

GaAs、pHEMT、MMIC、 低ノイズ・アンプ、0.01GHz~20GHz

特長

- ▶ 低ノイズ指数:6GHz~14GHzで2.5dB(代表値)
- ▶ 単一正電源(自己バイアス)
- 高ゲイン: 0.01GHz~6GHz で 20dB(代表値)
- ▶ 高 OIP3: 0.01GHz~6GHz で 38dBm(代表値)
- ▶ RoHS 準拠、2mm×2mm、8 ピン LFCSP パッケージ

アプリケーション

- ▶ 衛星通信
- ▶ 電気通信
- ▶ 民生用レーダー
- 防衛用レーダー
- ▶ 気象観測レーダー
- ▶ 電子戦

概要

ADL8100は、ガリウム・ヒ素(GaAs)、モノリシック・マイク ロ波集積回路(MMIC)、擬似格子整合型高電子移動度トラン ジスタ(pHEMT)を使用した広帯域の低ノイズ・アンプ(LNA) で、0.01GHz~20GHzの範囲で動作します。ADL8100は、 0.01GHz~6GHzの範囲で 20dBのゲイン、6GHz~14GHzの範囲 で 2.5dBのノイズ指数、0.01GHz~6GHzの範囲で 38dBmの出力 3 次インターセプト(OIP3)(それぞれ代表値)を備え、5V電 源電圧から必要とする電流はわずか220mAです。OIP3と出力電 力を犠牲にすれば消費電力を小さくすることもできます。また、 ADL8100の入出力は DC カップリングされ、内部で 50Ω に整合 されています。

ADL8100 は RoHS 準拠の 2mm × 2mm、8 ピン LFCSP に収められ ています。

機能ブロック図

Rev. 0

目次

特長	1
アプリケーション	1
概要	1
機能ブロック図	1
仕様	3
周波数範囲:0.01GHz~6GHz	3
周波数範囲:6GHz~14GHz	3
周波数範囲:14GHz~20GHz	4
DC 仕様	4
絶対最大定格	5
熱抵抗	5
静電放電(ESD)定格	5
ESD に関する注意	5

ピン配置およびピン機能の説明	6
インターフェース回路図	6
代表的な性能特性	7
バイアス・ティーを用いた評価用ボード	20
動作原理	24
アプリケーション情報	25
推奨バイアス・シーケンス	25
表面実装バイアス・ティーを用いた動作	25
推奨パワー・マネージメント回路	26
外形寸法	27
オーダー・ガイド	27
評価用ボード	27

改訂履歴

7/2023—Revision 0: Initial Version

仕様

周波数範囲:0.01GHz~6GHz

特に指定のない限り、電源電圧 (V_{DD}) = 5V、静止電流 (I_{DQ}) = 220mA、バイアス抵抗 (R_{BIAS}) = 560 Ω 、 T_{C} = 25°C。

表 1. 周波数範囲: 0.01GHz~6GHz

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	0.01		6	GHz	
GAIN	18	20		dB	
Gain Variation over Temperature		0.011		dB/°C	
NOISE FIGURE		3.5		dB	
RETURN LOSS					
Input (S11)		12		dB	
Output (S22)		13		dB	
OUTPUT					
Power for 1 dB Compression (OP1dB)	19	21		dBm	
Saturated Power (P _{SAT})		23		dBm	
OIP3		38		dBm	Measurement taken at output power (P _{OUT}) per tone = 6 dBm
Second-Order Intercept (OIP2)		47		dBm	Measurement taken at P _{OUT} per tone = 6 dBm
POWER ADDED EFFICIENCY (PAE)		19		%	Measured at P _{SAT}

周波数範囲:6GHz~14GHz

特に指定のない限り、 $V_{DD} = 5V$ 、 $I_{DQ} = 220$ mA、 $R_{BIAS} = 560$ Ω、 $T_C = 25$ ℃。

表 2. 周波数範囲:6GHz~14GHz

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	6		14	GHz	
GAIN	16.5	19		dB	
Gain Variation over Temperature		0.016		dB/°C	
NOISE FIGURE		2.5		dB	
RETURN LOSS					
S11		15		dB	
S22		16.5		dB	
OUTPUT					
OP1dB	19	21.5		dBm	
P _{SAT}		23		dBm	
OIP3		35		dBm	Measurement taken at P _{OUT} per tone = 6 dBm
OIP2		34		dBm	Measurement taken at P _{OUT} per tone = 6 dBm
PAE		17	_	%	Measured at P _{SAT}

仕様

周波数範囲:14GHz~20GHz

特に指定のない限り、 $V_{DD} = 5V$ 、 $I_{DQ} = 220$ mA、 $R_{BIAS} = 560$ Ω、 $T_C = 25$ °C。

表 3. 周波数範囲:14GHz~20GHz

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	14		20	GHz	
GAIN	15.5	18.5		dB	
Gain Variation over Temperature		0.02		dB/°C	
NOISE FIGURE		3.2		dB	
RETURN LOSS					
S11		14.5		dB	
S22		11		dB	
OUTPUT					
OP1dB	17	19		dBm	
P _{SAT}		21		dBm	
OIP3		31		dBm	Measurement taken at P _{OUT} per tone = 6 dBm
OIP2		40		dBm	Measurement taken at P _{OUT} per tone = 6 dBm
PAE		12	_	%	Measured at P _{SAT}

DC 仕様

表 4. DC 仕様

Parameter	Min	Тур	Мах	Unit
SUPPLY CURRENT				
I _{DQ}		220		mA
Amplifier Current (I _{DQ_AMP})		215		mA
RBIAS Current (I _{RBIAS})		5		mA
SUPPLY VOLTAGE				
V _{DD}	3	5	6	V

ADL8100

絶対最大定格

表 5. 絶対最大定格

Parameter	Rating
V _{DD}	6.5 V
RFIN	23 dBm
Continuous Power Dissipation (P _{DISS}), T _C = 85°C (Derate 18.98 mW/°C Above 85°C)	1.7 W
Temperature	
Storage Range	-65°C to +150°C
Operating Range	-40°C to +85°C
Quiescent Channel (T _C = 85°C, V _{DD} = 5 V, I _{DQ} = 220 mA, Input Power (P _{IN}) = Off)	143.3°C
Maximum Channel	175°C

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板(PCB)の設計と動作環境に直接 関連しています。PCBの熱設計には、細心の注意を払う必要が あります。

θ」には、チャンネルとケース間の熱抵抗です。

表 6. 熱抵抗¹

Package Type	θ _{JC}	Unit
CP-8-30		
Quiescent, T _C = 25°C	43.2	°C/W
Worst Case ² , T _C = 85°C	52.7	°C/W

1熱抵抗は動作条件によって変動します。

2仕様規定されたすべての動作条件を通じて最も厳しい条件。

静電放電(ESD)定格

以下の ESD 情報は、ESD に敏感なデバイスを取り扱うために示したものですが、対象は ESD 保護区域内だけに限られます。

ANSI/ESDA/JEDEC JS-001 準拠の人体モデル(HBM)。

ADL8100の ESD 定格

表 7. ADL8100、8 ピン LFCSP

ESD Model	Withstand Threshold (V)	Class
НВМ	±1250	1C

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。 電荷を帯びたデバイスや回路ボードは、検知されない

電筒を開いたアンギスへも出品が「Frist、候気とれなく まま放電することがあります。本製品は当社独自の特 許技術である ESD 保護回路を内蔵してはいますが、デ バイスが高エネルギーの静電放電を被った場合、損傷 を生じる可能性があります。したがって、性能劣化や 機能低下を防止するため、ESD に対する適切な予防措 置を講じることをお勧めします。

ピン配置およびピン機能の説明

表 8. ピン機能の説明

ピン番号	記号	説明
1	RFIN	RF 入力。RFIN ピンは DC カップリングされ、50Ω に整合されています。インターフェース回路図について は図 3 を参照してください。
2, 6	GND	グラウンド。GND ピンは電気インピーダンスと熱抵抗の低いグランド・プレーンに接続します。インター フェース回路図については図 4 を参照してください。
3	RBIAS	バイアス設定抵抗。RBIAS と VDD の間に抵抗を接続して I _{DQ} を設定します。詳細については、図 105 と表 9 を参照してください。インターフェース回路図については図 5 を参照してください。
4, 7, 8	NIC	内部接続なし。これらのピンは、内部では接続されていません。通常動作時は、これらのピンを電気イン ピーダンスと熱抵抗の低いグランド・プレーンに接続します。
5	RFOUT/VDD	RF 出力/ドレイン・バイアス電圧。RF 出力は DC カップリングされ、また、ドレイン・バイアス・ノード としても機能します。ドレイン・バイアス電圧用には、DC バイアス・ネットワークを接続し、ドレイン電流 を供給すると共に RF 出力経路と AC カップリングします(詳細については、図 105 参照)。インターフェー ス回路図については図 6 を参照してください。
	EXPOSED PADDLE	露出グラウンド・パドル。露出パッドは電気インピーダンスと熱抵抗の低いグランド・プレーンに接続します。

インターフェース回路図

RFIN O---- ଞ

図 3. RFIN のインターフェース回路図

図 4. GND のインターフェース回路図

図 5. RBIAS のインターフェース回路図

RFOUT/VDD

90

図 6. RFOUT/VDD のインターフェース回路図

図 10. ゲインおよびリターン・ロスと周波数の関係、 1GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA

図 11. 様々な温度におけるゲインと周波数の関係、 1GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 12. 様々な電源電圧と I_{DQ}値におけるゲインと周波数の関係、 1GHz~22GHz、R_{BIAS} = 560Ω

周波数の関係、10MHz~1GHz、V_{DD} = 5V

図 14. 様々な温度における入力リターン・ロスと周波数の関係、 10MHz~1GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 15. 様々な電源電圧と I_{DQ}値における入力リターン・ロスと 周波数の関係、10MHz~1GHz、R_{BIAS} = 560Ω

015

図 16. 様々な I_{DQ} および R_{BIAS} 値におけるゲインと 周波数の関係、1GHz~22GHz、V_{DD} = 5V

図 17. 様々な温度における入力リターン・ロスと周波数の関係、 1GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 18. 様々な電源電圧と I_{DQ}値における入力リターン・ロスと 周波数の関係、1GHz~22GHz、R_{BIAS} = 560Ω

図 19. 様々な I_{DQ}および R_{BIAS} 値における入力リターン・ロスと 周波数の関係、10MHz~1GHz、V_{DD} = 5V

図 20. 様々な温度における出力リターン・ロスと周波数の関係、 10MHz~1GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 21. 様々な電源電圧と I_{DQ}値における出力リターン・ロスと 周波数の関係、10MHz~1GHz、R_{BIAS} = 560Ω

図 22.様々な I_{DQ}および R_{BIAS} 値における入力リターン・ロスと 周波数の関係、1GHz~22GHz、V_{DD} = 5V

図 23. 様々な温度における出力リターン・ロスと周波数の関係、 1GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 24. 様々な電源電圧と I_{DQ}値における出力リターン・ロスと 周波数の関係、1GHz~22GHz、R_{BIAS} = 560Ω

図 25. 様々な I_{DQ}および R_{BIAS} 値における出力リターン・ロスと 周波数の関係、10MHz~1GHz、V_{DD} = 5V

図 26. 様々な温度におけるリバース・アイソレーションと周波数の関係、10MHz~1GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

Uバース・アイソレーションと周波数の関係、 10MHz~1GHz、R_{BIAS} = 560Ω

図 28. 様々な I_{DQ}および R_{BIAS}値における出力リターン・ロスと 周波数の関係、1GHz~22GHz、V_{DD} = 5V

図 29. 様々な温度におけるリバース・アイソレーションと周波数 の関係、1GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 30. 様々な電源電圧と I_{DQ}値における リバース・アイソレーションと周波数の関係、 1GHz~22GHz、R_{BIAS} = 560Ω

図 33. 様々な電源電圧と I_{DQ}値におけるノイズ指数と 周波数の関係、10MHz~1GHz、R_{BIAS} = 560Ω

図 34. 様々な I_{DQ}および R_{BIAS} 値における リバース・アイソレーションと周波数の関係、 1GHz~22GHz、V_{DD} = 5V

図 35. 様々な温度におけるノイズ指数と周波数の関係、 1GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 36. 様々な電源電圧と I_{DQ}値におけるノイズ指数と 周波数の関係、1GHz~22GHz、R_{BIAS} = 560Ω

データシート

図 37. 様々な I_{DQ}値および R_{BIAS} 値におけるノイズ指数と 周波数の関係、10MHz~1GHz、V_{DD} = 5V

図 38. 様々な温度における OP1dB と周波数の関係、 10MHz~2GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560 Ω

図 40. 様々な I_{DQ}および R_{BIAS} 値におけるノイズ指数と 周波数の関係、1GHz~22GHz、V_{DD} = 5V

図 41. 様々な温度における OP1dB と周波数の関係、 2GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 42. 様々な電源電圧と I_{DQ} 値における OP1dB と 周波数の関係、2GHz~22GHz、R_{BIAS} = 560Ω

図 43. 様々な I_{DQ}値および R_{BIAS} 値における OP1dB と 周波数の関係、10MHz~2GHz、V_{DD} = 5V

図 44. 様々な温度における P_{SAT} と周波数の関係、 10MHz~2GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 45. 様々な電源電圧と I_{DQ}値における P_{SAT}と周波数の関係、 10MHz~2GHz、R_{BIAS} = 560Ω

図 46. 様々な I_{DQ}および R_{BIAS}値における OP1dB と 周波数の関係、2GHz~22GHz、V_{DD} = 5V

図 47. 様々な温度における P_{SAT} と周波数の関係、 2GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 48. 様々な電源電圧と I_{DO} 値における P_{SAT}と周波数の関係、 2GHz~22GHz、R_{BIAS} = 560Ω

図 49. 様々な I_{DQ}および R_{BIAS} 値における P_{SAT}と周波数の関係、 10MHz~2GHz、V_{DD} = 5V

図 50. 様々な温度における P_{SAT} で測定した PAE と周波数の 関係、10MHz~2GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 51. 様々な電源電圧および I_{DQ} 値における P_{SAT}で測定した PAE と周波数の関係、10MHz~2GHz、R_{BIAS} = 560Ω

図 52. 様々な I_{DQ}および R_{BIAS} 値における P_{SAT}と周波数の関係、 2GHz~22GHz、V_{DD} = 5V

図 53. 様々な温度における P_{SAT} で測定した PAE と周波数の 関係、2GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 54. 様々な電源電圧および I_{DQ}値における P_{SAT}で測定した PAE と周波数の関係、2GHz~22GHz、R_{BIAS} = 560Ω

図 55. 様々な I_{DO}値および R_{BIAS} 値における P_{SAT}で測定した PAE と周波数の関係、10MHz~2GHz、V_{DD} = 5V

図 56. P_{OUT}、ゲイン、PAE、および電源電流(I_{DD})と P_{IN}の関係、5GHz時、V_{DD} = 5V、R_{BIAS} = 560Ω

10GHz 時、V_{DD} = 5V、R_{BIAS} = 560Ω

図 58. 様々な I_{DQ}および R_{BIAS} 値における P_{SAT}で測定した PAE と周波数の関係、2GHz~22GHz、V_{DD} = 5V

図 59. P_{OUT}、ゲイン、PAE、および I_{DD}と P_{IN}の関係、 15GHz 時、V_{DD} = 5V、R_{BIAS} = 560Ω

図 60. P_{OUT} 、ゲイン、PAE、および I_{DD} と P_{IN} の関係、 20GHz 時、 V_{DD} = 5V、 R_{BIAS} = 560 Ω

図 62. 様々な温度における OIP3 と周波数の関係、 10MHz~2GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 63. 様々な電源電圧と I_{DQ}値における OIP3 と周波数の関係、 10MHz~2GHz、R_{BIAS} = 560Ω

図 64. 様々な周波数における I_{DD} と P_{IN}の関係、V_{DD} = 5V

図 65. 様々な温度における OIP3 と周波数の関係、 2GHz ~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560\Omega

図 66. 様々な電源電圧と I_{DQ}値における OIP3 と周波数の関係、 2GHz~22GHz、R_{BIAS} = 560Ω

図 67. 様々な I_{DQ}および R_{BIAS} 値における OIP3 と周波数の関係、 10MHz~2GHz、V_{DD} = 5V

図 68. 様々な温度における OIP2 と周波数の関係、 10MHz~2GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560 Ω

図 69. 様々な電源電圧と I_{DQ}値における OIP2 と周波数の関係、 10MHz~2GHz、R_{BIAS} = 560Ω

図 70. 様々な I_{DQ} および R_{BIAS} 値における OIP3 と周波数の関係、 2GHz~22GHz、V_{DD} = 5V

図 71. 様々な温度における OIP2 と周波数の関係、 2GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 72. 様々な電源電圧と I_{DQ}値における OIP2 と周波数の関係、 2GHz~22GHz、R_{BIAS} = 560Ω

図 73. 様々な I_{DQ} および R_{BIAS} 値における OIP2 と周波数の関係、 10MHz~2GHz、 V_{DD} = 5V

図 74. 様々な周波数における 3 次相互変調(IM3) と トーンあたり P_{OUT}の関係、V_{DD} = 3V、R_{BIAS} = 560Ω

図 75. 様々な周波数における IM3 とトーンあたり P_{OUT}の関係、 V_{DD} = 5V、R_{BIAS} = 560Ω

図 76. 様々な I_{DQ} および R_{BIAS} 値における OIP2 と周波数の関係、 2GHz~22GHz、 V_{DD} = 5V

図 77. 様々な周波数における IM3 とトーンあたり P_{out}の関係、 V_{DD} = 4V、R_{BIAS} = 560Ω

図 78. 様々な周波数における IM3 とトーンあたり P_{OUT}の関係、 V_{DD} = 6V、R_{BIAS} = 560Ω

図 80. 様々な P_{OUT} 値における 5GHz での位相ノイズと 周波数の関係

図 81. 10GHz でのオーバードライブ回復時間と P_{IN}の関係、 小信号ゲイン値の 90%までの回復、V_{DD} = 5V、R_{BIAS} = 560Ω

図 82. 様々な電源電圧における I_{DQ} と R_{BIAS} 値の関係

図 83. 様々な P_{OUT} 値における 15GHz での位相ノイズと 周波数の関係

バイアス・ティーを用いた評価用ボード

図 86. 様々な温度における入力リターン・ロスと周波数の関係、 10MHz~1GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 88. 様々な温度におけるゲインと周波数の関係、 1GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 89. 様々な温度における入力リターン・ロスと周波数の関係、 1GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 90. 様々な温度における出力リターン・ロスと周波数の関係、 10MHz~1GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 91. 様々な温度におけるリバース・アイソレーションと周波数の関係、10MHz~1GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 92. 様々な温度におけるノイズ指数と周波数の関係、 10MHz~1GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 93. 様々な温度における出力リターン・ロスと周波数の関係、 1GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 94. 様々な温度におけるリバース・アイソレーションと周波数 の関係、1GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 95. 様々な温度におけるノイズ指数と周波数の関係、 1GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 96. 様々な温度における OP1dB と周波数の関係、 10MHz~2GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 97. 様々な温度における P_{SAT} と周波数の関係、 10MHz~2GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 98. 様々な温度における OIP3 と周波数の関係、 10MHz~2GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 99. 様々な温度における OP1dB と周波数の関係、 2GHz \sim 22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

図 100. 様々な温度における P_{SAT} と周波数の関係、 2GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560 Ω

図 101. 様々な温度における OIP3 と周波数の関係、 2GHz~22GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 102. 様々な温度における OIP2 と周波数の関係、 10MHz~2GHz、V_{DD} = 5V、I_{DQ} = 220mA、R_{BIAS} = 560Ω

図 103. 様々な温度における OIP2 と周波数の関係、 2GHz~22GHz、 V_{DD} = 5V、 I_{DQ} = 220mA、 R_{BIAS} = 560Ω

動作原理

ADL8100 は、GaAs、MMIC、pHEMT で構成された広帯域 LNA です。簡略化したブロック図を図 104 に示します。RFIN ピンお よび RFOUT ピンは DC カップリングされ、50Ω に整合されてい ます。

ADL8100 は単一の正電源で動作し、I_{DQ}は RBIAS ピンと外部電 源の間に抵抗を接続することによって設定されます。ドレイ ン・バイアス電圧は通常、外付けのバイアス・ティーを通じて 供給されます。

アプリケーション情報

ADL8100 を動作させるための基本的な接続方法を図 105 に示します。RBIAS ピンと VDD ピンの間に抵抗を接続して、バイアス電流を設定します。5V の V_{DD} を使用する場合は、560 Ω (R1)の抵抗を使用して I_{DQ} を 220mA に設定することを推奨します。表9に、抵抗を 5V に接続した場合の、様々な R_{BIAS} 値における I_{DQ} の詳細を示します。

ドレイン電圧は、コネクタ化された外付けバイアス・ティー (Marki BT-0040)を通じて VDD ピンに印加されます。この回 路の詳細については、EVAL-ADL8100 ユーザ・ガイドを参照し てください。

図 105. 代表的なアプリケーション回路(C_{IN}は入力容量)

推奨バイアス・シーケンス

推奨バイアス・シーケンスについては、EVAL-ADL8100 ユー ザ・ガイドを参照してください。

表	9.	Vnn	= 5V	の場合	の推奨	バイ	ア	ス抵抗値
---	----	-----	------	-----	-----	----	---	------

R _{BIAS} (Ω)	I _{DQ} (mA)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)
453	240	234	6
560	220	215	5
698	200	195.5	4.5
866	180	176	4
1180	160	157	3

表面実装バイアス・ティーを用いた動作

図 106 に、表面実装部品で構成されたバイアス・ティーで動作 する ADL8100 を示します。この回路の詳細および 2 つのバイ アス手法の比較については、EVAL-ADL8100ユーザ・ガイド を参照してください。

図 106. 表面実装バイアス・ティー回路で動作する ADL8100

推奨パワー・マネージメント回路

ADL8100 の推奨パワー・マネージメント回路の構成を図 107 に 示します。LT8607 降圧レギュレータによって 12V レールから 6.5V レールに降圧し、更に LT3045 低ドロップアウト (LDO) リニア・レギュレータに印加してロー・ノイズの 5V 出力を生成 します。図 107 に示す回路の入力電圧は 12V ですが、LT8607 に は最大で 42V の電圧が入力可能です。

LT8607 の 6.54V レギュレータ出力は、次式に従い抵抗 R2 と R3 を用いて設定されます。

R2 = R3((VOUT/0.778 V) - 1)

スイッチング周波数 (fsw) は、LT8607 の RT ピンに 18.2kΩ の 抵抗 (R1) を接続して 2MHz に設定されています。LT8607 の データシートには、その他のスイッチング周波数 (0.2MHz~ 2.2MHz) の選択に使用できる抵抗値の表が記載されています。

LT3045 の出力電圧は、次式に従い R4 抵抗を SET ピンに接続して設定されます。

VOUT = 100 µA × R4

IN

PGFB 抵抗は、出力が目標電圧である 5V の 95%よりわずかに低い値となったときにパワーグッド (PG) 信号をトリガするよう 選択されています。LT3045 の出力には、1%の初期公差があり、 更に温度によって 1%の変動があります。PGFB の温度に対する 許容誤差は約 3%ですが、抵抗を追加するともう少し増えます (5%)。したがって、出力と PGFB の間で 5%を見込んでおけ ばうまく対処できます。更に、PG のオープン・コレクタが 5V 出力にプルアップされ、0V~5V の電圧振幅が得られます。表 10 に、5V、3.3V、3V に対する推奨抵抗値を示します。

表	10. 5V、	3.3V、	3V	での動作に対す	る推奨抵抗値
---	---------	-------	----	---------	--------

LDO VOUT (V)	R4 (kΩ)	R7 (kΩ)	R8 (kΩ)
5	49.9	442	30.1
3.3	33.2	287	30.1
3	30.1	255	30.1

LT8607には最大 750mA の電流が流れ、LT3045には最大 500mA の電流が流れます。5V 電源電圧が別の部品にも供給するバス電源として拡張されている場合、より高電流の部品を使用することができます。LT8608 および LT8609 降圧レギュレータはそれぞれ 1.5A および 3A の電流を流すことができ、LT8607 とピン互換です。

図 107. 推奨パワー・マネージメント回路

外形寸法

更新: 2023年6月21日

オーダー・ガイド

Model ^{1, 2}	Temperature Range	Package Description	Packing Quantity	Package Option
ADL8100ACPZN	-40°C to +85°C	8-Lead Lead Frame Chip Scale Package [LFCSP]		CP-8-30
ADL8100ACPZN-R7	-40°C to +85°C	8-Lead Lead Frame Chip Scale Package [LFCSP]	Reel, 3000	CP-8-30

¹Z=RoHS 準拠製品。

² ADL8100ACPZN と ADL8100ACPZN-R7 のピン仕上げは、ニッケル・パラジウム金です。

評価用ボード

Model ¹	Description
ADL8100-EVALZ	Evaluation Board
ADL8100-EVAL1Z	Evaluation Board with Bias Tee

¹Z=RoHS 準拠製品。

