカ出力に可聴域のグリッチが発生することがあります。

デバイスは、 $\overline{\text{RESET}}$ 入力がアサート(ロジック・ハイに駆動)され、 V_{DD} 電源が UVLO スレッショルドを上回るまで、ハードウェア・シャットダウン状態に保持されます。この 2 つの条件が満たされると、デバイスは自動的にハードウェア・シャットダウン状態を終了し、初期化後にソフトウェア・シャットダウン状態に移行します。この移行時(初期化の一部として)、OTP レジスタのトリム設定が読み込まれます。

ソフトウェア・シャットダウン状態

ハードウェア・シャットダウン状態からの移行後は、最初にソフトウェア・シャットダウン状態になります。ソフトウェア・シャットダウン状態では、PCインターフェースはアクティブです。デバイスの全てのレジスタは制限なくプログラム可能で、設定した全てのレジスタの状態が保持されます。ソフトウェア・シャットダウン状態では、他の全てのブロックは(ブロック・イネーブルの設定に関係なく)自動的にディスエーブルされます。

グローバル・イネーブル・ビット (EN) は、ソフトウェア・シャットダウン状態とアクティブ状態の間でデバイスを移行するのに使用します。グローバル・イネーブル (EN) をハイに設定すると、デバイスはパワーアップし、アクティブ状態に移行します。デバイスがアクティブな状態でグローバル・イネーブル (EN) をローに設定すると、デバイスはパワーダウンし、ソフトウェア・シャットダウン状態に戻ります。更に、ソフトウェア・リセット・ビット (RST) に 1 を書き込むと、常にデバイスは最初にリセットされ(ハードウェア・シャットダウン状態に移行)、その後ソフトウェア・シャットダウン状態に戻ります。

V_{DD}電源が UVLO スレッショルドを下回る、またはハードウェア・リセット入力 (RESET) がローになると、デバイスはソフトウェア・シャットダウン状態からハードウェア・シャットダウン状態に移行します。

アクティブ状態

アクティブ状態へは常にソフトウェア・シャットダウン状態を経由して移行します。アクティブ状態では、全ての有効なデバイス・ブロックがアクティブになり、スピーカ・アンプでの再生が可能です。アクティブ状態では、ダイナミック・レジスタ設定(つまりディスエーブルされたブロックに限定された設定)のみを安全に設定できます。

アクティブ状態からの移行は、フォールト状態を除けば、グローバル・イネーブルビット(EN)によって開始された時に限ります。それ 以外のアクティブ状態からの移行は、PVDDが UVLO スレッショルドを下回ったか、フォールト・イベントが発生したかのいずれかの結 果であり、これらがアクティブな再生時に発生した場合、可聴グリッチとなる可能性があります。

電源シーケンス

各電源に適用されるシーケンスに条件はありません。ただし、ある電源が UVLO スレッショルドを下回ると、特定の状態移行は完了できません。ハードウェア・シャットダウン状態からソフトウェア・シャットダウン状態に移行するには、 V_{DD} 電源が UVLO スレッショルドを上回っている必要があります。また、ソフトウェア・シャットダウン状態からアクティブ状態に移行するには、PVDD 電源が UVLO スレッショルドを上回っている必要があります。

デバイスのシーケンス

デバイスのイネーブルおよびディスエーブル・シーケンスの例を示します。表中、同じ番号の後に文字が続くステップは、任意の順序で実行できます(すなわち、ステップ nA、nB、および nC はステップ n のサブステップで、シーケンシャルではありません)。

デバイス・イネーブルのシーケンス例

以下に示すデバイス・イネーブルのシーケンス例は、電流検出と電圧帰還を有効化/無効化したオーディオ再生に推奨します。

表 1. オーディオ再生のための推奨パワーアップ・シーケンス

ステップ	アクション(状態)	詳細
0	None (Hardware-Shutdown State)	消費電力が最も低い状態です。デバイスとレジスタはリセット状態に保持され、制御やオーディオ・インターフェースの操作はできません。
1A	Power-Up V_{DD} Supply (Hardware Shutdown State)	V_{DD} 電源を $UVLO$ スレッショルド以上にします。この状態では $PVDD$ 電源はモニタ されず、そのレベルは $UVLO$ スレッショルドを上回ることも下回ることもあります。 電源のシーケンス(V_{DD} と $PVDD$)は必要ありません。
1B	Release Hardware Reset (Hardware-Shutdown State)	ハードウェア・リセットの反転入力($\overline{\text{RESET}}$)をハイに駆動するか、常に V_{DD} 電源入力に接続(プルアップ)します。
2	Transition to the Software-Shutdown State (State Transition)	条件が満たされると(ステップ 1A および 1B)、デバイスは自動的にソフトウェア・シャットダウン状態に移行します。ハードウェア・イネーブル時間(t _{HW_EN})の経過後、移行が完了します(エラー・ステータスが通知されていない場合)。この移行の間、デバイス・レジスタの設定やリードバックは行わないでください。
3	None (Software-Shutdown State)	この状態は、I ² C インターフェースがアクティブで、かつレジスタの設定と保持が可能なうちで最も消費電力が低い状態です。システムのアイドル/スタンバイ時や、ホストシステムがアクティブであるが再生に使用されていない場合に使用できます。
4A	Program Device Registers (Software-Shutdown State)	システム・ソフトウェアは、所望のオーディオの使用状況に合わせて、デバイスのレジスタ(グローバル・イネーブル・ビット EN を除く)を完全に設定する必要があります。これには、クロック/インターフェース設定、アンプモード、再生チャンネル設定、電流検出/電圧帰還チャンネル設定(有効化した場合)などがあります。
4B	Power-Up PVDD Supply (Software-Shutdown State)	アクティブ状態に移行する前に、PVDD 電源を UVLO スレッショルド以上にします (まだ行っていない場合)。
4C	Enable the External Clocks (Software-Shutdown State)	PCM インターフェース・クロック (ビット・クロックとフレーム・クロック) を 起動し、アクティブ状態に移行します。
5	Set Global Enable Bit (Software-Shutdown State)	グローバル・イネーブル (EN) ビットをハイにセットし、デバイスがアクティブ 状態に移行することを許可します (他の全ての条件が満たされている場合)。 可聴 グリッチを避けるために、PCM 再生データ入力 (DIN) は、アクティブ状態への移 行前と移行中は無音でなければなりません。
6	Transition to the Active State (State Transition)	状態移行はターンオン時間(ton)が経過した後に完了します。ターンオン時間(ton)の持続時間は、音量のランプアップを有効化するかバイパスするかによって異なります。移行が完了すると、パワーアップ完了状態ビットがセットされます。移行に失敗した場合、1つ以上のフォールト・ステータス状態ビットがセットされることがあります。
7	Audio Playback (Active State)	デバイスはアクティブ状態にあって、再生がアクティブまたはレディの状態です。 アクティブ状態でのデバイス・プログラミング中のエラーや可聴グリッチを避ける ため、全てのレジスタ・ビット・フィールドの制限を遵守する必要があります。

デバイス・ディスエーブルのシーケンス例

以下に示すデバイス・ディスエーブルのシーケンス例は、電流検出と電圧帰還を有効化/無効化したオーディオ再生に推奨します。

表 2. オーディオ再生のための推奨パワーダウン・シーケンス

ステップ	アクション(状態)	詳細
0	Audio Playback (Active State)	デバイスはアクティブ状態にあって、再生がアクティブまたはレディの状態です。
1	Clear Global Enable Bit (Active State)	パワーダウンの前に、ホストは最初にオーディオ・データ入力 (DIN) をランプダウンしてディスエーブル (無音に) する必要があります。次に、グローバル・イネーブル・ビット (EN) をローに設定し、デバイスをソフトウェア・シャットダウン状態に移行させます。
2	Transition to the Software-Shutdown State (State Transition)	オーディオのターンオフ時間(t _{OFF})が経過すると、移行が完了します。音量ランプダウンを有効化するかバイパスするかによって、ターンオフ時間(t _{OFF})の長さが異なることに注意してください。移行が完了すると、パワーダウン完了状態ビットがセットされます。
3	Idle/Reprogram Device (Software-Shutdown State)	デバイスは、ソフトウェア・シャットダウン状態でアイドルにすることができます。PVDD電源を停止し、外部クロックをディスエーブルすると電力を削減できます。この状態でデバイスを自由に再設定できます。 アクティブ状態に戻すには、デバイス・イネーブルのシーケンス例でのステップ3から開始し、そこからパワーアップ・シーケンスに従います。
4	Transition to the Hardware-Shutdown State (State Transition)	ハードウェア・シャットダウン状態に移行する前に、まず外部クロックがディスエーブルになっていることを確認します。次に、ハードウェア・リセット入力 (RESET) をハードウェア・ディスエーブル時間 (t_{HW_DIS}) よりも長い有効なロジック・ロー・レベルにアサートするか、 V_{DD} 電源を UVLO スレッショルド以下までパワーダウンさせるかします。
5	None (Hardware-Shutdown State)	消費電力が最も低い状態です。全ての電源は、必要に応じてディスエーブルにできます。この状態では、デバイス、全てのインターフェース、および全てのレジスタは完全にリセットされます。

デバイス・ステータスのイベントレポート

デバイスは、チップ上で発生したイベントをホストに通知する一連のステータス・ビットを提供しています。各ステータス・イベント・ソースに対して、以下の機能を持ったRAWビットとSTATEビットの両方が提供されます:

生ステータス (RAW)

各ステータス・イベント・ソースには、割込みソースに関するリアルタイムの生ステータスを示す読出し専用ビットがあります。いくつかの RAW ステータス・ビットは、アサートされるとイベント・ソースの現在のステータスをライブで読み出すことができます。他の RAW ステータス・ビットは、イベント発生時のみアサートされます。この場合、STATE ビットを読み出して、前回の読出し以降にイベントが発生したかどうかを判断する必要があります。

状態ステータス (STATE)

各ステータス・イベントのソースは、関連する RAW ステータス・ビットの立上がりエッジが発生するたびにセットされるクリア・オン・リード (読出し専用) 状態ビットを備えています。

デバイス・ステータスのイベント・ソース

ステータス・イベント・ソースの全リストを表3に示します。

表 3. デバイス・ステータスのイベント・ソース 1

レジスタ・アドレス	ビット	イベント・ ソース	ビット名	生ステータス	説明
	7	Thermal Shutdown	THERMSHDN_*	Asserted Level	ダイ温度がサーマル・シャットダウン の設定済みスレッショルドより大きい ことを示します。
	6	Thermal Warning Begin	THERMWARN_BGN_*	Asserted Level	ダイ温度が過熱警告の設定済みスレッ ショルドを超えたことを示します。
	5	Thermal Warning End	THERMWARN_END_*	Asserted Level	ダイ温度が過熱警告の設定済みスレッショルドを超えた後、そのスレッショルドを下回ったことを示します。
		Speaker Output Monitor	SPKMON_ERR_*	Pulsed-On Event	スピーカ出力モニタがフォールト・イベントを検出したことを示します。イベントは、グローバル・イネーブル・ビット (EN) をハイにセットしている場合にのみ発生します。
RAW 0x2001 STATE 0x2004	3	Clock Monitor	CLK_ERR_*	Asserted in Auto Mode/Pulsed in Manual Mode	クロック・モニタがクロック・エ ラー・イベントを検出したことを示し ます。イベントは、グローバル・イ ネーブル・ビット (EN) をハイにセッ トしている場合にのみ発生します。
	2 Power-Down Done 1 Power-Up Done		PWRDN_DONE_*	Pulsed-On Event	デバイスがアクティブ状態からソフト ウェア・シャットダウン状態へのパ ワーダウンを完了したことを示しま す。
		PWRUP_DONE_*	Pulsed-On Event	デバイスがソフトウェア・シャットダウン状態から移行し、再生チャンネルがイネーブルされてオーディオ・データを受信する準備ができたことを示します。	
	0	OTP Fail	OTP_FAIL_*	Asserted Level	デバイスを初期化する際に実行される OTP 読込みルーチンが正常に完了しな かったことを示します。

表 4. デバイス・ステータスのイベント・ソース 2

レジスタ・アドレス	ビット	イベント・ ソース	ビット名	生ステータス	説明	
	7	_	_	_	_	
	6	_	_		_	
	5	Brownout Protection ALC Mute	BR_ALC_MUTE_*	Asserted Level	ブラウンアウト保護 ALC がスピーカ・ チャンネルをミュートしていることを 示します。	
	4	Brownout Protection ALC Active	BR_ALC_ACTIVE_*	Asserted Level	ブラウンアウト保護 ALC がスピーカ・ チャンネルの音量を減衰させているこ とを示します。	
RAW 0x2002 STATE 0x2005	3	Brownout Protection ALC Thresh	BR_ALC_THRES_*	Asserted Level	PVDD レベルがブラウンアウト保護 ALC のスレッショルドを下回ったこと を示します。	
	2	PVDD UVLO Shutdown	PVDD_UVLO_SHDN_*	Asserted in Auto Mode/Pulsed in Manual Mode	オーディオ・アクティブ状態で動作中 に PVDD レベルが UVLO スレッショル ドを下回ったことを示します。	
	1 A	Speaker Amplifier Overcurrent	SPK_OVC_*	Asserted Level	アンプの出力電流が過電流スレッショ ルドを超えたことを示します。	
	0	Speaker Amplifier Clipping	SPK_CLIP_*	Asserted Level	アンプ出力にクリッピング・イベント が検出されたことを示します。	

PCM インターフェース

柔軟な PCM インターフェースは、8kHz~96kHzの一般的なオーディオ再生サンプル・レートと 8kHz~96kHzの IV 帰還サンプル・レートをサポートしています。また、PCM インターフェースは、代表的な I^2 S、左詰め、および I^2 DM のデータ・フォーマットもサポートしています。 PCM データ入力(DIN)と PCM データ出力(DOUT)の両方をディスエーブルした場合、PCM インターフェースはディスエーブルされ、パワーダウンします。

PCM クロックの設定

デバイスの PCM インターフェースはペリフェラルとして機能するため、ホスト(マネージャまたはコントローラとも呼ばれる)が外部のビット・クロック(BCLK)とフレーム・クロック(LRCLK)の両方を供給する必要があります。PCM インターフェースのクロック入力を設定するために、ホストは PCM インターフェースと再生チャンネルのサンプル・レート(PCM_SR)、それにビット・クロック(BCLK)とフレーム・クロック(LRCLK)の比率(PCM_BSEL)の両方を設定しなければなりません。PCM インターフェースのサンプル・レートとスピーカ再生チャンネルのサンプル・レートは常に一致し、フレーム・クロック(LRCLK)の周波数に一致するように設定(PCM_SR)する必要があります。

電流検出 ADC および電圧帰還チャンネルのサンプル・レート (IV_SR) は、PCM インターフェースおよびスピーカ・チャンネルと同じサンプル・レートに設定するか、あるいは表 5 の制限に従って、サポートされている任意の低いサンプル・レートに設定できます。電流検出 ADC チャンネルをスピーカ・アンプ・チャンネルより低いレートに設定した場合、出力データには繰り返しサンプルが含まれます。

表 5. サポートされる PCM インターフェースと IV 帰還チャンネルのサンプル・レート比

<u> </u>	表 5. サホートされる PCM インダーフェースと IV 帰還ナヤンイルのサンフル・レート比											
N/A = NOT AVAILABLE			I _{SENSE} ADC/V FEEDBACK DATA SAMPLE RATE (kHz)									
N/S = NOT SUPI	PORTED	96	88.2	48	44.1	32	24	22.05	16	12	11.025	8
	96	1	N/S	2	N/S	3	4	N/S	6	8	N/S	12
	88.2	N/A	1	N/S	2	N/S	N/S	4	N/S	N/S	8	N/S
	48	N/A	N/A	1	N/S	N/S	2	N/S	3	4	N/S	6
	44.1	N/A	N/A	N/A	1	N/S	N/S	2	N/S	N/S	4	N/S
PCM INTERFACE	32	N/A	N/A	N/A	N/A	1	N/S	N/S	2	N/S	N/S	4
AND SPEAKER CHANNEL	24	N/A	N/A	N/A	N/A	N/A	1	N/S	N/S	2	N/S	3
SAMPLE RATE (kHz)	22.05	N/A	N/A	N/A	N/A	N/A	N/A	1	N/S	N/S	2	N/S
	16	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	N/S	N/S	2
	12	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	N/S	N/S
	11.025	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	N/S
	8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1

本デバイスでは、ビット・クロックとフレーム・クロックの比(PCM_BSEL)を $32\sim512$ の範囲で設定できます。ただし、選択した PCM インターフェースのサンプル・レート(LRCLK 周波数)に基づき、設定したクロック比で BLCK 周波数が 24.576MHz を超えることはできません。

PCM データ・フォーマットの設定

本デバイスは、標準的な I'S、左詰め、および TDM データ・フォーマットをサポートしています。動作モードは、PCM_FORMAT ビット・フィールドで設定します。

I2S/左詰めモード

 $I^{2}S$ および左詰めフォーマットは、16 ビット、24 ビット、または 32 ビットの長さの 2 つのチャンネルをサポートします。BCLK と LRCLK の比率(PCM_BSEL)は、目的のチャンネル長の 2 倍になるように設定する必要があります。オーディオ・データのワード・サイズは 16 ビット、24 ビット、または 32 ビット長に設定可能で(PCM_CHANSZ)、チャンネル長以下となるように設定しなければなりません。もしチャンネル長が設定したデータ・ワード・サイズを超えた場合、データ入力の LSB は切り捨てられ、データ出力の LSB は $PCM_TX_EXTRA_HIZ$ レジスタのビット設定に基づいてゼロまたは Hi-Z データでパディングされます。

表 6. サポートされる I2S/左詰めモードの構成

CHANNELS	CHANNEL LENGTH BCLK TO LRCLK RATIO (PCM_BSEL)		SUPPORTED DATA WORD SIZES (PCM_CHANSZ)
	16	32	16
2	24	48	16, 24
	32	64	16, 24, 32

デフォルトの PCM 設定では、LRCLK の立下がりは左チャンネル・データ(チャンネル 0)と新しいフレームの開始を示し、LRCLK の立上がりは右チャンネル・データ(チャンネル 1)を示します。 I^2S モードでは、オーディオ・ワードの MSB は、LRCLK 遷移後の 2 番目のアクティブな BCLK エッジでラッチされます。左詰めモードでは、オーディオ・ワードの MSB は、LRCLK 遷移後の最初のアクティブな BCLK エッジでラッチされます。

PCM_BCLKEDGE のレジスタ・ビットは、データ・キャプチャ(DIN)とデータ出力(DOUT)に使用されるアクティブ・エッジとして、BCLK の立上がりエッジにするか立下がりエッジにするかを選択します。PCM_CHANSEL ビットは、新しいフレーム(チャンネル 0)の開始をどのLRCLK エッジが示すかを設定し、LRCLK 遷移は常にアクティブでないBCLK エッジと一致します。データ出力はデータ入力と同じアクティブなBCLK エッジで有効になります。また、データ出力はデータ入力と同じエッジで遷移します。

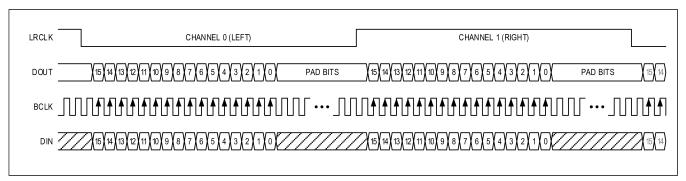


図 6. 標準 I2S モードの例

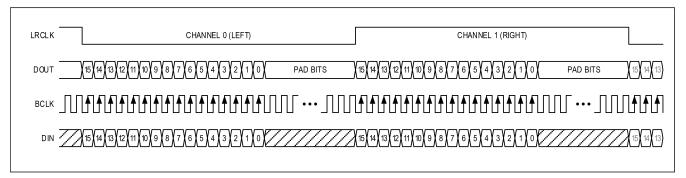


図7.ベースライン左詰めモードの例

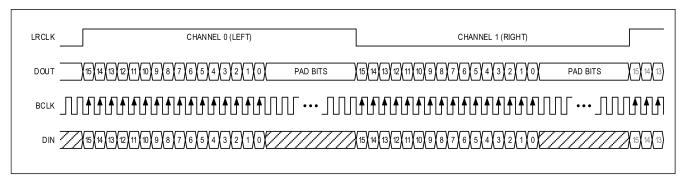


図 8. 左詰めモード (フレーム・クロック反転)

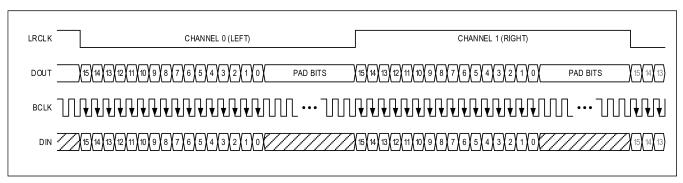


図 9. 左詰めモード(ビット・クロック反転)

TDM モード

TDM モードでは、最大 16 個のデジタル・オーディオ入力チャンネル (DIN) のタイミングをサポートし、各チャンネルには 16 ビット、24 ビット、または 32 ビットのデータが含まれます。デジタル・オーディオ出力 (DOUT) は 8 ビットのスロットで構成され、タイミングは最大 128 個のデータ出力スロットをサポートできます。TDM 入力チャンネルと出力スロットの数は、選択するビット・クロック (BCLK) とフレーム・クロック (LRCLK) の比率 (PCM_BSEL) と、選択するデータ・ワードおよびチャンネル長 (PCM_CHANSZ) の両方によって決まります。データ・ワードおよびチャンネル長 (PCM_CHANSZ) の両方によって決まります。

所与の有効な構成に対して、1フレームあたりの利用可能なデータ入力チャンネル数は、次のように計算されます。

利用可能なデータ入力チャンネル数 = BCLK と LRCLK の比率 / チャンネル長

所与の有効な構成に対して、1フレームあたりの利用可能な8ビット・データ出力スロット数は、次のように計算されます。

利用可能なデータ出力スロットの数 = BCLK と LRCLK の比率 / 8

表7は、入力データ・チャンネルと出力データ・スロットの各組み合わせに対してサポートされるTDMモードの構成を示しています。一部の構成では、公称ビット・クロック(BCLK)周波数の制限である24.576MHzに違反しないように、PCMインターフェースとスピーカ・アンプ再生の最大サンプル・レートが96kHz未満に制限されます。

表 7. サポートされる TDM モードの構成

INPUT DATA CHANNELS	OUTPUT DATA SLOTS	DATA WORD SIZES (PCM_CHANSZ)	BCLK TO LRCLK RATIO (PCM_BSEL)	MAXIMUM PLAYBACK SAMPLE RATE (f _{LRCLK})
	4	16	32	
2	6	24	48	
	8	32	64	
3	15	32	125	
	8	16	64	
4	12	24	96	
	16	32	128	
5	15	24	125	odn
	15	16	125	96kHz
7	31	32	250	
	16	16	128	
8	24	24	192	
	32	32	256	
10	31	24	250	
15	31	16	250	
16	32	16	256	
7	31	32	250	
10	31	24	250	
10	40	32	320*	401.44
15	31	16	250	48kHz
	48	24	384	
16	64	32	512	

Note: BCLK とLRCLK の比率が320 の値は、サンプル・レートが44.1kHz と48kHz の設定でのみ使用できます。

TDM モードにおける PCM インターフェースのデフォルト設定では、フレーム・クロック(LRCLK)の立上がりエッジがフレーム同期パルスとして機能し、新しいフレームの開始を示します。フレーム同期パルスの幅は、1 ビット以上のクロック周期に等しくなければなりません。ただし、立下がりエッジは、次のフレーム同期パルスの立上がりエッジのセットアップ時間に違反しない限り、どのタイミングで発生してもかまいません。PCM_CHANSEL ビットは、TDM フレームを開始するフレーム・クロック(LRCLK)エッジ(同期パルス)を反転させるために使用します。

TDM モードでは、最初のオーディオ・ワードの MSB は、同期パルスの後の 1 番目(TDM モード 0)、2 番目(TDM モード 1)、または 3 番目(TDM モード 2)のアクティブなビット・クロック・エッジでラッチでき、PCM_FORMAT ビットで設定します。更に、 PCM_BCLKEDGE レジスタ・ビットにより、(データ・キャプチャとデータ出力用に)アクティブなビット・クロック・エッジを設定できます。

データ出力は、データ入力と同じアクティブなビット・クロック(BCLK)エッジで有効になり、遷移します。

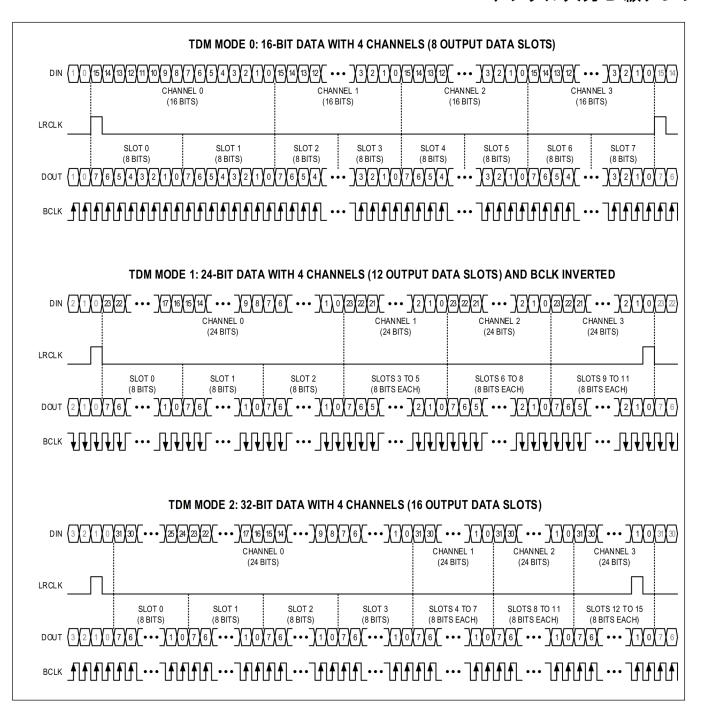


図 10. TDM モードの例

PCM データ・チャンネルの設定

PCM インターフェースのデータ入力 (DIN) は、スピーカ・アンプ・チャンネルのソース・データを受信し、データ出力 (DOUT) は、電流検出 ADC と電圧帰還チャンネルからのデータを送信します。

PCM データ入力

PCM 再生チャンネルは、PCM_RX_EN ビットでイネーブルになり、有効な入力データ・チャンネルからデータを受け取ることができます。本デバイスは入力デジタル・モノラル・ミキサーを備えており、1 つのチャンネルをルーティングしたり、2 つの PCM 入力チャンネルをミックスしてスピーカ再生チャンネルへのモノラル入力を生成したりできます。ミキサーの設定は PCM_DMMIX_CFG ビットで行い、モノラル・ミキサーの入力として 16 個の PCM 入力チャンネルのうちどれを使用するかは PCM_DMMIX_CH0_SOURCE および PCM_DMMIX_CH1_SOURCE ビットで選択します。 IPS モードと左詰めモードでは、最下位の 2 つの入力チャンネル (PCM 入力チャンネル 0 と 1) のみが使用可能です。 TDM モードでは、使用可能な PCM 入力チャンネル数はインターフェース構成に依存し、最小 2 チャンネルから最大 16 チャンネルまでです。 PCM 再生チャンネルをディスエーブル (PCM_RX_EN = 0) とした場合、スピーカ・アンプ・チャンネルにはゼロコードの値が駆動されます。

PCM データ出力

PCM インターフェースのデータ出力(DOUT)は、PCM_TX_EN ビット・フィールドによってイネーブルされ、有効な出力チャンネルまたはスロットに電圧および電流データを送ることができます。 I^2S モードと左詰めモードでは、各出力送信フレームで利用できるデータ出力チャンネルは 2 つだけです(チャンネル 0 および 1)。 TDM モードでは、各出力送信フレームには最大 64 個の連続した 8 ビット・データ出力スロットを含めることができ、各スロットには 0 から最大 63 までの番号が付けられます。

IPS モードと左詰めモードでは、スピーカ・アンプの出力電圧帰還データと出力電流検出データは、いずれかの出力チャンネルでデータ出力の送信に利用できます。電圧および電流の出力データには16ビットの有効データしか含まれず、PCMインターフェースのデータ・ワード・サイズ(PCM_CHANSZ)がこれを超えた場合、残りのビットはゼロでパディングされ(24 ビットまたは 32 ビットで出力され)ます。更に、チャンネル長(PCM_BSEL においてビット・クロックとフレーム・クロックの比率で設定)が PCM インターフェースのデータ・ワード・サイズを超える場合、追加の末尾ビットはHi-Zまたはゼロ(PCM_TX_EXTRA_HIZ 設定に基づく)のいずれかにすることが可能です。また、出力データは、同一チャンネルを共有するか、同一チャンネルでフレーム・インターリーブされるように割り当てることができます。

TDM モードでは、電圧データと電流データは、データ出力スロットに個別に割り当てられます。出力データは常に 16 ビットのワード・サイズで、連続する 2 つのデータ出力トランジット・スロットに収まります。表 8 に、出力データのフォーマットとパラメータを示します。

表 8 サポートされる PCM データ出力タイプ	₽

OUTPUT DATA TYPE	SYMBOL	DATA WORD SIZE (BITS)	NUMBER OF TDM SLOTS	ENABLE/SLOT ASSIGNMENT
Speaker Amplifier Output Voltage Feedback			2	PCM_VFB_EN/ PCM_VFB_SLOT
Speaker Amplifier Output Current Sense	IMON	16	2	PCM_IMON_EN/ PCM_IMON_SLOT

電圧と電流の出力データに対して、個別のイネーブルおよびスロット割り当てビット・フィールドが提供されています。 1^{2} S モードおよび 左詰めモードでは、チャンネル 0 にデータを割り当てる場合は出力スロット 0 を、チャンネル 1 にデータを割り当てる場合は出力スロット 1 を使用します。 1^{2} TDM モードでは、スロット割り当てにより、必要な 1^{2} 2つのデータ出力送信スロットに対して出力データ・タイプの送信が始まるスロットが選択されます(例えば、スロット 1^{2} 6に割り当てられた電圧出力データは、スロット 1^{2} 7 を占有します)。

TDM モードでは、いくつかの制限付きで、電圧と電流のデータを任意の有効なデータ出力スロットに割り当てることができます。まず、データ・ワードがデータ出力フレームの終端を超えるようなデータの割り当ては無効です。例えば、データは送信に 2 スロットを要するため、フレームの最後のスロットに割り当てることはできません。次に、他の出力データのスロット割り当てと重複するスロットに出力データを割り当てることも無効です(これは、チャンネルの共有やインターリーブを使用しない限り、I²S モードと左詰めモードのチャンネルにも当てはまります)。最後に、現在の PCM インターフェース構成のフレーム構造に存在しないスロットにデータを割り当てることも無効です。

電流フレーム構造には存在しても、出力データが割り当てられていないデータ出力(DOUT)スロットは、Hi-Z または 0 コード (PCM_TX_SLOT_HIZ ビット・フィールドで設定)で駆動されます。データ出力をディスエーブルしている場合、割り当てられたデータ出力スロットは Hi-Z か 0 コード (PCM_TX_SLOT_HIZ ビット・フィールドで設定)で駆動されます。

データ出力チャンネル・インターリーブの I/V データ

このような構成にすると、電流と電圧のデータ・タイプは、割り当てられたデータ出力チャンネルでフレームがインターリーブされます。 電流と電圧のデータ・ワードは共に 16 ビット長で、その結果、チャンネル長が 16 ビットより長い場合、PCM_TX_EXTRA_HIZ ビット・フィールドの状態に応じて、後続のパディング・ビットは Hi-Z またはゼロコードのいずれかに設定されます。

チャンネル・インターリーブ・モードでデータ・タイプを識別するために、16 ビット・データ・ワードの LSB がドロップ(切り捨て)されます。その後、データ・ワードは1 ビット分右シフトされ、空いた MSB は、電圧帰還データを示す0 または電流検出データを示す1 に置き換えられます。位相を揃えるため、1 つのサンプリングの電圧データは常に 1 つ目のフレームに割り当てられたチャンネルで送信され、次に2 つ目のフレームで電流データが送信されます。MSB の値と送信順序により、ホストはフレーム間で出力データを識別し、位相を揃えることができます。

I/V データはフレームがインターリーブされるので、PCM インターフェースのサンプル・レートは、I/V チャンネルのサンプル・レートよりも2の整数倍大きくなければなりません。図 11 は、PCM インターフェースのサンプル・レートが I/V チャンネルの 2 倍である基本的な例を示しています。

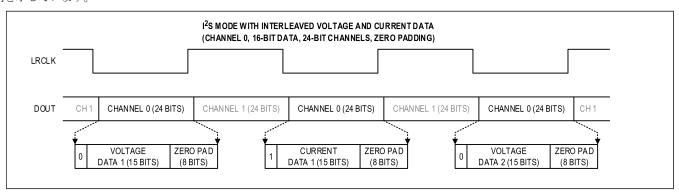


図 11. データ出力チャンネル 0 でインターリーブされた I/V 帰還チャンネルのデータ

データ出力共有チャンネルの I/V データ

IPS と左詰めの場合、PCM インターフェースでは利用可能なデータ出力チャンネル数が 2 つに制限されます。そのため、ステレオ・ペアのデバイスから、アンプ出力の電流検出と電圧帰還のデータを1本の共有データ出力(DOUT)ラインに収めることができません(4 チャンネルが必要になります)。このような場合、1 つのデバイスからの電流と電圧のデータ・タイプが 1 つのデータ出力チャンネルを共有するようにデータ出力を設定できます。

チャンネル共有モードを有効化するには、電流と電圧のデータ・タイプを同じ有効なデータ・チャンネルに割り当てます(PCM_VFB_SLOT = PCM_IMON_SLOT を使用)。電圧データは常に最初に送信され、次に、同じ割り当てられたチャンネルで電流データが送信されます。この構成では、電流と電圧のデータ・ワードが共に 16 ビット長であるため、ビット・クロック(BCLK)とフレーム・クロック(LRCLK)の比率は 64(32 ビットチャンネルが可能)に設定しなければなりません。クロック比が 64 より小さいと、電流と電圧のデータが正しくデコードされません。

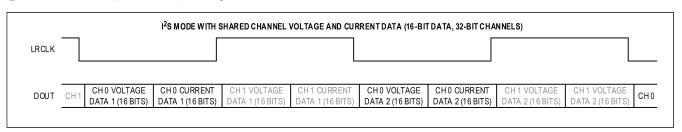


図 12. I/V 帰還共有チャンネルのデータ例

I²C ペリフェラルのシリアル制御インターフェース

本デバイスは Γ C/SMBusTM 互換の 2 線式シリアル・インターフェースを備えていて、制御レジスタを設定するのに使用されます。このインターフェースはシリアル・データ・ライン(SDA)とシリアル・クロック・ライン(SCL)で構成され、このペリフェラル・デバイスと上流の Γ C マネージャ(ドキュメントによっては Γ C コントローラとも呼ばれる)間の通信を行います。本デバイスの Γ C インターフェースは、最大 Γ 1MHzの Γ 1MHzの Γ 2MHzの Γ 4C カートしています。 Γ 5C 制御インターフェースは、デバイスがハードウェア・シャットダウン状態以外であって、かつ Γ 5C および Γ 5DA 端子で有効な Γ 7C 開始条件が検出された時にアクティブになります。

I2C インターフェース・アドレス

ペリフェラル・デバイスのアドレスは、7つの上位ビット (MSB) と、最下位の読出し/書込みビットで構成されます。最上位 7 ビットは、ADDR 入力接続を介して設定できます (表 9 を参照)。ADDR 入力がオープンまたは未接続の場合、デバイスは通信を行いません。 読出し/書込みビットが 1 に設定されている場合、デバイスは読出しモードに設定されます。読出し/書込みビットが 0 に設定されている場合、デバイスは書込みモードに設定されます。アドレスは、START条件後に I²C マネージャがペリフェラル・デバイスに送信する情報の最初のバイトになります。

表 9. I²C ペリフェラル・デバイスのアドレス

ADDR INPUT CONNECTION	DEVICE I ² C ADDRESS (BINARY)	I ² C WRITE (BINARY)	I ² C READ (BINARY)
Connected to V _{DD}	0111000x	01110000	01110001
Connected to GND	0111001x	01110010	01110011
Connected to SDA	0111010x	01110100	01110101
Connected to SCL	0111011x	01110110	01110111

I²C インターフェースのビット転送プロトコル

各 SCL サイクルの間に 1 つのデータ・ビットが転送されます。 SDA 上のデータは、SCL パルスのハイ期間中、安定した状態を維持する必要があります。 SCL がハイの間の SDA の変化は、制御信号(START と STOP の状態)となります。

I²C インターフェースの START および STOP 条件

バスが使用されていない時、SDA と SCL はアイドル・ハイになります。IPC マネージャは、START 条件を発行することにより通信を開始します。START 条件は、SCL がハイの状態で SDA がハイからローに遷移することです。STOP 条件は、SCL がハイの状態で SDA がローからハイに遷移することです。マネージャからの START 条件は、ペリフェラルへの送信の開始を知らせます。マネージャは、STOP 条件を発行することにより、送信を終了し、バスを解放します。STOP 条件の代わりに REPEATED START 条件が生成された場合、バスはアクティブのままです。

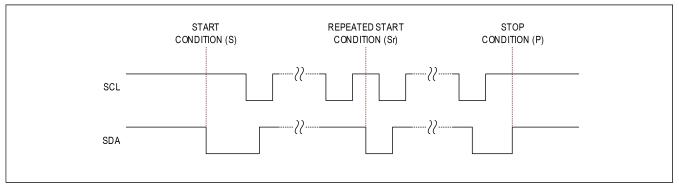


図 13.I²C ペリフェラル・デバイス・インターフェースの START および STOP 条件の例

I²C インターフェースの Early STOP 条件

デバイスはデータ伝送中のどの時点でも STOP 条件を認識します。ただし、STOP 条件が START 条件と同じハイ・パルスで発生した場合を除きます。正しく動作させるためには、START 条件と同じ SCL ハイ・パルス時に STOP 条件を送信しないようにします。

I2C インターフェースのアクノレッジ・ビット

アクノレッジ・ビット(ACK)は9番目のクロック・ビットで、書込みモード時にペリフェラル・デバイスが各データ・バイトの受信をハンドシェイクするのに使用します(図 14)。ペリフェラル・デバイスは、前のバイトが正常に受信された場合、マネージャが生成した9番目のクロック・パルスの間を通してSDAをプルダウンします。ACKをモニタすることで、失敗したデータ転送を検出できます。データ転送の失敗は、受信デバイスがビジーであったか、システム・フォールトが発生した場合に発生します。データ転送が失敗した場合、バス・マネージャは通信を再試行できます。

 I^2 C マネージャは、ペリフェラル・デバイスが読出しモードの時、データ受信をアクノレッジするために、9 番目のクロック・サイクルで SDA をプルダウンします。各読出しバイトの後にマネージャによってアクノレッジが送信されるため、データ転送を継続できます。ノットアクノレッジ (NACK) は、マネージャがデータの最終バイトを読み出した時に送信され、その後に STOP 条件が続きます。

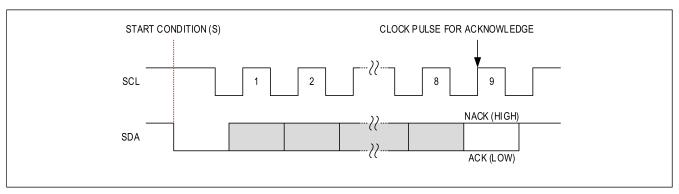


図 14. I²C ペリフェラル・デバイス・インターフェースのアクノレッジ・ビット例

I²C インターフェースの書込みデータ・フォーマット

 I^2 C ペリフェラル・インターフェースを介したデバイスへの書込みには、START 条件、READ-WRITEビットを 0 に設定したデバイス・アドレス、内部レジスタ・アドレス・ポインタを構成する 2 バイトのデータ、1 バイト以上のデータ、および STOP 条件の送信が含まれます。

READ-WRITEビットが 0 に設定されたデバイス・アドレスの送信は、I^CC マネージャがデバイスにデータを書き込むことを意図していることを示します。デバイスは、9番目の SCL パルス中にアドレス・バイトの受信をアクノレッジします。

マネージャから送信される 2 バイト目と 3 バイト目により、デバイスの内部レジスタ・アドレス・ポインタが設定されます。このポインタは、デバイスに次のデータのバイトを書き込む場所を通知します。アクノレッジ・パルスは、レジスタ・アドレス・データのバイトを受信するたびにデバイスによって送信されます。

デバイスに送信される 4 バイト目には、選択したレジスタ・アドレスに書き込むデータが含まれています。デバイスからのアクノレッジ・パルスは、データ・バイトの受信を通知します。アドレス・ポインタは、データ・バイトを受信するたびに次のレジスタ・アドレスに自動インクリメントします。この自動インクリメント機能により、マネージャは 1 つの連続したフレーム内で連続したレジスタに書き込むことができます。マネージャは、STOP条件を発行することにより、送信の終了を通知します。

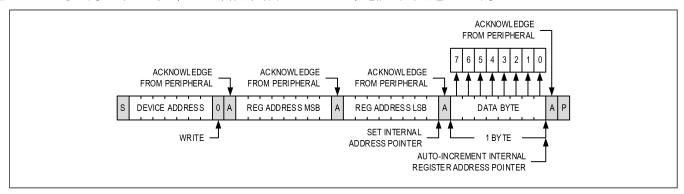


図 15. I^2 C マネージャによるペリフェラル・デバイスへの 1 バイト・データの書込み

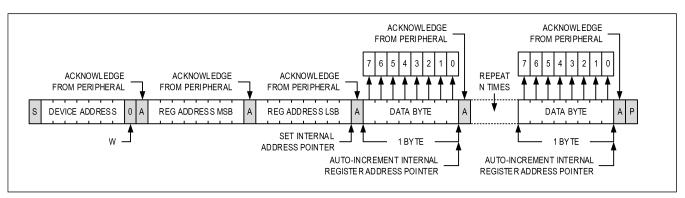


図 16. I^2C マネージャによるペリフェラル・デバイスへの n バイト・データの書込み

I²C インターフェースの読出しデータ・フォーマット

IPC のレジスタ・アドレス・ポインタは、読出しコマンドを発行する前にターゲット・レジスタにプリセットされる必要があります。マネージャはペリフェラル・デバイスのレジスタ・アドレス・ポインタをプリセットします。これは、まず READ-WRITE ビットを 0 に設定したデバイスのアドレス (書込みコマンド)を送信し、更にアドレス・ポインタのターゲット・レジスタ・アドレスを含む 2 つのコマンドを送信することにより行います。

その後、REPEATED START 条件を送信し、更に読出しコマンド(READ-WRITEビットを 1 に設定したデバイス・アドレス)を送信します。これにより、内部レジスタ・アドレス・ポインタがターゲット・レジスタ・アドレスに設定された上で読出しコマンドが開始されます。デバイスから送信される最初のバイトには、アドレス・ポインタが設定されたレジスタの内容が含まれています。送信されたデータは、SCL の立上がりエッジで有効になります。マネージャはアクノレッジ・クロック・パルス中、読出しバイトの受信ごとにアクノレッジ(ACK)を返します。その後、アドレス・ポインタは、読出しデータ・バイトがアクノレッジされるごとに自動インクリメントされます。この自動インクリメント機能により、1つの連続したフレーム内で複数のデバイス・レジスタを順次読み出すことができます。

マネージャは、最後のバイトを除き正しく受信された全てのバイトに対してアクノレッジ(ACK)を発行する必要があります。読出し動作を終了するには、最終バイトの後にマネージャがノットアクノレッジ(NACK)を発行し、その後 STOP 条件を発行しなければなりません。ノットアクノレッジ(NACK)に続く STOP 条件は、任意の数の読出しデータ・バイトの後に発行できます。

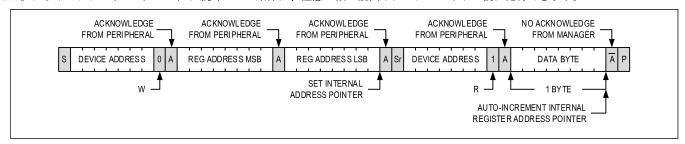


図 17.1°C マネージャによるペリフェラル・デバイスからの 1 バイト・データの読出し

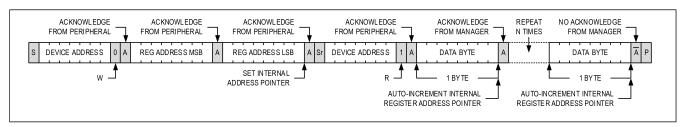


図 18. I²C マネージャによるペリフェラル・デバイスからの n バイト・データの読出し

スピーカ再生チャンネル

スピーカ・アンプ・チャンネルの入力データは、PCM デジタル・オーディオ・インターフェースのデータ入力(DIN)からモノラル・ミキサー段を経て渡されます。そのデータは、スピーカ再生チャンネルのデジタル・フィルタ、信号処理、音量コントロール・ブロックを経て、DACとD級スピーカ・アンプに到達します。また、デジタル再生チャンネルのデータは、DACの直前で取り出され、電圧帰還チャンネルの入力へもルーティングされます。

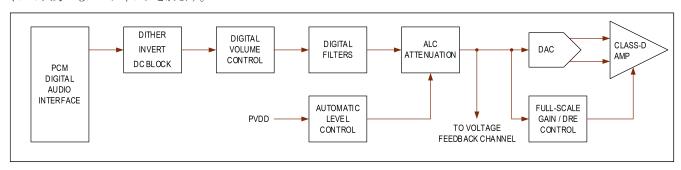


図 19. スピーカ再生チャンネルの詳細ブロック図

スピーカ・チャンネルのディザ

SPK_DITH_EN を 1 に設定した場合、スピーカ・チャンネルへの入力データにディザ(± 1 LSB ピーク・ツー・ピーク)をオプションで適用できます。SPK DITH EN を 0 に設定した場合、ディザは適用されません。

スピーカ・チャンネルのデータ反転

SPK INVERT ビットを1にセットすることにより、スピーカ・チャンネルへの入力データをオプションで反転させることができます。

スピーカ・チャンネルの DC ブロッキング・フィルタ

SPK DCBLK EN ビットを1にセットすると、スピーカ・チャンネルに対して DC ブロッキング・フィルタを有効化できます。

スピーカ・チャンネルの DAC デジタル・フィルタ

スピーカ・チャンネルの DAC は、選択した再生サンプル・レート(PCM_SR)に基づいて自動的に設定されるデジタル・ローパス・フィルタを備えています。このフィルタにより、エイリアシングやその他の高周波ノイズの影響を排除できます。電気的特性の表にある DAC デジタル・フィルタのセクションを参照してください。

スピーカ・チャンネル最大ピーク出力電圧のスケーリング

スピーカ・パスにある DAC のフルスケール出力は 0.5 dBV (代表値) です。スピーカ・パスにおける無負荷時の最大ピーク出力電圧レベルは、このベースライン・レベルに対して設定できます。ピーク出力のスケーリング範囲は SPK_GAIN ビット・フィールドで設定し、可能な設定範囲はデバイスが 1 セル・モードまたは 2 セル/ブースト・モード (SPK_AMP_MODE ビットで設定) のいずれで動作しているかで決まります。ピーク出力の設定範囲は、以下のとおりです。

表 10. スピーカ・チャンネルのピーク出力設定

MAXIMUM PEAK OUTPUT VOLTAGE LEVEL SELECTED	SINGLE-CELL MODE (SPK_AMP_MODE = 0)	TWO-CELL/BOOSTED MODE (SPK_AMP_MODE = 1)		
$SPK_GAIN = 0x0$	0.75V _{RMS} (-3dB)	1.50V _{RMS} (+3dB)		
$SPK_GAIN = 0x1$	1.06V _{RMS} (0dB)	2.11V _{RMS} (+6dB)		
$SPK_GAIN = 0x2$	1.50V _{RMS} (+3dB)	2.99V _{RMS} (+9dB)		
$SPK_GAIN = 0x3$	2.11V _{RMS} (+6dB)	4.22V _{RMS} (+12dB)		
$SPK_GAIN = 0x4$	2.99V _{RMS} (+9dB)	5.96V _{RMS} (+15dB)		
$SPK_GAIN = 0x5$	4.22V _{RMS} (+12dB)	8.41V _{RMS} (+18dB)		

所与のデジタル入力信号レベルに対するスピーカ出力信号レベルは、次のように計算されます。

出力信号レベル(dBV) = 入力信号レベル(dBFS) + デジタル音量(dBFS) + 0.5(dBV) + SPK_GAIN(dB)(0dBFS は 0dBV つまり $1V_{RMS}$ を基準)

スピーカ・チャンネルのデジタル音量制御

本デバイスでは、スピーカ・チャンネルのデジタル音量制御を動的に設定できます。デジタル音量制御は、0dB から-63dB の減衰範囲を 0.5dB ステップで行うことができ、 SPK_VOL ビット・フィールドで設定します。デジタル・ミュートも可能で、 SPK_VOL を 0x7F に設定した時に有効になります。

デジタル音量レベルの変化(アクティブな再生時におけるある音量レベルから別の音量レベルへの変化)は、必ず一定の割合で行われます(ランプアップまたはランプダウン)。ただし、起動時、シャットダウン時、ミュート/ミュート解除時のデジタル音量ランプは、デフォルトで無効にされています。これら機能についての音量のランプアップおよびランプダウンは、それぞれSPK_VOL_RMPUP_BYPASS および SPK_VOL_RMPDN_BYPASS ビット・フィールドで個別に有効化または無効化します。音量ランプを有効化した場合(バイパスしない場合)、デバイスのターンオンとターンオフの時間は長くなります。音量ランプを無効化(バイパス)した場合、オーディオ・レベルは代わりにホストでランプする必要があるので、可聴ノイズが発生しないように、起動、シャットダウン、ミュート/アンミュートの間は無音になるようにしておく必要があります。

スピーカ・アンプ

フィルタのない D 級アンプは、AB 級アンプに比べてはるかに高い効率を実現します。D 級アンプの高効率は、出力段トランジスタのスイッチング動作に起因します。D 級出力段で生じる電力損失の主な原因は、MOSFET のオン抵抗と自己消費電流のオーバーヘッドによる I^2R 損失によるものです。

スピーカ・アンプの出力短絡保護機能

D級アンプの出力電流制限値(I_{LIM})を超えた場合(電気的特性の表を参照)、スピーカ出力はディスエーブルされます。手動モード (OVC_RETRY_EN = 0) に設定した場合、過電流イベントが発生すると、スピーカ・アンプ出力はディスエーブルされ、デバイスはソフトウェア・シャットダウン状態になります(ENは0に設定されます)。この状態は、システム・ソフトウェアが再びイネーブルするまで継続します。

自動モード (OVC_RETRY_EN = 1) に設定した場合、スピーカ出力は約 20ms の間ディスエーブルされます。20ms が経過すると、スピーカ出力は再びイネーブルになります。フォールト状態がまだ存在する場合、フォールト状態が解除されるまで、スピーカ出力はディスエーブルと再イネーブルを繰り返します。

スピーカ・アンプのクリック/ポップ抑制

本スピーカ・アンプは、包括的なクリック/ポップ抑制機能を備えています。パワーアップ時、クリック/ポップ抑制回路はデバイス内部における可聴域のトランジェント・ソースを低減します。ソフトウェアまたはハードウェア・シャットダウンのパワーダウン時には、差動スピーカ出力が同時に Hi-Z になります。

本デバイスの包括的なクリック/ポップ抑制は、パワーアップまたはパワーダウンのシーケンスに影響されることはありません。ソフトウェアでデバイスをディスエーブルし、 \overline{RESET} 入力の遷移前後でクロックを印加または除去すると、全て同じクリック/ポップ抑制性能が得られます。ただし、音量ランプを有効化した場合、クリック/ポップ性能を最大限に発揮させるには、ソフトウェアがグローバル・イネーブル・ビット(EN)をハイまたはローに設定した後、音量ランプが完了するまでの 13ms の間は、クロックと電源が有効でなければなりません。

スピーカ・アンプの超低 EMI フィルタレス出力

従来のD級アンプは、EN55022B電磁干渉(EMI)規制基準を満たすために、外付けのLCフィルタやシールドを使用する必要がありました。アナログ・デバイセズのアクティブ・エミッション・リミット機能、エッジ・レート・コントロール回路、スペクトラム拡散変調により、高効率を維持しながらEMI放射を低減できます。

オプションのスペクトラム拡散変調(SSM)モードは、SPK_AMP_SSM_EN ビットで有効化します。スペクトラム拡散変調器をアクティブにした場合、SSM 比(SPK_AMP_SSM_MOD ビット・フィールド)で設定した範囲内で、中心周波数(f_{SW})前後に D 級スイッチング周波数をランダムに変化させます。SSM モードは、広帯域のスペクトル成分を平坦化させると共に、独自技術により、スイッチング周期のサイクル間変動がオーディオ再生や効率を劣化させないようにします。10MHz 以上の広帯域スペクトルは、EMI の観点からするとノイズのように振る舞います。

また、本デバイスは、主に EMI 測定に使用されるピンク・ノイズ発生器を内蔵しています。このモードは、デバイスがソフトウェア・シャットダウン状態にある時(グローバル・イネーブルを設定してデバイスをパワーアップする前)に、(SPK_PINK_NOISE_EN ビットで)有効化または無効化する必要があります。有効化した場合、デバイスがアクティブ状態にパワーアップするためには外部クロック入力(有効なビット・クロックとフレーム・クロック)を必要とします。いったんアクティブ状態になると、クロックを停止させることが可能で、ピンク・ノイズ発生器はそのまま動作を継続します。この状態で、ピンク・ノイズ発生器はスピーカの再生チャンネルに入力データを提供します(再生データ・ソースとしてデータ入力 DIN に置き換わります)。ピンク・ノイズのデータは、スピーカ再生チャンネルのゲインの影響を受け、ゲインが 0dB の場合、信号レベルは 1kHz で約-55dBV、20kHz で-70dBFS まで低下します。

スピーカの電流検出チャンネルと電圧帰還チャンネル

本デバイスは、スピーカ出力の電流検出 ADC チャンネルとスピーカ出力の電圧帰還チャンネル (IV 帰還チャンネルとも呼ばれる)の両方を提供します。電流検出チャンネルは、16 ビット ADC を搭載し、スピーカ・アンプの出力電流を内部で測定するのに使用されます。電圧帰還チャンネルは、スピーカ再生チャンネルのデジタル信号を(DAC の直前で)取り出し、その信号を補償フィルタを介して、D級スピーカ・アンプの出力電圧を正確にモデル化します。

電流および電圧帰還チャンネルは、それぞれ IVFB_I_EN ビットと IVFB_V_EN ビットで独立に有効化します。位相を揃えるためには、IVFB_I_EN ビットと IVFB_V_EN ビットを含むレジスタに1回書き込むか(グローバル・イネーブル EN = 1 でイネーブルした場合)、またはソフトウェア・シャットダウン終了前に両ビットをハイ・レベルにして、両チャンネルをイネーブルする必要があります。

IVFB_DITH_EN ビット・フィールドを 1 にセットすることにより、両チャンネルともオプションでディザ(\pm 1LSB ピーク to ピーク)を適用できます。また、各チャンネルには、オプションで DC ブロッキング・フィルタ(1 次ハイパス)がそれぞれ搭載されています。 IVFB_I_DCBLK_EN および IVFB_V_DCBLK_EN をそれぞれ 1 に設定することで、電流および電圧チャンネル・フィルタがイネーブルになります。

スピーカ電流検出/電圧帰還チャンネルのデータ・フォーマット

出力された電流と電圧のデータは、PCM インターフェースのデータ出力(DOUT)を介してホストに送られます。PCM インターフェースのデータ出力チャンネル/スロットの電流検出および電圧帰還データの設定に関する詳細については、PCM インターフェースのセクションを参照してください。電流検出と電圧帰還のデータはいずれも2の補数データ・フォーマットを使用します。

電流検出 ADC チャンネルは 16 ビットの分解能 2 ± 3 A の範囲であり、LSB サイズは 3 A/(2^{15})として計算されます。電流検出の読みが 0x7FFF の場合、正のフルスケール出力電流は+3A -1 LSB に変換され、0x8000 の読みは-3A の負のフルスケール出力電流に変換されます。

電圧帰還チャンネルは 16 ビットの分解能をサポートし、1 セル・モードでは±5.5V、2 セル(または外部ブースト)モードでは±11V の範囲になります。LSB のサイズは、1 セル・モードでは 5.5V/(2^{15})、2 セル・モードでは 11V/(2^{15})として計算されます。電圧帰還のコードが 0x7FFF の場合、1 セル・モードでは+5.5V -1 LSB、2 セル・モードでは+11V -1 LSB の正のフルスケール出力電圧に変換されます。同様に、0x8000 のコードは、1 セル・モードで-5.5V、2 セル・モードで-11V の負のフルスケール出力電圧になります。

スピーカ・アンプ出力がクリップした場合、電圧帰還チャンネルのデータは、スピーカ出力の電圧を正確にモデル化することができません。この場合、スピーカ・アンプのクリッピング検出ステータス(SPK_CLIP)がアサートされると、電圧帰還チャンネルの出力データはクリッピング・レベルに保持されます。このこと(およびステータス・ビット)によって、スピーカ・アンプ出力がクリッピングしたこと、および出力電圧レベルをトラッキングできないことがホストに示されます。スピーカ・アンプ出力がクリップしなくなると、ステータスはアサート解除され、電圧帰還チャンネルはスピーカ・アンプ出力電圧のトラッキングを再開します。

クロックおよびスピーカ出力のモニタ

本デバイスは、オプションのクロック・モニタとオプションのスピーカ出力モニタを提供します。クロック・モニタは CMON_EN ビットを1にセットすることで有効化され、スピーカ出力モニタは SPKMON_EN ビットを1にセットすることで有効化されます。クロック・モニタはデフォルトで有効化されますが、スピーカ出力モニタはシステム・ソフトウェア・ドライバで有効化する必要があります。

クロック・モニタ

クロック・モニタはデフォルトで有効化され、デバイスの状態をホストに通知すると共に、クロック・フォールト時に無効な信号がスピーカ・チャンネル出力に到達するのを防止します。有効化(CMON_EN を 1)した場合、ビット・クロック(BCLK)とフレーム・クロック(LRCLK)の両方の入力をモニタし、クロック・エラーが検出されるとスピーカ・アンプ出力を自動的にディスエーブルします。クロック・モニタを無効化(CMON_EN を 0)し、アクティブ再生中にビット・クロックまたはフレーム・クロックのいずれかのクロックに異常が発生した場合、スピーカ・アンプ出力に無効な信号(DC を含む)が到達する可能性があります。

クロック停止エラーは、ビット・クロック(BCLK)またはフレーム・クロック(LRCLK)のいずれかのソースが 60μs 以上ハイまたはローに停止した場合に検出され、クロック源エラーとして通知されます。クロック停止タイムアウトは内部発振器によって決定され、その変動率はデバイスの動作温度範囲において±10%です。更に、クロック・モニタは、グロス・ビット・クロック周波数エラー(FLLロック解除イベントを引き起こす完全に無効な BCLK)および内部クロック生成エラー(DAC または ADC クロックの異常など)を検出します。

クロック・モニタは、2 つの方法でクロック・エラーに応答するように設定できます。CLOCK_AUTORESTART_EN ビットを 0 に設定した場合、クロック・モニタは手動モードとなります。手動モードでは、クロック・エラーが検出されると、クロック・モニタはクロック・エラーの状態(CLK_ERR)を通知し、EN を 0 に設定することでデバイスをソフトウェア・シャットダウンに移行させます。ホスト・ソフトウェアが EN を 1 にセットするまで、デバイスはソフトウェア・シャットダウンのままです。

CLOCK_AUTORESTART_EN ビットを 1 に設定した場合、クロック・モニタは自動モードとなります。自動モードでは、クロック・エラーが検出されると、クロック・モニタはクロック・エラー・ステータス(CLK_ERR)を通知しますが、EN ビット・フィールドをリセットせず、代わりにデバイスを直接ソフトウェア・シャットダウンに保持します。有効なクロックが再度印加されて検出されると、デバイスは自動的にソフトウェア・シャットダウン状態から抜け出し、アクティブ状態に戻ります。自動再起動モードでは、グローバル・イネーブル(EN)ビット・フィールドの値は変更されず、このプロセス中は1を保持します。

スピーカ出力モニタ

SPKMON_EN を 1 に設定した場合、スピーカ出力レベルをモニタして、設定済みのスピーカ出力エラー・スレッショルドを超えることがないか監視します。スピーカ出力モニタ・エラーのスレッショルドは、SPKMON_THRESH ビット・フィールドで選択します。スレッショルドの計算は、電流検出チャンネルがアクティブかどうかで異なります。

電流検出チャンネルをアクティブにした場合、スピーカ出力モニタのスレッショルドは次のように直接選択されます(そして、測定出力レベルと比較されます)。

スレッショルド (V) = SPKMON THRESH × 0.02924V

スピーカ出力モニタで使用される公称のスピーカ負荷抵抗値は、SPKMON_LOAD ビット・フィールドで選択します。測定出力電流とここで選択した負荷抵抗値は、出力モニタが使用する出力電圧レベル(選択した電圧スレッショルドに対する相対値)を計算する際に使用されます。これは、電流検出チャンネルをディスエーブルしている場合は影響しません。

電流検出チャンネルをディスエーブルした場合、スレッショルドは次のように出力フルスケール電圧のパーセンテージとして計算されます。

スレッショルド (V) = (SPKMON THRESH / 256) × PVDD 電圧

ただし、このモードでは、PVDD 電圧の変化に応じてフルスケールのレベルが変化するため、最も厳しい場合の PVDD 条件(一般に、あるシステムで可能な最大の PVDD)に基づいてスレッショルドを選択する必要があります。

スピーカ出力モニタ・エラーの持続時間は、SPKMON_DURATION ビット・フィールドで設定します。モニタされたスピーカ出力レベルが、設定済みのエラー持続時間よりも長く、設定した出力エラー・スレッショルドを超えた場合、スピーカ出力エラーが検出されます。スピーカ出力モニタ・エラーの持続時間は、内部発振器によって決定され、その標準的な変動率はデバイスの動作温度範囲で±10%です。スピーカ出力エラーのスレッショルドと継続時間は、必要な最大持続スピーカ出力レベルとホスト側のオーディオ・ソフトウェア・アルゴリズムの動作の両方を慎重に考慮して設定する必要があります。

スピーカ出力エラーが検出されると、モニタはエラー・ステータス($SPKMON_ERR$)を通知し、EN を 0 に設定してデバイスをソフトウェア・シャットダウン状態にします。ホスト・ソフトウェアが EN を 1 にセットするまで、デバイスはソフトウェア・シャットダウンのままです。

ブラウンアウト保護の自動レベル制御(ALC)

ブラウンアウト保護の自動レベル制御(ALC)により、PVDD 電圧が設定可能なブラウンアウト・スレッショルドを下回った場合に、スピーカ・チャンネルの音量を下げたり、チャンネルをミュートしたりできます。ALC は、PVDD レベルをスレッショルド(ALC_TH で設定)と比較し、設定したレベルを PVDD が下回ると作動します。使用可能なスレッショルドの設定は、スピーカ・アンプの動作モード(SPK AMP MODE ビットで選択する 1 セル・モードまたは 2 セル/ブースト・モード)に応じて変化します。

ブラウンアウト保護 ALC のパリスティック

PVDD がブラウンアウト・スレッショルドを下回ると、ALC が起動し、設定可能なアタック・レート(ALC_ATK_RATE で設定)でスピーカ・チャンネルの音量を減少させはじめます。ALC の最大減衰量は、 $0dB \sim -15dB$ を 1dB ステップで設定できます(ALC MAX ATTENで設定)。

ALC の音量減衰が完了するまでの間または完了後のいずれかのタイミングで、PVDD 電源が回復してブラウンアウト・スレッショルドを超えた場合、リリース・バウンス防止タイマー(ALC_RLS_DBT で設定)が開始します。バウンス防止タイマーが作動している間、スピーカ・チャンネルの音量低減は継続され(最大減衰量まで)、PVDD が選択したバウンス防止時間より長い間、スレッショルドを超えるまでリリースは開始しません。音量減衰リリースのレートは、ALC_RLS_RATE ビット・フィールドで設定します。図 20 は、標準的な状況におけるこの動作を示しています。

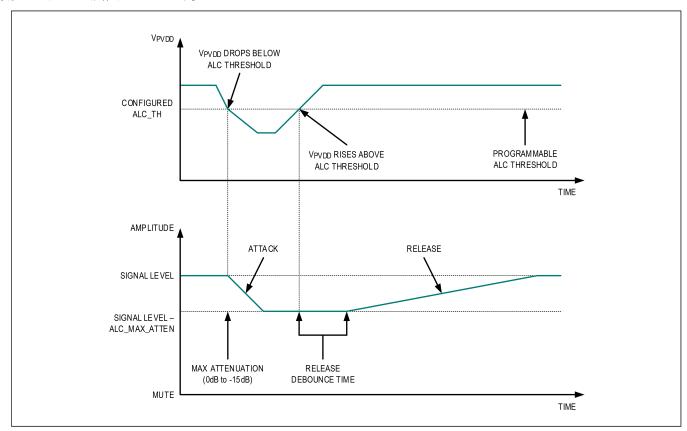


図 20. ブラウンアウト保護 ALC による音量減衰の動作

ALC ミュート機能を有効化すると(ALC_MUTE_EN)、ALC はスピーカ再生チャンネルを完全にミュートすることもできます。ALC のミュート機能およびミュート解除機能は、即座に適用するか、または音量ランプと併用して適用するかを個別に設定できます(ALC_MUTE_RAMP_EN および ALC_UNMUTE_RAMP_EN で選択)。ランプを有効化した場合、ミュートとミュート解除は $20\mu s/dB$ のレートで適用されます。

ALC ミュートを有効化し、PVDD がブラウンアウト・スレッショルドを下回ると、アタックが通常どおりに開始され、設定した最大減衰量(ALC_MAX_ATTEN)が適用されるまで進行します。PVDD がスレッショルドを下回る状態が ALC ミュート遅延時間 (ALC_MUTE_DLY で設定) より長く続くと、(即座にまたは選択したランプのいずれかで)ミュートが適用されます。PVDD が回復し、選択したリリース・バウンス防止時間よりも長くブラウンアウト・スレッショルドを超えると、(この場合も即座にまたはランプのいずれかで)ALC ミュートが開始します。

ALC ミュート・ランプを有効化した場合、ミュート・ランプダウンの進行中に PVDD がブラウンアウト・スレッショルドを超えると、ミュート・ランプはリリース・バウンス防止時間が経過するまで継続します(音量減衰のアタックとリリースと同様)。ミュート・ランプの完了前にバウンス防止時間が経過した場合、現在の音量レベルからミュート解除が開始します。図 21 はミュート・ランプを無効化した場合の動作、図 22 はミュート・ランプを有効化した場合の動作です。

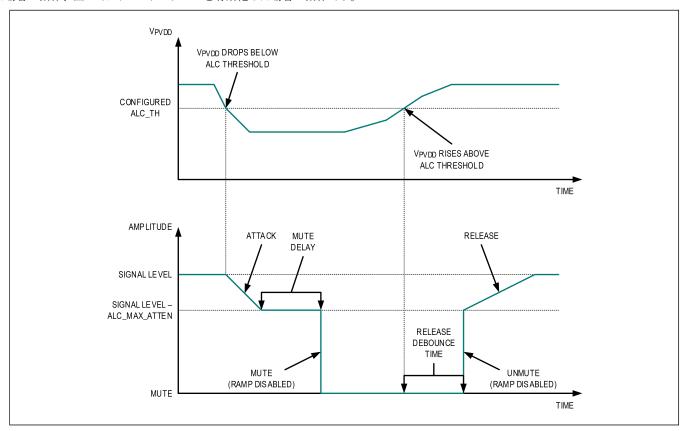


図 21. ミュートを有効化しランプなしの場合のブラウンアウト保護 ALC

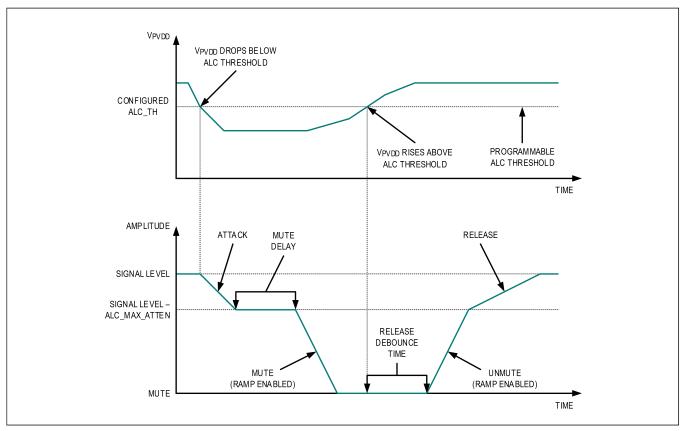


図 22. ミュートを有効化しランプありの場合のブラウンアウト保護 ALC

ブラウンアウト ALC をバッテリー保護にのみ使用し、ミュート前に音量の減衰を必要としない場合は、ALC の最大減衰量を 0dB (ALC_MAX_ATTEN) に設定する必要があります。この場合、PVDD がブラウンアウト・スレッショルドを下回ると、減衰は適用されず、代わりにミュート遅延時間がスタートします。ミュート遅延時間が経過すると、ALC ミュートが開始します。この動作例として、最大減衰量を 0dB に設定し、ミュート・ランプを有効化した場合を図 23 に示します。

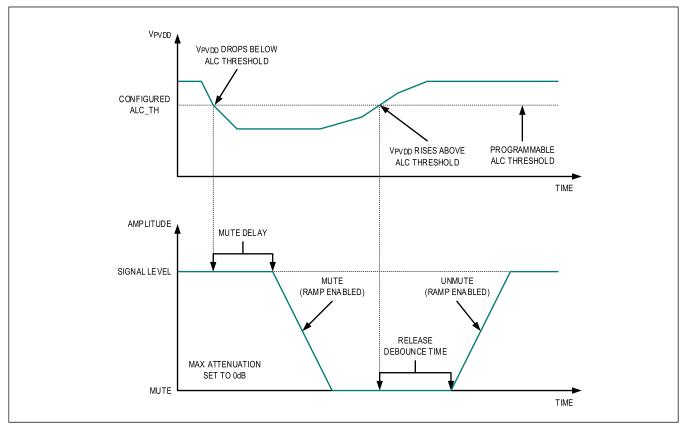


図 23. 最大減衰量を 0dB に設定し、ランプによるミュートを有効化した場合のブラウンアウト保護 ALC

ALC リリースのバウンス防止時間(ALC_RLS_DBT)を無限に継続するように設定した場合、PVDD 電圧がブラウンアウト・スレッショルドを超えた後でも、設定した音量減衰やミュートは自動的にはリリースされません。ホスト・システム・ソフトウェアがALS_RLS_TGR ビットでALC リリースを手動でトリガするまで、音量減衰とミュートが適用されたままになります。PVDD がまだ ALC スレッショルドを下回っている間は、無限継続をリリースしようとしても無効です。図 24 に、減衰からのリリースがトリガされた ALC 無限継続の例(リリースの試みが無効の場合を含む)を示します。また、ミュートからのリリースをトリガする 2 つ目の例を図 25 に示します。

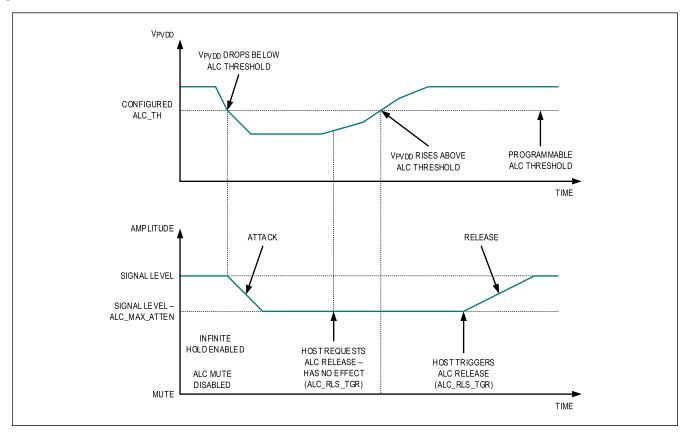


図 24. 無限保持を有効化、ミュートを無効化とした場合のブラウンアウト保護 ALC

図 25. 無限保持を有効化、ミュートを有効化、ランプなしとした場合のブラウンアウト保護 ALC

ブラウンアウト保護 ALC のステータス通知

本デバイスには 3 つのステータス信号(スレッショルド、アクティブ、ミュート)があり、これを用いてホストがブラウンアウト保護 ALCの動作状態をモニタできます。これら3 つのステータス信号のそれぞれに対応する生ステータス・ビットは、現在のALC動作状態を直接報告し、それぞれの生ステータスの立上がりエッジがステータス・ビットによって捕捉されます(リードバック時にのみクリアされます)。

ブラウンアウト ALC アクティブ・ステータス(BR_ALC_ACTIVE)は、ALC が現在アクティブであるかどうかを通知します。設定された ALC スレッショルドを PVDD 電圧が上回り、ALC の減衰/ミュートが完全にリリースされると、いつでも生の ALC アクティブ・ステータス信号がローになります。設定された ALC スレッショルドを PVDD が下回り、減衰が開始すると(最大減衰量を 0dB に設定した場合と、ALC がミュート遅延時間を待機している場合も含む)、生の ALC アクティブ・ステータスはハイになります。PVDD が ALC スレッショルドを上回り、ALC の減衰/ミュートが完全にリリースされるまではハイのままです。

ブラウンアウト ALC スレッショルド・ステータス(BR_ALC_THRESH)は、PVDD レベルがブラウンアウト・スレッショルドを超えるまで回復した時に、そのことをホストに通知します。設定されたブラウンアウト・スレッショルドを PVDD が下回ると、ALC が作動し、生のブラウンアウト ALC スレッショルド・ステータスはローになります。その後、設定された ALC スレッショルドを PVDD レベルが上回ると、生のブラウンアウト ALC スレッショルド・ステータスがハイになって(更に状態ビットにラッチされ)、PVDD が回復したことを示します。この時点で ALC はまだアクティブであり、PVDD がブラウンアウト・スレッショルドを超えている場合、リリースはここから進行します。

ブラウンアウト ALC ミュート・ステータス (BR_ALC_MUTE) は、ALC ミュートが現在完全に適用されているかどうかを通知します。 生の ALC ミュート・ステータス信号は、ALC ミュートがアクティブでなく、完全に適用されていない時(これにはミュートとミュート解除のランプ時も含まれます)は、常時ローです。生のALCアクティブ・ステータスは、ALCミュートが完全に適用されると(即座に、またはミュート・ランプが完了した時に)ハイになり、ALC ミュート解除が始まるまで(即座に、またはミュート解除ランプが開始すると)ハイを維持します。

ALC 動作状態に対するブラウンアウト保護 ALC の生ステータス・ビットの動作について、通常動作の場合を図 26 に、無限保持を有効化した場合を図 27 に示します。

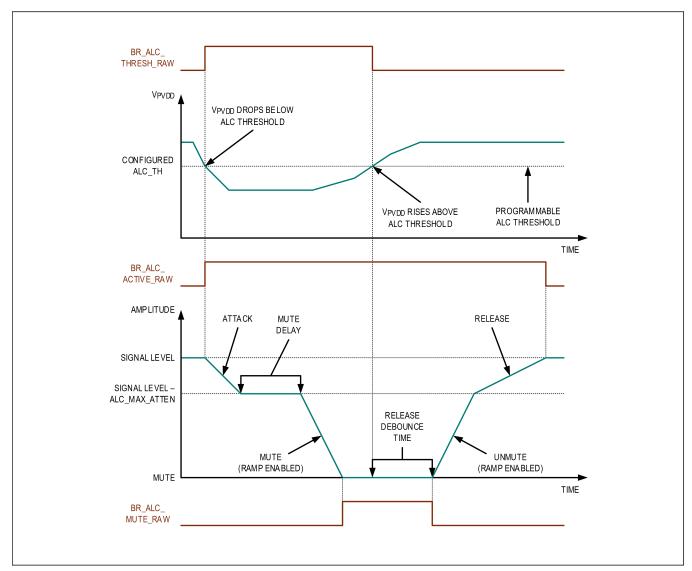


図 26. ブラウンアウト保護 ALC のステータス信号(ミュートとランプを有効化)

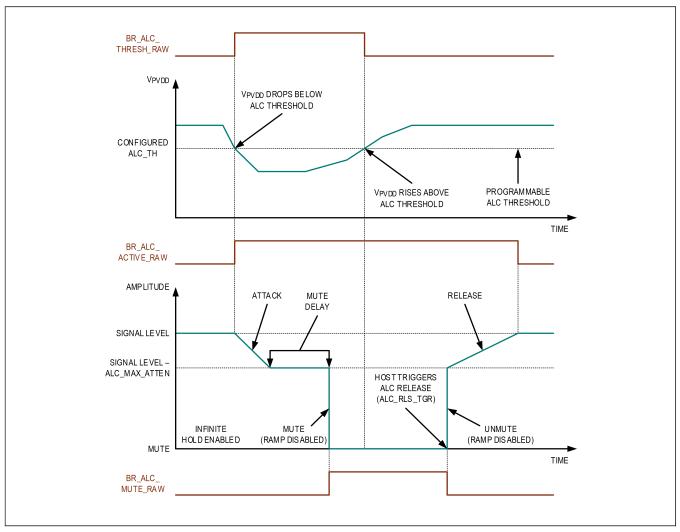


図 27. ブラウンアウト保護 ALC のステータス信号(無限保持、ミュートとランプを無効化)

過熱保護

デバイスがアクティブな時は、損傷を防ぐためにダイ温度が自動的にモニタされて、サーマル・スレッショルドを超えることのないようにできます。過熱警告スレッショルドは THERMWARN_THRESH[1:0]ビット・フィールドで設定し、サーマル・シャットダウン・スレッショルドは THERMSHDN_THRESH[1:0]ビット・フィールドで設定します。それぞれのヒステリシスは 15℃(代表値)となっています。

ダイ温度が過熱警告スレッショルドを超えると、ステータス・インジケータ(過熱警告開始)がセットされ、システムに警告を発します。 サーマル・シャットダウンの回復動作は、THERM_AUTORESTART_EN ビットの状態によって決まります。

THERM_AUTORESTART_EN ビットを 0 に設定した場合、サーマル・シャットダウンからの回復は手動モードとなります。手動モードでは、ダイ温度がサーマル・シャットダウン・スレッショルドを超えると、ステータス・インジケータがセットされ(サーマル・シャットダウン)、アンプ出力は自動的にディスエーブルされます。ダイ温度が過熱警告スレッショルド(これからヒステリシスを引いた値)を下回ると、ステータス・インジケータがセットされ(過熱警告終了)、デバイスはソフトウェア・シャットダウン(EN = 0)に移行します。デバイスは、ホストが手動で(グローバル・イネーブル EN で)再イネーブルするまで、その状態を維持します。

THERM_AUTORESTART_EN ビットを 1 に設定した場合、サーマル・シャットダウンからの回復は自動モードとなります。自動モードでは、ダイ温度がサーマル・シャットダウン・スレッショルドを超えると、ステータス・インジケータがセットされ(サーマル・シャットダウン)、アンプ出力は自動的にディスエーブルされます。ダイ温度が過熱警告スレッショルド(これからヒステリシスを引いた値)を下回ると、ステータス・インジケータがセットされ(過熱警告終了)、アンプは自動的に再イネーブルされます。自動モードでのサーマル・シャットダウンと回復の間、グローバル・イネーブル(EN = 1)が変更されることはありません。

デバイス・レジスタ・マップの説明

デバイス制御ビットは、読出し(R)、書込み(W)、または読書き(RW)の3つの基本タイプのいずれかです。

読出し専用ビット・フィールド(R)は、デバイスの内部状態を示すために使用され、ホストからは直接変更できません。これらのレジスタへの書込みは無効です。

書込み専用ビット・フィールド(W)は、1ビットの押しボタン型制御です。これらのビット・フィールドに1を書き込むと、アクション(ソフトウェア・リセット、割込みクリアなど)が実行されます。0を書き込んでも効果はなく、リードバックは常に0を返します。

読書きビット・フィールド (RW) は、ホストによる読出しと書込みの両方が可能で、最後に書き込まれた値がリードバックで返されます。

予備ビット・フィールドは、デバイスのプログラムまたは制御には使用されません。予備ビット・フィールドを含むレジスタに書き込む際は、予備ビット・フィールドのセグメントには必ず0を書き込んでください。

MAX98388 と MAX98389 のレジスタ・デフォルト設定の違い

レジスタ・マップは、MAX98388 におけるデフォルトのパワーオン・リセット(PoR)設定を示しています。MAX98389 では、1つのレジスタのデフォルト設定が異なるだけです。レジスタ 0x2092 の SPK_AMP_MODE ビットが、デフォルトで MAX98388 では 1セル・モード (ロー)、MAX98389 では 2 セル・モード (ハイ) になります。パワーアップ時またはリセット後にこのレジスタを読むことで、システムにインストールされているデバイスのバージョンを知ることができます。

制御ビットの書込みアクセス制限

特に読出し制限はなく、PC制御インターフェースがアクティブであれば、いつでもどのビット・フィールドもリードバックできます。しかし、書込み制限はあり、書込み可能なビット・フィールドは、2つの書込みアクセス・サブタイプのいずれかに分類されます。

1 つ目の書込みアクセス・サブタイプは、ダイナミックです。ダイナミック・ビット・フィールドは、実質的に書込みアクセス制限がなく、IPC 制御インターフェースがアクティブであればデバイスがどのような状態にあっても安全に変更(書込み)ができます。2 つ目のアクセス・サブタイプは、制限付きです。制限付きビット・フィールドは、関連する機能ブロックがパワーダウンしている時にのみ変更(書込み)する必要があります。書込みアクセスがグローバル・イネーブルに制限されている場合(EN制限)、制限付きビット・フィールドは、デバイスがソフトウェア・シャットダウンの時にのみ変更(書込み)する必要があります。

ビット・フィールドの種類と書込みアクセスのサブタイプは、全てのビット・フィールドについてレジスタの詳細を説明する表に記載されています。制限付きサブタイプを持ったビット・フィールドでは全て、依存関係も「RES」列に示されています。

本デバイスで使用される全てのデバイス・レジスタ・タイプ、アクセス・サブタイプ、および制限依存関係についての詳細が記載されています。書込みアクセス制限では、システムがその制限タイプを持つビット・フィールドを変更(書込み)しようとする前に満たすべき特定のデバイス条件(および対応するビット・フィールド設定)が記載されています。

表 11. 制御ビットの種類と書込みアクセス制限

DECICTED TYPE	WDITE ACCESS	WRITE ACCESS RESTRI	CTIONS	
REGISTER TYPE	WRITE ACCESS	DESCRIPTION	CONDITION	"RES" SYMBOL
Read	Read-Only	None	None —	
	Dynamic	None	_	_
	Restricted	Device Held in Software Shutdown	EN = 0	EN
		Write Access Locked by the Hardware Unless Device is in Software Shutdown	EN = 0	ENL
Write or Write/Read		PCM Interface Disabled	$\begin{array}{c} PCM_TX_EN = 0 \text{ and} \\ PCM_RX_EN = 0 \end{array}$	PCM
		Speaker Channel Disabled	$SPK_EN = 0$	SPK
		I/V Feedback Channels Disabled	IVFB_I_EN = 0 and IVFB_V_EN	IVFB
		Brownout Protection ALC Disabled	$ALC_{EN} = 0$	ALC

レジスタ・マップ

レジスタ・マップ

ADDRESS	NAME	MSB							LSB
Reset									
0x2000	Software Reset[7:0]	_	-	-	_	-	-	-	RST
Device Statu	ıs Registers								
0x2001	Device Status Raw 1[7:0]	THERM SHDN_R AW	THERMW ARN_BGN _RAW	THERMWA RN_END_R AW	SPKMON_E RR_RAW	CLK_ERR _RAW	PWRDN_D ONE_RA W	PWRUP_ DONE_R AW	OTP_FAIL_ RAW
0x2002	Device Status Raw 2[7:0]	-	-	BR_ALC_M UTE_RAW	BR_ALC_AC TIVE_RAW	BR_ALC_ THRESH_ RAW	PVDD_UV LO_SHDN _RAW	SPK_OV C_RAW	SPK_CLIP_R AW
0x2004	Device Status State 1[7:0]	THERM SHDN_S TATE	THERMW ARN_BGN _STATE	THERMWA RN_END_ST ATE	SPKMON_E RR_STATE	CLK_ERR _STATE	PWRDN_D ONE_STA TE	PWRUP_ DONE_S TATE	OTP_FAIL_S TATE
0x2005	Device Status State 2[7:0]	-	-	BR_ALC_M UTE_STATE	BR_ALC_AC TIVE_STAT E	BR_ALC_ THRESH_ STATE	PVDD_UV LO_SHDN _STATE	SPK_OV C_STAT E	SPK_CLIP_S TATE
Thermal Pro	tection								
0x2020	Thermal Warning Threshhold[7:0]	-	-	-	_		RN_THRESH :0]		HDN_THRESH [1:0]
Error Monito	r								
0x2031	Speaker Mon Threshold[7:0]				SPKMON_TI	HRESH[7:0]			
0x2032	Speaker Mon Load Select[7:0]	-			SPKM	ION_LOAD[6:	0]		

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ADDRESS	NAME	MSB							LSB	
0x2033	Speaker Mon Duration[7:0]	_	-	_	_		SPKMON_DU	JRATION[3:0	0]	
0x2037	Error Monitor Control[7:0]	_	-	_			_	SPKMO N_EN	CMON_EN	
PCM Regist	ers									
0x2040	PCM Mode Config[7:0]	PCM_CH	IANSZ[1:0]	PCM_FORMAT[2:0]			PCM_TX_I NTERLEA VE	PCM_C HANS EL	PCM_TX_E XTRA_HIZ	
0x2041	PCM Clock Setup[7:0]	-	-	_	PCM_BCLK EDGE	PCM_BSEL[3:0]				
0x2042	PCM Sample Rate Setup[7:0]		IV	_SR[3:0]			PCM_S	SR[3:0]		
0x2044	PCM Tx Control 1[7:0]	-	-			PCM_VMON_	_SLOT[5:0]			
0x2045	PCM Tx Control 2[7:0]	-	-			PCM_IMON_	SLOT[5:0]			
0x2050	PCM Tx HiZ Control 1[7:0]	PCM_TX_SLOT_HIZ[63:56]								
0x2051	PCM Tx HiZ Control 2[7:0]		PCM_TX_SLOT_HIZ[55:48]							

IV 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ADDRESS	NAME	MSB							LSB		
0x2052	PCM Tx HiZ Control 3[7:0]		PCM_TX_SLOT_HIZ[47:40]								
0x2053	PCM Tx HiZ Control 4[7:0]		PCM_TX_SLOT_HIZ[39:32]								
0x2054	PCM Tx HiZ Control 5[7:0]		PCM_TX_SLOT_HIZ[31:24]								
0x2055	PCM Tx HiZ Control 6[7:0]		PCM_TX_SLOT_HIZ[23:16]								
0x2056	PCM Tx HiZ Control 7[7:0]		PCM_TX_SLOT_HIZ[15:8]								
0x2057	PCM Tx HiZ Control 8[7:0]				PCM_TX_SLC	OT_HIZ[7:0]					
0x2058	PCM RX Source 1[7:0]	_	-	_	_	_	_	PCM_DM	MIX_CFG[1:0]		
0x2059	PCM RX Source 2[7:0]		PCM_DMMIX	_CH1_SOURCE	[3:0]	PC	M_DMMIX_C	H0_SOURCI	E[3:0]		
0x205C	PCM Tx Drive Strength[7:0]	PCM_DOUT_DRV[1					OUT_DRV[1:0]				
0x205D	PCM Tx Source Enables[7:0]	-	-	_	_	-	-	PCM_IM ON_EN	PCM_VMON _EN		

IV 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ADDRESS	NAME	MSB							LSB	
0x205E	PCM Rx Enable[7:0]	_	_	_	_	-	-	-	PCM_RX_E N	
0x205F	PCM Tx Enable[7:0]	-	-	_	_	-	-	-	PCM_TX_E N	
Speaker Cha	annel Control									
0x2090	Speaker Channel Volume Control[7:0]	-		SPK_VOL[6:0]						
0x2091	Speaker Channel Configuration[7:0]	-	_	_	SPK_VOL_R MPDN_BYP ASS	SPK_VOL _RMPUP_ BYPASS	SPK_INVE RT	SPK_DI TH_EN	SPK_DCBLK _EN	
0x2092	Speaker Amplifier Output Configuration[7:0]	-	_	_	SPK_DAC_ MODE	SPK_AMP _MODE	\$	SPK_GAIN[2:0]		
0x2093	Speaker Amplifier SSM Configuration[7:0]	-	_	-	-	_	SPK_AMP_SSM_MOD [1:0]		SPK_AMP_S SM_EN	
0x2094	Speaker Amplifier Edge Rate Control[7:0]	-	_	-	-	SPK_AMP_F	FALL_SR[1:0] SPK_AMP_RISE		RISE_SR[1:0]	
0x209E	Speaker Channel Pink Noise Enable[7:0]	-	_	-	-	-	_	-	SPK_PINK_ NOISE_EN	

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ADDRESS	NAME	MSB							LSB		
0x209F	Speaker Channel and Amp Enable[7:0]	_	_	-	-	-	-	-	SPK_EN		
IV Data Cha	nnel Control										
0x20A0	IV Data DSP Control[7:0]	_	_	_	IVFB_DITH_ EN	IVFB_I_IN VERT_EN	IVFB_V_I NVERT_E N	IVFB_I_ DCBLK_ EN	IVFB_V_DC BLK_EN		
0x20A7	IV Data Enables[7:0]	-	-	_	_	-	-	IVFB_I_ EN	IVFB_V_EN		
Brownout Protection ALC											
0x20E0	Brownout Protection ALC Threshold[7:0]	-	-	-	-	ALC_TH[3:0]					
0x20E1	Brownout Protection ALC Rates[7:0]		ALC_A	ΓK_RATE[3:0]		ALC_RLS_RATE[3:0]					
0x20E2	Brownout Protection ALC Attenuation[7:0]	-	_	-	-	ALC_MAX_ATTEN[3:0]					
0x20E3	Brownout Protection ALC Release[7:0]	-	_	-	-	- ALC_RLS_DBT[2:0]			Γ[2:0]		
0x20E4	Brownout Protection ALC Mute[7:0]	-	_	ALC_UNMU TE_RAMP_E N	ALC_MUTE _RAMP_EN				ALC_MUTE _EN		

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ADDRESS	NAME	MSB							LSB		
0x20EE	Brownout Protection ALC Infinite Hold Release[7:0]	_	I	-	I	-	I	ı	ALC_RLS_T GR		
0x20EF	Brownout Protection ALC Enable[7:0]	-	-	-	-	_	-	-	ALC_EN		
System Con	System Configuration										
0x210E	AutoRestart Behavior[7:0]	_	-	-	-	CLOCK_A UTOREST ART_EN	OVC_RET RY_EN	THERM _AUTOR ESTART _EN	PVDD_UVL O_AUTORE START_EN		
0x210F	Global Enable[7:0]	_	-	-	_	_	-	_	EN		
Device and I	Revision ID										
0x22FF	Revision ID[7:0]	REV_ID[7:0]									

レジスタの詳細

ソフトウェア・リセット (0x2000)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	-	_	RST
Reset	-	_	_	_	_	-	_	0b0
Access Type	-	_	_	_	_	-	_	Write Only

ビットフィールド	ビット	RES	説明	デコード
RST	0	I	このビット・フィールドは、ソフトウェア・リセット・イベントをトリガするのに使用します。1を書き込むとデバイスはリセットされ、制御レジスタはパワーオン・リセット状態に戻ります。0の書込みは無効で、リードバックすると常時0を返します。	0: No action 1: Triggers a software reset event

デバイス・ステータス生 1 (0x2001)

BIT	7	6	5	4	3	2	1	0
Field	THERMSHD N_RAW	THERMWA RN_BGN_R AW	THERMWA RN_END_R AW	SPKMON_E RR_RAW	CLK_ERR_ RAW	PWRDN_DO NE_RAW	PWRUP_DO NE_RAW	OTP_FAIL_ RAW
Reset	0ь0	0ь0	0ь0	0ь0	0b0	0ь0	0ь0	0ь0
Access Type	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

ビットフィールド	ビット	RES	説明	デコード
THERMSHDN_RAW	7	I	サーマル・シャットダウンの生ステータス・ビット。	0x0: Die temperature is lower than the configured thermal-shutdown threshold. 0x1: Die temperature is greater than the configured thermal-shutdown threshold.
THERMWARN_BGN_RAW	6	I	過熱警告の生ステータス・ビット。	0x0: Die temperature is lower than the configured thermal-warning threshold. 0x1: Die temperature is greater than the configured thermal-warning threshold.
THERMWARN_END_RAW	5	I	過熱警告終了の生ステータス・ビット。	0x0: Die temperature has not dropped below the configured thermal-warning threshold (after exceeding it). 0x1: Die temperature has dropped below the configured thermal-warning threshold (after exceeding it).
SPKMON_ERR_RAW	4	_	スピーカ・アンプ出力でのDCレベル・モニタの生ビット。	0x0: DC level exceeding the configured threshold was not detected at the speaker amplifier output since the last state clear. 0x1: DC level exceeding the configured threshold was detected at the speaker amplifier output since the last state clear.
CLK_ERR_RAW	3	I	クロック・モニタ・エラーの生ビット。	0x0: BCLK was present during active-mode operation since the last state clear. 0x1: BCLK stopped during active-mode operation.
PWRDN_DONE_RAW	2	-	パワーダウン移行完了ステータスの生ビット。	0x0: Power-down transition from active state to software-shutdown state is not done (no transition or transition is in progress). 0x1: Power-down transition from active state to software-shutdown state done (transition completed).

ビットフィールド	ビット	RES	説明	デコード
PWRUP_DONE_RAW	1	ı	パワーアップ移行完了ステータスの生ビット。	0x0: Power-up transition from software shutdown state to active state is not done (no transition or transition is in progress). 0x1: Power-up transition from software shutdown state to active state done (transition completed).
OTP_FAIL_RAW	0	-	OTP負荷フォールト・ステータスの生ビット。	0x0: OTP settings successfully loaded during initialization. 0x1: OTP settings failed to load during initialization.

デバイス・ステータス生 2 (0x2002)

BIT	7	6	5	4	3	2	1	0
Field	-	-	BR_ALC_M UTE_RAW	BR_ALC_A CTIVE_RA W	BR_ALC_T HRESH_RA W	PVDD_UVL O_SHDN_R AW	SPK_OVC_ RAW	SPK_CLIP_ RAW
Reset	_	_	0b0	0b0	0b0	0b0	0b0	0b0
Access Type	_	_	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

ビットフィールド	ビット	RES	説明	デコード
BR_ALC_MUTE_RAW	5	l	ブラウンアウト保護ALCミュートの生ステータス・ビット。ALCミュートを適用するとハイにアサートされ、ALCミュートを無効化するとアサート解除されます。	0x0: Brownout protection ALC is not muting the speaker channel (ALC mute is not active or ramp is not complete). 0x1: Brownout protection ALC is muting the speaker channel (ALC mute is active and ramp down is complete).
BR_ALC_ACTIVE_RAW	4	-	ブラウンアウト保護ALCアクティブの生ステータス・ビット。設定したALCスレッショルドをPVDDが下回り、ALCがアクティブになるとハイにアサートされます。PVDDの電圧レベルが回復し(スレッショルドを上回り)、適用されたALC減衰が完全にリリースされた後にアサート解除されます。	0x0: Brownout protection ALC is not actively attenuating or muting the speaker channel (ALC is inactive or release is complete). 0x1: Brownout protection ALC is actively attenuating or muting the speaker channel (ALC is active or release is not complete).
BR_ALC_THRESH_RAW	3	-	ブラウンアウト保護ALCでのPVDD電圧スレッショルドの生ステータス・ビット。設定されたALCスレッショルドをPVDDが下回るとハイにアサートされ、PVDD電圧レベルが回復する(スレッショルドを上回る)とアサート解除されます。	0x0: PVDD voltage level is currently above the configured brownout ALC threshold. 0x1: PVDD voltage level is currently below the configured brownout ALC threshold.
PVDD_UVLO_SHDN_RAW	2	_	PVDD低電圧ロックアウト・エラーの生ステータス・ ビット。	0x0: PVDD UVLO has not triggered during active-state operation. 0x1: PVDD UVLO has triggered during active-state operation.

ビットフィールド	ビット	RES	説明	デコード
SPK_OVC_RAW	1	I	スピーカ・アンプ出力での過電流モニタの生ビット。	0x0: Speaker amplifier output overcurrent event is not detected. 0x1: Speaker amplifier output overcurrent event detected.
SPK_CLIP_RAW	0	-	スピーカ・アンプ出力でのクリッピング・モニタの生 ビット。	0x0: Speaker amplifier output clipping event is not detected. 0x1: Speaker amplifier output clipping event is detected.

デバイス・ステータス状態 1 (0x2004)

BIT	7	6	5	4	3	2	1	0
Field	THERMSHD N_STATE	THERMWA RN_BGN_S TATE	THERMWA RN_END_S TATE	SPKMON_E RR_STATE	CLK_ERR_S TATE	PWRDN_DO NE_STATE	PWRUP_DO NE_STATE	OTP_FAIL_ STATE
Reset	060	0b0	0b0	0b0	0ь0	0ь0	060	0b0
Access Type	Read, Ext	Read, Ext	Read, Ext	Read, Ext	Read, Ext	Read, Ext	Read, Ext	Read, Ext

ビットフィールド	ビット	RES	説明	デコード
THERMSHDN_STATE	7	_	サーマル・シャットダウン・ステータスの状態ビッ ト。	0x0: Die temperature has not exceeded the configured thermal-shutdown threshold since the last state clear. 0x1: Die temperature has exceeded the configured thermal-shutdown threshold since
				the last state clear. 0x0: Die temperature has not exceeded the
THERMWARN_BGN_	6		過熱警告ステータスの状態ビット。	configured thermal-warning threshold since the last state clear.
STATE	0	_	- 週常音ロバケーアバッが感じプロ。	0x1: Die temperature has exceeded the configured thermal-warning threshold since the last state clear.
THE DAY AND THE				0x0: Die temperature has either not exceeded or remains above the configured thermalwarning threshold since the last state clear.
THERMWARN_END_ STATE	5	_	過熱警告終了ステータスの状態ビット。	0x1: Die temperature has dropped back below the configured thermal-warning threshold (after previously exceeding it) since the last state clear.
			スピーカ・アンプ出力でのDCレベル・モニタの状態	0x0: DC level exceeding the configured threshold was detected at the speaker amplifier output.
SPKMON_ERR_STATE	4	_	ビット。	0x1: DC level exceeding the configured threshold detected at the speaker amplifier output.
CLK ERR STATE	3	_	クロック・モニタ・エラーの状態ビット。	0x0: BCLK was present during active-mode operation since the last state clear.
CDR_DRR_STATE	,	_	1. 1. 1. 2. 1. O. WIEL C. J. I. O.	0x1: BCLK was stopped during active-mode operation since the last state clear.

ビットフィールド	ビット	RES	説明	デコード
PWRDN_DONE_STATE	2	ı	パワーダウン移行完了の状態ビット。	0x0: Power-down transition from active state to software-shutdown state was not completed (no transition or transition is in progress) since the last state clear. 0x1: Power-down transition from active state to software-shutdown state was completed since the last state clear.
PWRUP_DONE_STATE	1	-	パワーアップ移行完了の状態ビット。	0x0: Power-up transition from softwareshutdown state to active state was not completed (no transition or transition is in progress) since the last state clear. 0x1: Power-up transition from softwareshutdown state to active state was completed since the last state clear.
OTP_FAIL_STATE	0	ı	OTP負荷フォールト・ステータスの状態ビット。	0x0: OTP settings were successfully loaded during initializations since the last state clear. 0x1: OTP settings failed to load during an initialization since the last state clear.

デバイス・ステータス状態 2 (0x2005)

BIT	7	6	5	4	3	2	1	0
Field	-	-	BR_ALC_M UTE_STATE	BR_ALC_A CTIVE_STA TE	BR_ALC_T HRESH_ST ATE	PVDD_UVL O_SHDN_S TATE	SPK_OVC_S TATE	SPK_CLIP_ STATE
Reset	_	-	0b0	0b0	0b0	0b0	0b0	0b0
Access Type	_	_	Read, Ext	Read, Ext	Read, Ext	Read, Ext	Read, Ext	Read, Ext

ビットフィールド	ビット	RES	説明	デコード
BR_ALC_MUTE_STATE	5	1	PVDDブラウンアウト保護ALCでのミュート・ステータスの状態ビット。	0x0: Brownout protection ALC did not fully mute the speaker channel since the last state clear. 0x1: Brownout protection ALC did fully mute the speaker channel since the last state clear.
BR_ALC_ACTIVE_STATE	4	-	PVDDブラウンアウト保護ALCでのアクティブ・ステータスの状態ビット。	0x0: Brownout protection ALC did not actively attenuate the speaker channel since the last state clear. 0x1: Brownout protection ALC did actively attenuate the speaker channel since the last state clear.
BR_ALC_THRESH_STATE	3	ı	PVDDブラウンアウト保護ALCでのスレッショルド・ ステータスの状態ビット。	0x0: PVDD voltage did not rise above the configured brownout ALC threshold since the last state clear. 0x1: PVDD voltage did rise above the configured brownout ALC threshold since the last state clear.
PVDD_UVLO_SHDN_ STATE	2	-	PVDD UVLOエラーの状態ビット。	0x0: PVDD UVLO was not triggered during normal operation since the last state clear. 0x1: PVDD UVLO was triggered during normal operation since the last state clear.

ビットフィールド	ビット	RES	説明	デコード
SPK_OVC_STATE	1	_	スピーカ・アンプ出力での過電流モニタの状態ビット。	0x0: Speaker amplifier output overcurrent event was not detected since the last state clear. 0x1: Speaker amplifier output overcurrent event detected since the last state clear.
SPK_CLIP_STATE	0	-	スピーカ・アンプ出力でのクリッピング・モニタの状態ビット。	0x0: Speaker amplifier output clipping event not detected since the last state clear. 0x1: Speaker amplifier output clipping event detected since the last state clear.

過熱警告のスレッショルド (0x2020)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	_	THERMWARN_THRESH [1:0]		THERMSHDN_THRESH [1:0]	
Reset	_	_	_	-	0b10		0b10	
Access Type	-	_	-	-	Write, Read		Write	, Read

ビットフィールド	ビット	RES	説明	デコード
THERMWARN_THRESH	3:2	EN	過熱警告の初期スレッショルド温度を設定します。	0x00: 95°C 0x01: 105°C 0x02: 115°C 0x03: 125°C
THERMSHDN_THRESH	1:0	EN	過熱警告の最終スレッショルド温度を設定します。	0x00: 135°C 0x01: 145°C 0x02: 155°C 0x03: 165°C

スピーカ・モニタのスレッショルド (0x2031)

BIT	7	6	5	4	3	2	1	0			
Field		SPKMON_THRESH[7:0]									
Reset		0x58									
Access Type		Write, Read									

ビットフィールド	ビット	RES	説明
SPKMON_THRESH	7:0	EN	スピーカ出力モニタ電圧のスレッショルドを設定します。スレッショルドの計算は、電流検出チャンネルがアクティブかどうかで異なります。電流検出チャンネルをアクティブにした場合、スピーカ出力モニタのスレッショルドは次のように直接選択されます(そして、測定出力レベルと比較されます)。 スレッショルド(電圧) = SPKMON_THRESH × 0.02924V
STRINGT_TTREEST\\		電流検出チャンネルがディスエーブルの場合、スレッショルドは出力フルスケール電圧のパーセンテージとして計算されます。ただし、このモードでは、PVDD電圧の変化に応じてフルスケールのレベルが変化するため、最悪のPVDD条件(一般に、あるシステムで可能な最大のPVDD)に基づいてスレッショルドを選択する必要があります。	
			スレッショルド(電圧) = (SPKMON_THRESH / 256) × PVDD電圧

スピーカ・モニタの負荷選択(0x2032)

BIT	7	6	5	4	3	2	1	0			
Field	_		SPKMON_LOAD[6:0]								
Reset	_		0ь0001000								
Access Type	_		Write, Read								

ビットフィールド	ビット	RES	説明	デコード
SPKMON_LOAD	6:0	EN	電流検出チャンネルがイネーブルの場合、スピーカ出力モニタで使用されるスピーカ負荷抵抗(公称値)を選択します。測定出力電流と選択した負荷抵抗値は、出力モニタが使用する出力電圧レベル(選択した電圧スレッショルドに対する相対値)を計算するのに使用されます。これは、電流検出チャンネルをディスエーブルしている場合は影響しません。	0x0: 2.00Ω 0x1: 2.25Ω 0x2 to 0x5: (0.25Ω Steps) 0x6: 3.50Ω 0x7: 3.75Ω 0x8: 4.00Ω (Default) 0x9: 4.25Ω 0xA: 4.50Ω 0xB to 0x15: (0.25Ω Steps) 0x16: 7.50Ω 0x17: 7.75Ω 0x18: 8.00Ω 0x19: 8.25Ω 0x1A: 8.50Ω 0x1B to 0x7C: (0.25Ω Steps) 0x7D: 33.25Ω 0x7E: 33.50Ω 0x7F: 33.75Ω

スピーカ・モニタの持続時間 (0x2033)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	SPKMON_DURATION[3:0]			
Reset	_	-	_	_	0x2			
Access Type	_	_	_	_	Write, Read			

ビットフィールド	ビット	RES	説明	デコード
SPKMON_DURATION	3:0	EN	この持続時間を超えて、スピーカ出力モニタが、選択 したスレッショルド以上の出力レベルを連続して検出 した時、スピーカ出力モニタ・エラーをアサートしま す。	0x0: 10ms 0x1: 25ms 0x2: 50ms 0x3: 75ms 0x4: 100ms 0x5: 200ms 0x6: 300ms 0x7: 400ms 0x8: 500ms 0x9: 600ms 0xA: 700ms 0xB: 800ms 0xC: 900ms 0xC: 91000ms 0xC: 11000ms 0xE: 1100ms 0xF: 1200ms

エラー・モニタの制御 (0x2037)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	-	-	-	SPKMON_E N	CMON_EN
Reset	_	_	_	_	_	_	0b0	0b1
Access Type	-	_	_	_	_	-	Write, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
SPKMON_EN	1	ENL	内部のスピーカ出力保護モニタを有効化します。	0x0: Disable internal speaker output monitor. 0x1: Enable internal speaker output monitor.
CMON_EN	0	ENL	クロック・モニタを有効化します。有効化すると、ビット・クロック入力(BCLK)、フレーム・クロック入力(LRCLK)、およびいくつかの内部クロック・バスの全てでクロック・アクティビティがモニタされます。	0x0: Disable the clock monitor. 0x1: Enable the clock monitor.

PCM モードの設定(0x2040)

BIT	7	6	5	4	3	2	1	0
Field	PCM_CHA	ANSZ[1:0]	PC	CM_FORMAT[2:	0]	PCM_TX_IN TERLEAVE	PCM_CHAN SEL	PCM_TX_E XTRA_HIZ
Reset	0b	11		06000		0b0	0b0	0b0
Access Type	Write	, Read	Write, Read			Write, Read	Write, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
PCM_CHANSZ	7:6	ENL	各チャンネルに対してPCMデータのワード・サイズを 設定します。	00: Reserved 01: 16-bit 10: 24-bit 11: 32-bit
PCM_FORMAT	5:3	ENL	PCMデータのフォーマットを選択します。	0x0: 12S Mode 0x1: Left-justified 0x2: Reserved 0x3: TDM Mode 0 (0 BCLK delay from LRCLK) 0x4: TDM Mode 1 (1 BCLK delay from LRCLK) 0x5: TDM Mode 2 (2 BCLK delay from LRCLK) 0x6 to 0x7: Reserved

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_INTERLEAVE	2	ENL	同一チャンネルに割り当てられたI/Vデータを、PCM データ出力 (DOUT) でフレーム・インターリーブす るかどうかを制御します。	0x0: Disable Interleave mode. 0x1: Enable Interleave mode.
PCM_CHANSEL	1	ENL	新しいフレームを開始させるLRCKエッジを選択します(チャンネルOまたはスロットO)。	O: I ² S and LJ mode: Falling LRCLK edge starts a new frame. In TDM modes: Rising LRCLK edge starts a new frame. 1: In I ² S and LJ mode: Rising LRCLK edge starts a new frame. In TDM modes: Falling LRCLK edge starts a new frame.
PCM_TX_EXTRA_HIZ	0	ENL	BCLKの余分なサイクルの間、DOUTをゼロまたはHiZ のいずれで駆動するかを選択します。	0x0: Transmit zero on DOUT during extra BCLK cycles. 0x1: Transmit Hi-Z on DOUT during extra BCLK cycles.

PCM クロックのセットアップ (0x2041)

BIT	7	6	5	4	3	2	1	0
Field	_	-	-	PCM_BCLK EDGE	PCM_BSEL[3:0]			
Reset	-	_	_	0b0	0x4			
Access Type	-	-	-	Write, Read	Write, Read			

ビットフィールド	ビット	RES	説明	デコード
PCM_BCLKEDGE	4	ENL	アクティブなBCLKエッジを選択します。	O: Input data captured and output data valid on rising edge of BCLK. 1: Input data captured and output data valid on falling edge of BCLK.
PCM_BSEL	3:0	ENL	PCMインターフェースで必要とされるLRCLKあたりのBCLK数を選択します。	0x0 to 0x1: Reserved 0x2: 32 0x3: 48 0x4: 64 0x5: 96 0x6: 128 0x7: 192 0x8: 256 0x9: 384 0xA: 512 0xB: 320 0xC to 0xF: Reserved

PCM サンプル・レートのセットアップ (0x2042)

BIT	7	6	5	4	3	2	1	0	
Field		IV_SI	R[3:0]		PCM_SR[3:0]				
Reset		02	κ8		0x8				
Access Type		Write	, Read			Write	, Read		

ビットフィールド	ビット	RES	説明	デコード
IV_SR	7:4	ENL	I/Vデータ出力チャンネルのサンプル・レートを設定します。	0x0: 8kHz 0x1: 11.025kHz 0x2: 12kHz 0x3: 16kHz 0x4: 22.05kHz 0x5: 24kHz 0x6: 32kHz 0x7: 44.1kHz 0x8: 48kHz 0x9: 88.2kHz 0xA: 96kHz 0xB to 0xF: Reserved
PCM_SR	3:0	ENL	PCMインターフェースとスピーカ再生チャンネルのサンプル・レートを設定します。これは、必要とされる LRCLKの周波数に対応します。	0x0: 8kHz 0x1: 11.025kHz 0x2: 12kHz 0x3: 16kHz 0x4: 22.05kHz 0x5: 24kHz 0x6: 32kHz 0x7: 44.1kHz 0x8: 48kHz 0x9: 88.2kHz 0xA: 96kHz 0xB to 0xF: Reserved

PCM Tx の制御 1 (0x2044)

BIT	7	6	5	4	3	2	1	0
Field	_	_	PCM_VMON_SLOT[5:0]					
Reset	-	-	06000000					
Access Type	_	_	Write, Read					

ビットフィールド	ビット	RES	説明	デコード
PCM_VMON_SLOT	5:0	PCM	電圧帰還チャンネルにおける出力データのデータ出力 (DOUT) スロットを選択します。TDM以外のモードでは、スロット0とスロット1のみが有効です。	0x0: Slot 00/01 0x1: Slot 01/02 0x2: Slot 02/03 0x22 to 0x3D: 0x3E: Slot 62/63 0x3F: Reserved

PCM Tx の制御 2(0x2045)

BIT	7	6	5	4	3	2	1	0
Field	_	_	PCM_IMON_SLOT[5:0]					
Reset	-	_	06000000					
Access Type	-	_	Write, Read					

ビットフィールド	ビット	RES	説明	デコード
PCM_IMON_SLOT	5:0	PCM	電流検出ADCチャンネルにおける出力データのデータ 出力(DOUT)スロットを選択します。TDM以外の モードでは、スロット0とスロット1のみが有効です。	0x0: Slot 00/01 0x1: Slot 01/02 0x2: Slot 02/03 0x22 to 0x3D: 0x3E: Slot 62/63 0x3F: Reserved

PCM Tx の HiZ 制御 1 (0x2050)

BIT	7	6	5	4	3	2	1	0	
Field		PCM_TX_SLOT_HIZ[63:56]							
Reset		0xFF							
Access Type				Write	Read				

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 2(0x2051)

BIT	7	6	5	4	3	2	1	0
Field	PCM_TX_SLOT_HIZ[55:48]							
Reset	0xFF							
Access Type	Write, Read							

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 3(0x2052)

BIT	7	6	5	4	3	2	1	0		
Field	PCM_TX_SLOT_HIZ[47:40]									
Reset		0xFF								
Access Type	Write, Read									

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 4(0x2053)

BIT	7	6	5	4	3	2	1	0		
Field	PCM_TX_SLOT_HIZ[39:32]									
Reset		0xFF								
Access Type	Write, Read									

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 5 (0x2054)

BIT	7	6	5	4	3	2	1	0		
Field	PCM_TX_SLOT_HIZ[31:24]									
Reset		0xFF								
Access Type		Write, Read								

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 6 (0x2055)

BIT	7	6	5	4	3	2	1	0		
Field	PCM_TX_SLOT_HIZ[23:16]									
Reset		0xFF								
Access Type		Write, Read								

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 7(0x2056)

BIT	7	6	5	4	3	2	1	0		
Field	PCM_TX_SLOT_HIZ[15:8]									
Reset		0xFF								
Access Type	Write, Read									

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM Tx の HiZ 制御 8 (0x2057)

BIT	7	6	5	4	3	2	1	0		
Field	PCM_TX_SLOT_HIZ[7:0]									
Reset		0xFF								
Access Type		Write, Read								

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_SLOT_HIZ	7:0	PCM	未使用のPCM送信データ出力スロットで、Hi-Zまたは 0のいずれを送信するかを設定します。この設定は、 出力データ・スロットが未使用の場合にのみ該当し、 出力データ・ソースがそのスロットに割り当てられ、 出力データ・ソースが有効とされている場合には無視 されます。	0: Output zero (logic-low) on the output slot if unused. 1: Output high impedance (Hi-Z) on the output slot if unused.

PCM RX のソース 1 (0x2058)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	-	PCM_DMM	IX_CFG[1:0]
Reset	_	_	_	_	_	_	0b	00
Access Type	_	_	_	_	_	-	Write, Read	

ビットフィールド	ビット	RES	説明	デコード
PCM_DMMIX_CFG	1:0	PCM	モノラル・ミキサー回路の動作を決定します。	0x0: Output of mono mixer is Channel 0. 0x1: Output of mono mixer is Channel 1. 0x2: Output of mono mixer is (Channel 0 +Channel1)/2. 0x3: Reserved

PCM RX のソース 2 (0x2059)

BIT	7	6	5	4	3	2	1	0	
Field	P	CM_DMMIX_C	H1_SOURCE[3:0)]	PCM_DMMIX_CH0_SOURCE[3:0]				
Reset		02	κ0		0x0				
Access Type		Write,	Read			Write	, Read		

ビットフィールド	ビット	RES	説明	デコード
PCM_DMMIX_CH1_ SOURCE	7:4	PCM	デジタル・モノラル・ミキサーのチャンネル1にルー ティングされるPCMデータ入力チャンネルを選択しま す。	0x0: PCM Input Channel 0 0x1: PCM Input Channel 1 0x2: PCM Input Channel 2: 0xE: PCM Input Channel 14 0xF: PCM Input Channel 15
PCM_DMMIX_CH0_ SOURCE	3:0	PCM	デジタル・モノラル・ミキサーのチャンネル0にルーティングされるPCMデータ入力チャンネルを選択します。	0x0: PCM Input Channel 0 0x1: PCM Input Channel 1 0x2: PCM Input Channel 2: 0xE: PCM Input Channel 14 0xF: PCM Input Channel 15

PCM Tx の駆動強度 (0x205C)

BIT	7	6	5	4	3	2	1	0
Field	-	_	_	_	-	-	PCM_DOU	T_DRV[1:0]
Reset	-	_	_	_	_	_	0b	01
Access Type	_	_	_	_	_	_	Write	, Read

ビットフィールド	ビット	RES	説明	デコード
PCM_DOUT_DRV	1:0	PCM	DOUT端子の出力駆動強度を設定します。	0x0: Reduced drive strength. 0x1: Normal drive strength. 0x2: High drive strength. 0x3: Maximum drive strength.

PCM Tx のソース・イネーブル(0x205D)

BIT	7	6	5	4	3	2	1	0
Field	I	ı	-	ı	ı	ı	PCM_IMON _EN	PCM_VMO N_EN
Reset	ı	ı	_	ı	ı	ı	0b0	0b0
Access Type	-	-	_	-	-	-	Write, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
PCM_IMON_EN	1	TXEN	割り当てられたデータ出力(DOUT)スロットでの電流検出ADCチャンネル出力データの送信を有効化します。	

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ビットフィールド	ビット	RES	説明	デコード
PCM_VMON_EN	0	TXEN	割り当てられたデータ出力(DOUT)スロットでの電 圧帰還チャンネル出力データの送信を有効化します。	0x0: Disable voltage feedback data transmit. 0x1: Disable voltage feedback data transmit.

PCM Rx イネーブル (0x205E)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	-	-	-	PCM_RX_E N
Reset	_	_	_	_	_	_	_	0b0
Access Type	_	_	_	_	_	_	_	Write, Read

ビットフィールド	ビット	RES	説明	デコード
PCM_RX_EN	0	_	スピーカ再生チャンネルのデータ入力を有効化します。	PCM data input disabled. PCM data input enabled.

PCM Tx イネーブル(0x205F)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	-	-	-	PCM_TX_E N
Reset	_	_	_	_	_	_	_	0b0
Access Type	-	_	_	_	-	-	-	Write, Read

ビットフィールド	ビット	RES	説明	デコード
PCM_TX_EN	0	-	PCMインターフェースのデータ出力(DOUT)を有効化します。	$0x0$: PCM T_X disabled. $0x1$: PCM T_X enabled.

スピーカ・チャンネルの音量制御(0x2090)

BIT	7	6	5	4	3	2	1	0	
Field	_	SPK_VOL[6:0]							
Reset	_		0ь0000000						
Access Type	-		Write, Read						

ビットフィールド	ビット	RES	説明	デコード
SPK_VOL	6:0	_	スピーカ・アンプ・チャンネルのデジタル音量レベルを設定します。	0x00: 0dB 0x01: -0.5dB 0x02: -1.0dB : (-0.5dB steps) 0x7C: -62.0dB 0x7D: -62.5dB 0x7E: -63dB 0x7F: Mute

スピーカ・チャンネルの設定(0x2091)

BIT	7	6	5	4	3	2	1	0
Field	-	-	_	SPK_VOL_R MPDN_BYP ASS	SPK_VOL_R MPUP_BYP ASS	SPK_INVER T	SPK_DITH_ EN	SPK_DCBL K_EN
Reset	-	-	_	0ь0	0ь0	060	0b1	0ь0
Access Type	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
SPK_VOL_RMPDN_ BYPASS	4	SPK	シャットダウン時およびミュート時に、スピーカ・ア ンプ・チャンネルの音量を内部でランプダウンさせる かどうかを制御します。	0: Volume ramp enabled 1: Volume ramp bypassed
SPK_VOL_RMPUP_ BYPASS	3	SPK	スタートアップ時およびミュート解除時に、スピーカ・アンプ・チャンネルの音量を内部でランプアップ させるかどうかを制御します。	0: Volume ramp enabled 1: Volume ramp bypassed
SPK_INVERT	2	SPK	スピーカ・アンプのチャンネル出力を反転させます。	Output is normal. Output is inverted.
SPK_DITH_EN	1	SPK	スピーカ・アンプのチャンネルデータにディザを適用 するかどうかを選択します。	Dither disabled. Dither enabled.
SPK_DCBLK_EN	0	SPK	スピーカ・アンプ・チャンネルでDCブロッキング・ フィルタを有効化します。	DC blocking filter disabled. DC blocking filter enabled.

スピーカ・アンプ出力の設定(0x2092)

BIT	7	6	5	4	3	2	1	0
Field	-	-	_	SPK_DAC_ MODE	SPK_AMP_ MODE	SPK_GAIN[2:0]		
Reset	_	_	_	0ь0	0b0	0b011		
Access Type	_	_	-	Write, Read	Write, Read	Write, Read		

ビットフィールド	ビット	RES	説明	デコード
SPK_DAC_MODE	4	I	スピーカ・アンプのチャンネルDACを、低消費電力モードまたは高性能モードのいずれで動作させるかを設定します。	0x0: DAC operates in low-power mode. 0x1: DAC operates in high-performance mode.
SPK_AMP_MODE	3	SPK	スピーカ・アンプを、1セル・モードまたは2セル/ブースト・モードのいずれで動作させるかを選択します。選択したスピーカ・アンプの動作モードにより、必要とされるPVDDの電源範囲は異なります。MAX98388のデフォルトは1セル・モード(ここではデフォルト値として示しています)で、MAX98389のデフォルトは2セル・モードです。	0x0: Single-cell mode (default for MAX98388). 0x1: Two-cell/boosted mode (default for MAX98389).
SPK_GAIN	2:0	SPK	スピーカ・チャンネル・アンプ(無負荷)の最大ピーク出力電圧レベル(V _{MPO})を実効値電圧で設定します。各設定におけるピーク出力電圧レベルは、選択するスピーカ・アンプ動作モード(SPK_AMP_MODE)に依存します。dBの値は、ベースラインでのスピーカ・パスDACのフルスケール出力レベルである0.5dBVを基準としたゲインです。	$\begin{array}{l} 0x00: Single-cell\ mode: 0.75V_{RMS}\ (-3dB)\\ Two-cell\ mode: 1.50V_{RMS}\ (+3dB)\\ 0x01: Single-cell\ mode: 1.06V_{RMS}\ (0dB)\\ Two-cell\ mode: 2.11V_{RMS}\ (+6dB)\\ 0x02: Single-cell\ Mode: 1.50V_{RMS}\ (+3dB)\\ Two-cell\ mode: 2.99V_{RMS}\ (+9dB)\\ 0x03: Single-cell\ Mode: 2.11V_{RMS}\ (+6dB)\\ Two-cell\ mode: 4.22V_{RMS}\ (+12dB)\\ 0x04: Single-cell\ Mode: 2.99V_{RMS}\ (+9dB)\\ Two-cell\ mode: 5.96V_{RMS}\ (+15dB)\\ 0x05: Single-cell\ Mode: 4.22V_{RMS}\ (+12dB)\\ Two-cell\ mode: 8.41V_{RMS}\ (+18dB)\\ 0x06-0x07:\ Reserved \end{array}$

スピーカ・アンプ SSM の設定(0x2093)

BIT	7	6	5	4	3	2	1	0
Field	ı	I	ı	I	ı	SPK_AMP_SS	SM_MOD[1:0]	SPK_AMP_ SSM_EN
Reset	_	_	_	_	-	0600		0b1
Access Type	-	-	-	-	-	Write	, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
SPK_AMP_SSM_MOD	2:1	SPK	スピーカ・アンプのスペクトラム拡散変調比を選択します。	0x0: ±1.5% 0x1: ±3.0% 0x2: ±4.5% 0x3: ±6.0%
SPK_AMP_SSM_EN	0	SPK	スピーカ・アンプのスペクトラム拡散変調を有効化します。	0x0: SSM disabled. 0x1: SSM enabled.

スピーカ・アンプのエッジ・レート制御 (0x2094)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	-	SPK_AMP_FALL_SR[1:0]		SPK_AMP_RISE_SR[1:0]	
Reset	-	-	_	-	0x3		02	х3
Access Type	_	_	_	-	Write, Read Write, Read		, Read	

ビットフィールド	ビット	RES	説明	デコード
SPK_AMP_FALL_SR	3:2	SPK	スピーカ・アンプにおける立下がりエッジのスルー・ レート制御。	0x0: Normal slew rate. 0x1: Reduced slew rate. 0x2: Maximum slew rate. 0x3: Increased slew rate.
SPK_AMP_RISE_SR	1:0	SPK	スピーカ・アンプにおける立上がりエッジのスルー・ レート制御。	0x0: Normal slew rate. 0x1: Reduced slew rate. 0x2: Maximum slew rate. 0x3: Increased slew rate.

スピーカ・チャンネルのピンク・ノイズ・イネーブル (0x209E)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	ı	ı	ı	-	SPK_PINK_ NOISE_EN
Reset	_	_	_	_	_	-	_	0b0
Access Type	-	-	_	-	-	-	-	Write, Read

ビットフィールド	ビット	RES	説明	デコード
SPK_PINK_NOISE_EN	0	ENL	スピーカ・チャンネルを、(DINからの入力データの代わりに)内部で生成されたピンク・ノイズを(アクティブ状態時に)出力するように再設定します。このモードは、ソフトウェア・シャットダウン状態から抜け出す前に有効化する必要があり、パワーアップ状態への遷移時に、有効なビット・クロック(BCLK)とフレーム・クロック(LRCLK)を必要とします。アクティブな状態で有効化すると、クロックをディスエーブルにすることが可能で、アンプはピンク・ノイズを出力し続けます。	0x0: Pink noise output mode disabled (normal operation). 0x1: Pink noise output mode enabled.

スピーカ・チャンネルおよびアンプ・イネーブル (0x209F)

BIT	7	6	5	4	3	2	1	0
Field	-	_	-	_	_	-	-	SPK_EN
Reset	-	_	_	_	_	_	_	0b0
Access Type	-	-	-	-	-	-	-	Write, Read

ビットフィールド	ビット	RES	説明	デコード
SPK_EN	0	-	スピーカ・アンプ・チャンネル・イネーブル。ハイに 設定すると、グローバル・イネーブルをセットした場 合はいつでもスピーカ・アンプ・チャンネルがイネー ブルになります。	(Regardless of global enable setting).

IV データ DSP の制御(0x20A0)

BIT	7	6	5	4	3	2	1	0
Field	-	-	_	IVFB_DITH _EN	IVFB_I_INV ERT_EN	IVFB_V_IN VERT_EN	IVFB_I_DC BLK_EN	IVFB_V_DC BLK_EN
Reset	_	_	_	0b1	0b0	0b0	0b0	0b0
Access Type	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
IVFB_DITH_EN	4	IVFB	IVVデータ・チャンネルにディザを適用するかどうか を選択します。	0x0: Dither disabled. 0x1: Dither enabled.
IVFB_I_INVERT_EN	3	IVFB	電流帰還チャンネルを反転させます。	0x0: Channel is not inverted. 0x1: Channel is inverted.
IVFB_V_INVERT_EN	2	IVFB	電圧帰還チャンネルを反転させます。	0x0: Channel is not inverted. 0x1: Channel is inverted.
IVFB_I_DCBLK_EN	1	IVFB	電流帰還チャンネルでDCブロッキング・フィルタを イネーブルにします。	0x0: DC blocker disabled. 0x1: DC blocker enabled.
IVFB_V_DCBLK_EN	0	IVFB	電圧帰還チャンネルでDCブロッキング・フィルタを イネーブルにします。	0x0: DC blocker disabled. 0x1: DC blocker enabled.

IV データイネーブル(0x20A7)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	_	IVFB_I_EN	IVFB_V_EN
Reset	_	_	_	_	_	_	0b0	0b0
Access Type	-	-	_	_	_	-	Write, Read	Write, Read

ビットフィールド	ビット	RES	説明	デコード
IVFB_I_EN	1		スピーカ電流検出ADCチャンネルをイネーブルにします。このビットを1に設定した場合、デバイスをアクティブ状態(EN = 1)にすると電流検出ADCチャンネルがパワーアップします。	0x0: Current sense ADC channel is disabled.

ビットフィールド	ビット	RES	説明	デコード
IVFB_V_EN	0	_	スピーカの電圧帰還チャンネルをイネーブルにします。このビットを1に設定した場合、デバイスをアクティブ状態 (EN = 1) にすると電圧帰還チャンネルがパワーアップします。	

ブラウンアウト保護 ALC のスレッショルド (0x20E0)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	ALC_TH[3:0]			
Reset	-	_	-	_	0x4			
Access Type	-	_	_	_	Write, Read			

ビットフィールド	ビット	RES	説明	デコード
ALC_TH	3:0	ALC	ブラウンアウトALCのPVDD立下がり電圧スレッショルド (アタック・スレッショルド) を選択します。選択するスピーカ・アンプ・モード (SPK_AMP_MODE) により、スレッショルド設定とステップ・サイズが変化します。スレッショルド設定間のステップ・サイズは、1セル・モードでは75mV、2セル・モードまたはブースト・モードでは150mVとなります。 フォーマット:1セル・モードのスレッショルド/2セルまたはブースト・モードのスレッショルド/2セルまたはブースト・モードのスレッショルド/	0x0: 3.625 V / 7.25 V 0x1: 3.550 V / 7.10 V 0x2: 3.475 V / 6.95 V 0x3: 3.400 V / 6.80 V 0x4: 3.325 V / 6.65 V 0x5: 3.250 V / 6.50 V 0x6: 3.175 V / 6.35 V 0x7: 3.100 V / 6.20 V 0x8: 3.025 V / 6.05 V 0x9: 2.950 V / 5.90 V 0xA: 2.875 V / 5.75 V 0xB: 2.800 V / 5.60 V 0xC: 2.725 V / 5.45 V 0xD: 2.650 V / 5.30 V 0xE: 2.575 V / 5.15 V 0xF: 2.500 V / 5.00 V

ブラウンアウト保護 ALC のレート(0x20E1)

BIT	7	6	5	4	3	2	1	0	
Field		ALC_ATK_	_RATE[3:0]		ALC_RLS_RATE[3:0]				
Reset		02	x2		0x0				
Access Type		Write	Read		Write, Read				

ビットフィールド	ビット	RES	説明	デコード
ALC_ATK_RATE	7:4	ALC	ALCのアタック・レートを選択します。	0x0: Instant 0x1: 10μs / dB 0x2: 20μs / dB 0x3: 40μs / dB 0x4: 80μs / dB 0x5: 160μs / dB 0x6: 320μs / dB 0x7: 640μs / dB 0x8: 1.28ms / dB 0x9: 2.56ms / dB 0xA: 5.12ms / dB 0xB: 10.24ms / dB 0xC: 20.48ms / dB 0xC: 20.48ms / dB 0xE: 81.92ms / dB

ビットフィールド	ビット	RES	説明	デコード
ALC_RLS_RATE	3:0	ALC	ALCのリリース・レートを選択します。	0x0: 20μs / dB 0x1: 40μs / dB 0x2: 80μs / dB 0x3: 160μs / dB 0x4: 320μs / dB 0x5: 640μs / dB 0x6: 1.28ms / dB 0x7: 2.56ms / dB 0x8: 5.12ms / dB 0x8: 5.12ms / dB 0x8: 5.12ms / dB 0x9: 10.24ms / dB 0xA: 20.48ms / dB 0xB: 40.96ms / dB 0xC: 81.92ms / dB 0xD: 163.84ms / dB 0xE: 327.68ms / dB 0xF: 655.36ms / dB

ブラウンアウト保護 ALC の減衰 (0x20E2)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		ALC_MAX_	ATTEN[3:0]	
Reset	-	_	_	_	0x6			
Access Type	-	_	_	_	Write, Read			

ビットフィールド	ビット	RES	説明	デコード
ALC_MAX_ATTEN	3:0	ALC	ALCアタックの最大減衰を選択します。	0x0: 0dBFS 0x1: -1dBFS 0x2: -2dBFS 0x3: -3dBFS 0x4: -4dBFS 0x5: -5dBFS 0x6: -6dBFS 0x7: -7dBFS 0x8: -8dBFS 0x9: -9dBFS 0xA: -10dBFS 0xB: -11dBFS 0xC: -12dBFS 0xD: -13dBFS 0xE: -14dBFS

ブラウンアウト保護 ALC のリリース(0x20E3)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	A	LC_RLS_DBT[2	:0]
Reset	_	_	_	_	_		0b010	
Access Type	-	_	-	-	_		Write, Read	

ビットフィールド	ビット	RES	説明	デコード
ALC_RLS_DBT	2:0	ALC	ALCリリースのバウンス防止時間を選択します。	0x0: 0.01ms 0x1: 0.1ms 0x2: 1ms 0x3: 10ms 0x4: 100ms 0x5: 250ms 0x6: 500ms 0x7: Infinite Hold

ブラウンアウト保護 ALC のミュート (0x20E4)

BIT	7	6	5	4	3	2	1	0
Field	ı	I	ALC_UNMU TE_RAMP_ EN	ALC_MUTE _RAMP_EN	ALC	_MUTE_DELAY	Y[2:0]	ALC_MUTE _EN
Reset	ı	ı	0b1	0b1	0b001		0b1	
Access Type	_	_	Write, Read	Write, Read		Write, Read		Write, Read

ビットフィールド	ビット	RES	説明	デコード
ALC_UNMUTE_RAMP_EN	5	ALC	ALCミュート解除遷移の音量ランプを有効化します。 ALCミュート解除ランプを有効化した場合、ミュート 解除のランプアップに20μs/dBのリリース・レートが 使用されます。	0x0: ALC does not ramp the volume level when unmuting. 0x1: ALC ramps the volume level when unmuting.
ALC_MUTE_RAMP_EN	4	ALC	ALCミュート遷移に音量ランプを使用するかどうかを 選択します。ALCミュート・ランプを有効化した場 合、ミュートのランプダウンに20μs/dBのアタック・ レートが使用されます。	0x0: ALC does not ramp the volume level when muting. 0x1: ALC ramps the volume level when muting.
ALC_MUTE_DELAY	3:1	ALC	ALCミュート(有効化した場合)の開始までの遅延時間を選択します。	0x0: 0.01ms 0x1: 0.05ms 0x2: 0.1ms 0x3: 0.5ms 0x4: 1ms 0x5: 5ms 0x6: 25ms 0x7: 250ms
ALC_MUTE_EN	0	ALC	ALCがスピーカ・チャンネルをミュートできるかどう かを選択します。	0x0: ALC cannot mute the speaker channel. 0x1: ALC can mute the speaker channel.

ブラウンアウト保護 ALC の無限継続リリース(0x20EE)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	_	_	-	_	ALC_RLS_T GR
Reset	-	-	_	-	-	-	-	0b0
Access Type	-	-	-	-	-	-	-	Write Only

ビットフィールド	ビット	RES	説明	デコード
ALC_RLS_TGR	0	-	無限継続(ALC_RLS_DBT)を有効化した場合に、ブラウンアウトALCの音量減衰とミュートを手動でリリースするのに使用します。	0x0: Self-clearing and always read back as '0'. 0x1: If infinite hold is enabled, write a '1' to begin the release phase. This has no effect if it is attempted while PVDD is still below the ALC threshold.

ブラウンアウト保護 ALC イネーブル(0x20EF)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	_	-	-	_	ALC_EN
Reset	-	_	_	-	_	_	_	0ь0
Access Type	_	-	-	-	_	_	_	Write, Read

ビットフィールド	ビット	RES	説明	デコード
ALC_EN	0	EN	ブラウンアウト保護ALCの有効化/無効化を選択します。	0: ALC is disabled. 1: ALC is enabled.

自動再起動の動作(0x210E)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	CLOCK_AU TORESTAR T_EN	OVC_RETR Y_EN	THERM_AU TORESTAR T_EN	PVDD_UVL O_AUTORE START_EN
Reset	_	-	ı	ı	0b0	0ь0	0b0	0b0
Access Type	-	-	-	-	Write, Read	Write, Read	Write, Read	Write, Read

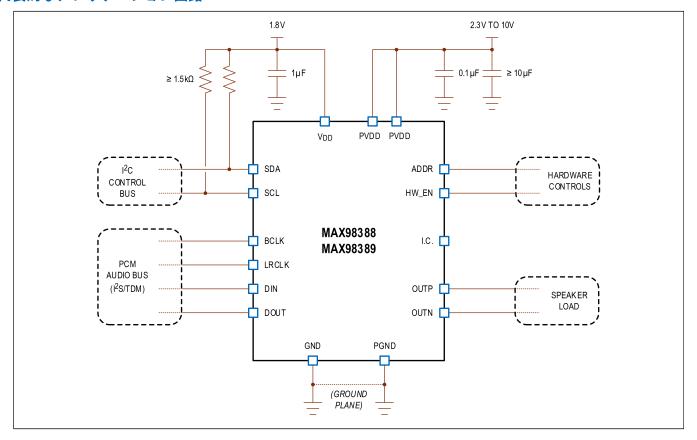
ビットフィールド	ビット	RES	説明	デコード
CLOCK_AUTORESTART_ EN	3	EN	クロック・モニタ・エラーでデバイスがディスエーブ ルされた後、クロックが有効になった時に自動的に再 生を再開するかどうかを制御します。	0x0: Device does not automatically restart after a valid bit clock (BCLK) is reapplied. 0x1: Device automatically restarts after a valid bit clock (BCLK) is reapplied.
OVC_RETRY_EN	2	EN	OVCフォールト状態後にスピーカ・アンプを自動的に 再イネーブルするかどうかを制御します。	0x0: Overcurrent recovery is in manual retry mode. 0x1: Overcurrent recover is in automatic retry mode.
THERM_AUTORESTART_ EN	1	EN	ダイ温度がサーマル・シャットダウンから回復した 時、デバイスが自動的にアクティブ状態に戻るかどう かを制御します。	0x0: Thermal shutdown recovery is in manual mode. 0x1: Thermal shutdown recovery is in auto mode.

Ⅳ 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

ビットフィールド	ビット	RES	説明	デコード
PVDD_UVLO_AUTOREST ART_EN	0	EN	PVDDがUVLOイベントから回復した時、デバイスが 自動的にアクティブ状態に戻るかどうかを制御しま す。	

グローバル・イネーブル (0x210F)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	_	-	-	_	EN
Reset	_	_	_	_	_	_	_	0b0
Access Type	_	_	_	_	-	-	_	Write, Read, Ext


ビットフィールド	ビット	RES	説明	デコード
EN	0	_	全ブロックをディスエーブルまたはイネーブルにし、 IPCインターフェースと制御レジスタを除く全てのロ ジックをリセットします。	0: Device powered down. 1: Device enabled.

リビジョンID(0x22FF)

BIT	7	6	5	4	3	2	1	0	
Field		REV_ID[7:0]							
Reset		0x41							
Access Type		Read Only							

ビットフィールド	ビット	RES	説明	デコード
REV_ID	7:0	-	デバイスのリビジョン。デバイスのハードウェア改訂 ごとに更新されます。	0x41: Device revision number.

代表的なアプリケーション回路

オーダー情報

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX98388EWE+	−40°C to +85°C	16 WLP
MAX98388EWE+T	-40°C to +85°C	16 WLP
MAX98389EWE+	-40°C to +85°C	16 WLP
MAX98389EWE+T	−40°C to +85°C	16 WLP

+ 鉛 (Pb) フリー/RoHS 準拠のパッケージであることを示します。 $T = \overline{\mathcal{T}} - \mathcal{T} & \mathcal{Y} - \mathcal{Y}$ 。

チップ情報

プロセス:BiCMOS

IV 帰還およびブラウンアウト保護内蔵 デジタル入力 D 級アンプ

改訂履歴

版数	改訂日	説明	改訂ページ
0	3/23	市場投入のためのリリース	_

