

正誤表

この製品のデータシートに間違いがありましたので、お詫びして訂正いたします。 この正誤表は、2023年6月21日現在、アナログ・デバイセズ株式会社で確認した誤りを 記したものです。

なお、英語のデータシート改版時に、これらの誤りが訂正される場合があります。

正誤表作成年月日: 2023年6月21日

製品名: ADIN2299

対象となるデータシートのリビジョン(Rev): Rev.A

訂正箇所:1ページ、左の段(特長の項)

【誤】

最短 1ms のサイクル時間・・・

【正】

最短 0.4ms (ETHERCAT) のサイクル時間・・・

社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル

電話 03 (5402) 8200

大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36

新大阪トラストタワー 電話 06 (6350) 6868

データシート

ADIN2299

第2世代RapIDプラットフォーム(RPG2) ネットワーク・インターフェース

特長

- ▶ 設定化な産業用プロトコル
- ▶ PROFINET RT (クラスB)
- ▶ PROFINET IRT (クラスC) : 計画中
- ▶ DLRによるEtherNet/IP
- ▶ EtherCAT
- ▶ 全てのプロトコルが認定済み
- ▶ 設定可能なアプリケーション・プロセッサ・インターフェース
- ▶ UART : 115,200bps~1,000,000bps
- ▶ イーサネット: 10Mbpsまたは100Mbps
- ▶ SPIフォロワ:最大10MHzのクロック
- ▶ I²C、QSPI、CAN:将来的なオプション
- ▶ IEEE 802.3、10Baseまたは100Baseに準拠した産業用イーサネット・インターフェースによる半二重通信および全二重通信
- ▶ 3.3Vの単電源、840mW
- ▶ 最短1msのサイクル時間(サイクル時間は、プロトコル、リンク・タイプ、アプリケーション・データによって異なる)
- ▶ 194ボール・チップスケール・パッケージBGAのフォーム・ファクタ
- ▶ RoHS3準拠
- ▶ -40℃~+85℃の工業用温度範囲

アプリケーション

- ▶ ファクトリ・オートメーションおよびプロセス・オートメーション
- ▶ モーション・コントロール
- ▶ ビルディング・オートメーション
- ▶ 運輸

概要

ADIN2299は、アプリケーション・プロセッサのために産業用プロトコルおよびネットワーク・トラフィックを管理する、事前テスト済みの全機能内蔵型ソリューションです。

モジュールには、EtherCAT、PROFINET®リアルタイム(RT)およびアイソクロナス・リアルタイム(IRT)、EtherNet/IPネットワークを利用するために必要な機能が、通信コントローラ、プロトコル・スタック、フラッシュ・メモリ、RAM、フォロワ・コントローラ、物理層(PHY)などを含め、全て搭載されています。アプリケーション・プロセッサは、ユニバーサル非同期レシーバー・トランスミッタ(UART)、シリアル・ペリフェラル・インターフェース(SPI)、あるいはイーサネット・インターフェースを介して接続されます。

ソフトウェア層では、アプリケーション・プロセッサは統合インターフェースに接続しているため、アプリケーション・プロセッサのソフトウェアを変更することなく、サポートされている産業用プロトコルを使用できます。ADIN2299プラットフォームは、サポートされている産業用イーサネット・ネットワークのいずれにおいてもフィールド・デバイスが動作できることが認定されています。

製品のハイライト

- 1. マルチプロトコル対応
- 2. 組み込みアプリケーションに適した小型形状
- 3. 低消費電力および低遅延
- 4. PROFINET Netload Class 3合格を確実にする堅牢なネットワーク・ポリシング

<u>データシート</u> **目次**

ADIN2299

特長	1
アプリケーション	1
概要	1
製品のハイライト	1
機能ブロック図	3
仕様	4
電気的特性	4
プロトコル固有の特性	4
タイミング特性	5
絶対最大定格	8
静電放電(ESD)定格	8
ECDに関する注音	Q

ピン配置とピン機能の説明	9
動作原理	13
産業用イーサネット接続	14
アプリケーション・プロセッサ・インターフェース	14
産業用イーサネットのMOD LEDおよびNET LED	18
プログラミング	18
アプリケーション回路サポート回路	18
リフロー・プロファイル	19
代表的なアプリケーション回路	20
外形寸法	21
オーダー・ガイド	21
新年中央 16	21

改訂履歴

9/2022—Rev. 0 to Rev. A

Changes to Figure 6 and Table 9	9
Changes to Ordering Guide	21

4/2022-Revision 0: Initial Version

analog.com.jp

機能ブロック図

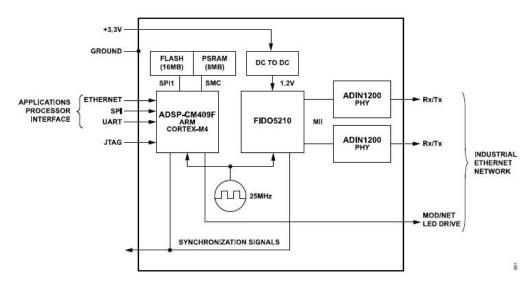


図 1.

analog.com.jp Rev. A | 3 / 21

仕様

特に指定のない限り、電源電圧(V_{DD}) = 3.3V ± 5%、GND = 0V、全ての仕様は T_A = -40 $^{\circ}$ C \sim +85 $^{\circ}$ C での値。

電気的特性

表 1.

パラメータ	最小値	代表值	最大値	単位	テスト条件/コメント
POWER CONSUMPTION					
Supply Current 100Base-TX, Static		172		mA	T _A =25℃、アイドル状態
Power 100Base-TX, Static		568		mW	T _A = 25℃、アイドル状態、発光ダイオード(LED)の シンク電流およびソース電流は含まず
Supply Current 100Base-TX, Full Activity ¹		225		mA	$T_A = 25$ [°] C、 100 %データ・スループット、フル・アクティブ
Power 100Base-TX, Full Activity ¹		743		mW	T _A =25℃、100%データ・スループット、フル・アクティブ、LEDのシンク電流およびソース電流は含まず
DIGITAL INPUTS AND OUTPUTS					
3.3 V Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) Input Voltage					
$Low(V_{IL})$			0.8	V	
High (V _{IH})	2.0			V	
Output Voltage					
Low (V _{OL})			0.4	V	出力ロー電流(I_{OL}) = $2mA$ (最小値)
$High(V_{OH})$	2.4			V	出力ハイ電流 (I _{OH}) = 2mA (最小値)
LED OUTPUTS					
Output Drive Current	4			mA	シンク電流、MOD_LED1、MOD_LED2、NET_LED1、 NET_LED2に適用されます
	8			mA	シンク電流、PI_ACTIVITY、P2_ACTIVITY、 PI_LINK_STATUS、P2_LINK_STATUS、に適用されます

¹ 設計および特性評価により裏付けられています。

プロトコル固有の特性

表 2.

パラメータ	最小値	代表值	最大値	単位	テスト条件/コメント
BRIDGE DELAY					スイッチおよびPHYの遅延を含む。シミュレーションによる結果。
EtherCAT ¹		1		μs	
EtherNet/IP		3		μs	
PROFINET RT		2		μs	
ETHERCAT					
Cyclic Input and Output Data ²			1440	Bytes	最大1440バイトをサポート可能です。
Cycle Time		0.4		ms	このテストでは8バイトの出力データと6バイトの入力データを使用しました。イーサネット・アプリケーション・プロセッサ・インターフェース。
ETHERNET/IP					
Cyclic Input and Output Data ²			504	Bytes	接続を複数にすることで、巡回入出力データは最大1440バイトまで増やせます。
Packet Interval	2			ms	
Beacon Interval	0.2		1000	ms	
Cycle Time		1		ms	このテストでは64バイトの巡回出力データと64バイトの巡回入力データを使用しました。イーサネット・アプリケーション・プロセッサ・インターフェース。

analog.com.jp Rev. A | 4 / 21

仕様

表 2.

パラメータ	最小値	代表値	最大値	単位	テスト条件/コメント
PROFINET RT					
Cyclic Input and Output Data ²			1440	Bytes	
Cycle Time		1		ms	8バイトの巡回入出力データ。イーサネット・アプリ
					ケーション・プロセッサ・インターフェース。

- 1 設計および特性評価により裏付けられています。
- 2 サイクル時間はプロトコル、リンク・タイプ、アプリケーション・データによって異なります。

タイミング特性

10Mbpsおよび100MbpsイーサネットMACインターフェースのタイミング

表3~表5および図2~図4で、イーサネットMACアプリケーション・プロセッサ、インターフェース・コントローラ、タイミング仕様について説明します。外部で生成されるイーサネットMACクロックはfreeclkextで、内部システム・クロックはfreeclkextである点に注意してください。外部で生成されるイーサネットMACクロックのタイミングと内部システム・クロック・タイミングを計算するには、次の式を用います。

 $t_{REFCLKEXT} = 1/f_{REFCLKEXT}$

 $t_{SYSCLK} = 1/f_{SYSCLK}$

表 3. 10Mbpsおよび100MbpsのイーサネットMAC RMII(Reduced Media Independent Interface)の受信信号タイミング

Parameter	Description	Min	Max	Unit
$f_{REFCLKEXT}$	ETH0_REFCLK Frequency		50	MHz
t_{REFCLK}	ETH0_REFCLK Period ¹	t _{REFCLKEXT} - 1%		ns
$t_{REFCLKW}$	ETH0_REFCLK Width ¹	$t_{REFCLKEXT} \times 35\%$	$t_{REFCLKEXT} \times 65\%$	ns
t _{REFCLKIS}	Receive Input Valid to RMII ETH0_REFCLK Rising Edge (Data In Setup)	4		ns
t _{REFCLKIH}	RMII ETH0_REFCLK Rising Edge to Receive Input Invalid (Data In Hold)	2.0		ns

1 この仕様は、デューティ・サイクルの変化またはジッタによる許容可能な最小瞬時幅または期間を示します。

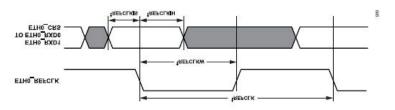


図 2. RMIIの受信タイミング

表 4. 10Mbpsおよび100MbpsイーサネットMAC RMIIの送信信号タイミング

Parameter	Description	Min	Max	Unit
t _{REFCLKOV}	RMII ETH0_REFCLK Rising Edge to Transmit Output Valid (Data Out Valid)		14	ns
$t_{REFCLKOH}$	RMII ETH0_REFCLK Rising Edge to Transmit Output Valid (Data Out Hold)	2		ns

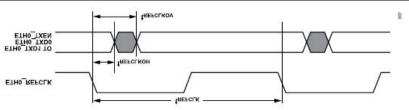


図 3. RMIIの送信タイミング

analog.com.jp Rev. A | 5 / 21

仕様

表 5. 10Mbpsおよび100MbpsイーサネットMAC管理インターフェースのタイミング

Parameter	Description	Min	Max	Unit
f_{SYSCLK}	Internal System Clock		100	MHz
$t_{ m MDIOS}$	ETH0_MDIO Input Valid to ETH0_MDC Rising Edge (Setup)	14		ns
$t_{ m MDIOH}$	ETH0_MDC Rising Edge to ETH0_MDIO Input Invalid (Hold)	0		ns
t_{MDCOV}	ETH0_MDC Falling Edge to ETH0_MDIO Output Valid		$t_{SYSCLK} + 5$	
t_{MDCOH}	ETH0_MDC Falling Edge to ETH0_MDIO Output Invalid (Hold)	t _{SYSCLK} - 5		ns

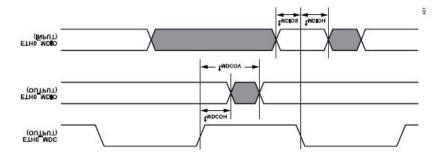


図 4. イーサネット10Mbpsおよび100Mbps MAC管理インターフェースのタイミング

analog.com.jp Rev. A | 6 / 21

仕様

SPIフォロワ・インターフェースのタイミング

表6と図5に、SPIポート・フォロワのタイミング仕様を示します。SPIフォロワ・モードでは、SPIクロックが外部から供給(fspicLkext)される点に注意してください。外部SPIクロックのタイミングを計算するには、次の式を用います。

 $t_{SPICLKEXT} = 1/f_{SPICLKEXT}$

表 6. SPIポート・フォロワのタイミング

Parameter	Description	Min	Max	Unit
$f_{SPICLKEXT}$	SPI0_CLK Frequency		10	MHz
t_{SPICHS}	SPI0_CLK High Period	$0.5 \times t_{SPICLKEX}$	_T - 1	ns
t _{SPICLS}	SPI0_CLK Low Period	$0.5 \times t_{SPICLKEX}$	_T - 1	ns
t _{SPICLK}	SPI0_CLK Period	t _{SPICLKEXT} - 1		ns
t_{HDS}	Last SPI0_CLK Edge to SPI0_SEL3_SS Not Asserted	5	5	
t _{SPITDS}	Sequential Transfer Delay	t _{SPICLK} - 1	t _{SPICLK} - 1	
t _{SDSCI}	SPI0_SEL3_SS Assertion to First SPI_CLK Edge	10.5	10.5	
t_{SSPID}	Data Input Valid to SPI0_CLK Edge (Data Input Setup)	2	2	
t_{HSPID}	SPI0_CLK Sampling Edge to Data Input Invalid	1.6	1.6	
t_{DSOE}	SPIO_SEL3_SS Assertion to Data Out Active	0	14	ns
t _{DSDHI}	SPI0_SEL3_SS Deassertion to Data High Impedance	0	12.5	ns
t_{DDSPID}	SPI0_CLK Edge to Data Out Valid (Data Out Delay)		14	ns
t_{HDSPID}	SPI0_CLK Edge to Data Out Invalid (Data Out Hold)	0		ns

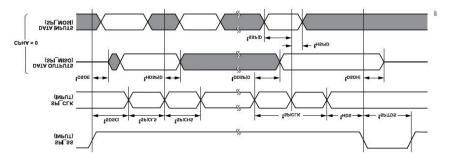


図 5. SPIフォロワのタイミング

analog.com.jp Rev. A | 7 / 21

絶対最大定格

特に指定のない限り、 $T_A = 25$ °C。

表 7.

Parameter	Rating
VDD to GND	-0.3 V to +3.6 V
Power Dissipation	840 mW
Temperature	
T _A Range, Industrial	−40°C to +85°C
Storage Range	-65°C to +150°C
Junction (T _J Maximum)	125℃
Lead, Soldering	JEDEC industry-standard, J- STD-020

上記の絶対最大定格を超えるストレスを加えると、デバイスに恒久的な損傷を与えることがあります。これはストレス定格のみを規定するものであり、本仕様の動作のセクションに記載する規定値以上でのデバイス動作を定めたものではありません。長時間にわたり最大動作条件を超えて動作させると、デバイスの信頼性に影響を与えることがあります。

静電放電(ESD)定格

以下のESD情報は、ESDに敏感なデバイスを取り扱うために示したものですが、対象はESD保護区域内だけに限られます。

ANSI/ESDA/JEDEC JS-001準拠の人体モデル (HBM)。

ANSI/ESDA/JEDEC JS-002準拠の電界誘起帯電デバイス・モデル (FICDM)。

ADIN2299のESD定格

表 8. ADIN2299、194ボールCSP_BGA

ESD Model	Withstand Threshold (V)	Class
НВМ	2500	2
FICDM	2000	C3

ESDに関する注意

ESD(静電放電)の影響を受けやすいデバイスです。

電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術であるESD 保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

analog.com.jp Rev. A | 8 / 21

ピン配置とピン機能の説明

									TOP VIEW Not to Scal								
	A	В	С	D	E	F	G	н	J	к	L	м	N	Р	R	т	U
		GPIO_ 8	GPIO_	STATUS_ LED1	LT2	LT0	GND	V_3V3 _JN	V_3V3 _IN	GND	DNC	NC	GND	SYS_ BMODE0	SYS_ BMODE1	NC	
1000	GND	NC	GPIO_ 7	STATUS_ LED2	SDONE	LT1	GND	V_3V3 _IN	V_3V3 _IN	GND	NC	NC	GND	SYS_ HWRST	SYS_ RESOUT	GND	P2_ TD_P
	NC	WP	NC	GND	NC	NC	GND	GND	GND	GND	GND	GND	GND	NC	REM_ RESET	GND	P2_ TD_N
	NC	NC	NC	GND										GND	GND	GND	P2_ RD_P
	GND	GND	RREQ		a :										NC	GND	P2_ RD_N
	JTG_ TRST	JTG_ TDI	INT_IN												NC	P2_ ACTIVITY	P2_LINI STATU
	JTG_ TMS	JTG_ TDO	JTG_ TCK				GND	GND	GND	GND	GND			3	GND	TIMER0	TIMER
1000	DNC	SPIO_ SEL3_SS	GND				GND	GND	GND	GND	GND				GND	T MER1	TIMER
	SPIO_ CLK	SPIO_ MISO/ SPI_DO	SPIO_ MOSI/ SPIO_D1				GND	GND	GND	GND	GND			9	NC	GND	NC
C.A	AN1_TX	CAN1_ RX	GND				GND	GND	GND	GND	GND				GND	SYNC2	TIMER
U.	ARTO_ K/BUSY	UARTO_ RX	GND				GND	GND	GND	GND	GND				GND	TIMER5	SYNC
	TXD0	ETH0_ TXD1	ETHO_ MDC												NC	P1_ ACTIVITY	P1_LIN
	ETHO_ EFCLK	ETHO_ TXEN	ETHO_ MDIO	GND											NC	GND	P1_TD
	ETHO_ RXD0	ETH0_ RXD1	ETHO_ CRS	GND	GND		3							GND	GND	GND	P1_TD_
N	GND	GND	GND	GND	GND	SCL	SDA	NC	NC	NC	NC	NC	NC	GND	NET_ LED2	GND	P1_RD
	NC	33.	NC	GND	NC	NC	SP10_ D3	GND	TMO_ TMR2	GND	DNC	DNC	DNC	GND	NET_ LED1	GND	P1_RD
		NC	NC	GND	NC	GND	SP10_ D2	GND	TMO_ TMR1	GND	DNC	DNC	DNC	GND	MOD_ LED1	MOD_ LED2	

V_3V3_IN GND I/O
NC = NO CONNECT.

図 6. ボール配置

表 9. ボール機能の説明

ボール番号	 記号		説明
		İ	i e e e e e e e e e e e e e e e e e e e
A2, A14, A15, B1, B14, B16, C1,	NC	Not applicable	接続なし。
C2, C14, C15, E1, E2, E15, F2,			
F15, H3, J3, K3, L3, L16, M3,			
M16, M17, N3, P15, R5, R6, R9,			
R12, R13, T17, U9			
A3, A13, A16, B3, B13, C3, C7,	GND	Not applicable	グラウンド。
C8, C10, D1, D2, D3, D4, D5,			
D14, D15, E3, E4, F1, G7, G8,			
G9, G10, G11, G15, G16, G17,			
H1, H2, H7, H8, H9, H10, H11,			
H15, J7, J8, J9, J10, J11, J15, K1,			
K2, K7, K8, K9, K10, K11, K15,			
K16, K17, L7, L8, L9, L10, L11,			
L15, M15, N15, N16, N17, P1,			
P2, P3, P4, P14, R4, R7, R8, R10,			
R11, R14, T2, T3, T4, T5, T9,			
T13, T14, T15, T16			

Rev. A | 9 / 21 analog.com.jp

ピン配置およびピン機能の説明

表 9. ボール機能の説明

ボール番号	記号	方向	説明
A4	ETH0_RXD0	Input	イーサネットMAC 0 (EMAC0) の受信データ0。受信データ・バス。
A5	ETH0_REFCLK	Input	EMACOのリファレンス・クロック。外部から供給されるイーサネット・ クロック。
A6	ETH0_TXD0	Output	EMACOの送信データ0。送信データ・バス。
A7	UART0_TX/BUSY	Output	UARTをアプリケーション・プロセッサ・インターフェースに選択した場合のUART0送信出力(UART0_TX)。
			SPIを選択時のビジー信号 (BUSY) 。この信号は、通信側がビジーであることをアプリケーション側に示します。BUSYピンには $3k\Omega$ のプルダウン抵抗を接続します。
A8	CAN1_TX	Output	このボールはフロート状態のままにできます。将来のCANアプリケーション・プロセッサ・インターフェース送信 (CAN1_TX) のオプションに備えて予約されています。
A9	SPI0_CLK	Input	SPIOクロック入力
A10	DNC	Not applicable	何も接続しないでください。DNCピンは内部で接続されており、フローティング状態のままにする必要があります。
A11	JTG_TMS	Input	JTAGモードの選択。JTAGテスト・アクセス・ポート・モードの選択。
A12	JTG_TRST	Input	JTAGリセット。JTAGテスト・アクセス・ポートのリセット。
B4	ETH0_RXD1	Input	EMAC0 の受信データ1。受信データ・バス。
B5	ETH0_TXEN	Output	EMACOの送信イネーブル。このボールがアサートされた場合、送信データが有効であることを示します。
B6	ETH0_TXD1	Output	EMACOの送信データ1。送信データ・バス。
B7	UART0_RX	Input	UARTOの受信。受信入力。
В8	CANI_RX	Input	このボールはフロート状態のままにできます。将来のCANアプリケーション・プロセッサ・インターフェース受信(CAN1_RX)のオプションに備えて予約されています。
В9	SPI0_MISO/SPI_D0	Input and output	SPIOリーダ入力、フォロワ出力 (SPIO_MISO)。QSPI™が選択されている場合、このボールにはQSPIのデータ0ラインとなるSPIO_DO機能があります。
B10	SPI0_SEL3_SS	Input	SPIOフォロワ選択入力。
B11	JTG_TDO	Output	JTAGシリアル・データ出力。JTAGテスト・アクセス・ポートのデータ出力。
B12	JTG_TDI	Input	JTAGシリアル・データ入力。JTAGテスト・アクセス・ポートのデータ入力。
B15	$\overline{ m WP}$	Input	書込み保護 SPI フラッシュ。 \overline{WP} ボールはモジュール内部でハイにプルアップされます。このピンはフロート状態のままにすることを推奨します。
B17	GPIO_8	Output	汎用入出力8。 $GPIO_8$ ボールには $10k\Omega$ のプルアップ抵抗を接続します。
C4	ETH0_CRS	Input	EMACOキャリア検出。1つおきのクロック・サイクルでマルチプレクスされます。 キャリア検出 (CRS) : 送信媒体または受信媒体がアイドル状態でない場合にPHYによってアサートされます。どちらもアイドル状態になるとデアサートされます。
			受信分周器 (RXDV):受信データ・ライン1のデータ (RXD0) が有効な 場合にPHYによってアサートされます。
C5	ETH0_MDIO	Input and output	EMAC0管理チャンネル・シリアル・データ。PHY制御用の双方向データ・バスです。
C6	ETH0_MDC	Output	EMAC0管理チャンネル・クロック。PHYのMDC入力をクロックします。
C9	SPI0_MOSI/SPI0_D1	Input and output	SPIOリーダ出力、フォロワ入力 (SPIO_MOSI)。 QSPIが選択されている場合、このボールにはQSPIのデータ1ラインとなるSPIO_D1機能があります。
C11	JTG_TCK	Input	JTAGクロック。JTAGテスト・アクセス・ポートのクロック。
C12	ĪNI_IN	Input	アプリケーション・プロセッサへの割込み入力。 $\overline{INI_IN}$ ボールには4.7k Ω のプルアップ抵抗を接続します。
C13	RREQ	Output	アプリケーション・プロセッサへの割込み出力。信号がハイになり、メッセージの読出し準備ができていることをアプリケーション側に伝えます。 RREQボールには $3k\Omega$ のプルダウン抵抗を接続します。
C16	GPIO_7	Output	汎用入出力7。

analog.com.jp Rev. A | 10 / 21

ピン配置およびピン機能の説明

表 9. ボール機能の説明

ボール番号	記号	方向	説明
C17	GPIO_6	Input and output	汎用入出力6。
D16	STATUS_LED2	Input and output	STATUS_LED2ボールがローになると、オプションのSTATUS信号用2色 LEDの赤色LEDがアクティブになります。
D17	STATUS_LED1	Output	STATUS_LED1ボールがローになると、オプションのSTATUS信号用2色 LEDの緑色LEDがアクティブになります。
E16	SDONE	Output	通信のスタート・アップが完了。SDONEボールには $4.7k\Omega$ のプルダウン抵抗を接続します。
E17	LT2	Input and output	アプリケーション・プロセッサ・インターフェースの選択:リンク・タイプ2 (表11参照)。
F3	SCL	Input and output	I ² Cシリアル・クロック。リーダ時はクロック出力、フォロワ時はクロック入力。I ² Cバス規格に対応。外付けプルアップ抵抗が必要です。
F16	LT1	Input and output	アプリケーション・プロセッサ・インターフェースの選択:リンク・タイプ1 (表11参照)。
F17	LT0	Input and output	アプリケーション・プロセッサ・インターフェースの選択:リンク・タイプ0 (表11参照)。
G1	SPI0_D2	Input and output	QSPIが選択されている場合、このボールにはQSPIのデータ2ラインとなる SPIO_D2機能があります。
G2	SPI0_D3	Input and output	QSPIが選択されている場合、このボールにはQSPIのデータ3ラインとなる SPIO_D3機能があります。
G3	SDA	Input and output	I ² Cシリアル・データ。データを受信または送信。I2Cバス規格に対応。外付けプルアップ抵抗が必要です。
H16, H17, J16, J17	V_3V3_IN	Not applicable	3.3V電源。
J1	TMO_TMR1	Input and output	汎用タイマーの入出力汎用タイマーの入出力
J2	TMO_TMR2	Input and output	汎用タイマーの入出力汎用タイマーの入出力
L1, L2, L17, M1, M2, N1, N2	DNC	Not applicable	何も接続しないでください。このボールは内部で接続されており、フロー ティング状態のままにする必要があります。
P16	SYS_HWRST	Input	プロセッサ・ハードウェア・リセット制御。アサートされるとデバイスを リセットします。このボールには10kΩのプルアップ抵抗を接続します。
P17	SYS_BMODE0	Input	ブート・モード制御0。SYS_BMODE0ボールはモジュール内でハイにプル アップされています。
R1	MOD_LED1	Output	MOD_LED1ボールがローになると、2色LED1の緑色LEDがアクティブになります。
R2	NET_LED1	Output	NET_LED1ボールがローになると、2色LED2の緑色LEDがアクティブになります。
R3	NET_LED2	Output	NET_LED2ボールがローになると、2色LED2の赤色LEDがアクティブになります。
R15	REM_RESET	Output	モジュールのfido5200からのリセット出力。
R16	SYS_RESOUT	Output	プロセッサ・リセット出力デバイスがリセット状態であることを示します。このボールには $1k\Omega$ のプルダウン抵抗を接続します。
R17	SYS_BMODE1	Input	ブート・モード制御1。SYS_BMODE1ボールはモジュール内でローにプル ダウンされています。
T1	MOD_LED2	Output	MOD_LED2ボールがローになると、2色LED1の赤色LEDがアクティブになります。
T6	P1_ACTIVITY	Output	ポート1のアクティビティLED出力ドライバ。
T7	TIMER5	Output	内部高精度タイマー5同期出力。
Т8	SYNC2	Output	REMスイッチ同期信号。この信号をアプリケーション・プロセッサに接続すると、アイソクロナス制御アプリケーションで使用できます。
T10	TIMER1	Input and output	内部高精度タイマー1同期信号。
T11	TIMER0	Input and output	内部高精度タイマー0同期信号。
T12	P2_ACTIVITY	Input and output	ポート2のアクティビティLED出力ドライバ。
U2	P1_RD_N	Input and output	ポート1の物理的な受信または送信信号(負差動)
U3	P1_RD_P	Input and output	ポート1の物理的な受信または送信信号 (正差動)

analog.com.jp Rev. A | 11 / 21

ピン配置およびピン機能の説明

表 9. ボール機能の説明

ボール番号	記号	方向	説明
U4	P1_TD_N	Input and output	ポート2の物理的な送信または受信信号(負差動)
U5	P1_TD_P	Input and output	ポート2の物理的な送信または受信信号(正差動)
U6	P1_LINK_STATUS	Input	PHYからポート1へのリンク・ステータス。
U7	SYNC1 Output		REMスイッチ同期信号。この信号をアプリケーション・プロセッサに接続
			すると、アイソクロナス制御アプリケーションで使用できます。
U8	TIMER6	Output	内部高精度タイマー6同期出力。
U10	TIMER3	Input and output	内部高精度タイマー3同期信号。
U11	TIMER2	Input and output	内部高精度タイマー2同期信号。
U12	P2_LINK_STATUS	Input and output	PHYからポート2へのリンク・ステータス。
U13	P2_RD_N	Input and output	ポート2の物理的な受信または送信信号(負差動)
U14	P2_RD_P	Input and output	ポート2の物理的な受信または送信信号(正差動)
U15	P2_TD_N	Input and output	ポート2の物理的な送信または受信信号(負差動)
U16	P2_TD_P	Input and output	ポート2の物理的な送信または受信信号 (正差動)

analog.com.jp Rev. A | 12 / 21

動作原理

ADIN2299の主な使用例は、主流となっている産業用プロトコルにサポートされた堅牢でデターミニスティックなイーサネット機能を必要とするフィールド・デバイスに対し、マルチプロトコルの産業用イーサネット接続を可能にすることです。

図7にADIN2299のシステム・ブロック図を示します。モジュール内にあるADSP-CM409Fが通信コントローラで、アプリケーション側にあるのがアプリケーション・プロセッサです。アプリケーション・プロセッサは、統合インターフェースの共通言語を介してADIN2299モジュールの通信コントローラと通信を行います。ADIN2299モジュールのアプリケーション・プロセッサのインターフェス・タイミングについては、タイミング特性のセクションに詳しく記載されています。

統合インターフェースについては、Unified Interface Control Document User Guideに詳しい説明があります。

図16の代表的なアプリケーション回路に示すように、ADIN2299 モジュールには以下の接続を行う必要があります。

- ▶ ADIN2299モジュール用の3.3V電源およびグラウンド。
- ▶ 産業用イーサネット接続: PHY出力から産業用ネットワーク へのマグネティクスおよびRJ-45接続。
- ▶ アプリケーション・プロセッサ・インターフェース: SPI、 UART、またはイーサネットを利用。
- ▶ 産業用イーサネットLED (モジュール (MOD) およびネット ワーク (NET))。

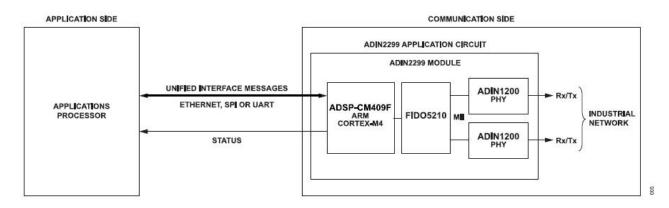


図 7. システム・ブロック図

analog.com.jp Rev. A | 13 / 21

動作原理

産業用イーサネット接続

図16に示すADIN2299アプリケーション回路の各イーサネット・ポートには、リンク・ステータスとアクティビティを示すLEDと共に、マグネティクスおよびコネクタが備わっています。

ADIN2299モジュールには、産業用イーサネット・ネットワークに接続するために2つのPHYがあります。

ADIN2299からユーザ・ボード上のJ-45およびイーサネット・コネクタへの接続については表10を参照してください。また、これらは図16にも図示されています。

表 10. RJ-45およびイーサネット・コネクタへのADIN2299 の接続

Ball No. Mnemonic U2 P1_RD_N U3 P1_RD_P U4 P1_TD_N	
U3 P1_RD_P	
U4 P1_TD_N	
U5 P1_TD_P	
U13 P2_RD_N	
U14 P2_RD_P	
U15 P2_TD_N	
U16 P2_TD_P	

アプリケーション・プロセッサ・インターフェース

アプリケーション・プロセッサ・インターフェースは、表11に示すように、LTO~LT2のボールを介して選択できます。ボード設定ファイルで通信インターフェースを選択している場合は、LT2、LT1、LT0はグラウンドに接続したままにしてください。リンク設定ファイルを使用してピン配置をオーバーライドするオプションも利用できます。リンク設定ファイルの詳細については、RPG2 Hardware Design Integration Guideを参照してください。

アプリケーション・プロセッサとADIN2299のADSP-CM409Fとのインターフェース方法に関する通信プロトコルとその詳細については、RPG2 Unified Interface User Guideを参照してください。

表 11. 統合インターフェースのリンク・タイプの選択

			· · · · · · · · · · · · · · · · · · ·
LT2	LT1	LT0	Unified Interface Link Type
0	0	0	Ethernet
0	0	1	Reserved
0	1	0	SPI
0	1	1	Reserved
1	0	0	UART0
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

UARTアプリケーション・プロセッサ・インターフェース

UARTインターフェースを選択した場合、表12に示すボールを使用して図8に示すように、アプリケーション・プロセッサのインターフェースをADIN2299モジュールに接続します。UARTは、8個のデータ・ビット、1個のスタート・ビット、1個のストップ・ビットを用いパリティ・ビットは用いずに、115,200bps~

1,000,000 bpsで構成されています。

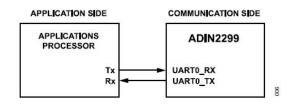


図 8. UARTアプリケーション・プロセッサ

表 12. UARTアプリケーション・プロセッサ・インターフェース用ボール

Mnemonic	Direction	Description
UART0_TX	Output	UART0 transmit output
UART0_RX	Input	UART0 receive input

SPIアプリケーション・プロセッサ・インターフェース

SPIを選択した場合、表14に示すボールを使用して図12に示すように、アプリケーション・プロセッサのインターフェースをADIN2299モジュールに接続します。SPIフォロワの接続は最大10MHzのクロック・レートに対応し、クロック位相ビット(CPHA)=0でデータ取得がリーディング・エッジに、クロック極性ビット(CPOL)=0でリーディング・クロック・エッジが立上がりに設定されます。このタイミングについては、SPIフォロワ・インターフェースのタイミングのセクションで説明しています。統合インターフェースのプロトコルについては、Unified Interface Control Document User Guideに詳しい説明があります。

SPIを使用する場合、BUSY信号とRREQ信号に関して以下の事項を理解しておくことが重要です。

- ▶ BUSY信号では以下の事項があてはまります。
 - ▶ BUSYの立下がりエッジは、トランザクション処理が終了 し、SPIフォロワに次のトランザクションに対する準備が できていることを示します。
 - ▶ マルチトランザクション読出し動作のシーケンスの詳細を 図11に示します。
 - ▶ BUSYは、SPIトランザクションが発生する頻度を設定する ためにのみ用いられます。それ以外の目的でBUSYが立ち 上がることも立ち下がることもありません。
 - ▶ SPIトランザクション後はBUSYは常に非アクティブになります。BUSYがハイになり、そのままハイを維持するような状況はありません。
 - ▶ BUSYがハイのときにSPIトランザクションが開始される と、その動作は不定となります。
 - ▶ 背景にあるハードウェアおよびソフトウェアの制約や考慮 事項により、BUSYには何らかのジッタが生じることが予 想されます。
 - SPIO_SEL3_SSが非アクティブ状態(ハイ)になった後 1.14μs以上経過してから、BUSYがアクティブ状態(ハイ)になります。BUSYは3.3μs以上アクティブ状態(ハイ)を保ちます。

analog.com.jp Rev. A | 14 / 21

動作原理

- ▶ RREQ信号では以下の事項があてはまります。
 - ▶ この信号の立上がりエッジでは、データが読出し可能になる前にSPIリーダが短いSPIトランザクションを用いて読出し要求をアクノレッジする必要があります。読出し要求がアクノレッジされると、SPIフォロワはRREQを発してデータが読出し可能となっていることを通知します。
 - ▶ 一般的な推奨事項は、SPIリーダがRREQ信号の立上がりエッジで割込みを行うよう設定することです。ただし、割込みを用いることが不可能あるいは望ましくない場合は、RREOをポーリングすることもできます。
 - ▶ RREQは読出し動作にのみ関係します。RREQはいかなる 形式の書込み動作にも関係しません。RREQは、書込み動 作中を含む任意のタイミングでアクティブ (ハイ) になる ことができます。

SPIトランザクション例については図9を参照してください。

ビジー信号の場合、これらの信号のタイミングに関して予想できる値がいくつかあります (表13参照)。

表13に示すデータは経験的に収集されたものですが、アプリケーション・プロセッサ・コードや環境など、その他の要因がこれらの数値に影響する可能性があります。

実際のデータを使用した書込みトランザクションの例を図10に、 読出しトランザクションの例を図11に示します。トランザクショ ンは、UI_EchoReqメッセージとUI_EchoResメッセージを伴う NI_Discoverメッセージで、このメッセージはDeveloper PortalのNI-Example-Appワークスペースにあるni-api-srvのコードに詳細が示 されています。

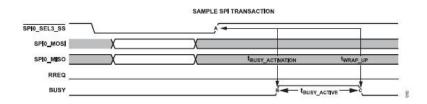


図 9. トランザクション例

表 13. SPIタイミング条件

Parameter	Minimum (μs)	Maximum (μs)
BUSY Activation Time, t _{BUSY_ACTIVATION}	1.14	27.04
BUSY Active Time, t _{BUSY_ACTIVE}	3.34	33.04
Wrap-Up Time, t _{WRAP_UP}	4.48	36.16

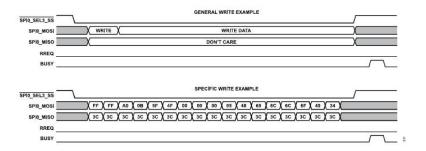


図 10. SPI書込みの一般例および具体例

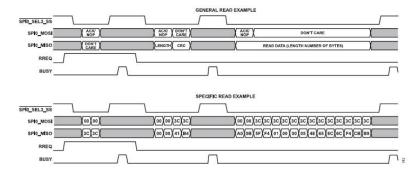


図 11. SPI読出しの一般例および具体例

analog.com.jp Rev. A | 15 / 21

動作原理

SPIにはエラー回復メカニズムもあります。SPIリーダがSPIリンクに問題が生じていることを検知した場合、リンクを一掃してロー・レベルSPI通信をリセットすることができます。これは0バイトまたは1バイトの長さのSPIトランザクションを発行して開始されます。長さが1のトランザクションが発行された場合、MOSIに置かれるバイトの値はSPIフォロワからは無視されます。同様にMISOの値も無視される場合があります。リンクの一掃が2つの読出し動作または書込み動作の間で開始された場合は、特別なことは生じません。読出し動作時に開始された場合は、次のアクションが生じます。

RREQがハイで、かつ、読出し要求アクノレッジ・トランザクションが送信されない場合は、以下が生じます。

- ▶ RREQがローになります。
- ▶ この時点でリンクの一掃が行われると読出し動作が終了し、 SPIリーダはデータ・ステータス・ヘッダーまたはメッセー ジ・データを読み出そうとすることが禁じられます。
- SPIフォロワが送信のために準備していたデータ・ステータス・ヘッダーおよびメッセージ・データは、破棄されます。
- ▶ SPIフォロワは一掃されたメッセージの送信を試行しません。
- ▶ SPIトランザクションはこの時点から通常に動作できます。

RREQがハイで、かつ、読出し要求アクノレッジ・トランザクションが送信された場合は、以下が生じます。

- ▶ RREQがローになります。
- ▶ この時点でリンクの一掃が行われると読出し動作が終了し、 SPIリーダはデータ・ステータス・ヘッダーまたはメッセー ジ・データを読み出そうとすることが禁じられます。
- ▶ SPIフォロワが送信のために準備していたデータ・ステータス・ヘッダーおよびメッセージ・データは、破棄されます。
- ▶ SPIフォロワは一掃されたメッセージの送信を試行しません。
- ▶ SPIトランザクションはこの時点から通常に動作できます。

RREQがアクティブ状態でない場合は、以下が生じます。

- ▶ SPIフォロワが送信のために準備していたデータ・ステータ ス・ヘッダーおよびメッセージ・データは、破棄されます。
- ▶ SPIフォロワは一掃されたメッセージの送信を試行しません。
- ▶ SPIトランザクションはこの時点から通常に動作できます。

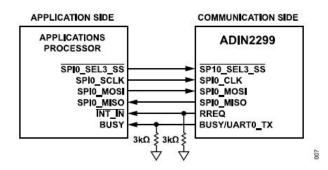


図 12. SPIアプリケーション・プロセッサ・インターフェース

表 14. SPIアプリケーション・プロセッサ・インターフェース・ボール

Mnemonic	Direction	Description
SPI0_SEL3_SS	Input	SPI0 Follower Select Input.
SPI0_CLK	Input	SPI0 Clock Input.
SPI0_MOSI	Input	SPI0 Leader Out, Follower In.
SPI0_MISO	Output	SPI0 Leader In, Follower Out.
RREQ	Output	RREQ is a signal that notifies the application side that a message is ready to be read.
BUSY	Output	Busy Signal. This signal indicates to the application side that the communication side is busy.

イーサネット・アプリケーション・プロセッサ・インターフェースの選択

図13に、RMIIを通じたイーサネット・アプリケーション・プロセッサ・インターフェースの直接接続を示します。

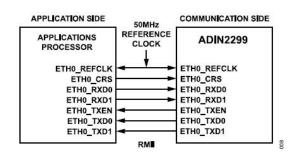


図 13. RMIIを通じた直接接続

図14に、イーサネット・アプリケーション・プロセッサ・インターフェースの間接接続を示します。

analog.com.jp Rev. A | 16 / 21

動作原理

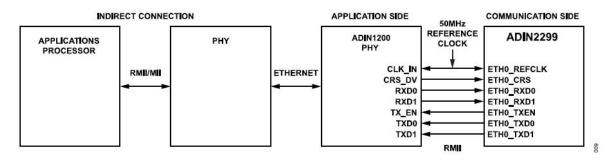


図 14. 間接接続

表 15. イーサネット・アプリケーション・インターフェースの信号

Mnemonic	Direction	Description
ETH0_REFCLK Input		EMAC0 Reference Clock. Externally supplied Ethernet clock.
ETH0_CRS Input		EMAC0 Carrier Sense. Multiplexed on alternate clock cycles.
	Input	CRS: asserted by the PHY when either the transmit or receive medium is not idle. Deasserted when both are idle.
	Input	RXDV: asserted by the PHY when the data on RXD0 is valid.
ETH0_RXD0	Input	EMAC0 Receive Data 0. Receive data bus.
ETH0_RXD1	Input	EMAC0 Receive Data 1. Receive data bus.
ETH0_TXEN	Input and output	EMAC0 Transmit Enable. When asserted, ETH0_TXEN indicates that the data on TXD0 is valid.
ETH0_TXD0	Output	EMAC0 Transmit Data 0. Transmit data bus.
ETH0_TXD1	Output	EMAC0 Transmit Data 1. Transmit data bus.

analog.com.jp Rev. A | 17 / 21

動作原理

産業用イーサネットのMOD LEDおよびNET LED

LEDの動作は各プロトコルによって規定されています。表16においてLED1とLED2で表されるMOD LEDとNET LEDの機能は、選択した産業用イーサネット・プロトコルによって異なります。この機能については、RPG2 Hardware Design Integration Guideに説明があります。

プログラミング

モジュールは、以下の方法によって安全に更新することができます。

▶ RPG2 Web Server User Guideで説明されているWebサーバー・ インターフェースを介した産業用イーサネット・ポート。 ▶ RPG2 Programming Guideに詳細が説明されているJTAG接続。

モジュールを購入する代わりにADIN2299の回路図がリファレンス設計としてカスタマ・ボードに直接実装されている場合、プログラミングの唯一のオプションは、Seggerツール・チェーンを用いたJTAG接続を介することです。なお、シリアル・ワイヤ・デバッグ接続はサポートされていない点に注意してください。詳細については、RPG2 Programming Guideを参照してください。

アプリケーション回路サポート回路

図16に示すADIN2299アプリケーション回路に必要な外付け部品を、表16に示します。

表 16. 外付け部品

		Recon	nmended Component	
Component	Value	Manufacturer	Manufacturer Part Number ¹	Notes/Comments
Capacitors				
Decoupling for 3.3 V	47 μF	User specified	User specified	It is recommended to decouple each voltage rail with 47
	0.1 μF	User specified	User specified	μF , 0.1 μF , and 4.7 μF capacitors. These are at a 20%
	4.7 μF	User specified	User specified	tolerance.
LEDs				
LED1 and LED2		Kingbright	KPBA-3010ESGC	Dual color, green and red.
Transient Voltage Suppressor (TVS) Diodes		Littelfuse	SP0504SHTG	Each device incorporates multiple 5.5 V clamping, 8.5 V reverse standoff diodes to provide electrostatic discharge (ESD) protection. One TVS device is required per Ethernet port, and two are required per ADIN2299 application circuit.
Resistors				
	470Ω			LED current limit.
Other Components				
Ferrite Bead		Murata	BLM15EG121SN1D	1.5 A, 120 Ω at 100 MHz.
MagJack		Wurth	7499010121A	RJ-45 connector with integrated magnetics and LEDs.
Reset Supervisor		Analog Devices	AMD708SARZ	2.9 V power monitoring reset supervisor chip.

¹ 推奨部品または同等の部品を使用してください。

analog.com.jp Rev. A | 18 / 21

動作原理

リフロー・プロファイル

ADIN2299モジュールをPCBにハンダ付けする場合、モジュールが適切にPCBにハンダ付けされるよう、リフロー温度プロファイルに関して従うべき指定があります(図15および表17を参照)。

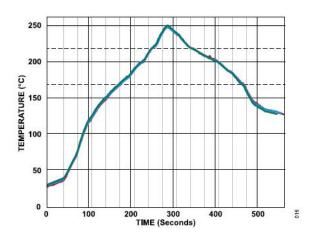


図 15. 高ピーク・リフロー温度プロファイル(SMTプロセス)

表 17. 高ピーク・リフロー温度プロファイル仕様

Item	Temperature Change	Profile Data(seconds)
Ramp Rate (°C/sec)	30℃ to approximately 150℃	0.86
Soak Time (sec) at 170 $^{\circ}\mathrm{C}$ to Approximately 220 $^{\circ}\mathrm{C}$	70°C to approximately 100°C	77.07
Dwell Time (sec) at More Than 220°C	60°C to approximately 90°C	84.82
Peak Temperature (°C)	245°C to approximately 255°C	247.69
Cooling Rate (°C/sec)	Peak to approximately 150℃	0.50

analog.com.jp Rev. A | 19 / 21

代表的なアプリケーション回路

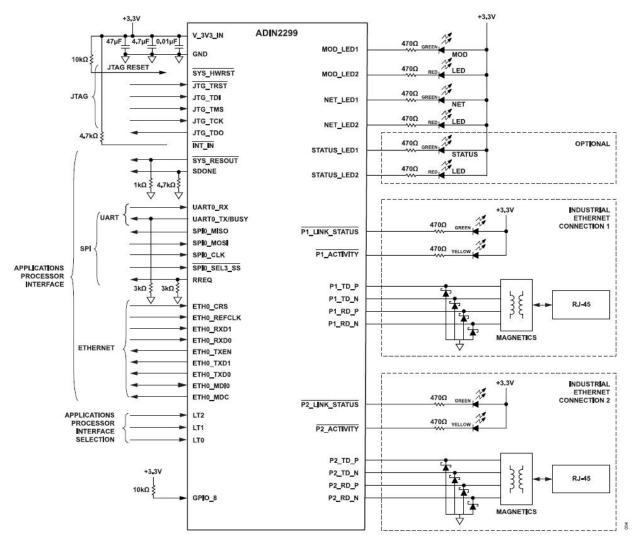


図 16.

analog.com.jp Rev. A | 20 / 21

外形寸法

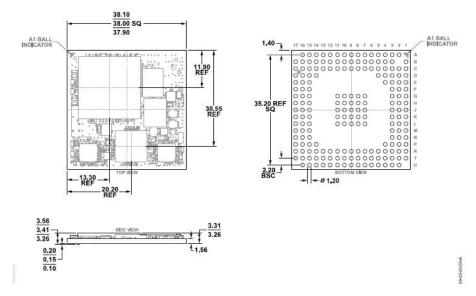


図 17. 194ボール・チップ・スケール・パッケージ・ボール・グリッド・アレイ[CSP_BGA] (BC-194-1) 寸法:mm

更新: 2022年9月7日

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option
ADIN2299BBCZ	0°C to +85°C	194-Ball CSP-BGA (38mm x 38mm x 3.41mm)	BC-194-1

¹ Z=RoHS準拠製品。

評価用ボード

Model ¹	Package Description
RPG2-ENZ	Evaluation Board for EtherNet/IP
EV-RPG2-ECZ	Evaluation Board for EtherCAT
EV-RPG2-PNZ	Evaluation Board for PROFINET

1 Z = RoHS準拠製品。

©2023 Analog Devices, Inc. All rights reserved.

本 社/〒105-6891 東京都港区海岸1-16-1 ニューピア竹芝サウスタワービル 10F

電話03(5402)8200

大阪営業所 / 〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F 電話06 (6350) 6868