

-タシート

高精度 MEMS IMU モジュール ADIS16467

特長

3軸、デジタル・ジャイロ・センサー ダイナミック・レンジが、±125%sec、±500%sec、 ±2000%sec の 3 モデル 動作中のバイアス安定度: 2%hr (ADIS16467-1) 角度ランダム・ウォーク: 0.15%//hr (ADIS16467-1 および ADIS16467-2) 軸間ミスアライメント誤差: ±0.05° 3軸、デジタル加速度センサー: ±40 g 動作中のバイアス安定度: 13 µg 3軸、角度変化および速度変化の出力 工場出荷時キャリブレーション済みの感度、バイアス、 軸アライメント キャリブレーション温度範囲: --40 ℃ ~ +85 ℃ SPI 対応のデータ通信 プログラマブルな動作と制御 自動と手動のバイアス補正制御 同期データ・アクイジション用データ・レディ・ インジケータ 外部同期モード:直接、パルス、スケーリング、出力 慣性センサーのオン・デマンド・セルフ・テスト フラッシュ・メモリのオン・デマンド・セルフ・テスト 単電源動作(VDD): 3.0 V ~ 3.6 V 2000gの機械的衝撃耐性 動作温度範囲: --40 ℃ ~ +105 ℃

アプリケーション

ナビゲーション、安定化、計測器 無人運転車、自動運転車 スマート農業、建設機械 ファクトリー/産業オートメーション、ロボティクス 仮想/拡張現実 動くモノのインターネット

概要

ADIS16467 は高精度の微小電気機械システム(MEMS)慣性計 測ユニット(IMU)で、3軸のジャイロ・センサーと3軸の加 速度センサーを内蔵しています。ADIS16467 内の各慣性センサ ーがシグナル・コンディショニングと組み合わさることで、動 的性能が最適化されています。各センサーの感度、バイアス、 アライメント、直線加速度(ジャイロ・センサー・バイアス)、 振動ポイント(加速度センサーの位置)の特性は、工場出荷時 のキャリブレーションで評価されています。そのため、各セン サーには動的な補償のための式が備わっており、幅広い条件に 対して高精度のセンサー計測が可能となっています。

ADIS16467 は、高精度の多軸慣性センシングを工業用システム に組み込むためのシンプルで費用対効果に優れたソリューショ ンを提供します。これは、特にディスクリート部品を使用した 設計と比較して、複雑さや費用面でメリットがあります。すな わち、必要なモーション・テストとキャリブレーションがすべ て工場での製造工程に組み込まれているため、システムを統合 する時間を大幅に短縮できます。また、厳密な直交アライメン トにより、ナビゲーション・システムの慣性フレーム・アライ メントが簡単になります。シリアル・ペリフェラル・インター フェース (SPI) やレジスタ構造により、データ収集や設定制御 とのインターフェースも容易です。

ADIS16467 は、約 22.4 mm × 24.3 mm × 9 mm のアルミニウム・ モジュール・パッケージに収納され、14 ピン・コネクタ・イン ターフェースを備えています。

図 1.

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

©2018 Analog Devices, Inc. All rights reserved.

アナログ・デバイセズ株式会社

,	本 社/〒105-6891	東京都港区海岸 1-16-1 ニュー 雷話 03 (5402) 8200	ピア竹芝サウスタワービル 10F
;	大 阪営業所/〒532-0003	■ 100 (0402) 0200 大阪府大阪市淀川区宮原 3-5-36 電話 06 (6350) 6868	新大阪トラストタワー 10F
:	名古屋営業所/〒451-6038	愛知県名古屋市西区牛島町 6-1 電話 052(569)6300	名古屋ルーセントタワー 40F

ADIS16467

目次

特長1
アプリケーション1
概要1
機能ブロック図1
改訂履歷2
仕様3
タイミング仕様5
絶対最大定格7
熱抵抗7
ESD に関する注意7
ピン配置およびピン機能説明8
代表的な性能特性9
動作原理10
はじめに10
慣性センサーのシグナル・チェーン10
レジスタ構造11
シリアル・ペリフェラル・インターフェース(SPI)12
データ・レディ (DR)12

センサー・データの読出し	13
デバイスの設定	14
ユーザ・レジスタのメモリ・マップ	15
ユーザ・レジスタ定義	17
ジャイロ・センサーのデータ	17
角度変化	
速度変化	21
キャリブレーション	23
アプリケーション情報	
アセンブリとハンドリングのポイント	
電源に関する考慮事項	
ブレークアウト・ボード	
PC ベースの評価ツール	
パッケージとオーダー情報	
外形寸法	
オーダー・ガイド	

改訂履歴

12/2017—Revision 0: Initial Version

仕様

特に指定のない限り、ケース温度(T_c) = 25 ℃、VDD = 3.3 V、角速度 = 0%sec、ダイナミック・レンジ = ±200%sec ± 1 g。

_ 表 1.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
GYROSCOPES					
Dynamic Range ¹	ADIS16467-1	±125			°/sec
	ADIS16467-2	±500			°/sec
	ADIS16467-3	± 2000			°/sec
Sensitivity	ADIS16467-1, 32-bit		10,485,760		LSB/°/sec
	ADIS16467-2, 32-bit		2,621,440		LSB/°/sec
	ADIS16467-3, 32-bit		655,360		LSB/°/sec
Error over Temperature	$-40^{\circ}C \le T_{C} \le +85^{\circ}C, 1 \sigma$		±0.1		%
Misalignment Error	Axis to axis, 1 σ		±0.05		Degrees
Nonlinearity ²	ADIS16467-1, full scale (FS) = $125^{\circ}/\text{sec}$		0.2		% FS
	ADIS16467-2, FS = 500°/sec		0.2		% FS
	ADIS16467-3, FS = 2000°/sec		0.25		% FS
Bias					
In-Run Bias Stability	ADIS16467-1, 1 σ		2		°/hr
	ADIS16467-2, 1 σ		2.5		°/hr
	ADIS16467-3, 1 σ		6		°/hr
Angular Random Walk	ADIS16467-1, 1 σ		0.15		°/√hr
-	ADIS16467-2, 1 σ		0.15		°/√hr
	ADIS16467-3, 1 σ		0.3		°/√hr
Error over Temperature	$-40^{\circ}C \le T_{C} \le +85^{\circ}C, 1 \sigma$		±0.2		°/sec
Linear Acceleration Effect	Any direction, 1σ		0.009		°/sec/g
Vibration Rectification Effect	Random vibration, 2 g rms, bandwidth = 50 Hz to 2 kHz		0.0005		$^{\circ}/\text{sec}/g^2$
Output Noise	ADIS16467-1, 1 σ, no filtering		0.07		°/sec rms
-	ADIS16467-2, 1 σ, no filtering		0.08		°/sec rms
	ADIS16467-3, 1 σ, no filtering		0.17		°/sec rms
Rate Noise Density	ADIS16467-1, bandwidth = 10 Hz to 40 Hz		0.003		°/sec/√Hz rms
-	ADIS16467-2, bandwidth = 10 Hz to 40 Hz		0.003		°/sec/√Hz rms
	ADIS16467-3, bandwidth = 10 Hz to 40 Hz		0.007		°/sec/√Hz rms
3 dB Bandwidth			550		Hz
Sensor Resonant Frequency			66		kHz
ACCELEROMETERS ³	Each axis				
Dynamic Range		± 40			g
Sensitivity	32-bit data format		52,428,800		LSB/g
Error over temperature	$-40^{\circ}C \le T_C \le +85^{\circ}C, 1 \sigma$		±0.1		%
Misalignment Error	Axis to axis		±0.05		Degrees
Nonlinearity	Best fit straight line, $\pm 10 g$		±0.02		% FS
	Best fit straight line, $\pm 20 g$		±0.4		% FS
	Best fit straight line, $\pm 40 g$		±1.5		% FS
Bias					
In-Run Bias Stability	1 σ, y-axis and z-axis		13		μg
Velocity Random Walk	1 σ		0.037		m/sec/√hr
Error over Temperature	$-40^{\circ}C \le T_C \le +85^{\circ}C, 1 \sigma$		±3		mg
Output Noise	No filtering		2.3		mg rms
Noise Density	Bandwidth = 10 Hz to 40 Hz , no filtering		100		µg/√Hz rms
3 dB Bandwidth			600		Hz
Sensor Resonant Frequency	Y-axis and z-axis		5.65		kHz
	X-axis		5.25		kHz

ADIS16467

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
TEMPERATURE SENSOR					
Scale Factor	Output = $0x0000$ at $0^{\circ}C$ ($\pm 5^{\circ}C$)		0.1		°C/LSB
LOGIC INPUTS ⁴					
Input Voltage					
High, V _{IH}		2.0			V
Low, V _{IL}				0.8	V
RST Pulse Width		1			μs
CS Wake-Up Pulse Width		20			μs
Input Current					
Logic 1, I _{IH}	$V_{IH} = 3.3 V$			10	μΑ
Logic 0, I _{IL}	$V_{IL} = 0 V$				
All Pins Except RST				10	μΑ
RST Pin			0.33		mA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS					
Output Voltage					
High, V _{OH}	$I_{SOURCE} = 0.5 \text{ mA}$	2.4			V
Low, V _{OL}	$I_{SINK} = 2.0 \text{ mA}$			0.4	V
FLASH MEMORY	Endurance ⁵	10000			Cycles
Data Retention ⁶	$T_J = 85^{\circ}C$	20			Years
FUNCTIONAL TIMES ⁷	Time until data is available				
Power-On Start-Up Time			259		ms
Reset Recovery Time	Register GLOB_CMD, Bit 7 = 1 (see 表 113)		198		ms
	$\overline{\text{RST}}$ pulled low, then restored to high ⁸		198		ms
Factory Calibration Restore	Register GLOB_CMD, Bit 1 = 1 (see 表 113)		142		ms
Flash Memory Backup	Register GLOB_CMD, Bit 3 = 1 (see 表 113)		72		ms
Flash Memory Test Time	Register GLOB_CMD, Bit 4 = 1 (see 表 113)		32		ms
Self Test Time ⁹	Register GLOB_CMD, Bit 2 = 1 (see 表 113)		14		ms
CONVERSION RATE			2000		SPS
Initial Clock Accuracy			3		%
Sync Input Clock		1.9		2.1	kHz
POWER SUPPLY, VDD	Operating voltage range	3.0		3.6	V
Power Supply Current ¹⁰	Normal mode, $VDD = 3.3 V$	1	44	55	mA

「各レンジのスケール・ファクタは表 11 に記載されています。

2この測定値は、ベストフィット直線モデルからの偏差に基づいています。

³特に指定のない限り、加速度センサーに関するすべての仕様は、±8gのフルスケール・レンジに対するものです。

4 デジタル入出力信号には3.3 Vシステムを使用しています。

⁵ 書換え回数は JEDEC 規格 22、Method A117 に準拠し、-40 °C、+25 °C、+85 °C、+125 °C で測定しています。

⁶ データ保持仕様は、JEDEC 規格 22、Method A117 に準拠した 85 ℃ のジャンクション温度(T₁)を想定しています。データ保持寿命は T₁ に伴って短くなり ます。

⁷これらの時間には、全体の精度に影響を与える可能性がある、熱安定時間と内部フィルタ応答時間は含まれていません。 8 正しくリセットを開始してデバイスを復帰させるには、RST ラインを少なくとも 10 µs にわたってローに保持する必要があります。

⁹2000 Hz 未満の外部クロックを使用する場合、セルフ・テスト時間はこれより長くなる場合があります。

¹⁰ 初回起動時やリセットによる復帰時には、電源電流のトランジェントが 100 mA に達することがあります。

タイミング仕様

特に指定のない限り、T_A = 25 °C、VDD = 3.3 V。

表 2.

		No	rmal M	ode	Burst	t Read I	Mode	
Parameter	Description	Min	Тур	Max	Min ¹	Тур	Max	Unit
f _{SCLK}	Serial clock	0.1		2	0.1		1	MHz
t _{STALL}	Stall period between data	16			N/A			μs
t _{READRATE}	Read rate	24						μs
$t_{\overline{CS}}$	Chip select to SCLK edge	200			200			ns
t _{DAV}	DOUT valid after SCLK edge			25			25	ns
t _{DSU}	DIN setup time before SCLK rising edge	25			25			ns
t _{DHD}	DIN hold time after SCLK rising edge	50			50			ns
t_{SCLKR}, t_{SCLKF}	SCLK rise/fall times		5	12.5		5	12.5	ns
t _{DR} , t _{DF}	DOUT rise/fall times		5	12.5		5	12.5	ns
t _{SFS}	CS high after SCLK edge	0			0			ns
t ₁	Input sync positive pulse width; pulse sync mode, Register MSC_CTRL, Bits[4:1] (binary, see 表 105)	5			5			μs
t _{STDR}	Input sync to data ready valid transition							
	Direct sync mode, Register MSC_CTRL, Bits[4:2] (binary, see 表 105)		507			507		μs
	Pulse sync mode, Register MSC_CTRL, Bits[4:2] (binary, see 表 105)		256			256		μs
t _{NV}	Data invalid time		20			20		μs
t ₂	Input sync period	500			500			μs

¹N/Aは該当なしを意味します。

ADIS16467

データシート

ADIS16467

絶対最大定格

表 3.

<u>我</u> J.	
Parameter	Rating
Mechanical Shock Survivability	
Any Axis, Unpowered	2000 g
Any Axis, Powered	2000 g
VDD to GND	-0.3 V to +3.6 V
Digital Input Voltage to GND	-0.3 V to VDD + 0.2 V
Digital Output Voltage to GND	-0.3 V to VDD + 0.2 V
Calibration Temperature Range	-40°C to +85°C
Operating Temperature Range	-40° C to $+105^{\circ}$ C
Storage Temperature Range ¹	-65°C to +150°C
Barometric Pressure	2 bar

¹-40 ℃ 未満の低温、または +105 ℃ を超える高温下に長時間放置すると、 工場出荷時のキャリブレーション精度に悪影響を与える可能性があり ます。

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この仕様規定はストレ ス定格のみを指定するものであり、この仕様の動作のセクショ ンに記載する規定値以上でのデバイス動作を定めたものではあ りません。デバイスを長時間にわたり絶対最大定格状態に置く と、デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板(PCB)の設計と動作環境に直接 関連しています。PCBの熱設計には、細心の注意を払う必要が あります。

ADIS16467 は多数の能動部品を含むマルチチップ・モジュール です。表 4 に示す値は、ADIS16467 内部の最も高温の部品の熱 応答を、モジュールの全消費電力の範囲で示したものです。こ の方法では、周囲温度またはケース温度に基づいて、最も高い ジャンクション温度を簡単な方法で予測することができます。

例えば周囲温度が 70 ℃ の場合、ADIS16467 内部の最も高いジャンクション温度(T_J)は 75.3 ℃ です。

- $T_J = \theta_{JA} \times VDD \times I_{DD} + 70 \text{ °C}$
- $T_J = 36.5 \text{ °C/W} \times 3.3 \text{ V} \times 0.044 \text{ A} + 70 \text{ °C}$

 $T_J = 75.3 \ ^{\circ}\text{C}$

表 4. 熱抵抗

Package Type	$\theta_{JA}{}^1$	θ_{JC}^2	Mass (g)
ML-14-6 ³	36.5°C/W	16.9C/W	15

・θ_{IA}は、1立方フィートの密封容器内で測定された、自然対流でのジャンクションから周囲への熱抵抗です。

²θ_{JC}は、ジャンクションからケースへの熱抵抗です。

³ 熱抵抗の値は、ADIS16467 を 2 層の金属層からなる厚さ 0.063 インチ の FR4-08 PCB に取り付け、その内部の最高温度を直接測定した値に基 づいています。

ESD に関する注意

電荷を帯びたデバイスや回路ボードは、検知されない まま放電することがあります。本製品は当社独自の特 許技術である ESD 保護回路を内蔵してはいますが、 デバイスが高エネルギーの静電放電を被った場合、損 傷を生じる可能性があります。したがって、性能劣化 や機能低下を防止するため、ESD に対する適切な予防 措置を講じることをお勧めします。

ESD(静電放電)の影響を受けやすいデバイスです。

- - 図 6. ピン配置(底面の上面図)

表 5. ピン枝	表 5. ピン機能の説明						
Pin No.	Mnemonic	Туре	Description				
1	DR	Output	データ・レディ・インジケータ。				
2	SYNC	Input/output	外部同期の入出力(MSC_CTRL による)。表 105 を参照してください。				
3	SCLK	Input	SPIシリアル・クロック。				
4	DOUT	Output	SPI データ出力。このピンは SCLK の立下がりエッジでクロック出力します。				
5	DIN	Input	SPI データ入力。このピンは SCLK の立上がりエッジでクロック入力します。				
6	CS	Input	SPIチップ・セレクト。				
7	DNC	Not applicable	接続なし。このピンには接続しないでください。				
8	RST	Input	リセット。				
9	DNC	Not applicable	接続なし。このピンには接続しないでください。				
10	DNC	Not applicable	接続なし。このピンには接続しないでください。				
11	VDD	Supply	電源。				
12	DNC	Not applicable	接続なし。このピンには接続しないでください。				
13	GND	Supply	電源グラウンド。				
14	DNC	Not applicable	接続なし、このピンには接続しないでください。				

15439-006

ADIS16467

代表的な性能特性

ADIS16467

動作原理

ユーザ設定可能なすべての制御レジスタに工場出荷時のデフォ ルト構成を使用した場合、ADIS16467 は自動的に初期化を行い、 補正されたセンサー・データのサンプリングと処理を行って出 カレジスタに 2000 SPS のレートで出力するという連続プロセス を開始します。

慣性センサーのシグナル・チェーン

ADIS16467 が内蔵している慣性センサーの基本的なシグナル・ チェーンを図 11 に示します。内部クロック・モード (デフォル ト設定、表 105 の MSC_CTRL レジスタのビット [4:2] を参 照)で動作する場合、このシグナル・チェーンによって、出力 データ・レジスタは 2000 SPS のレートで更新されます。

	BARTLETT WINDOW FIR FILTER	AVERAGING DECIMATING FILTER	OUTPUT DATA REGISTERS	45400.044
--	-------------------------------------	-----------------------------------	-----------------------------	-----------

図 11. 慣性センサーの信号処理の流れ

ジャイロ・センサーのデータ・サンプリング

3 つのジャイロ・センサーによって、3 つの直交軸 (x、y、z) の 周りの角速度測定が行われます。ADIS16467 が内部クロック・ モード (デフォルト設定、表 105 の MSC_CTRL レジスタのビ ット [4:2] を参照) で動作する場合の、各ジャイロ・センサー のデータ・サンプリング方法を図 12 に示します。各ジャイロ・ センサーには、A/D コンバータ (ADC) と、データ・サンプリン グを 4100 Hz (±5 %) のレートで駆動するサンプル・クロック (fsg) が備わっています。内蔵プロセッサは、各ジャイロ・セン サーのこのデータを 2000 Hz のレート (fsm) で読み出し、処理し ます。

加速度センサーのデータ・サンプリング

3 つの加速度センサーによって、ジャイロ・センサーと同じ直交 軸(x、y、z)方向の直線加速度測定が行われます。ADIS16467 が内部クロック・モード(デフォルト設定、表 105の MSC_CTRL レジスタのビット [4:2]を参照)で動作する場合 の、各加速度センサーのデータ・サンプリング方法を図 13 に示 します。

外部クロック・オプション

ADIS16467 は 3 通りの異なる動作モードを備えており、SYNC ピン経由で外部クロックによって内部処理レート(図 12 と図 13 の fsm)を制御するデバイスにも対応しています。 MSC_CTRL レジスタ(表 105 参照)のビット [4:2] に、これ らの外部クロック・モードの設定オプションが用意されていま す。

慣性センサーのキャリブレーション

ジャイロ・センサーと加速度センサーに対して行われる慣性センサーのキャリブレーション機能には、工場出荷時のキャリブレーションとユーザ・キャリブレーションの2つの要素があります(図14参照)。

図 14. 慣性センサーのキャリブレーション過程

工場出荷時のジャイロ・センサーのキャリブレーションでは、 次の相関式を各ジャイロ・センサーのデータに適用しています。

 b_X m_{11} m_{12} m_{13} ω_{xc} ω_{X} ω_{YC} = $m_{21} m_{22}$ $m_{23} | \times |$ ω_{Y} $|+|b_{\gamma}|$ + b_7 ω_{ZC} $m_{31} m_{32}$ m_{33} ω_{z} l_{11} l_{12} l_{13} $|a_{XC}|$ l_{21} l_{22} l_{23} $|\times| a_{YC}$ l_{31} l_{32} l_{33} a_{zc}

ここで

ωxc、ωyc、ωzc はジャイロ・センサーのキャリブレーション後の出力、

m11、m12、m13、m21、m22、m23、m31、m32、m33 はスケールとアラ イメントの補正、

ωx、ωr、ωzはジャイロ・センサーのキャリブレーション前の出 力、

*bx、by、bz*はバイアス補正、

*l*₁₁、*l*₁₂、*l*₁₃、*l*₂₁、*l*₂₂、*l*₂₃、*l*₃₁、*l*₃₂、*l*₃₃ は直線 g 補正、

 a_{XC} 、 a_{YC} 、 a_{ZC} は加速度センサーのキャリブレーション後の出力です。

この関係式の補正係数はすべて、各ジャイロ・センサーの応答 をキャリブレーション温度範囲(-40 $\mathbb{C} \leq T_c \leq +85 \mathbb{C}$)にわた って複数の温度で直接測定した値に基づいています。これらの 補正係数はフラッシュ・メモリ・バンクに保存されますが、測 定用や設定用には使用できません。MSC_CTRL レジスタのビッ ト 7 (表 105 参照)は、ジャイロ・センサーの工場出荷時のキ ャリブレーション値に対する唯一のユーザ設定オプション(直 線 g 補正のオン/オフ制御)を提供します。ジャイロ・センサ ーに使用可能なユーザ・キャリブレーション・オプションの詳 細については、図 37 を参照してください。

ADIS16467

工場出荷時の加速度センサーのキャリブレーションでは、次の相 関式を各加速度センサーのデータに適用しています。

$$\begin{bmatrix} a_{XC} \\ a_{YC} \\ a_{ZC} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \times \begin{bmatrix} a_X \\ a_Y \\ a_Z \end{bmatrix} + \begin{bmatrix} b_X \\ b_Y \\ b_Z \end{bmatrix} + \begin{bmatrix} b_X \\ b_Y \\ b_Z \end{bmatrix}$$

ここで

axc、axc、azcは加速度センサーのキャリブレーション後の出力、

m11、m12、m13、m21、m22、m23、m31、m32、m33はスケールとアラ イメントの補正、

ax、ay、azは加速度センサーのキャリブレーション前の出力、 bx、by、bzはバイアス補正、

*p*₁₂、*p*₂₃、*p*₂₃、*p*₃₁、*p*₃₂は振動ポイント・アライメントの補 正(図 40 参照)、

 $\omega^2 xc$ 、 $\omega^2 yc$ 、 $\omega^2 zc$ はジャイロ・センサーのキャリブレーション 後の出力を二乗したものです。

この関係式の補正係数はすべて、各加速度センサーの応答をキ ャリブレーション温度範囲 (-40 ℃ ≤ Tc ≤ +85 ℃) にわたって 複数の温度で直接測定した値に基づいています。これらの補正 係数はフラッシュ・メモリ・バンクに保存されますが、測定用 や設定用には使用できません。MSC_CTRL レジスタのビット 6 (表 105 参照) は、加速度センサーの工場出荷時のキャリブレ ーション値に対する唯一のユーザ設定オプション(振動ポイン ト・アライメント機能のオン/オフ制御)を提供します。加速 度センサーに使用可能なユーザ・キャリブレーション・オプシ ョンの詳細については、図 38 を参照してください。

バートレット・ウィンドウ FIR (有限インパルス応答)フィルタ

バートレット・ウィンドウ FIR フィルタ (図 15 参照) では、2 つの平均化フィルタ段が直列に構成されています。FILT_CTRL レジスタ (表 101 参照) によって、このフィルタの構成が制御 されます。

図 15. バートレット・ウィンドウ FIR フィルタの信号経路

平均化/デシメーション・フィルタ

2 段目のデジタル・フィルタで複数のサンプルが全体で平均化 され、各レジスタが更新されます。このタイプのフィルタ構造 では、平均化するサンプル数が出力データ・レジスタの更新レ ートの削減数と等しくなります。DEC_RATE レジスタ(表 109 参照)によって、このフィルタの構成が制御されます。

FROM BARTLETT	$\frac{1}{N_n}\sum_{n=1}^N \omega(n)$	-≺ ÷N	TO OUTPUT REGISTERS	15439-016
------------------	---------------------------------------	----------	------------------------	-----------

図 16. 平均化/デシメーション・フィルタ

レジスタ構造

ADIS16467 と外部プロセッサ間のすべての通信では、出力レジス タの内容の読出し、または設定情報やコマンド情報の制御レジ スタへの書込みが行われます。出力データ・レジスタには、最 新のセンサー・データ、エラー・フラグ、および識別情報が格 納されます。制御レジスタには、サンプル・レート、フィルタリ ング、キャリブレーション、および診断オプションが格納され ます。ユーザ・アクセスが可能な各レジスタは 2 バイト構成 (上位および下位)で、それぞれに固有のアドレスがあります。 すべてのユーザ・レジスタとそのアドレスの詳細な一覧につい ては、表8を参照してください。

図 17. ADIS16467 の基本動作

ADIS16467

シリアル・ペリフェラル・インターフェース (SPI)

SPI は、ユーザ・レジスタへのアクセスを可能にします(表8参照))。図18に、ADIS16467とSPI マスター・デバイス間の最も 一般的な接続を示します。マスター・デバイスは、多くの場合、 SPI 互換のインターフェースを持つ組み込みプロセッサです。こ の例では、SPI マスターは割込みサービス・ルーチンを使用し て、データ・レディ(DR)信号パルスを受信するたびにデータ を取得します。

図 18. 電気接続図

表 6. 一般的な SPI マスター・ピンの記号と機能

Mnemonic	Function
SS	Slave select
SCLK	Serial clock
MOSI	Master output, slave input
MISO	Master input, slave output
IRQ	Interrupt request

通常、組み込みプロセッサは、制御レジスタを使用してそのシ リアル・ポートを設定し、ADIS16467 などの SPI スレーブ・デバ イスと通信します。ADIS16467 の SPI プロトコルを記述する設定 一覧を、表 7 に示します。通常、これらの設定は、ファームウ ェア・コマンドを使ってマスター・プロセッサの初期化ルーチ ンで行われ、設定内容は制御レジスタに書き込まれます。

表 7. 一般的なマスター・プロセッサの SPI 設定

Processor Setting	Description
Master	ADIS16467 operates as slave
$SCLK \!\leq\! 2 \; MHz^1$	Maximum serial clock rate
SPI Mode 3	CPOL = 1 (polarity), $CPHA = 1$ (phase)
MSB First Mode	Bit sequence, see Figure 23 for coding
16-Bit Mode	Shift register and data length

パースト・モード読出しでは、この値を1MHz以下にする必要があります(詳細については表2を参照)。

データ・レディ (DR)

工場出荷時のデフォルト設定では、出力データ・レジスタの更 新時に DR 信号を DR ピン(表 5 参照)にパルス出力するよう になっています。この DR ピンを組み込みプロセッサのピンに 接続すると、このパルスの 2 つ目のエッジでデータ取得がトリ ガされます。MSC_CTRL レジスタのビット 0(表 105 参照)で、 この信号の極性が制御されます。図 19 に、MSC_CTRL レジス タのビット 0 = 1 の例を示します。この場合、データ取得は DR パルスの立上がりで開始することになります。

図 19. MSC_CTRL レジスタのビット 0 = 1(デフォルト)の場合の データ・レディ

起動時やリセットからの復帰時、データの生成が始まる前に DR 信号に過渡応答が見られる場合があります。図 20 に起動時 の DR 応答の例、図 21 と図 22 にリセット・コマンドからの復 帰時の DR 応答の例を示します。

図 25. SPI の信号パターン (PROD_ID レジスタの繰り返し読出し)

センサー・データの読出し

1 つのレジスタを読み出すには、SPI 上に 2 つの 16 ビット・サ イクルが必要です。1 つはレジスタの内容を要求するサイクル、 もう 1 つはその内容を受信するサイクルです。SPI での読出し 要求用の 16 ビット・コマンド・コード(図 23 参照)は、読出 しビット(R/W = 0)、レジスタのアドレス([A6:A0])、 8 個のドントケア・ビット([DC7:DC0])の 3 つの部分で構 成されます。連続する 2 つのレジスタ読出しを含む例を、図 26 に示します。この例は、Z_GYRO_LOW レジスタの内容を要求 するために DIN = 0x0C00 から始まり、Z_GYRO_OUT レジスタ の内容を要求するために 0x0E00 がこれに続きます。また、図 26 のシーケンスは、完全に二重の動作モードも示します。すな わち、ADIS16467 は DIN で要求を受信する一方、同じ 16 ビッ ト SPI サイクルの間に、DOUT への出力データの送信も行いま す。

図 26. SPI 読出しの例

繰返しパターンで PROD_ID レジスタを読み出すときの 4 つの SPI 信号の例を、図 25 に示します(表 121 参照)。このパター ンは、最初のサイクルを除き、信号が各 16 ビット・シーケンス で同一なので、SPI インターフェースの設定や通信のトラブル シューティング時に役立てることもできます。

バースト読出し機能

バースト読出し機能は、最大 1 MHz (SCLK) のレートで連続 的に流れるビットを使用して、出力データ・レジスタ群を一括 で読み出すための方法です。この方法では、各 16 ビット・セグ メント間の待ち時間は不要です (図 3 参照)。図 24 に示すよう に、DIN = 0x6800 と設定してこのモードを開始し、次にこのシ ーケンスの中で DOUT から各レジスタの内容を読み出します。 このとき、 \overline{CS} は 176 ビットのシーケンス全体にわたってローに 保持されます。

バースト読出し応答でのレジスタのシーケンス(およびチェッ クサム値)は、ADIS16467 がどのサンプル・クロック・モード (MSC_CTRL レジスタのビット [4:2] 、表 105 参照)で動作 しているかによって異なります。スケーリング同期モード (MSC_CTRL レジスタのビット [4:2] = 010)で動作する場合 を除くすべてのクロック・モードで、バースト読出し応答は次 のレジスタおよび値で構成されます:DIAG_STAT、 X_GYRO_OUT、Y_GYRO_OUT、Z_GYRO_OUT、 X_ACCL_OUT、Y_ACCL_OUT、Z_ACCL_OUT、TEMP_OUT、 DATA_CNTR、およびチェックサム値。これらの場合、次の式 を使用してチェックサム値を検証します。なお、式中の各バイ トは、独立した符号なしの8ビット数として扱います:

チェックサム = DIAG_STAT のビット [15:8] + DIAG_STAT のビッ ト [7:0] +

X_GYRO_OUT のビット [15:8] + X_GYRO_OUT のビット [7:0]

Y_GYRO_OUT のビット [15:8] + Y_GYRO_OUT のビット [7:0]

. Z_GYRO_OUT のビット [15:8] + Z_GYRO_OUT のビット [7:0]

. X_ACCL_OUT のビット [15:8] + X_ACCL_OUT のビット [7:0]

ADIS16467

スケーリング同期モード (MSC_CTRL レジスタのビット [4:2] = 010) で動作する場合は、バースト読出し応答は次のレジスタ および値で構成されます:DIAG_STAT、X_GYRO_OUT、 Y_GYRO_OUT、Z_GYRO_OUT、X_ACCL_OUT、Y_ACCL_OUT、 Z_ACCL_OUT、TEMP_OUT、TIME_STAMP、およびチェックサ ム値。この場合、次の式を使用してチェックサム値を検証しま す。なお、式中の各バイトは、独立した符号なしの 8 ビット数 として扱います:

チェックサム=DIAG_STAT のビット [15:8] + DIAG_STAT のビッ ト [7:0] +

X_GYRO_OUT のビット [15:8] + X_GYRO_OUT のビット [7:0] +

Y_GYRO_OUT のビット [15:8] + Y_GYRO_OUT のビット [7:0]

Z_GYRO_OUT のビット [15:8] + Z_GYRO_OUT のビット [7:0] +

X_ACCL_OUT のビット [15:8] + X_ACCL_OUT のビット [7:0] +

 $\begin{array}{l} Y_ACCL_OUT \ \mathcal{O}E' \not > \land \ \ [15:8] + Y_ACCL_OUT \ \mathcal{O}E' \not > \land \ \ [7:0] + \\ Z_ACCL_OUT \ \mathcal{O}E' \not > \land \ \ [15:8] + Z_ACCL_OUT \ \mathcal{O}E' \not > \land \ \ [7:0] + \\ TEMP_OUT \ \mathcal{O}E' \not > \land \ \ [15:8] + TEMP_OUT \ \mathcal{O}E' \not > \land \ \ [7:0] + \\ TIME_STAMP \ \mathcal{O}E' \not > \land \ \ [15:8] + TIME_STAMP \ \mathcal{O}E' \not > \land \ \ [7:0] \end{array}$

デバイスの設定

各設定レジスタは 16 ビット (2 バイト)で構成されます。ビット [7:0] には各レジスタの下位バイトが格納され、ビット [15:8] には上位バイトが格納されます。各バイトには、ユー ザ・レジスタ・マップ内の固有アドレスが割り当てられます (表 8 参照)。レジスタの内容を更新するには、先に下位バイ ト、次に上位バイトのシーケンスで書き込む必要があります。 レジスタに新しいデータ・バイトを書き込む SPI コマンドのコ ーディングは、3 つの部分から成ります(図 23 参照):書込み ビット (R/W = 1)、バイトのアドレス([A6:A0])、および その位置に書き込む新しいデータ([DC7:DC0])です。図 27 に、FILT_CTRL レジスタに 0x0004 を書き込むコーディング例 を示します(表 101 参照)。図 27 では、0xDC04 コマンドによ って 0x04 がアドレス 0x5C(下位バイト)に書き込まれ、 0xDD00 コマンドによって 0x00 がアドレス 0x5D(上位バイ ト)に書き込まれています。

図 27. FILT_CTRL に 0x0004 を書き込むための SPI シーケンス

メモリ構造

ADIS16467 のメモリ構造の機能図を図 28 に示します。フラッシュ・メモリ・バンクは、動作コード、ユニット固有のキャリブレーション係数、ユーザ設定値などで構成されます。初期化(電力投入時またはリセット復帰時)中に、この情報がフラッシュ・メモリから、スタティック・ランダム・アクセス・メモリ(SRAM)にロードされます。これにより、SPIポートを介したレジスタへのアクセスを含むすべての通常動作がサポートされます。SPIを使用して設定レジスタに書込みを行うことで、レジスタの SRAM 位置指定は更新されますが、フラッシュ・メ モリ・バンクの設定は自動的には更新されません。手動のフラッシュ・メモリ更新コマンド(GLOB_CMD レジスタのビット3、表 113 を参照)は、これらのすべての設定を一度にフラッシュ・メモリ・バンクに保存できる便利な方法です。表 8 の Flash Backup 列にある「yes」は、フラッシュ・メモリ・バンクのストレージ・サポート機能を持つレジスタを意味します。

図 28. SRAM とフラッシュ・メモリの図

ADIS16467

ユーザ・レジスタのメモリ・マップ

表 8. ユーザ・レジスタのメモリ・マップ(N/A は該当なしを示す)

Name	R/W	Flash Backup	Address	Default	Register Description
Reserved	N/A	N/A	0x00, 0x01	N/A	予備
DIAG_STAT	R	No	0x02, 0x03	0x0000	出力、システム・エラー・フラグ
X_GYRO_LOW	R	No	0x04, 0x05	N/A	出力、x 軸ジャイロ・センサー、下位ワード
X_GYRO_OUT	R	No	0x06, 0x07	N/A	出力、x 軸ジャイロ・センサー、上位ワード
Y_GYRO_LOW	R	No	0x08, 0x09	N/A	出力、y 軸ジャイロ・センサー、下位ワード
Y_GYRO_OUT	R	No	0x0A, 0x0B	N/A	出力、y 軸ジャイロ・センサー、上位ワード
Z_GYRO_LOW	R	No	0x0C, 0x0D	N/A	出力、z軸ジャイロ・センサー、下位ワード
Z_GYRO_OUT	R	No	0x0E, 0x0F	N/A	出力、z軸ジャイロ・センサー、上位ワード
X_ACCL_LOW	R	No	0x10, 0x11	N/A	出力、x 軸加速度センサー、下位ワード
X_ACCL_OUT	R	No	0x12, 0x13	N/A	出力、x 軸加速度センサー、上位ワード
Y_ACCL_LOW	R	No	0x14, 0x15	N/A	出力、y軸加速度センサー、下位ワード
Y_ACCL_OUT	R	No	0x16, 0x17	N/A	出力、y軸加速度センサー、上位ワード
Z_ACCL_LOW	R	No	0x18, 0x19	N/A	出力、z 軸加速度センサー、下位ワード
Z_ACCL_OUT	R	No	0x1A, 0x1B	N/A	出力、z 軸加速度センサー、上位ワード
TEMP_OUT	R	No	0x1C, 0x1D	N/A	出力、温度
TIME_STAMP	R	No	0x1E, 0x1F	N/A	出力、タイム・スタンプ
Reserved	N/A	N/A	0x20, 0x21	N/A	予備
DATA CNTR	R	No	0x22, 0x23	N/A	新データ・カウンタ
X DELTANG LOW	R	No	0x24, 0x25	N/A	出力、x 軸角度変化、下位ワード
X DELTANG OUT	R	No	0x26, 0x27	N/A	出力、x 軸角度変化、上位ワード
Y DELTANG LOW	R	No	0x28, 0x29	N/A	出力、 v 軸角度変化、下位ワード
Y DELTANG OUT	R	No	0x2A, 0x2B	N/A	出力、 y 軸角度変化。 上位ワード
Z DELTANG LOW	R	No	0x2C, $0x2D$	N/A	出力マ軸角度変化下位ワード
Z DELTANG OUT	R	No	0x2E_0x2E	N/A	出力、2軸角度変化、上位ワード
X DELTVEL LOW	R	No	0x30, 0x31	N/A	
X DELTVEL OUT	R	No	0x32 $0x33$	N/A	
Y DELTVEL LOW	R	No	0x34_0x35	N/A	
Y DELIVEL OUT	R	No	0x36, 0x37	N/A	
7 DELTVEL LOW	R	No	0x38, 0x39	N/A	出力、す神速度変化、エピノード
Z_DELIVEL_LOW	R	No	0x3A_0x3B	N/A	
Reserved	N/A	N/A	0x3C to 0x3E	N/A	コリンと神座反変に、エビノーで
XG BIAS LOW	R/W	Ves	0x40_0x41	0x0000	」 加 キャリブレーション オフセット ジャイロ・センサー マ軸 下位ロ
NG_DIND_LOW	IC W	103	0,40, 0,41	00000	
XG_BIAS_HIGH	R/W	Yes	0x42, 0x43	0x0000	キャリブレーション、オフセット、ジャイロ・センサー、x 軸、上位ワ ード
YG_BIAS_LOW	R/W	Yes	0x44, 0x45	0x0000	・ キャリブレーション、オフセット、ジャイロ・センサー、y 軸、下位ワ
					- K
YG_BIAS_HIGH	R/W	Yes	0x46, 0x47	0x0000	キャリブレーション、オフセット、ジャイロ・センサー、y 軸、上位ワ ード
ZG_BIAS_LOW	R/W	Yes	0x48, 0x49	0x0000	キャリブレーション、オフセット、ジャイロ・センサー、z 軸、下位ワ ード
ZG_BIAS_HIGH	R/W	Yes	0x4A, 0x4B	0x0000	・ キャリブレーション、オフセット、ジャイロ・センサー、z 軸、上位ワ
XA_BIAS_LOW	R/W	Yes	0x4C, 0x4D	0x0000	ード キャリブレーション、オフセット、加速度センサー、x 軸、下位ワード
XA_BIAS_HIGH	R/W	Yes	0x4E, 0x4F	0x0000	キャリブレーション、オフセット、加速度センサー、x 軸、上位ワード
YA_BIAS_LOW	R/W	Yes	0x50, 0x51	0x0000	キャリブレーション、オフセット、加速度センサー、v軸、下位ワード
YA_BIAS_HIGH	R/W	Yes	0x52, 0x53	0x0000	キャリブレーション、オフセット、加速度センサー、v軸、上位ワード
ZA_BIAS_LOW	R/W	Yes	0x54, 0x55	0x0000	キャリブレーション、オフセット、加速度センサー、z 軸、下位ワード
ZA BIAS HIGH	R/W	Yes	0x56, 0x57	0x0000	キャリブレーション、オフセット、加速度センサー、z軸、上位ワード
Reserved	N/A	N/A	0x58 to 0x5B	N/A	予備
FILT CTRL	R/W	Yes	0x5C, 0x5D	0x0000	- ^… 制御、バートレット・ウィンドウ FJR(有限インパルス応答)フィルタ
RANG MDL	R	No	0x5E, 0x5F	N/A ¹	御定範囲(モデル固有)識別子
MSC CTRL	R/W	Yes	0x60, 0x61	0x00C1	制御、入出力およびその他各種オプション
UP SCALE	R/W	Yes	0x62, 0x63	0x07D0	制御、入力クロックのスケール・ファクタ、パルス毎秒 (PPS) モード
DEC RATE	R/W	Yes	0x64, 0x65	0x0000	制御、デシメーション・フィルタ (出力データ・レート)
-		1			

ADIS16467

	r		1		
Name	R/W	Flash Backup	Address	Default	Register Description
NULL_CNFG	R/W	Yes	0x66, 0x67	0x070A	制御、バイアス推定時間
GLOB_CMD	W	No	0x68, 0x69	N/A	制御、グローバル・コマンド
Reserved	N/A	N/A	0x6A to 0x6B	N/A	予備
FIRM_REV	R	No	0x6C, 0x6D	N/A	ID、ファームウェア・レビジョン
FIRM_DM	R	No	0x6E, 0x6F	N/A	ID、日付コード、日および月
FIRM_Y	R	No	0x70, 0x71	N/A	ID、日付コード、年
PROD_ID	R	No	0x72, 0x73	0x4053	ID、デバイス番号
SERIAL_NUM	R	No	0x74, 0x75	N/A	ID、シリアル番号
USER_SCR_1	R/W	Yes	0x76, 0x77	N/A	ユーザ・スクラッチ・レジスタ1
USER_SCR_2	R/W	Yes	0x78, 0x79	N/A	ユーザ・スクラッチ・レジスタ2
USER_SCR_3	R/W	Yes	0x7A, 0x7B	N/A	ユーザ・スクラッチ・レジスタ3
FLSHCNT_LOW	R	No	0x7C, 0x7D	N/A	出力、フラッシュ・メモリ書込みサイクル・カウンタ、下位バイト
FLSHCNT_HIGH	R	No	0x7E, 0x7E	N/A	出力、フラッシュ・メモリ書込みサイクル・カウンタ、上位バイト

1このレジスタのデフォルト値(モデル固有)については、表102を参照してください。

ユーザ・レジスタ定義

ステータス/エラー・フラグ・インジケータ (DIAG_STAT)

表 9. DIAG_STAT のレジスタ定義						
Addresses Default Access Flash Backup						
0x02, 0x03	0x0000	R	No			

表 10. DIAG_STAT のビット割り当て

Bits	Description
[15:8]	予備
7	クロック・エラー。「1」は、内部データ・サンプリング・クロッ ク(f _{SM} 、図 12 および図 13 参照)が外部クロックと同期していな いことを示します。これは、スケーリング同期モード(MSC_CTRL レジスタのビット[4:2]=010、表 105 参照)を使用している場合 にのみ適用されます。このエラーが発生した場合、適切な範囲内で 動作するように SYNC ピンのクロック信号の周波数を調整してくだ さい。
6	メモリ故障。「1」はフラッシュ・メモリ・テスト(GLOB_CMD レ ジスタのビット4、表 113 参照)に失敗したことを示します。このテ ストには、現在のフラッシュ・メモリの巡回冗長検査(CRC)の計算 と同じメモリの場所の初期プログラミング時(生成プロセス中)の CRC計算との比較が含まれます。このエラーが発生した場合、同じ テストを繰り返します。それでもエラーが続く場合は ADIS16467 を交換してください。
5	センサー故障。「1」は、セルフ・テスト(GLOB_CMD レジスタ のビット2、表 113 参照)の結果、少なくとも1つのセンサーが故 障していることを示します。このエラーが発生した場合、同じテス トを繰り返します。それでもエラーが続く場合は ADIS16467 を交換 してください。このテストの実行中にデバイスを動かすと、誤って故 障と判定される場合があります。
4	スタンバイ・モード。「1」は、VDD と GND 間の電圧が 2.8 V 未 満であることを示します。これはデータ処理が停止する原因となり ます。VDD が 250 ms の間 2.8 V 以上を維持すると、ADIS16467 は 再初期化され、再びデータ生成を開始します。
3	SPI 通信エラー。1 は、SCLK サイクルの合計数が 16 の整数倍でな いことを示します。このエラーが発生した場合、その前の通信シー ケンスを繰り返します。それでもエラーが続く場合、ADIS16467 が サポートしているシステムからの SPI 信号が弱い可能性がありま す。
2	フラッシュ・メモリ更新の故障。「1」は、最後に行ったフラッシ ュ・メモリの更新(GLOB_CMDレジスタのビット3、表 113参 照)が失敗したことを示します。このエラーが発生した場合、VDD が3V以上であることを確認し、更新を繰り返してみます。それで もエラーが続く場合はADIS16467を交換してください。
1	データパス・オーバーラン。「1」は、データパスの1つがオーバー ラン状態になっていることを示します。このエラーが発生した場 合、RSTピン(表5のピン8参照)またはGLOB_CMDレジスタの ビット7(表113参照)を使用してリセットを開始します。
0	予備

DIAG_STAT レジスタ (表9と表10を参照)には、ADIS16467 の完全性と動作を監視するためのエラー・フラグが用意されて います。このレジスタの内容を読み出すと、レジスタの全ビッ トが0になります。DIAG_STATのエラー・フラグはスティッ キーです。すなわち、フラグが1になると、読出し要求によっ てそのフラグがクリアされるまで1を維持します。エラー状態 が続く場合は、そのフラグ(ビット)が自動的にアラーム値で ある1に戻ります。

ジャイロ・センサーのデータ

ADIS16467 のジャイロ・センサーは、3 本の直交軸(x、y、z) 周りの回転角速度を測定します。ジャイロ・センサーの各軸の 方向と、その各測定値が正の応答となる回転方向を図 29 に示し ます。

各ジャイロ・センサーには 2 つの出力データ・レジスタがありま す。x 軸ジャイロ・センサー測定において、これら 2 つのレジス タを組み合わせて 32 ビットの 2 の補数データ・フォーマットを 構成する方法を、図 30 に示します。このフォーマットは y 軸と z 軸にもあてはまります。

ジャイロ・センサーの測定範囲/スケール・ファクタ

表 11 に、ADIS16467 の各モデルにおける角速度(ジャイロ・センサー)測定の範囲とスケール・ファクタを示します。

耒 11	ジャイロ・センサーの測定範囲とスケール・ファクタ	

衣 TI: ノヤイロ ビング の魚足軋団とヘケ ル ファファ							
	Range, ±ω _{MAX}	Scale Factor, K _G					
Model	(°/sec)	(°/sec/LSB)					
ADIS16467-1BMLZ	±125	0.00625					
ADIS16467-2BMLZ	±500	0.025					
ADIS16467-3BMLZ	±2000	0.1					

ジャイロ・センサーのデータ・フォーマット

16 ビットと 32 ビットの回転速度データのフォーマットを示す さまざまな数値の例を、表 12 と表 13 に示します。

表	12.	16	ビッ	ト	·	ジャイ		・センサー	- •	デー	タ	の
---	-----	----	----	---	---	-----	--	-------	-----	----	---	---

フォーマット例

Rotation Rate	Decimal	Hex.	Binary
$+\omega_{MAX}$	+20,000	0x4E20	0100 1110 0010 0000
$+2 K_G$	+2	0x0002	0000 0000 0000 0010
$+K_{G}$	+1	0x0001	0000 0000 0000 0001
0°/sec	0	0x0000	0000 0000 0000 0000
$-K_G$	-1	0xFFFF	1111 1111 1111 1111
$-2 K_G$	-2	0xFFFE	1111 1111 1111 1110
$-\omega_{MAX}$	-20,000	0xB1E0	1011 0001 1110 0000

ADIS16467

表 13.32 ビット・ジャイロ・センサー・データの フォーマット例

Rotation Rate (°/sec)	Decimal	Hex.
$+\omega_{MAX}$	+1,310,720,000	0x4E200000
$+K_{G}/2^{15}$	+2	0x00000002
$+K_{G}/2^{16}$	+1	0x00000001
0	0	0x0000000
$-K_{G}/2^{16}$	-1	0xFFFFFFFF
$-K_{G}/2^{15}$	-2	0xFFFFFFFE
$-\omega_{MAX}$	-1,310,720,000	0xB1E00000

x 軸ジャイロ・センサー(X_GYRO_LOW および X_GYRO_OUT)

表 14. X_GYRO_LOW のレジスタ定義

	-							
Addresses		Default	Access	Flash Backup				
0x04, 0x05		Not applicable	R	No				
表 15. X_	表 15. X_GYRO_LOW のビット定義							
Bits	Dese	Description						
[15:0]	v軸	x 軸ジャイロ・ヤンサー・データ 追加分解能ビット						

表 16. X_GYRO_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x06, 0x07	Not applicable	R	No

表 17. X_GYRO_OUT のビット定義

Bits	Description
[15:0]	x 軸ジャイロ・センサー・データ、上位ワード、2 の補数、0%sec = 0x0000、1 LSB = K _G (表 11 の K _G を参照)

X_GYRO_LOW レジスタ (表 14 と表 15 を参照) と X_GYRO_OUT レジスタ (表 16 と表 17 を参照) には、x 軸のジ ャイロ・センサー・データが格納されます。

y 軸ジャイロ・センサー(Y_GYRO_LOW および Y_GYRO_OUT)

表 18. Y_GYRO_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup
0x08, 0x09	Not applicable	R	No

表 19. Y_GYRO_LOW のビット定義

Bits	Description	
[15:0]	y軸ジャイロ・センサー・データ、追加分解能ビ	ット

表 20. Y_GYRO_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x0A, 0x0B	Not applicable	R	No

表 21. Y_GYRO_OUT のビット定義

Bits	Description
[15:0]	y軸ジャイロ・センサー・データ、上位ワード、2の補
	数、0%sec = 0x0000、1 LSB = K _G (表 11 の K _G を参照)

Y_GYRO_LOW レジスタ (表 18 と表 19 を参照) と Y_GYRO_OUT レジスタ (表 20 と表 21 を参照) には、y 軸のジ ャイロ・センサー・データが格納されます。

z 軸ジャイロ・センサー(Z_GYRO_LOW および Z_GYRO_OUT)

表 22. Z_GYRO_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup
0x0C, 0x0D	Not applicable	R	No

表 23. Z_GYRO_LOW のビット定義		
Bits	Description	
[15:0]	z軸ジャイロ・センサー・データ、追加分解能ビット	

表 24. Z_GYRO_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup	
0x0E, 0x0F	Not applicable	R	No	

表 25. Z_GYRO_OUT のビット定義

Bits	Description
[15:0]	z軸ジャイロ・センサー・データ、上位ワード、2の補
	数、0 ^o /sec = 0x0000、1 LSB = KG(表 11 の K _G を参照)

Z_GYRO_LOW レジスタ (表 22 と表 23 を参照) と Z_GYRO_OUT レジスタ (表 24 と表 25 を参照) には、z 軸のジ ャイロ・センサー・データが格納されます。

加速度データ

ADIS16467 の加速度センサーは、ジャイロ・センサーの回転軸 (x、y、z)と同じ定義の3本の直交軸に沿った動的加速度と静 的加速度(重力に対する応答)の両方を測定します。加速度セ ンサーの各軸の方向と、その各測定値が正の応答となる加速度方 向を図31に示します。

図 31. 加速度センサーの軸と極性の割り当て

各加速度センサーには 2 つの出力データ・レジスタがあります。 x 軸加速度センサー測定において、これら 2 つのレジスタを組み 合わせて 32 ビットの 2 の補数のデータ・フォーマットを構成す る方法を、図 32 に示します。このフォーマットは y 軸と z 軸に もあてはまります。

図 32. 加速度センサーの出力データ構造

ADIS16467

加速度センサーの分解能

16 ビットと 32 ビットの直線加速度データのフォーマットを示す さまざまな数値の例を、表 26 と表 27 に示します。

表 26. 16 ビット加速度センサー・データのフォーマット例				
Acceleration	Decimal	Hex.	Binary	
+40 g	+32,000	0x7D00	0111 1101 0000 0000	
+2.5 mg	+2	0x0002	0000 0000 0000 0010	
+1.25 mg	+1	0x0001	0000 0000 0000 0001	
0 mg	0	0x0000	0000 0000 0000 0000	
-1.25 mg	-1	0xFFFF	1111 1111 1111 1111	
-2.5 mg	-2	0xFFFE	1111 1111 1111 1110	
$-40 \ g$	-32,000	0x8300	1000 0011 0000 0000	

Acceleration	Decimal	Hex.
+40 g	+2,097,152,000	0x7D000000
+1.25/2 ¹⁵ mg	+2	0x0000002
+1.25/2 ¹⁶ mg	+1	0x00000001
0	0	0x00000000
$-1.25/2^{16}$ mg	-1	0xFFFFFFFF
$-1.25/2^{15}$ mg	-2	0xFFFFFFFE
-40 g	-2,097,152,000	0x83000000

x 軸加速度センサー(X_ACCL_LOW および X_ACCL_OUT)

Address	ses	Default	Access	Flash Backup
0x10, 0x11		Not applicable	R	No
表 29. X_ACCL_LOW のビット定義				
Bits	Description			
[15:0]	x 軸加速度センサー・データ 追加公解能ビット			

表 30. X_ACCL_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x12, 0x13	Not applicable	R	No

表 31. X_ACCL_OUT のビット定義

Bits	Description	
[15:0]	X軸加速度センサー・データ、上位ワード、2の補数、範	
	$\boxplus \pm 40 g$, $0 g = 0 \times 0000$, $1 \text{ LSB} = 1.25 \text{ mg}$	

X_ACCL_LOW レジスタ(表 28 と表 29 を参照)と X_ACCL_OUT レジスタ(表 30 と表 31 を参照)には、x 軸の加速度センサー・ データが格納されます。

y 軸加速度センサー(Y_ACCL_LOW および Y_ACCL_OUT)

表 32. Y_ACC	_LOW のレ	/ジスタ定義
-------------	---------	--------

Address	ses	Default	efault Access Flash Backup	
0x14, 0x15		Not applicable	R	No
Bits Description				
[15:0]	v 軸加速度センサー・データ、追加分解能ビット			

表	34.	Υ_	_ACCL_	OUT	のレ	ジ	ス	タ	定義
---	-----	----	--------	-----	----	---	---	---	----

Addresses	Default	Access	Flash Backup
0x16, 0x17	Not applicable	R	No

表 35. Y_ACCL_OUT のビット定義			
Bits	Description		
[15:0]	Y 軸加速度センサー・データ、上位ワード、2 の補数、範		
	$\boxplus \pm 40 g$, $0 g = 0 \times 0000$, $1 \text{ LSB} = 1.25 \text{ mg}$		

Y_ACCL_LOW レジスタ (表 32 と表 33 を参照) と Y_ACCL_OUT レジスタ (表 34 と表 35 を参照) には、y 軸の 加速度センサー・データが格納されます。

z 軸加速度センサー(Z_ACCL_LOW および Z_ACCL_OUT)

表 36. Z_ACCL_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup
0x18, 0x19	Not applicable	R	No

表 37. Z_ACCL_LOW のビット定義		
Bits	Description	
[15:0]	z 軸加速度センサー・データ、追加分解能ビット	

表 38. Z_ACCL_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x1A, 0x1B	Not applicable	R	No

表 39. Z_ACCL_OUT のビット定義 Bits Description

Dita	Description
[15:0]	Z 軸加速度センサー・データ、上位ワード、2 の補数、範
	$\boxplus \pm 40 \text{ g}$, $0 \text{ g} = 0x0000$, $1 \text{ LSB} = 1.25 \text{ mg}$

Z_ACCL_LOW レジスタ(表 36 と表 37 を参照)とZ_ACCL_OUT レジスタ(表 38 と表 39 を参照)には、z 軸の加速度センサー・ データが格納されます。

内部温度(TEMP_OUT)

表 40. TEMP OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x1C, 0x1D	Not applicable	R	No

表 41. TEMP_OUT のビット定義

Bits	Description
[15:0]	温度データ、2の補数、1LSB=0.1°C、0°C=0x0000
TEMP O	UT レジスタ(表 40 と表 41 を参昭)にけ ADIS16467

TEMP_OUT レシスタ (表 40 と表 41 を参照) には、ADIS16467 の内部温度の大まかな測定値がセットされています。このデー タは、温度環境の相対的な変化を監視するのにきわめて有効で す。

表 42. TEMP_OUT のデータ・フォーマット例

Temperature (°C)	Decimal	Hex.	Binary
+105	+1050	0x041A	0000 0100 0001 1010
+25	+250	0x00FA	0000 0000 1111 1010
+0.2	+2	0x0002	0000 0000 0000 0010
+0.1	+1	0x0001	0000 0000 0000 0001
+0	0	0x0000	0000 0000 0000 0000
+0.1	-1	0xFFFF	1111 1111 1111 1111
+0.2	-2	0xFFFE	1111 1111 1111 1110
-40	-400	0xFE70	1111 1110 0111 0000

タイム・スタンプ(TIME_STAMP)

表 43. TIME_STAMP のレジスタ定義			
Addresses Default Access Flash Backup			
0x1E, 0x1F Not applicable		R	No
表 44. TIME_STAMP のビット定義			

Bits	Description
[15:0]	SYNC ピンの最後のパルスからの時間、オフセット・バイ
	ナリ・フォーマット、1 LSB = 49.02 μs

TIME_STAMP レジスタ (表 43 と表 44 を参照) は、スケーリン グ同期モード (MSC_CTRL レジスタのビット [4:2] = 010、表 105 参照) とともに機能します。TIME_STAMP の 16 ビット数 には、SYNC ピンのクロック信号の最後のエッジに関連する各 データ更新において、最新のサンプルに関連付けられる時間が 格納されます。例えば、UP_SCALE レジスタ (表 107 参照) の 値がスケール・ファクタ 20 を示し、DEC_RATE = 0、外部 SYNC レート = 100 Hz である場合、タイム・スタンプ・シーケ ンスは、0 LSB、10 LSB、21 LSB、31 LSB、41 LSB、51 LSB、 61 LSB、72 LSB、…、と続き、20 番目のサンプルは、194 LSB となります。つまり、最初の SYNC エッジからの時間は、0 μ s、 490 μ s、…、9510 μ s となります。

データ更新カウンタ(DATA_CNTR)

表 45. DATA_CNTR のレジスタ定義

Addresses	Default	Access	Flash Backup
0x22, 0x23	Not applicable	R	No

表 46. DATA_CNTR のビット定義

Bits	Description
[15:0]	データ更新カウンタ、オフセット・バイナリ・フォーマ ット

ADIS16467 がパワー・オン・シーケンスにある場合、またはリ セット・コマンドからの復帰状態にある場合、DATA_CNTR (表 45 と表 46 を参照)は、0x0000の値から始まり、出力レジ スタに新たなデータがロードされるたびにインクリメントしま す。DATA_CNTR の値が 0xFFFF に達した場合、次のデータ更 新で 0x0000に戻り、引き続き出力レジスタに新たなデータがロ ードされるたびにインクリメントします。

角度変化

各軸 (x、y、z) 周りの回転角速度(ジャイロ・センサー)の測 定値に加えて、ADIS16467 は角度変化の測定も出力します。こ れはサンプル更新ごとの角度変位を計算したものです。

ADIS16467

角度変化出力はジャイロ・センサー測定値の積分値を表し、3 つ の軸すべてについて以下の式を使用します(x 軸について例示)。

$$\Delta \Theta_{x,nD} = \frac{1}{2 \times f_S} \times \sum_{d=0}^{D-1} \left(\omega_{x,nD+d} + \omega_{x,nD+d-1} \right)$$

ここで

x は x 軸、

nはデシメーション・フィルタ前のサンプル時間、

Dはデシメーション・レート (DEC_RATE + 1、表 109 参照)、 f_s はサンプル・レート、

d は総和公式の増分変数、

 ω_x はx軸回りの回転速度(ジャイロ・センサー)です。

内部サンプル・クロックを使用する場合、fs の公称値は 2000 SPS です。この測定をより高精度に行うためには、DR ピ ンのデータ・レディ信号を使用して内部サンプル・レート (fs)を測定し(DEC_RATE = 0x0000、表 108 参照)、このデ ータ・レディ周波数で(角度変化出力レジスタからの)角度変 化結果を除し、それに 2000 を乗じます。角度変化測定時は、各 軸につき 2 つの出力データ・レジスタを使用します。x 軸の角 度変化測定において、これら 2 つのレジスタを組み合わせて 32 ビットの 2 の補数データ・フォーマットを構成する方法を、図 34 に示します。このフォーマットはy 軸とz 軸にもあてはまりま す。

X_DE	LTANG_OUT	X_DELTANG_L	.ow
BIT 15	BIT 0	BIT 15	BIT 0
\backslash	X-AXIS DELI	A ANGLE DATA	

図 34. 角度変化出力のデータ構造

角度変化の測定範囲

表 47 に、ADIS16467 の各モデルの測定範囲とスケール・ファク タを示します。

Model	Measurement Range, $\pm \Delta \theta_{MAX}$ (°)
ADIS16467-1BMLZ	±360
ADIS16467-2BMLZ	±720
ADIS16467-3BMLZ	±2160

x 軸角度変化(X_DELTANG_LOW および X_DELTANG_OUT)

表 48. X_DELTANG_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup		
0x24, 0x25	Not applicable	R	No		

衣 49. A_DELTANG_LOW のビット定義		
Bits	Description	
[15:0]	x 軸角度変化データ、下位ワード	

表 50. X_DELTANG_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x26, 0x27	Not applicable	R	No

表 51. X_DELTANG_OUT のビット定義

Bits	Description
[15:0]	x 軸角度変化データ、2 の補数、0°=0x0000、1 LSB =
	Δθ _{MAX} /2 ¹⁵ (Δθ _{MAX} については表 47 参照)

X_DELTANG_LOW レジスタ (表 48 と表 49 を参照) と X_DELTANG_OUT レジスタ (表 50 と表 51 を参照) には、x 軸の角度変化データが格納されます。

y 軸角度変化(Y_DELTANG_LOW および Y_DELTANG_OUT)

表 52. Y DELTANG LOW のレジスタ定義

	_		
Addresses	Default	Access	Flash Backup
0x28, 0x29	Not applicable	R	No

表 53. Y_	_DELTANG_LOW のビット定義
Bits	Description
[15:0]	y 軸角度変化データ、下位ワード

表 54. Y_DELTANG_OUT のレジスタ定義					
Addresses Default Access Flash Backup					
0x2A, 0x2B	Not applicable	R	No		

表 55. Y_DELTANG_OUT のビット定義

Bits Description

[15:0]	y 軸角度変化データ、2 の補数、0°=0x0000、	1 LSB =
	Δθ _{MAX} /2 ¹⁵ (Δθ _{MAX} については表 47 参照)	

Y_DELTANG_LOW レジスタ (表 52 と表 53 を参照) と Y_DELTANG_OUT レジスタ (表 54 と表 55 を参照) には、y 軸の角度変化データが格納されます。

z 軸角度変化(Z_DELTANG_LOW および Z_DELTANG_OUT)

主 56 7			のレジフタ完美	
衣 30. 乙	DELIANG	LOVV	のレンスダ正我	

Addresse	s	Default	Access	Flash Backup
0x2C, 0x2D Not		Not applicable	R	No
 表 57. Z_DELTANG_LOW のビット定義				
Bits	Desc	cription		

[15:0]	z 軸角度変化データ、	下位ワード
--------	-------------	-------

_ _ _

ADIS16467

表 58. Z_DELTANG_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x2E, 0x2F	Not applicable	R	No

表 59. Z_DELTANG_OUT のビット定義			
Bits	Description		
[15:0]	z 軸角度変化データ、2 の補数、0°=0x0000、1 LSB =		
	$\Delta \theta_{MAX}/2^{15}$ ($\Delta \theta_{MAX}$ については表 47 参照)		

Z_DELTANG_LOW レジスタ(表 56 と表 57 を参照)と Z_DELTANG_OUT レジスタ(表 58 と表 59 を参照)には、z 軸 の角度変化データが格納されます。

角度変化の分解能

16 ビットと 32 ビットの角度変化データのフォーマットを示す さまざまな数値の例を、表 60 と表 61 に示します。

表 60.16 ビット角度変化データのフォーマット例

Delta Angle (°)	Decimal	Hex.	Binary
$\Delta\theta_{MAX}\!\times\!(2^{15}\!\!-\!\!1)\!/2^{15}$	+32,767	0x7FFF	0111 1111 1110 1111
$+\Delta \theta_{MAX}/2^{14}$	+2	0x0002	0000 0000 0000 0010
$+\Delta \theta_{MAX}/2^{15}$	+1	0x0001	0000 0000 0000 0001
0	0	0x0000	0000 0000 0000 0000
$-\Delta \theta_{MAX}/2^{15}$	-1	0xFFFF	1111 1111 1111 1111
$-\Delta \theta_{MAX}/2^{14}$	-2	0xFFFE	1111 1111 1111 1110
$-\Delta \theta_{MAX}$	-32,768	0x8000	1000 0000 0000 0000

表 61.32 ビット角度変化データのフォーマット例

Delta Angle (°)	Decimal	Hex.
$+\Delta \theta_{MAX} \times (2^{31} - 1)/2^{31}$	+2,147,483,647	0x7FFFFFFF
$+\Delta \theta_{MAX}/2^{30}$	+2	0x00000002
$+\Delta\theta_{MAX}/2^{31}$	+1	0x00000001
0	0	0x00000000
$-\Delta \theta_{MAX}/2^{31}$	-1	0xFFFFFFFF
$-\Delta \theta_{MAX}/2^{30}$	-2	0xFFFFFFFE
$-\Delta \theta_{MAX}$	-2,147,483,648	0x80000000

速度変化

各軸 (x、y、z) に沿った直線加速度の測定値に加えて、 ADIS16467 はサンプル更新ごとの直線速度測定値の変化も計算 します。

図 35.速度変化の軸と極性割り当て

速度変化出力は加速度測定値の積分値を表し、3 つの軸すべて について以下の式を使用します(x軸について例示)。

$$\Delta V_{x,nD} = \frac{1}{2 \times f_S} \times \sum_{d=0}^{D-1} \left(a_{x,nD+d} + a_{x,nD+d-1} \right)$$

ここで

xはx軸、

nはデシメーション・フィルタ前のサンプル時間、

Dはデシメーション・レート(DEC_RATE + 1、表 109 参照)、 f_s はサンプル・レート、

d は総和公式の増分変数、

*a_x*は x 軸加速度です。

内部サンプル・クロックを使用する場合、fs の公称値は 2000 SPS です。この測定をより高精度に行うためには、DR ピ ンのデータ・レディ信号を使用して内部サンプル・レート (fs)を測定し(DEC_RATE = 0x0000、表 108 参照)、このデ ータ・レディ周波数で(角度変化出力レジスタからの)角度変 化結果を除し、それに2000を乗じます。速度変化測定時は、各 軸につき2つの出力データ・レジスタを使用します。x 軸の速 度変化測定において、これら2つのレジスタを組み合わせて32 ビットの2の補数データ・フォーマットを構成する方法を、図 36に示します。このフォーマットは y 軸と z 軸にもあてはまり ます。

図 36. 速度変化出力のデータ構造

x 軸速度変化(X_DELTVEL_LOW および X_DELTVEL_OUT)

Addresses		Default	Access	Flash Backup
0x30, 0x31		Not applicable	R	No
表 63. X_DELTVEL_LOW のビット			·定義	
Bits	Description			
[15:0]	x 軸速度変化データ、追加分解能ビット			Ъ

表 64. X_DELTVEL_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x32, 0x33	Not applicable	R	No
	11		

表 65. X_DELTVEI	OUT のビッ	ト定義
-----------------	---------	-----

Bits	Description
[15:0]	x 軸速度変化データ、2 の補数、範囲 ±400 m/sec、0 m/sec
	= $0x0000$, 1 LSB = 400 m/sec $\div 2^{15} = \$0.01221$ m/sec

X_DELTVEL_LOW レジスタ(表 62 と表 63 を参照)と X_DELTVEL_OUT レジスタ(表 64 と表 65 を参照)には、x 軸 の速度変化データが格納されます。

y 軸速度変化(Y_DELTVEL_LOW および Y_DELTVEL_OUT)

表 60	6. Y	DELT	VEL I	LOW	のレ	ジア	くタ	定義
------	------	------	-------	-----	----	----	----	----

Addresses	Default	Access	Flash Backup
0x34, 0x35	Not applicable	R	No

表 67. Y_	_DELTVEL_LOW のビット定義
Bits	Description

[15:0] y 軸速度変化データ、追加分解能ビッ	・ト
---------------------------	----

表 68. Y_DELTVEL_OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x36, 0x37	Not applicable	R	No

表 69. Y_DELTVEL_OUT のビット定義

Bits	Description
[15:0]	y 軸速度変化データ、2 の補数、範囲 ±400 m/sec、0 m/sec =
	$0x0000$, 1 LSB = 400 m/sec $\div 2^{15} = 300000$ m/sec

Y_DELTVEL_LOW レジスタ(表 66 と表 67 を参照)と Y_DELTVEL_OUT レジスタ(表 68 と表 69 を参照)には、y軸 の速度変化データが格納されます。

z 軸速度変化(Z_DELTVEL_LOW および Z_DELTVEL_OUT)

表 70. Z_DELTVEL_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup
0x38, 0x39	Not applicable	R	No

表 71. Z_DELTVEL_LOW のビット定義				
Bits	Description			
[15:0]	z 軸速度変化データ、追加分解能ビット			

表 72. Z DELTVEL OUT のレジスタ定義

Addresses	Default	Access	Flash Backup
0x3A, 0x3B	Not applicable	R	No

表 73. Z_DELTVEL_OUT のビット定義				
Bits	Description			
[15:0]	15:0] z 軸速度変化データ、2 の補数、範囲 ±400 m/sec、0 m/sec = 0x0000、1 LSB = 400 m/sec ÷ 2 ¹⁵ = 約 0.01221 m/sec			

Z_DELTVEL_LOW レジスタ(表 70 と表 71 を参照)と Z_DELTVEL_OUT レジスタ(表 72 と表 73 を参照)には、z 軸 の速度変化データが格納されます。

ADIS16467

速度変化の分解能

16 ビットと 32 ビットの速度変化データのフォーマットを示す さまざまな数値の例を、表 74 と表 75 に示します。

表 74. 16 ビッ	ト速度変化デー	・タのフォーᅕ	マツ	ト例
-------------	---------	---------	----	----

Velocity (m/sec)	Decimal	Hex.	Binary
$+400 \times (2^{15} - 1)/2^{15}$	+32,767	0x7FFF	0111 1111 1111 1111
$+400/2^{14}$	+2	0x0002	0000 0000 0000 0010
$+400/2^{15}$	+1	0x0001	0000 0000 0000 0001
0	0	0x0000	0000 0000 0000 0000
$-400/2^{15}$	-1	0xFFFF	1111 1111 1111 1111
$-400/2^{14}$	-2	0xFFFE	1111 1111 1111 1110
-400	-32,768	0x8000	1000 0000 0000 0000

表 75. 32 ビット速度変化データのフォーマット例

Velocity (m/sec)	Decimal	Hex.	
$+400 \times (2^{31} - 1)/2^{31}$	+2,147,483,647	0x7FFFFFFF	
$+400/2^{30}$	+2	0x0000002	
$+400/2^{31}$	+1	0x00000001	
0	0	0x00000000	
$-400/2^{31}$	-1	0xFFFFFFFF	
$-400/2^{30}$	-2	0xFFFFFFFE	
-400	+2,147,483,648	0x80000000	

キャリブレーション

各慣性センサー(加速度センサーとジャイロ・センサー)のシ グナル・チェーンには固有の補正式が使われていますが、これ らの式は、-40 ℃ ~ +85 ℃ の温度範囲で個々の ADIS16467 に 対し、バイアス、感度、アラインメント、直線加速度に対する 応答(ジャイロ・センサー)、振動ポイント(加速センサーの 位置)など広範な特性評価を行うことによって得られたもので す。これらの補正式自体にはアクセスできませんが、ユーザ・ アクセス可能なレジスタを通じて、各センサーのバイアスを個 別に調整することができます。これらの補正係数は、工場で導 出されたシグナル・チェーンの補正式にそのまま従っており、 内部サンプル・クロック使用時には 2000 Hz のレートで処理を行 います。

キャリブレーション、ジャイロ・センサーのバイアス (XG_BIAS_LOW および XG_BIAS_HIGH)

表 76. XG_BIAS_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup
0x40, 0x41	0x0000	R/W	Yes

表 77. X	3_BIAS_LOW のビット定義	

Bits	Description	
[15:0]	x 軸ジャイロ・センサーのオフセット補正、	下位ワード

+ =	2/0	D 140		~ · · · · -	L _L _L
表 78.	XG	BIAS	HIGH	のレシス	タア義

Addresses	Default	Access	Flash Backup
0x42, 0x43	0x0000	R/W	Yes

表 79. XG_BIAS_HIGH のビット定義

Bits	Description
[15:0]	x軸ジャイロ・センサーのオフセット補正係数、上位ワー

XG_BIAS_LOW レジスタ(表 76 と表 77 を参照)と XG_BIAS_HIGH レジスタ(表 78 と表 79 を参照)を組み合わせる と、x軸ジャイロ・センサーのバイアスを調整できます。表 12 の データ・フォーマット例は XG_BIAS_HIGH レジスタにも適用さ れ、表 13 のデータ・フォーマット例は、XG_BIAS_LOW レジ スタと XG_BIAS_HIGH レジスタを組み合わせて得られる 32 ビ ット数に適用されます。これら 2 つのレジスタの組み合わせ方 法と x 軸ジャイロ・センサー測定への影響については、図 37 を 参照してください。

図 37. ジャイロ・センサーのユーザ・キャリブレーション信号パス

キャリブレーション、ジャイロ・センサーのバイアス (YG_BIAS_LOW および YG_BIAS_HIGH)

表 80. YG_BIAS_LOW のレジスタ定義

Addresses		Default	Access	Flash Backup
0x44, 0x45		0x0000	R/W	Yes
Bits	Descripti	on		
[15:0]	y 軸ジャ	イロ・センサー	・のオフセット	補正、下位ワード
表 82. `	YG_BIAS	_HIGH のレジ	スタ定義	
Addresses		Default	Access	Flash Backup
0x46, 0x47		0x0000	R/W	Yes
表 83. `	 表 83. YG_BIAS_HIGH のビット定義			
Bits	lits Description			
[15:0]	y軸ジャイロ・センサーのオフセット補正係数、上位ワー ド			

YG_BIAS_LOW レジスタ (表 80 と表 81 を参照) と YG_BIAS_HIGH レジスタ (表 82 と表 83 を参照) を組み合わせる と、y軸ジャイロ・センサーのバイアスを調整できます。表 12 の データ・フォーマット例は YG_BIAS_HIGH レジスタにも適用さ れ、表 13 のデータ・フォーマット例は、YG_BIAS_LOW レジ スタと YG_BIAS_HIGH レジスタを組み合わせて得られる 32 ビ ット数に適用されます。このレジスタは、XG_BIAS_LOW レジ スタと XG_BIAS_HIGH レジスタが x 軸のジャイロ・センサー 測定値に影響を与えるのと同様に、y 軸のジャイロ・センサー 測定値に影響を与えます (図 37 参照)。

キャリブレーション、ジャイロ・センサーのバイアス (ZG_BIAS_LOW および ZG_BIAS_HIGH)

表 84. ZG BIAS LOW のレジスタ定義

		-		
Addresses		Default	Access	Flash Backup
0x48, 0x49		0x0000	R/W	Yes
表 85. ZG_BIAS_LOW のビット定義				
Bits Description		on		
[15:0]	z軸ジャイロ・センサーのオフセット補正、下位ワード			補正、下位ワード
 表 86. ZG_BIAS_HIGH のレジスタ定義				
Addresses		Default	Access	Flash Backup
0x4A, 0x4B		0x0000	R/W	Yes

ADIS16467

表 87. ZG_BIAS_HIGH のビット定義

Bits	Description	
[15:0]	z軸ジャイロ・センサーのオフセット補正係数、	上位ワー
	К	

ZG_BIAS_LOW レジスタ (表 84 と表 85 を参照) と ZG_BIAS_HIGH レジスタ (表 86 と表 87 を参照) を組み合わせ ると、z 軸ジャイロ・センサーのバイアスを調整できます。表 12 のデータ・フォーマット例は ZG_BIAS_HIGH レジスタにも 適用され、表 13 のデータ・フォーマット例は、ZG_BIAS_LOW レジスタと ZG_BIAS_HIGH レジスタを組み合わせて得られる 32 ビット数に適用されます。このレジスタは、XG_BIAS_LOW レジスタと XG_BIAS_HIGH レジスタが x 軸のジャイロ・セン サー測定値に影響を与えるのと同様に、z 軸のジャイロ・セン サー測定値に影響を与えます (図 37 参照)。

キャリブレーション、加速度センサーのバイアス (XA_BIAS_LOW および XA_BIAS_HIGH)

± 00	V۸	DIAC		ωı	. 22.7	カウ羊
र ठ ठ.	AA.	BIAS	LOVV	0ν	シス	ツァ飛

Addresses	Default	Access	Flash Backup	
0x4C, 0x4D	0x0000	R/W	Yes	

表 89. XA_BIAS_LOW のビット定義			
Bits	Description		
[15:0]	x 軸加速度センサーのオフセット補正、下位ワード		

表 90. XA_E	BIAS_HIGH	のレジスタ定	義
------------	-----------	--------	---

Addresses	Default	Access	Flash Backup
0x4E, 0x4F	0x0000	R/W	Yes

表 91. XA_BIAS_HIGH のビット定義

Bits	Description
[15:0]	x 軸加速度センサーのオフセット補正、上位ワード

XA_BIAS_LOW レジスタ (表 88 と表 89 を参照) と XA_BIAS_HIGH レジスタ (表 90 と表 91 を参照) を組み合わせ ると、x 軸加速度センサーのバイアスを調整できます。表 26 の データ・フォーマット例は XA_BIAS_HIGH レジスタにも適用 され、表 27 のデータ・フォーマット例は、XA_BIAS_LOW レ ジスタと XA_BIAS_HIGH レジスタを組み合わせて得られる 32 ビット数に適用されます。これら 2 つのレジスタの組み合わせ 方法と x 軸加速度センサー測定への影響については、図 38 を参 照してください。

図 38. 加速度センサーのユーザ・キャリブレーション信号パス

キャリブレーション、加速度センサーのバイアス (YA_BIAS_LOW および YA_BIAS_HIGH)

表 92. YA_BIAS_L	DW のレジスタ定義
-----------------	------------

Addresse	esses Default Access Flash Backup		Flash Backup	
0x50, 0x51 0x0000 R/W Yes		Yes		
表 93. YA_BIAS_LOW のビット定義				
Bits Description				
[15:0]	01 v軸加速度センサー・オフセット補正、下位ワード			

表 94. YA_BIAS_HIGH のレジスタ定義

Addresses	Default Access Flash Backup			
0x52, 0x53	0x0000	R/W	Yes	

表 95. YA_BIAS_HIGH のビット定義		
Bits	Description	
[15:0]	y 軸加速度センサー・オフセット補正、上位ワード	

YA_BIAS_LOW レジスタ (表 92 と表 93 を参照) と YA_BIAS_HIGH レジスタ (表 94 と表 95 を参照) を組み合わせ ると、y 軸加速度センサーのバイアスを調整できます。表 26 の データ・フォーマット例は YA_BIAS_HIGH レジスタにも適用 され、表 27 のデータ・フォーマット例は、YA_BIAS_LOW レ ジスタと YA_BIAS_HIGH レジスタを組み合わせて得られる 32 ビット数に適用されます。このレジスタは、XA_BIAS_LOW レ ジスタと XA_BIAS_HIGH レジスタが x 軸の加速度センサー測 定値に影響を与えるのと同様に、y 軸の加速度センサー測定値 に影響を与えます (図 38 参照)。

キャリブレーション、加速度センサーのバイアス (ZA_BIAS_LOW および ZA_BIAS_HIGH)

表 96. ZA_BIAS_LOW のレジスタ定義

Addresses	Default	Access	Flash Backup
0x54, 0x55	0x0000	R/W	Yes

表 97. ZA_BIAS_LOW のビット定義

Bits	Description
[15:0]	z 軸加速度センサーのオフセット補正、下位ワード
= 00	

表 98. ZA_BIAS_HIGH のレンスタ定義				
Addresses	Default	Access	Flash Backup	
0x56.0x57	0x0000	R/W	Yes	

表 99. ZA_BIAS_HIGH のビット定義

Bits Description

[15:0]	z軸加速度センサーのオフセット補正、上位ワード	

ZA_BIAS_LOW レジスタ (表 96 と表 97 を参照) と ZA_BIAS_HIGH レジスタ (表 98 と表 99 を参照) を組み合わせ ると、z 軸加速度センサーのバイアスを調整できます。表 26 の データ・フォーマット例は ZA_BIAS_HIGH レジスタにも適用 され、表 27 のデータ・フォーマット例は、ZA_BIAS_LOW レ ジスタと ZA_BIAS_HIGH レジスタを組み合わせて得られる 32 ビット数に適用されます。このレジスタは、XA_BIAS_LOW レ ジスタと XA_BIAS_HIGH レジスタが x 軸の加速度センサー測 定値に影響を与えるのと同様に、z 軸の加速度センサー測定値 に影響を与えます (図 38 参照)。

フィルタ制御レジスタ(FILT_CTRL)

表 100. FILT_CTRL のレジスタ定義

Addresses	Default	Access	Flash Backup
0x5C, 0x5D	0x0000	R/W	Yes

表 101. FILT_CTRL のビット定義

Bits	Description
[15:3]	未使用
[2:0]	フィルタ・サイズ変数 B、各段のタップ数、N=2 ^B

ADIS16467

FILT_CTRL レジスタ (表 100 と表 101 を参照) によって、2 個 の直列接続された平均化フィルタで構成されるバートレット・ ウィンドウ FIR フィルタ (図 15 参照) のユーザ制御が可能とな ります。例えば、0xCC04、続いて 0xCD00 というシーケンスを 使用して、FILT_CTRL レジスタのビット [2:0] を 0100 に設定 します。これによって各段のタップ数は 16 となります。図 39 に、FILT_CTRL レジスタのさまざまな設定に対する周波数応答 を示します。

(位相遅延 = N サンプル)

範囲識別子(RANG_MDL)

表 102. RANG_MDL	のレジス	タ定義
-----------------	------	-----

Addresses	Default	Access	Flash Backup
0x5E, 0x5F	Not applicable	R	No

表 103. F	RANG_MDL のビット定義
Bits	Description
[15:3]	未使用
[3:2]	ジャイロ・センサーの測定範囲
	$00 = \pm 125^{\circ}/\text{sec}$ (ADIS16467-1BMLZ)
	$01 = \pm 500^{\circ}/\text{sec}$ (ADIS16467-2BMLZ)
	10 = 予備
	$11 = \pm 2000^{\circ}/\text{sec}$ (ADIS16467-3BMLZ)
[1:0]	予備、バイナリ値=11

各種制御レジスタ(MSC_CTRL)

表 104. MSC	_CTRL	のレジス	タ定義
------------	-------	------	-----

Addresses	Default	Access	Flash Backup
0x60, 0x61	0x00C1	R/W	Yes

表 105.	MSC_CTRL のビット定義
Bits	Description

Description
未使用
ジャイロ・センサーの直線方向g補償(1=イネーブル)
振動ポイント・アライメント(1=イネーブル)
未使用、常時ゼロに設定
SYNC 機能設定値
111 = 予備(使用不可)
110 = 予備(使用不可)
101 = パルス同期モード

		100 = 予備(使用不可)		
		011 = 出力同期モード		
		010=スケーリング同期モード		
		001 = 直接同期モード		
		000 = 内部クロック・モード(デフォルト)		
_	1	SYNC 極性(入力または出力)		
		1=立上がりエッジでサンプリングをトリガ		
		0=立下がりエッジでサンプリングをトリガ		
_	0	DR 極性		
		1=データが有効時にアクティブ・ハイ		
_		0=データが有効時にアクティブ・ロー		

振動ポイント

MSC_CTRL レジスタのビット 6 (表 105 参照) で、振動ポイン ト・アライメント機能のオン/オフを制御します。この機能は、 加速度センサーを図 40 に示すように、パッケージのコーナーに マッピングするものです。工場出荷時の MSC_CTRL レジスタ のデフォルト設定では、この機能はオンになっています。 MSC_CTRL レジスタの工場出荷時の他のデフォルト設定値を変 更せずにこの機能をオフにするには、0xE081、続いて 0xE100 というコマンド・シーケンスを DIN ピンに使用して、 MSC_CTRL レジスタのビット6を0にします。

図 40. 振動ポイント基準点

直線加速度がジャイロ・センサーのバイアスに 及ぼす影響

MSC_CTRL レジスタのビット7 (表 105 参照) で、ジャイロ・センサーの信号キャリブレーション・ルーチンにおける直線 g 補償 のオン/オフを制御します。工場出荷時の MSC_CTRL レジスタ のデフォルト設定では、この補償はオンになっています。補償 をオフにするには、0xE041、続いて 0xE100 というシーケンス を DIN ピンに使用して、MSC_CTRL レジスタのビット 7 を 0 にします。

内部クロック・モード

MSC_CTRL レジスタのビット [4:2] (表 105 参照)を使用して、クロック (f_{SM} 、図 12 と図 13 を参照)を制御するための5 通りの設定オプションを指定することができます。このクロックにより、慣性センサーのデータ・アクイジションと処理が制御されます。MSC_CTRL レジスタのビット [4:2] のデフォルト設定値は 000 (バイナリ)で、ADIS16467 は内部クロック・モードになっています。このモードでは、慣性センサーのデータ・アクイジションと処理が、内部クロックによって 2000 Hz の公称レートで制御されます。また、このモードでは各加速度センサーのデータが、2 つのデータ・サンプルの平均値を基に更新されます (サンプル・レート=4000 Hz)。

直接同期モード

MSC_CTRL レジスタのビット [4:2] が 001 の場合、ADIS16467 は直接同期モードで動作します。すなわち、SYNC ピンの信号 がサンプル・クロックを直接制御します。このモードでは、内 部プロセッサは、クロック信号の立上がりエッジと立下がりエ ッジで加速度センサーのデータ・サンプルを取得し、次にこれ らを平均して各データ更新を行います。このモードを使用する 場合、入力クロック信号のデューティ・サイクルは 50 % である ことが必要です。

スケーリング同期モード

MSC_CTRL レジスタのビット [4:2] が 010 の場合、ADIS16467 はスケーリング同期モードで動作します。このモードは 1 Hz ~ 128 Hz の周波数範囲にある SYNC ピンのクロック信号に対応し ます。この動作モードは、グローバル・ポジショニング・シス テム (GPS) レシーバーからの PPS 信号やビデオ処理システム からの同期信号にデータ処理を同期させる場合に、特に有効で す。スケーリング同期モードで動作する場合、サンプル・クロッ クの周波数は、外部クロックのスケール・ファクタ KECSF (UP_SCALE レジスタから取得、表 106 と表 107 を参照) と SYNC ピンのクロック信号の周波数との積に等しくなります。

例えば、1 Hz の入力信号を使用する場合、慣性センサーとその 信号処理のサンプル・レートを 2000 SPS とするには、 UP_SCALE レジスタを 0x07D0 ($K_{ECSF} = 2000$ (十進数))に設 定します。UP_SCALE をこのように設定するには、DIN ピンの シーケンスを 0xE2D0、続いて 0xE307 とします。

表 106. UP_SCALE のレジスタ定義

Addresses		Default	Access	Flash Backup
0x62, 0x63		0x07D0	R/W	Yes
 表 107. UP_SCALE のビット定義				
Bits	Descrit	otion		

[15:0]	K _{ECSF} 、バイナリ形式
Dito	Description

出力同期モード

MSC_CTRL レジスタのビット [4:2] が 011 の場合、ADIS16467 は出力同期モードで動作します。このモードは、1 つの例外を 除き内部クロック・モードと同じものです。例外は、内部プロ セッサが慣性センサーからのデータを収集する場合、SINC 出力 がパルスとなることです。この信号例を図 41 に示します。

図 41. 同期出力信号、MSC_CTRL レジスタのビット [4:2] = 011

パルス同期モード

パルス同期モード (MSC_CTRL レジスタのビット [4:2] が 101) で動作する場合、内部プロセッサは、クロック信号の立上 がりエッジで加速度センサーのサンプルを収集するだけです。 このため、SYNC ピンのクロック信号に狭いパルス幅(表 2 参 照)を使用できるようになります。また、パルス同期モードを 使用すると、慣性センサーの帯域幅を 370 Hz に下げることもで きます。

デシメーション・フィルタ(DEC_RATE)

表 108. DEC RATE のレジスタ定義

A TOOLDEO_TOTIE OF FILE A			
Addresses	Default	Access	Flash Backup
0x64, 0x65	0x0000	R/W	Yes

表 109. DEC_RATE のビット定義

Bits	Description
[15:11]	ドントケア。
[10:0]	デシメーション・レート、バイナリ形式、最大値=1999

DEC_RATE レジスタ (表 108 と表 109 を参照) は、平均化デシ メーション・フィルタのユーザ制御を可能にします。このフィ ルタは、加速度センサーとジャイロ・センサーのデータの平均 化とデシメーションを行うのに加え、更新ごとの角度変化と速 度変化の追跡時間の延長も行います。ADIS16467 が内部クロッ ク・モード (MSC_CTRL レジスタのビット [4:2] 、表 105 参 照) で動作する場合、出力データ・レートの公称値は 2000/(DEC_RATE + 1) に等しくなります。例えば、出力サンプ ル・レートを 100 SPS (2000 ÷ 20) に減らすためには、 DEC_RATE = 0x0013 と設定します。このとき使用する DIN ピ ンのシーケンスは 0xE413、続いて 0xE500 です。

外部同期モードのデータ更新レート

入力の同期オプションを使用する場合、スケーリング同期モード(MSC_CTRL レジスタのビット [4:2] = 010、表 105 参照)では出力データ・レートは次式に等しくなります。

 $(f_{SYNC} \times K_{ECSF})/(DEC_RATE + 1)$

ここで

fsyncはSYNC ピンのクロック信号の周波数、

KESCF は UP_SCALE レジスタ(表 107 参照)の値です。

直接同期モードとパルス同期モードを使用する場合は、KESCF = 1です。

連続バイアス予測(NULL_CNFG)

表 110. NULL_CNFG のレジスタ定義			
Addresses	Default	Access	Flash Backup
0x66, 0x67	0x070A	R/W	Yes

表 111.	表 111. NULL_CNFG のビット定義		
Bits	Description		
[15:14]	未使用		
13	z 軸加速度センサー・バイアス補正イネーブル(1=イネー ブル)		
12	y 軸加速度センサー・バイアス補正イネーブル(1=イネー ブル)		
11	x 軸加速度センサー・バイアス補正イネーブル(1=イネー ブル)		
10	z 軸ジャイロ・センサー・バイアス補正イネーブル(1 = イネーブル)		
9	y 軸ジャイロ・センサー・バイアス補正イネーブル(1 = イネーブル)		
8	x 軸ジャイロ・センサー・バイアス補正イネーブル(1 = イネーブル)		
[7:4]	未使用		
[3:0]	時間ベース制御(TBC)、範囲: $0 \sim 12$ (デフォルト=10)、 $t_B = 2^{TBC}/2000$ (時間ベース)、 $t_A = 64 \times t_B$ (平均時間)		

NULL_CNFG レジスタ(表 110 と表 111 を参照)は、連続バイ アス予測(CBE)の設定を制御します。この CBE は、 GLOB_CMD レジスタのビット[0](表 113 参照)内のバイア

ス補正更新コマンドに関連付けられているものです。 NULL_CNFG レジスタのビット [3:0] はバイアス予測のための 合計平均時間(t_A)を設定し、NULL_CNFG レジスタのビット [13:8] は各センサーのオン/オフを制御します。NULL_CNFG レジスタの工場出荷時のデフォルト設定では、ジャイロ・セン サー用のバイアス・ヌル・コマンドはイネーブルに、加速度セ ンサー用のバイアス・ヌル・コマンドはディスエーブルになっ ており、平均時間は約32秒に設定されています。

グローバル・コマンド(GLOB_CMD)

表 112. GLOB_CMD のレジスタ定義

-					
	Addresses	Default	Access	Flash Backup	
	0x68, 0x69	Not applicable	W	No	

表 113. GLOB_CMD のビット定義			
Bits	Description		
[15:8]	未使用		
7	ソフトウェア・リセット		
[6:5]	未使用		
4	フラッシュ・メモリ・テスト		
3	フラッシュ・メモリの更新		
2	センサー・セルフ・テスト		
1	工場出荷時のキャリブレーション値の復元		
0	バイアス補正の更新		

GLOB_CMD レジスタ (表 112 と表 113 を参照) は、各種動作 のトリガ・ビットを出力します。特定の機能を開始させるには、 GLOB_CMD の該当ビットに 1 を書き込んでください。これら のコマンドが実行されている間、データの生成は停止し、DR ピンのパルス出力も停止し、SPI インターフェースは要求に応 答しません。表 1 に各 GLOB_CMD コマンドの実行時間を示し ます。

ソフトウェア・リセット

トリガをリセットするには、GLOB_CMD レジスタのビット 7 を1に設定します。使用する DIN シーケンスは、0xE880、続い て 0xE900 です。このリセットによりすべてのデータがクリア され、データ<u>のサ</u>ンプリングと処理が再起動されます。この機 能によって、RST ピン(表 5 のピン 8 を参照)のトグルに代わ る方法として、ファームウェアを使用することができます。

フラッシュ・メモリ・テスト

フラッシュ・メモリをテストするには、GLOB_CMD レジスタ のビット4を1に設定します。使用する DIN シーケンスは、 0xE810、続いて 0xE900 です。このコマンドは、フラッシュ・メ モリ上(ユーザ・レジスタの領域は除く)で CRC 演算を実行し、 これを工場出荷時の設定プロセスで得られる元の CRC の値と比 較するものです。現在の CRC が元の CRC と一致しない場合、 DIAG_STAT レジスタのビット6(表 10参照)が1になり、結 果が失敗であることを示します。

フラッシュ・メモリの更新

フラッシュ・メモリにあるすべてのユーザ設定レジスタのバッ クアップをトリガするには、GLOB_CMD レジスタのビット 3 を1に設定します。使用する DIN シーケンスは、0xE808、続い て 0xE900 です。DIAG_STAT レジスタのビット 2 (表 10 参照) は、このプロセスが成功したか(0) 失敗したか(1) を示します。

センサー・セルフ・テスト

慣性センサーのセルフ・テスト・ルーチンをトリガするには、 GLOB_CMD レジスタのビット 2 を 1 に設定します。使用する DIN シーケンスは、0xE804、続いて 0xE900 です。このセルフ・ テスト・ルーチンでは、次の手順に従って各慣性センサーの完全 性を検証します。

- 1. セルフ・テストを行う前の各センサーの出力を測定します。
- 次に、セルフ・テストをアクティブにします。これにより内部の各センサーの機械部品が既知の距離だけ物理的に変位し、センサーに観測可能な応答を生成します。
- 3. 各センサーの出力応答を測定します。
- 4. セルフ・テストを無効にします。
- 5. 手順1(セルフ・テスト:オフ)のセンサー測定値と手順3 (セルフ・テスト:オン)のセンサー測定値の差を計算しま す。
- 6. この差と内部合否基準を比較します。
- 合否結果を DIAG_STAT レジスタのビット5(表 10 参照) に記録します。

このテストの実行中にデバイスを動かすと、誤って故障と判定される場合があります。

工場出荷時のキャリブレーション値の復元

MSC_CTRL、DEC_RATE、FILT_CTRL の各レジスタの工場出 荷時のデフォルト設定値を復元し、ユーザ設定可能なすべての バイアス補正設定値をクリアするには、GLOB_CMD レジスタ のビット1を1に設定します。そのために使用する DIN シーケ ンスは、0xE802、続いて 0xE900 です。このコマンドを実行する と、次のレジスタに 0x0000 が書き込まれます: XG_BIAS_LOW、 XG_BIAS_HIGH 、 YG_BIAS_LOW 、 YG_BIAS_HIGH 、 ZG_BIAS_LOW 、 ZG_BIAS_HIGH 、 XA_BIAS_LOW 、 XA_BIAS_HIGH 、 YA_BIAS_LOW 、 YA_BIAS_HIGH 、 ZA_BIAS_LOW、および ZA_BIAS_HIGH。

バイアス補正の更新

CBE (表 111 参照)の補正係数を使用してバイアス補正をトリ ガするには、GLOB_CMD レジスタのビット 0 を 1 に設定しま す。そのために使用する DIN ピンのシーケンスは、0xE801、続 いて 0xE900です。

ファームウェア・レビジョン(FIRM_REV)

表 114. FIRM_REV のレジスタ定義

		-	
Addresses	Default	Access	Flash Backup
0x6C, 0x6D	Not applicable	R	No

表 115. FIRM_REV のビット定義 Bits Description [15:0] ファームウェア・レビジョン、2 進化 10 進数 (BCD) 形式

FIRM_REV レジスタ(表 114 と表 115 を参照)は、内部ファー ムウェアのファームウェア・レビジョンを示します。このレジ スタは BCD フォーマットを使用し、各ニブルが1つの桁を表し ます。例えば、FIRM_REV = 0x0104 の場合のファームウェア・レ ビジョンは 1.04 です。

ファームウェア・レビジョンの月日(FIRM_DM)

表 116. FIRM_DM のレジスタ定義

Addresses	Default	Access	Flash Backup
0x6E, 0x6F	Not applicable	R	No

表 117. FIRM_DM のビット定義

Bits	Description
[15:8]	工場設定の月、BCD 形式
[7:0]	工場設定の日、BCD 形式

FIRM_DM レジスタ (表 116 と表 117 を参照) には、工場設定 日を表す月と日付が格納されます。FIRM_DM レジスタのビッ ト [15:8] には、工場設定の月を示す数字が格納されます。例 えば、11 月は FIRM_DM レジスタのビット [15:8] = 0x11 で表 されます。FIRM_DM レジスタのビット [7:0] には、工場設定 日が格納されます。例えば、27 日は FIRM_DM レジスタのビッ ト [7:0] = 0x27 で表されます。

ファームウェア・レビジョンの年(FIRM_Y)

表 118. FIRM_Y のレジスタ定義

Addresses	Default	Access	Flash Backup
0x70, 0x71	Not applicable	R	No

表 119. FIRM_Y のビット定義				
Bits	Description			
[15:0]	工場設定の年、BCD形式			

FIRM_Y レジスタ (表 118 と表 119 を参照) には、工場設定日 を表す西暦年が格納されます。例えば、2017 年は FIRM_Y = 0x2017 で表されます。

製品 ID (PROD_ID)

Addresses	Default	Access	Flash Backup
0x72, 0x73	0x4053	R	No

表 121. PROD_ID のビット定義			
Bits	Description		
[15:0]	製品 ID = 0x4053		

PROD_ID レジスタ(表 120 と表 121 を参照)には、デバイス番号の数値部分(16,467)が格納されます。このレジスタのループ 読出しを使用して通信の完全性を評価する方法の例については、 図 25 を参照してください。

シリアル番号 (SERIAL_NUM)

表 122. SERIAL_NUM のレジン	スタ定義
------------------------	------

	Address	es	Default	Access	Flash Backup
	0x74, 0x7	75	Not applicable	R	No
	- 表 123. SERIAL_NUM のビット定義				
Bito Description					

BitsDescription[15:0]ロット固有のシリアル番号

スクラッチ・レジスタ(USER_SCR_1 ~ USER_SCR_3)

表 124. USER_SCR_1 のレジスタ定義

Addresses	Default	Access	Flash Backup
0x76, 0x77	Not applicable	R/W	Yes

表 125.	USER_SCR_1 のビット定義
Bits	Description
[15:0]	ユーザ定義

表 126. USER_SCR_2 のレジスタ定義

Addresses Default		Access	Flash Backup	
0x78, 0x79	Not applicable	R/W	Yes	

表 127. USER_SCR_2 のビット定義

Bits	Description
[15:0]	ユーザ定義

表 128. USER_SCR_3 のレジスタ定義

Addresses	Default	Access	Flash Backup
0x7A, 0x7B	Not applicable	R/W	Yes

<u>表 129. USER_SCR_3 のビ</u>ット定義

Bits	Description
[15:0]	ユーザ定義

USER_SCR_1 (表 124 と表 125 を参照)、USER_SCR_2 (表 126 と表 127 を参照)、USER_SCR_3 (表 128 と表 129 を参 照)の各レジスタにより、ユーザが情報を保存できる場所が 3 ヵ所用意されます。情報をこれらのレジスタに書き込んだ後、 不揮発性のストレージに対して、手動のフラッシュ・メモリ更 新コマンド (GLOB_CMD レジスタのビット 3、表 113 参照)を 使用します。

ADIS16467

フラッシュ・メモリ書換え回数カウンタ (FLSHCNT_LOW および FLSHCNT_HIGH)

_ 表 130. FLSHCNT_LOW のレジスタ定義					
Address	ses Default		Access	Flash Backup	
0x7C, 0x	7D	Not applicable	R	No	
 表 131. FLSHCNT_LOW のビット定義					
Bits	Description				
[15:0]	フラッシュ・メモリ書込みカウンタ、下位ワード				
Addresses Default Access Flash Backup					
0x7E, 0x7F Not applicable R No					
表 133. FLSHCNT_HIGH のビット定義					

 Bits
 Description

 [15:0]
 フラッシュ・メモリ書込みカウンタ、上位ワード

FLSHCNT_LOW レジスタ(表 130 と表 131)と FLSHCNT_HIGH レジスタ(表 132 と表 133)は、組み合わさっ て、フラッシュ・メモリの書込みサイクル数を記録する 32 ビッ ト・バイナリ・カウンタを構成します。フラッシュ・メモリは、 書込みサイクル数に加えてサービス寿命も有限で、その長さは ジャンクション温度に依存します。特定のジャンクション温度 においてフラッシュ・メモリのデータ保持寿命を予測するため の指標を、図 42 に示します。ジャンクション温度は、ケース温 度より約7℃高くなっています。

アプリケーション情報 アセンブリとハンドリングのポイント

実装上のポイント

ADIS16467 のパッケージは、3 本の M2 または 2-56 の機械ネジ を使用して、20 インチ・オンス ~ 40 インチ・オンスのトルク で、PCB や固定筐体に実装することができます。ADIS16467 の 機械的インターフェースを設計する際には、電気的コネクタに 不要な並進応力がかからないようにします。この応力がかかる と、慣性センサーのバイアス再現性に影響を与える可能性があ るからです。同じ PCB に接続用コネクタがある場合、実装ネジ 用の貫通穴が必要になる可能性があります。CLM-107-02ファミ リーのコネクタ・タイプの1つを使った PCB パッド設計の詳細 図を図43に示します。

電源に関する考慮事項

ADIS16467 には VDD ピンと GND ピンの間に 6 uF のデカップ リング容量があります。VDD の電圧が0Vから3.3Vに増加す ると、このコンデンサ・バンクに次式で表されるプロファイル の充電電流(単位はアンペア)が発生します。

$$I_{DD}(t) = C \frac{dVDD}{dt} = 6 \times 10^{-6} \times \frac{dVDD(t)}{dt}$$

ここで

IDD(t) は最初の電源立上がり時に VDD ピンに流れる電流値を時 間の関数として表したもの、

*C*は VDD ピンと GND ピン間の内部容量(6µF)

VDD(t) は VDD ピンの電圧を時間の関数として表したものです。

例えば、VDD が 0 V から 3.3 V まで 66 µs かけて一定の割合で 増加する場合、この時間での充電電流は 300 mA となります。 また、ADIS16467 には処理機能が組み込まれており、初期化や リセット復帰動作時に過渡電流が流れます。これらの処理時に は、VDD が 3.0 V に達してから約 40 ms 後(またはリセット・ シーケンスが開始してから約 40 ms 後) に 250 mA のピーク電 流が発生します。

ブレークアウト・ボード

ADIS16IMU4/PCBZ ブレークアウト・ボードは、組み込みプロ セッサ開発システムへの接続をシンプルにするためのリボン・ ケーブル・インターフェースを備えています。このブレークア ウト・ボードの回路図を図 44 に、上面図を図 45 に示します。 J2は ADIS16467のコネクタに直接接続可能で、J1は1mmのリ ボン・ケーブル・システムに容易に接続できます。

図 45. ADIS16IMU4/PCBZ の上面図

	J.	1		
RST	1	2	SCLK	
CS	3	4	DOUT	
DNC	5	6	DIN	
GND	7	8	GND	
GND	9	10	VDD	
VDD	11	12	VDD	
DR	13	14	SYNC	9-046
NC	15	16	NC	1543

図 46. ADIS16IMU4/PCBZ の J1 のピン配置

ADIS16467

PC ベースの評価ツール

ADIS16IMU4/PCBZ は、ADIS16467 を EVAL-ADIS2 評価システムに接続するためのシンプルな方法を提供します。これにより、基本的な機能と性能を PC ベースで評価することができます。 詳細については、EVAL-ADIS2 のウィキ・ガイドを参照してください。

パッケージとオーダー情報

外形寸法

オーダー・ガイド

Model ¹	Temperature Range	Description	Package Option
ADIS16467-1BMLZ	-40°C to +105°C	14-Lead Module with Connector Interface [MODULE]	ML-14-6
ADIS16467-2BMLZ	-40°C to +105°C	14-Lead Module with Connector Interface [MODULE]	ML-14-6
ADIS16467-3BMLZ	-40°C to +105°C	14-Lead Module with Connector Interface [MODULE]	ML-14-6

¹Z = RoHS 準拠製品