

特長

12 ビット DAC および ADC を内蔵した RF 2 × 2 の トランシーバー 送信帯域:46.875MHz~6.0GHz 受信帯域:70MHz~6.0GHz デュアル・レシーバー:6個の差動入力または 12 個のシングルエンド入力 優れたレシーバー感度:800MHz LO で 2dB の NF 受信ゲイン制御 リアルタイム・モニタと制御信号によるマニュアル・ゲイン 独立した AGC デュアル・トランスミッタ:4個の差動出力 直線性の高い広帯域トランスミッタ 送信 EVM: 800MHz で-40dB(代表値) 送信ノイズ:-157dBm/Hz(代表値) 送信モニタ: 1dB の精度で 66dB のダイナミック・レンジ (代表値) フラクショナル N シンセサイザを内蔵 LO 周波数のステップ・サイズ: 2.4Hz(代表値) マルチチップ同期 CMOS/LVDS デジタル・インターフェース

商用宇宙製品の特徴

ウェーハ拡散ロット・トレーサビリティ 放射線ロット受け入れ試験: TID アプリケーション

地球低軌道(LEO)衛星 航空雷子機器 ポイント to ポイント通信システム 概要

AD9361S-CSL は、3G/4G アプリケーション向けに設計された 高性能、高集積のRF アジャイル・トランシーバーです。プログ ラマビリティと広帯域性能を備えており、幅広いトランシーバ ー・アプリケーションに最適です。RF フロント・エンド、柔軟 性に優れたミックスド・シグナル・ベースバンド部、内蔵の周 波数シンセサイザが組み合わされており、プロセッサとのデジ タル・インターフェースが設定可能なため、デザインインが容 易です。AD9361S-CSL のレシーバーLO は 70MHz~6.0GHz、ト ランスミッタ LO は 46.875MHz~6.0GHz の範囲で動作し、免許 帯域/免許不要帯域のほとんどをカバーしています。200kHz 未 満から 56MHz までのチャンネル帯域幅がサポートされます。

2個の独立したダイレクト・コンバージョン・レシーバーは、 最高水準のノイズ指数と直線性を備えています。各レシーバー のサブシステムには、独立した自動ゲイン制御(AGC)、DC オフセット補正回路、直交補正回路、およびデジタル・フィル タが内蔵されているため、デジタル・ベースバンドにこれらの 機能を持たせる必要はありません。また、AD9361S-CSL は、柔 軟性に優れたマニュアル・ゲイン・モードも備えており、外部 から制御することも可能です。

AD9361S-CSL

機能ブロック図

RF アジャイル・トランシーバ-

チャンネルごとに2個の高ダイナミック・レンジ A/D コンバー タ(ADC)が搭載されており、受信した同相(I)信号と直交 (Q) 信号をデジタル化し、設定可能なデシメーション・フィ ルタと 128 タップの FIR フィルタを介して 12 ビットの出力信号 を適切なサンプリング・レートで生成します。

トランスミッタにはダイレクト・コンバージョン・アーキテク チャが採用されており、超低ノイズで高い変調精度を実現して います。この設計により、-40dB以下というクラス最高レベル の送信エラー・ベクトル振幅(EVM)が得られるため、外部パ ワー・アンプ (PA) を選定する際にシステムに十分なマージン を持たせることができます。内蔵の送信電力モニタをパワー・ ディテクタとして使用することで、高精度な送信電力測定が可 能です。

フル機能を内蔵したフェーズ・ロック・ループ(PLL)が、す べての受信チャンネルと送信チャンネルに対して低消費電力の フラクショナル N 周波数合成を可能にします。周波数分割複信 (FDD) システムに必要なチャンネル絶縁は設計に組み込まれ ています。更に、電圧制御発振器(VCO)とループ・フィルタ のすべての構成要素が内蔵されています。

AD9361S-CSLは、10mm×10mm、144ボールのチップ・スケー ル・ボール・グリッド・アレイ (CSP BGA) パッケージを採用 しています。

アプリケーションと技術情報の詳細については、商用宇宙製品 プログラムのパンフレット、および AD9361 のデータシートを 参照してください。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

	SZUZU AHAIOG DEVICES, IIIC. AH IIGIIIS TESETVED.						
	本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービ 電話 03(5402)8200	ごル 10F					
アナログ・デバイセズ株式会社	大 阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワ 電話 06(6350)6868	'— 10F					
	名古屋営業所/〒451-6038 愛知県名古屋市西区牛島町 6-1 名古屋ルーセントタワ 電話 052 (569) 6300	¹ — 38F					

目次

特長1
商用宇宙製品の特徴1
アプリケーション1
概要1
機能ブロック図1
改訂履歴2
仕様3
消費電流—VDD_INTERFACE9
消費電流—VDDD1P3_DIG および VDDA1P3_x(すべての 1.3V 電源の組み合わせ)10
放射テストおよび制限仕様14
絶対最大定格15
リフロー・プロファイル15

改訂履歴

12/2020—Revision 0: Initial Version

	熱抵抗	.15
	ESD に関する注意	.15
Ľ	゜ン配置およびピン機能の説明	.16
代	表的な性能特性	.21
	800MHzの周波数帯域	.21
	2.4GHzの周波数帯域	.26
	5.5GHzの周波数帯域	.30
バ	ペッケージとオーダー情報	.33
	外形寸法	.33
	オーダー・ガイド	.33

仕様

特に指定のない限り、VDD_GPO=3.3V、VDD_INTERFACE=1.8V、VDDD1P3_DIG=1.3V、他のすべての VDDA1P3_x ピン=1.3V、T_A= 25℃ での電気特性。TX は送信、RX は受信を表します。VDDA1P3_x は、VDDA1P3_TX_LO、VDDA1P3_TX_VCO_LDO、 VDDA1P3_RX_RF、VDDA1P3_RX_TX、VDDA1P3_RX_LO、VDDA1P3_TX_LO_BUFFER、VDDA1P3_RX_VCO_LDO、 VDDA1P3_RX_SYNTH、VDDA1P3_TX_SYNTH、および VDDA1P3_BBを表します。

表 1.

						テスト条件/
パラメータ 1	記号	Min	Тур	Max	単位	コメント
RECEIVERS, GENERAL						
Center Frequency		70		6000	MHz	
Gain						
Minimum			0		dB	
Maximum			74.5		dB	800MHz 時
			73.0		dB	2300MHz 時
						(RX1A_x
						RX2A_x)
			72.0		dB	2300MHz 時
						$(RXIB_X, RXIC_X, DX2D_T, DX2$
			155		ID	$KA2B_X, KA2U_X$
			65.5		dВ	5500MHz 時 (DX1A
						$(\mathbf{K}\mathbf{X}\mathbf{I}\mathbf{A}_{\mathbf{X}})$
Goin Sten			1		dB	KAZA_A)
Beceived Signal Strength Indicator	DSSI		1		uБ	
Received Signal Strength Indicator	KSSI		100		dB	
Accuracy			+2		dB	
PECEIVERS 800 MHz			12		uр	
Noise Figure	NE		2		dB	島士 py ゲイン
Third Order Input Intermodulation Intercent	1102		-18		dDm	取入 KA ケイン 具士 DV ゲイン
Point	IIF 5		18		ubiii	取八 KA ワイン
Second-Order Input Intermodulation	IIP2		40		dBm	最大 RX ゲイン
Intercept Point						
Local Oscillator (LO) Leakage			-122		dBm	RXフロント・エンド
						入力での値
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-42		dB	19.2MHz のリファレン
						ス・クロック
Input Return Loss	S ₁₁		-10		dB	
Receiver Channel 1 (RX1) to Receiver						
DV1A at DV2A at DV1C at			70		ЛĿ	
RXIA_X to RAZA_X, RAIC_X to RX2C_x			/0		ав	
RX1B x to RX2B x			55		dB	
RX2 to RX1 Isolation					u.D	
RX2A x to RX1A x. RX2C x to			70		dB	
RXIC_x						
RX2B_x to RX1B_x			55		dB	
RECEIVERS, 2.4 GHz						
Noise Figure	NF		3		dB	最大 RX ゲイン
Third-Order Input Intermodulation Intercept	IIP3		-14		dBm	最大 RX ゲイン
Point						
Second-Order Input Intermodulation	IIP2		45		dBm	最大 RX ゲイン
Intercept Point			110		10	
LO Leakage			-110		dBm	レジーバー・フロン ト・エンド1 カズの店
Orea hasteres						ト・エンド八月での他
Quadrature Coin Error			0.2		0/	
Call Error Dhase Error			0.2		70 Degrees	
Fliase Elloi			0.2		Degrees	

パラメータ 1	하문	Min	Typ	Max	畄位	テスト条件/
Modulation Accuracy (EVM)			-42	Max .	dB	40MHzのリファレン
Modulation Accuracy (EVIN)			72		uр	ス・クロック
Input Return Loss	S_{11}		-10		dB	
RX1 to RX2 Isolation						
RX1A_x to RX2A_x, RX1C_x to RX2C_x			65		dB	
RX1B_x to RX2B_x			50		dB	
RX2 to RX1 Isolation						
RX2A_x to RX1A_x, RX2C_x to			65		dB	
$RX1C_X$ RX2B x to RX1B x			50		dB	
RECEIVERS. 5.5 GHz			50		uD	
Noise Figure	NF		3.8		dB	最大 RX ゲイン
Third-Order Input Intermodulation Intercept	IIP3		-17		dBm	最大 RX ゲイン
Point						
Second-Order Input Intermodulation Intercept Point	IIP2		42		dBm	最大 RX ゲイン
LO Leakage			-95		dBm	RXフロント・エンド
						入力での値
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-37		dB	40MHzのリファレン
						ス・クロック(RFン ンセサイザ用に内部で
						2倍)
Input Return Loss	S_{11}		-10		dB	
RX1A to RX2A Isolation			52		dB	
RX2A to RX1A Isolation			52		dB	
TRANSMITTERS—GENERAL		46.075		(000	MI	
Center Frequency		46.875	00	6000	MHZ 4D	
Power Control Resolution			90		dB	
TRANSMITTERS 800 MHz			0.23		uБ	
Output Return Loss	S22		-10		dB	
Maximum Output Power			8		dBm	50Qの負荷で 1MHz ト
						ーン
Modulation Accuracy (EVM)			-40		dB	19.2MHzのリファレン
	orma		22		ID	ス・クロック
Point	OIP3		23		dBm	
Carrier Leakage			-50		dBc	0dB 減衰
			-32		dBc	40dB 減衰
Noise Floor			-157		dBm/Hz	90MHz オフセット
Isolation						
Transmit Channel 1 (TX1) to Transmit			50		dB	
TX2 to TX1			50		dB	
TRANSMITTERS, 2.4 GHz			50		uD	
Output Return Loss	S ₂₂		-10		dB	
Maximum Output Power			7.5		dBm	50Qの負荷で1MHzト
						ーン
Modulation Accuracy (EVM)			-40		dB	40MHzのリファレン
Third Order Output Intermedulation	OIP2		10		dBm	ス・クロック
Intercept Point	0113		17		ubiii	
Carrier Leakage			-50		dBc	0dB 減衰
			-32		dBc	40dB 減衰
Noise Floor			-156		dBm/Hz	90MHz オフセット
Isolation						
TX1 to TX2			50		dB	
TX2 to TX1		1	50		dB	

パーメータ 1	히묘	Min	Turn	Мах	出合	テスト余件/
	記方	IVIIII	тур	Max	中位	1775
TRANSMITTERS, 5.5 GHz						
Output Return Loss	S_{22}		-10		dB	
Maximum Output Power			6.5		dBm	50Ωの負荷で 7MHz ト
						ーン
Modulation Accuracy (EVM)			-36		dB	40MHz のリファレン
						ス・クロック(RF シ
						ンセサイザ用に内部で
						2倍)
Third-Order Output Intermodulation Intercept	OIP3		17		dBm	
Point						
Carrier Leakage			-50		dBc	0dB 減衰
			-30		dBc	40dB 減衰
Noise Floor			-151.5		dBm/Hz	90MHz オフセット
Isolation						yound the your
TV1 to TV2			50		db	
			50		dD 4D	
			50		dВ	
TX MONITOR INPUTS (TX_MON1,						
IX_MON2)			4		ID	
Maximum Input Level			4		dBm	
Dynamic Range			66		dB	
Accuracy			1		dB	
LO SYNTHESIZER						
LO Frequency Step			2.4		Hz	2.4GHz、40MHzのリ
						ファレンス・クロック
Integrated Phase Noise						
800 MHz			0.13		° rms	$100 \text{Hz} \sim 100 \text{MHz}$
						30.72MHzのリファレ
						ンス・クロック(RF
						シンセサイザ用に内部
						で2倍)
2.4 GHz			0.37		° rms	100Hz~100MHz.
						40MHzのリファレン
						ス・クロック
5 5 GHz			0.59		° rms	$100 H_{7} \sim 100 MH_{7}$
5.5 GHZ			0.57		1113	100112 10010112、 40MHzのリファレン
						ス・クロック(RFシ
						ンヤサイザ用に内部で
						2倍)
REFERENCE CLOCK						1ファレンフ・カロッ
REFERENCE CLOCK						クト YTAL P/YTALN
						アは、XIALI/XIALN ピンへの入力 またけ
						XTAINピンへの直接
						接続
Input						
Eraquanay Panga		10		50	MHz	→ 目 丞 疟 聖 1 · 九
Frequency Range		19		30	MIIZ	小明光振奋八刀
		10		80	MHZ	外部発振器
Signal Level			1.3		V p-p	AC カップリングされ
						た外部発振器
AUXILIARY CONVERTERS						
ADC						
Resolution			12		Bits	
Input Voltage						
Minimum			0.05		v	
Maximum			VDDA1P3 BB-		v	
			0.05			
DAC						
Resolution			10		Bits	
Output Voltage						
Minimum			0.5		V	
Maximum			VDD GPO = 0.3		v	
Output Current			10		mΛ	
Output Current	1	1	10		mA	

パラメータ ¹	記号	Min	Τνρ	Max	単位	テスト条件/ コメント
DIGITAL SPECIFICATIONS (CMOS)			,,			
Logic Inputs						
Input Voltage						
High		VDD_INTERFACE ×		VDD_INTERFACE	v	
Low		0		VDD_INTERFACE × 0.2	v	
Input Current						
High		-10		+10	μΑ	
Low		-10		+10	μΑ	
Logic Outputs						
Output Voltage						
High		VDD_INTERFACE × 0.8			V	
Low				VDD_INTERFACE × 0.2	V	
DIGITAL SPECIFICATIONS (LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS)						
Logic Inputs						
Input Voltage Range		825		1575	mV	差動入力ペアのそれぞ れに対する値
Input Differential Voltage Threshold		-100		+100	mV	
Receiver Differential Input Impedance			100		Ω	
Logic Outputs						
Output Voltage						
High				1375	mV	
Low		1025			mV	
Output Differential Voltage		150			mV	75mVステップでプロ
Output Offset Voltage			1200		mV	グラム可能
GENERAL-PURPOSE OUTPUTS						
Output Voltage						
High		VDD GPO \times 0.8			v	
Low				VDD GPO \times 0.2	V	
Output Current			10	_ `	mA	
SERIAL PERIPHERAL INTERFACE (SPI) TIMING						VDD_INTERFACE = 1.8V
SPI CLK						
Period	t _{CP}	20			ns	
Pulse Width	t _{MP}	9			ns	
SPI_ENB Setup to First SPI_CLK Rising	tsc	1			ns	
Last SPI_CLK Falling Edge to SPI_ENB Hold	$t_{\rm HC}$	0			ns	
SPI_DI						
Data Input Setup to SPI_CLK	ts	2			ns	
Data Input Hold to SPI_CLK	t _H	1			ns	
SPI_CLK Rising Edge to Output Data Delay						
4-Wire Mode	t _{co}	3		8	ns	
3-Wire Mode	tco	3		8	ns	

パラメータ ¹	記号	Min	Тур	Max	単位	テスト条件/ コメント
Bus Turnaround Time, Read	t _{HZM}	t _H		t _{CO (max)}	ns	ベースバンド・プロセ
						ッサ(BBP)が最後の アドレス・ビットを駆 動した後
Bus Turnaround Time, Read	t _{HZS}	0		t _{CO (max)}	ns	AD9361S-CSL が最後 のデータ・ビットを駆
						動した後
DIGITAL DATA TIMING (CMOS), VDD_INTERFACE = 1.8 V						
DATA_CLK_x Clock Period	t _{CP}	16.276			ns	61.44MHz
DATA_CLK_x and FB_CLK_x Pulse Width	t _{MP}	45% of t _{CP}		55% of t_{CP}	ns	
TX Data						TX_FRAME_x、 P0_Dx、および P1_Dx
Setup to FB_CLK_x	t _{STX}	1			ns	
Hold to FB CLK x	t _{HTX}	0			ns	
DATA CLK x to Data Bus Output Delay	t _{DDRX}	0		1.5	ns	
DATA CLK x to RX FRAME x Delay	t _{DDDV}	0		1.0	ns	
Pulse Width						
ENABLE	İ ENPW	tcp			ns	
TXNRX	TYNPYPW	tcp			ns	FDD独立イネーブ
	-manda w					ル・ステート・マシン (ESM) モード
TXNRX Setup to ENABLE	t _{TXNRXSU}	0			ns	時分割複信(TDD) ESM モード
Bus Turnaround Time						
Before RX	t _{RPRE}	$2 \times t_{CP}$			ns	TDDモード
After RX	t _{RPST}	$2 \times t_{CP}$			ns	TDDモード
Capacitive Load			3		pF	
Capacitive Input			3		pF	
DIGITAL DATA TIMING (CMOS), VDD_INTERFACE = 2.5 V						
DATA_CLK_x Clock Period	t _{CP}	16.276			ns	61.44MHz
DATA_CLK_x and FB_CLK_x Pulse Width	t _{MP}	45% of t_{CP}		55% of t_{CP}	ns	
TX Data						TX_FRAME_x、 P0_Dx、および P1_Dx
Setup to FB_CLK_x	t _{STX}	1			ns	
Hold to FB_CLK_x	t _{HTX}	0			ns	
DATA_CLK_x to Data Bus Output Delay	t _{DDRX}	0		1.2	ns	
DATA_CLK_x to RX_FRAME_x Delay	t _{DDDV}	0		1.0	ns	
Pulse Width						
ENABLE	t _{ENPW}	t _{CP}			ns	
TXNRX	t _{TXNRXPW}	tcp			ns	FDD 独立 ESM モード
TXNRX Setup to ENABLE	t TXNRXSU	0			ns	TDD ESM モード
Bus Turnaround Time						
Before RX	t RPRF	$2 \times t_{CP}$			ns	TDDモード
After RX	Inner	2 × t _{cp}			ns	エレロチード
Canacitive Load	*RP51	- ver	3		nF	
Capacitive Load			3		pF pF	

AD9361S-CSL

パラメータ 1	記号	Min	Тур	Max	単位	テスト条件/ コメント
DIGITAL DATA TIMING (LVDS)						
DATA_CLK_x Clock Period	t _{CP}	4.069			ns	245.76MHz
DATA_CLK_x and FB_CLK_x Pulse Width	t _{MP}	45% of t _{CP}		55% of t _{CP}	ns	
TX Data						TX_FRAME_xおよび TX Dx x
Setup to FB CLK x	t _{STX}	1			ns	
Hold to FB_CLK_x	t _{HTX}	0			ns	
DATA_CLK_x to Data Bus Output Delay	t _{DDRX}	0.25		1.25	ns	
DATA_CLK_x to RX_FRAME_x Delay	t _{DDDV}	0.25		1.25	ns	
Pulse Width						
ENABLE	tenpw	tcp			ns	
TXNRX	t _{TXNRXPW}	t _{CP}			ns	FDD 独立 ESM モード
TXNRX Setup to ENABLE	t _{TXNRXSU}	0			ns	TDD ESM モード
Bus Turnaround Time						
Before RX	t _{RPRE}	$2 \times t_{CP}$			ns	
After RX	t _{RPST}	$2 \times t_{CP}$			ns	
Capacitive Load			3		pF	
Capacitive Input			3		pF	
SUPPLY CHARACTERISTICS					-	
1.3 V Main Supply Voltage		1.267	1.3	1.33	V	
VDD_INTERFACE Supply Nominal Settings						
CMOS		1.14		2.625	V	
LVDS		1.71		2.625	V	
VDD_INTERFACE Tolerance		-5		+5	%	許容誤差は任意の電圧 設定に適用できます
VDD_GPO Supply Nominal Setting		1.3		3.3	V	未使用時には、1.3Vに 設定してください
VDD_GPO Tolerance		-5		+5	%	許容誤差は任意の電圧 設定に適用できます
Current Consumption						
VDDA1P3_x, Sleep Mode			180		μΑ	すべての入力電流の合 計値
VDD_GPO			50		μΑ	無負荷

¹パラメータの説明で、多機能ピンの特定の機能について示している箇所では、仕様に関係するピン名のみを示しています。多機能ピンのすべての機能を含 むピン名については、ピン配置およびピン機能の説明のセクションを参照してください。

AD9361S-CSL

消費電流-VDD_INTERFACE

TX は送信、RX は受信を表します。

表 2. VDD_INTERFACE = 1.2V

パラメータ	Min	Тур	Max	単位	テスト条件/コメント
SLEEP MODE		45		μΑ	電源供給、デバイス・ディスエーブル時
ONE RX CHANNEL, ONE TX CHANNEL, DOUBLE DATA RATE (DDR)					
Long-Term Evolution (LTE 10 MHz)					
Single Port		2.9		mA	30.72MHz のデータ・クロック、CMOS
Dual Port		2.7		mA	15.36MHz のデータ・クロック、CMOS
LTE 20 MHz					
Dual Port		5.2		mA	30.72MHzのデータ・クロック、CMOS
TWO RX CHANNELS, TWO TX CHANNELS, DDR					
LTE 3 MHz					
Dual Port		1.3		mA	7.68MHzのデータ・クロック、CMOS
LTE 10 MHz					
Single Port		4.6		mA	61.44MHz のデータ・クロック、CMOS
Dual Port		5.0		mA	30.72MHzのデータ・クロック、CMOS
LTE 20 MHz					
Dual Port		8.2		mA	61.44MHzのデータ・クロック、CMOS
Global System for Mobile Communications (GSM)					
Dual Port		0.2		mA	1.08MHz のデータ・クロック、CMOS

表 3. VDD_INTERFACE = 1.8V

パラメータ	Min	Тур	Max	単位	テスト条件/コメント
SLEEP MODE		84		μΑ	電源供給、デバイス・ディスエーブル時
ONE RX CHANNEL, ONE TX CHANNEL, DDR					
LTE 10 MHz					
Single Port		4.5		mA	30.72MHzのデータ・クロック、CMOS
Dual Port		4.1		mA	15.36MHz のデータ・クロック、CMOS
LTE 20 MHz					
Dual Port		8.0		mA	30.72MHzのデータ・クロック、CMOS
TWO RX CHANNELS, TWO TX CHANNELS, DDR					
LTE 3 MHz					
Dual Port		2.0		mA	7.68MHzのデータ・クロック、CMOS
LTE 10 MHz					
Single Port		8.0		mA	61.44MHzのデータ・クロック、CMOS
Dual Port		7.5		mA	30.72MHz のデータ・クロック、CMOS
LTE 20 MHz					
Dual Port		14.0		mA	61.44MHzのデータ・クロック、CMOS
GSM					
Dual Port		0.3		mA	1.08MHzのデータ・クロック、CMOS

AD9361S-CSL

表 4. VDD_INTERFACE = 2.5V

パラメータ	Min	Тур	Max	単位	テスト条件/コメント
SLEEP MODE		150		μΑ	電源供給、デバイス・ディスエーブル時
ONE RX CHANNEL, ONE TX CHANNEL, DDR					
LTE 10 MHz					
Single Port		6.5		mA	30.72MHzのデータ・クロック、CMOS
Dual Port		6.0		mA	15.36MHzのデータ・クロック、CMOS
LTE 20 MHz					
Dual Port		11.5		mA	30.72MHzのデータ・クロック、CMOS
TWO RX CHANNELS, TWO TX CHANNELS, DDR					
LTE 3 MHz					
Dual Port		3.0		mA	7.68MHzのデータ・クロック、CMOS
LTE 10 MHz					
Single Port		11.5		mA	61.44MHzのデータ・クロック、CMOS
Dual Port		10.0		mA	30.72MHzのデータ・クロック、CMOS
LTE 20 MHz					
Dual Port		20.0		mA	61.44MHzのデータ・クロック、CMOS
GSM					
Dual Port		0.5		mA	1.08MHzのデータ・クロック、CMOS

消費電流-VDDD1P3_DIG および VDDA1P3_x(すべての 1.3V 電源の組み合わせ)

TX は送信、RX は受信を表します。

表 5. 800MHz、TDD モード								
パラメータ	Min	Тур	Max	単位	テスト条件/コメント			
ONE RX CHANNEL								
5 MHz Bandwidth		180		mA	連続 RX			
10 MHz Bandwidth		210		mA	連続 RX			
20 MHz Bandwidth		260		mA	連続RX			
TWO RX CHANNELS								
5 MHz Bandwidth		265		mA	連続 RX			
10 MHz Bandwidth		315		mA	連続RX			
20 MHz Bandwidth		405		mA	連続RX			
ONE TX CHANNEL								
5 MHz Bandwidth								
7 dBm		340		mA	連続 TX			
-27 dBm		190		mA	連続 TX			
10 MHz Bandwidth								
7 dBm		360		mA	連続 TX			
-27 dBm		220		mA	連続 TX			
20 MHz Bandwidth								
7 dBm		400		mA	連続 TX			
-27 dBm		250		mA	連続 TX			
TWO TX CHANNELS								
5 MHz Bandwidth								
7 dBm		550		mA	連続 TX			
-27 dBm		260		mA	連続 TX			
10 MHz Bandwidth								
7 dBm		600		mA	連続 TX			
-27 dBm		310		mA	連続 TX			
20 MHz Bandwidth								
7 dBm		660		mA	連続 TX			
-27 dBm		370		mA	連続 TX			

AD9361S-CSL

表 6. TDD モード、2.4GHz								
パラメータ	Min Typ	Max	単位	テスト条件/コメント				
ONE RX CHANNEL								
5 MHz Bandwidth	175		mA	連続した受信				
10 MHz Bandwidth	200		mA	連続 RX				
20 MHz Bandwidth	240		mA	連続 RX				
TWO RX CHANNELS								
5 MHz Bandwidth	260		mA	連続 RX				
10 MHz Bandwidth	305		mA	連続 RX				
20 MHz Bandwidth	390		mA	連続 RX				
ONE TX CHANNEL								
5 MHz Bandwidth								
7 dBm	350		mA	連続 TX				
-27 dBm	160		mA	連続 TX				
10 MHz Bandwidth								
7 dBm	380		mA	連続 TX				
-27 dBm	220		mA	連続 TX				
20 MHz Bandwidth								
7 dBm	410		mA	連続 TX				
-27 dBm	260		mA	連続 TX				
TWO TX CHANNELS								
5 MHz Bandwidth								
7 dBm	580		mA	連続 TX				
-27 dBm	280		mA	連続 TX				
10 MHz Bandwidth								
7 dBm	635		mA	連続 TX				
-27 dBm	330		mA	連続 TX				
20 MHz Bandwidth								
7 dBm	690		mA	連続 TX				
-27 dBm	390		mA	連続 TX				

表 7. TDD モード、5.5GHz

パラメータ	Min Typ	Max	単位	テスト条件/コメント
ONE RX CHANNEL				
5 MHz Bandwidth	175		mA	連続 RX
40 MHz Bandwidth	275		mA	連続 RX
TWO RX CHANNELS				
5 MHz Bandwidth	270		mA	連続 RX
40 MHz Bandwidth	445		mA	連続 RX
ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm	400		mA	連続 TX
-27 dBm	240		mA	連続 TX
40 MHz Bandwidth				
7 dBm	490		mA	連続 TX
-27 dBm	385		mA	連続 TX
TWO TX CHANNELS				
5 MHz Bandwidth				
7 dBm	650		mA	連続 TX
-27 dBm	335		mA	連続 TX
40 MHz Bandwidth				
7 dBm	820		mA	連続 TX
-27 dBm	500		mA	連続 TX

表 8. FDD モード、800MHz

AD9361S-CSL

Parameter	Min Typ Max	Unit
ONE RX CHANNEL, ONE TX CHANNEL		
5 MHz Bandwidth		
7 dBm	490	mA
-27 dBm	345	mA
10 MHz Bandwidth		
7 dBm	540	mA
-27 dBm	395	mA
20 MHz Bandwidth		
7 dBm	615	mA
-27 dBm	470	mA
TWO RX CHANNELS, ONE TX CHANNEL		
5 MHz Bandwidth		
7 dBm	555	mA
-27 dBm	410	mA
10 MHz Bandwidth		
7 dBm	625	mA
-27 dBm	480	mA
20 MHz Bandwidth		
7 dBm	740	mA
-27 dBm	600	mA
ONE RX CHANNEL, TWO TX CHANNELS		
5 MHz Bandwidth		
7 dBm	685	mA
-27 dBm	395	mA
10 MHz Bandwidth		
7 dBm	755	mA
-27 dBm	465	mA
20 MHz Bandwidth		
7 dBm	850	mA
-27 dBm	570	mA
TWO RX CHANNELS, TWO TX CHANNELS		
5 MHz Bandwidth		
7 dBm	790	mA
-27 dBm	495	mA
10 MHz Bandwidth		
7 dBm	885	mA
-27 dBm	590	mA
20 MHz Bandwidth		
7 dBm	1020	mA
-27 dBm	730	mA

- 12/33 -

表 9. FDD モード、2.4GHz

AD9361S-CSL

Parameter	Min Typ	Max	Unit
ONE RX CHANNEL, ONE TX CHANNEL			
5 MHz Bandwidth			
7 dBm	500		mA
-27 dBm	350		mA
10 MHz Bandwidth			
7 dBm	540		mA
-27 dBm	390		mA
20 MHz Bandwidth			
7 dBm	620		mA
-27 dBm	475		mA
TWO RX CHANNELS, ONE TX CHANNEL			
5 MHz Bandwidth			
7 dBm	590		mA
-27 dBm	435		mA
10 MHz Bandwidth			
7 dBm	660		
-27 dBm	510		mA
20 MHz Bandwidth			
7 dBm	770		mA
-27 dBm	620		mA
ONE RX CHANNEL, TWO TX CHANNELS			mA
5 MHz Bandwidth			
7 dBm	730		mA
-27 dBm	425		mA
10 MHz Bandwidth			
7 dBm	800		mA
-27dBm	500		mA
20 MHz Bandwidth			
7 dBm	900		mA
-27 dBm	600		mA
TWO RX CHANNELS, TWO TX CHANNELS			mA
5 MHz Bandwidth			
7 dBm	820		
-27 dBm	515		mA
10 MHz Bandwidth			
7 dBm	900		mA
-27 dBm	595		mA
20 MHz Bandwidth			
7 dBm	1050		mA
-27 dBm	740		mA

表 10. FDD モード、5.5GHz

Parameter	Min	Тур	Max	Unit
ONE RX CHANNEL, ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm		550		mA
-27 dBm		385		mA
TWO RX CHANNELS, ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm		645		mA
-27 dBm		480		mA
ONE RX CHANNELS, TWO TX CHANNELS				
5 MHz Bandwidth				
7 dBm		805		mA
-27 dBm		480		mA

AD9361S-CSL

Parameter	Min	Тур	Max	Unit
TWO RX CHANNELS, TWO TX CHANNELS				
5 MHz Bandwidth				
7 dBm		895		mA
-27 dBm		575		mA

放射テストおよび制限仕様

特に指定のない限り、VDD_GPO=3.3V、VDD_INTERFACE=1.8V、VDDD1P3_DIG=1.3V、他のすべての VDDA1P3_x ピン=1.3V、T_A= 25℃ での電気特性。トータル・ドーズ効果(TID) 試験は、50%の過負荷をかけ、100℃ で 168 時間アニールしながらバイアスを印加した 状態で 30krad の放射線を使用して実施しています。

表 11.					
パラメータ	テスト条件/コメント	Min	Тур	Max	単位
SUPPLY CHARACTERISTICS					
Total Sleep Mode Current			2	14	mA
Total Active Mode Current			120	150	mA
DIGITAL INPUT CURRENTS					
Low		-0.1		+0.1	μΑ
High		-0.1		+0.1	μΑ
XTALN INPUT CURRENT	リファレンス・クロックは XTALN ピンに直接				
	入力				
Low		-0.1		+0.1	μΑ
High		-200		+200	μΑ
RECEIVERS, 2.3 GHz					
LO Leakage	レシーバー・フロント・エンド入力での値		-110	-75	dBm
RX1 to RX2 Isolation					
RX1A_x to RX2A_x, RX1C_x to RX2C_x		28	65		dB
RX1B_x to RX2B_x		28	50		dB
RX2 to RX1 Isolation					
RX2A_x to RX1A_x, RX2C_x to RX1C_x		28	65		dB
RX2B_x to RX1B_x		28	50		dB
TRANSMITTERS, 2.3 GHz					
Carrier Leakage	0dB 減衰		-50	-42	dBc
	41.75dB 減衰		-34	-25	dBc
Fundamental Output Power	0dB 減衰	3.0	5.0		dBm

AD9361S-CSL

絶対最大定格

耒 12

Parameter	Rating
VDDD1P3_DIG, VDDA1P3_x ¹ to VSSx	-0.3 V to +1.4 V
VDD_INTERFACE to VSSx	-0.3 V to +3.0 V
VDD_GPO to VSSx	-0.3 V to +3.9 V
Logic Inputs and Outputs to VSSx	-0.3 V to VDD_INTERFACE + 0.3 V
Input Current to Any Pin Except Supplies	±10 mA
RF Inputs (Peak Power)	2.5 dBm
TX Monitor Input Power (Peak Power)	9 dBm
Package Power Dissipation	$(T_{JMAX} - T_A)/\theta_{JA}$
Maximum Junction Temperature (T _{JMAX})	110°C
Peak Reflow	260°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C

¹ VDDA1P3 x は、VDDA1P3 TX LO、VDDA1P3 TX VCO LDO、 VDDA1P3_RX_RF、VDDA1P3_RX_TX、VDDA1P3_RX_LO、 VDDA1P3 TX LO BUFFER, VDDA1P3 RX VCO LDO, VDDA1P3 RX SYNTH、VDDA1P3_TX_SYNTH、および VDDA1P3 BB を表します。

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

リフロー・プロファイル

AD9361S-CSL のリフロー・プロファイルは、鉛フリー・デバイ スに関する JEDEC JESD20 の基準に従っています。最大リフロ ー温度は260℃です。

熱抵抗

熱性能は、プリント回路基板(PCB)の設計と動作環境に直接 関連しています。PCB の熱設計には、細心の注意を払う必要が あります。

θ_{JA}は、1 立方フィートの密封容器内で測定された、自然対流下 におけるジャンクションと周囲温度の間の熱抵抗です。

θJCTは、ジャンクションとケース上面の間の熱抵抗です。

表 13. 熱抵抗

Package Type	Airflow Velocity (m/sec)	$\theta_{JA}^{1,2}$	$\theta_{JCT}^{1,3}$	Unit
BC-144-7	0	32.3	9.6	°C/W
	1.0	29.6		°C/W
	2.5	27.8		°C/W

¹ JEDEC JESD51-7 と JEDEC JESD51-5 2S2P のテスト・ボードに準拠。

² JEDEC JESD51-2(自然空冷)または JEDEC JESD51-6(強制空冷)に 進拠。

³ MIL-STD 883、Method 1012.1 に準拠。

ESD に関する注意

電荷を帯びたデバイスや回路ボードは、検知されない まま放電することがあります。本製品は当社独自の特 許技術である ESD 保護回路を内蔵してはいますが、デ バイスが高エネルギーの静電放電を被った場合、損傷 を生じる可能性があります。したがって、性能劣化や 機能低下を防止するため、ESD に対する適切な予防措 置を講じることをお勧めします。

23131-002

ピン配置およびピン機能の説明

	1	2	3	4	5	6	7	8	9	10	11	12
A	RX2A_N	RX2A_P	DNC	VSSA	TX_MON2	VSSA	TX2A_N	TX2A_P	TX2B_N	TX2B_P	VDDA1P1_ TX_VCO	TX_EXT_ LO_IN
в	VSSA	VSSA	AUXDAC1	GPO_3	GPO_2	GPO_1	GPO_0	VDD_GPO	VDDA1P3_ TX_LO	VDDA1P3_ TX_VCO_ EDO	TX_VCO_ LDO_OUT	VSSA
с	RX2C_P	VSSA	AUXDAC2	TEST/ ENABLE	CTRL_IN0	CTRL_IN1	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
D	RX2C_N	VDDA1P3_ RX_RF	VDDA1P3_ RX_TX	CTRL_OUT0	CTRL_IN3	CTRL_IN2	P0_D9/ TX_D4_P	P0_D7/ TX_D3_P	P0_D5/ TX_D2_P	P0_D3/ TX_D1_P	P0_D1/ TX_D0_P	VSSD
Е	RX2B_P	VDDA1P3_ RX_LO	VDDA1P3_ TX_LO_ BUFFER	CTRL_OUT1	CTRL_OUT2	CTRL_OUT3	P0_D11/ TX_D5_P	P0_D8/ TX_D4_N	P0_D6/ TX_D3_N	P0_D4/ TX_D2_N	P0_D2/ TX_D1_N	P0_D0/ TX_D0_N
F	RX2B_N	VDDA1P3_ RX_VCO_ EDO	VSSA	CTRL_OUT6	CTRL_OUT5	CTRL_OUT4	VSSD	P0_D10/ TX_D5_N	VSSD	FB_CLK_P	VSSD	VDDD1P3_ DIG
G	RX_EXT_ LO_IN	RX_VCO_ LDO_OUT	VDDA1P1_ RX_VCO	CTRL_OUT7	EN_AGC	ENABLE	RX_ FRAME_N	RX_ FRAME_P	TX_ FRAME_P	FB_CLK_N	DATA_ CLK_P	VSSD
н	RX1B_P	VSSA	VSSA	TXNRX	SYNC_IN	VSSA	VSSD	P1_D11/ RX_D5_P	TX_ FRAME_N	VSSD	DATA_ CLK_N	VDD_ INTERFACE
J	RX1B_N	VSSA	VDDA1P3_ RX_SYNTH	SPI_DI	SPI_CLK	CLK_OUT	P1_D10/ RX_D5_N	P1_D9/ RX_D4_P	P1_D7/ RX_D3_P	P1_D5/ RX_D2_P	P1_D3/ RX_D1_P	P1_D1/ RX_D0_P
к	RX1C_P	VSSA	VDDA1P3_ TX_SYNTH	VDDA1P3_ BB	RESETB	SPI_ENB	P1_D8/ RX_D4_N	P1_D6/ RX_D3_N	P1_D4/ RX_D2_N	P1_D2/ RX_D1_N	P1_D0/ RX_D0_N	VSSD
L	RX1C_N	VSSA	VSSA	RBIAS	AUXADC	SPI_DO	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
м	RX1A_P	RX1A_N	DNC	VSSA	TX_MON1	VSSA	TX1A_P	TX1A_N	TX1B_P	TX1B_N	XTALP	XTALN

DIGITAL I/O GROUND DO NOT CONNECT

図 2. ピン配置、上面図

表 14. ピン機能の説明

ピン番号	タイプ 1	記号	説明
A1, A2	I	RX2A_N, RX2A_P	受信チャンネル2の差動入力A。各ピンは、シングルエンド入力として、または 組み合わせて差動ペアとして使用できます。未使用ピンはグラウンドに接続して ください。
A3, M3	DNC	DNC	接続なし。これらのピンには接続しないでください。
A4, A6, B1, B2, B12, C2, C7 to C12, F3, H2, H3, H6, J2, K2, L2, L3, L7 to L12, M4, M6	Ι	VSSA	アナログ・グラウンド。これらのピンは、PCB のデジタル・グラウンド VSSD (グランド・プレーン)に直接接続してください。
A5	Ι	TX_MON2	送信チャンネル2の電力モニタ入力。このピンを使用しない場合は、グラウンド へ接続してください。
A7, A8	0	TX2A_N, TX2A_P	送信チャンネル2の差動出力 A。未使用ピンは1.3Vに接続してください。
A9, A10	0	TX2B_N, TX2B_P	送信チャンネル2の差動出力B。未使用ピンは1.3Vに接続してください。
A11	Ι	VDDA1P1_TX_VCO	送信 VCO の電源入力。B11 と接続します。
A12	Ι	TX_EXT_LO_IN	外部送信 LO 入力。このピンを使用しない場合は、グラウンドへ接続してください。
B3	0	AUXDAC1	補助 DAC1 出力。
B4 to B7	0	GPO_3 to GPO_0	3.3V が使用可能な汎用出力。
B8	I	VDD_GPO	AUXDACx および汎用出力用 2.5V~3.3V 電源ピン。VDD_GPO 電源を使用しない 場合は、この電源を 1.3V にセットしてください。
B9	Ι	VDDA1P3_TX_LO	送信 LO の 1.3V 電源入力。B10 と接続します。
B10	Ι	VDDA1P3_TX_VCO_LDO	送信 VCO LDO の 1.3V 電源入力。B9 と接続します。
B11	0	TX_VCO_LDO_OUT	送信 VCO LDO 出力。A11 と接続すると共に、直列に配置した 1µF のバイパス・ コンデンサと 1Ωの抵抗を介してグラウンドに接続してください。

ピン番号	タイプ 1	記号	説明
C1, D1	Ι	RX2C_P, RX2C_N	受信チャンネル2の差動入力C。各ピンは、シングルエンド入力として、または
			組み合わせて差動ペアとして使用できます。これらのピンは、3GHzを超えると
62			性能が低下します。未使用ビンはグラウンドに接続してください。
C3	0	AUXDAC2	補助 DAC2 出力。
C4	1	TEST/ENABLE	テスト人力。通常動作時はグラウンドに接続してください。
C5, C6, D6, D5	1	CIRL_IN0 to CIRL_IN3	制御人力。これらのビンは、RX ゲインと TX 減衰のマニュアル制御に使用しま
D2	т	VDDA103 BY RE	y_{\circ} レジーバーの12V 雪頂入力 D2 と控結します
D2	T	VDDA1P3 RX TX	1 3V 雪源入力 D2 と接続します
D4, E4 to E6, F4 to F6, G4	0	CTRL_OUT0, CTRL_OUT1 to CTRL_OUT3, CTRL_OUT6 to CTRL_OUT4, CTRL_OUT7	制御出力。これらのピンは、プログラマブルな機能を備えた多目的出力です。
D7	I/O	P0_D9/TX_D4_P	デジタル・データ・ポート P0/送信用差動入力バス。このビンには2つの機能が あります。P0_D9として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート0の一部として機能します。TX_D4_Pとして使用する場合 は、内部に LVDS の終端を備えた6ビット TX 差動入力 LVDS バスの一部として 機能します。
D8	I/O	P0_D7/TX_D3_P	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が あります。P0_D7 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート 0 の一部として機能します。TX_D3_P として使用する場合 は、内部に LVDS の終端を備えた6 ビット TX 差動入力 LVDS バスの一部として 機能します。
D9	I/O	P0_D5/TX_D2_P	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が あります。P0_D5 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート 0 の一部として機能します。TX_D2_P として使用する場合 は、内部に LVDS の終端を備えた6 ビット TX 差動入力 LVDS バスの一部として 機能します。
D10	VO	P0_D3/TX_D1_P	デジタル・データ・ポート P0/送信用差動入力バス。このピンには 2 つの機能が あります。P0_D3 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート 0 の一部として機能します。TX_D1_P として使用する場合 は、内部に LVDS の終端を備えた 6 ビット TX 差動入力 LVDS バスの一部として 機能します。
D11	I/O	P0_D1/TX_D0_P	デジタル・データ・ポート P0/送信用差動入力バス。このピンには 2 つの機能が あります。P0_D1 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート 0 の一部として機能します。TX_D0_P として使用する場合 は、内部に LVDS の終端を備えた 6 ビット TX 差動入力 LVDS バスの一部として 機能します。
D12, F7, F9, F11, G12, H7, H10, K12	Ι	VSSD	デジタル・グラウンド。これらのピンは、PCBのアナログ・グラウンド VSSA (グランド・プレーン)に直接接続してください。
E1, F1	Ι	RX2B_P, RX2B_N	受信チャンネル2の差動入力B。各ピンは、シングルエンド入力として、または 組み合わせて差動ペアとして使用できます。これらのピンは、3GHzを超えると 性能が低下します。未使用ピンはグラウンドに接続してください。
E2	Ι	VDDA1P3_RX_LO	受信 LO の 1.3V 電源入力。F2 と接続します。
E3	Ι	VDDA1P3_TX_LO_BUFFER	送信 LO バッファ。1.3V 電源入力。
E7	I/O	P0_D11/TX_D5_P	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が あります。P0_D11として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート0の一部として機能します。TX_D5_Pとして使用する場合 は、内部に LVDSの終端を備えた6 ビット TX 差動入力 LVDS バスの一部として 機能します。
E8	I/O	P0_D8/TX_D4_N	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が あります。P0_D8 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート 0 の一部として機能します。TX_D4_N として使用する場 合は、内部に LVDS の終端を備えた 6 ビット TX 差動入力 LVDS バスの一部とし て機能します。

ピン番号	タイプ ¹	記号	説明
E9	I/O	P0_D6/TX_D3_N	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が
			あります。P0_D6として使用する場合は、12ビットの双方向パラレル CMOS レ
			ベル・データ・ボート 0 の一部として機能します。TX_D3_Nとして使用する場合は、内部にLVDS の約定時を使ったんビットTV 美動 T カ LVDS バスの一部とし
			ーロは、Phile LVDSの影响を備えたるビッド IA 差動入力 LVDS ハスの一部として機能します。
E10	I/O	P0 D4/TX D2 N	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が
			あります。P0_D4として使用する場合は、12ビットの双方向パラレル CMOS レ
			ベル・データ・ボート0の一部として機能します。TX_D2_Nとして使用する場合は、内部にLVDS の教授も使うたくビットTX 美動1 カ LVDS バスの一部とし
			ーロは、Phile LVDSの影响を備えたるビッド IA 差動入力 LVDS ハスの一部として機能します。
E11	I/O	P0_D2/TX_D1_N	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が
			あります。P0_D2として使用する場合は、12ビットの双方向パラレル CMOS レ
			ベル・データ・ボート 0 の一部として機能します。TX_D1_Nとして使用する場合は、内部にLVDS の数端を備えたんビットTX 美動 T カ LVDS バスの一部とし
			ーロは、Phile LyDSの絵幅を備えたりビッド IX 左動八方 LyDSバスの 前として機能します。
E12	I/O	P0_D0/TX_D0_N	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が
			あります。P0_D0として使用する場合は、12ビットの双方向パラレル CMOS レ
			ベル・データ・ボート 0 の一部として機能します。TX_D0_Nとして使用する場合は、内部にLVDS の数端を備えたんビットTV 美動 T カエVDS バスの一部とし
			ーロは、Phile LVDSの絵幅を備えたりビッド IA 左動八方 LVDS バスの 前とし て機能します。
F2	Ι	VDDA1P3_RX_VCO_LDO	受信 VCO LDO の 1.3V 電源入力。E2 と接続します。
F8	I/O	P0_D10/TX_D5_N	デジタル・データ・ポート P0/送信用差動入力バス。このピンには2つの機能が
			あります。P0_D10として使用する場合は、12ビットの双方向パラレル CMOS レ
			て機能します。
F10, G10	Ι	FB_CLK_P, FB_CLK_N	フィードバック・クロック。これらのピンは、TXデータのクロックとして使用
			する FB_CLK_x信号を受信します。CMOS モードでは、FB_CLK_Pを入力として
E10	т	VODDIN DIC	使用し、FB_CLK_Nをクフワンドに接続してくたさい。
F12 G1	I	RX EXT LO IN	1.5V アンダル電源入刀。 め部座信103 カーこのピンを使用したい提合け、ガラウンドへ接続してくださ
01	1		アドロ文目 LO 八方。このこうを使用しない物日は、クラウラド 当該配してくたさい。
G2	0	RX_VCO_LDO_OUT	受信 VCO LDO 出力。G3 に直接接続すると共に、直列に配置した 1µF のバイパ
63	т	VDDA1P1 BX VCO	
G5	I	EN AGC	AGCのマニュアル制御入力。
G6	Ι	ENABLE	制御入力。このピンによって様々な動作状態でデバイスを動作させます。
G7, G8	0	RX_FRAME_N, RX_FRAME_P	受信デジタル・データのフレーミング出力信号。これらのピンは、RX 出力デー
			タが有効かどうかを示す RX_FRAME_x 信号を送信します。CMOS モードでは、 PX_FPAME_Pを出力として使用しPX_FPAME_Nは実接続のままにします
G9 H9	т	TX FRAME P TX FRAME N	$KA_T KAIME_F を回力として使用し、KA_T KAIME_N は不接続のよよにしより。 送信デジタル・データのフレーミング入力信号 TX データが有効である場合$
0,10	-		これらのピンは TX_FRAME_x 信号を受信します。CMOS モードでは、
			TX_FRAME_Pを入力として使用し、TX_FRAME_Nをグラウンドに接続してくだ
	0	DITL OFF DETL OFF	
GII, HII	0	DATA_CLK_P, DATA_CLK_N	受信アーダ・クロック出力。これらのビンは、RX アーダのクロック用に BBP か 使用する DATA CLK x 信号を送信します CMOS モードでけ DATA CLK Pを
			出力として使用し、DATA_CLK_Nは未接続のままにします。
H1, J1	Ι	RX1B_P, RX1B_N	受信チャンネル1の差動入力B。また、各ピンはシングルエンド入力としても使
			用できます。これらのピンは、3GHzを超えると性能が低下します。未使用ピン
114	т	TVNDV	はクフワンドに接続してくたさい。
H4	1	TANKA	イベーブル・ステート・マンン制御信号。このビンはテータ・ホート・ハスの方 向を制御します。ロジック・ローで RX 方向、ロジック・ハイで TX 方向を選択
			します。
Н5	Ι	SYNC_IN	複数の AD9361S-CSL デバイス同期用のデジタル・クロック入力。このピンを使
110	1/O		用しない場合は、クラウンドへ接続してください。
H8	1/0	P1_D11/RX_D5_P	アシタル・テータ・ボート Pl/ 受信用差動出力バス。このビンには 2 つの機能が あります Pl D11 として使用する場合け 12 ビットの双方向パラレル CMOS レ
			ベル・データ・ポート1の一部として機能します。RX_D5_Pとして使用する場
			合は、内部に LVDS の終端を備えた 6 ビット RX 差動出力 LVDS バスの一部とし
			て機能します。

ピン番号	タイプ 1	記号	説明	
H12	Ι	VDD_INTERFACE	デジタル I/O ピン用の 1.2V~2.5V 電源(LVDS モードでは 1.8V~2.5V)。	
J3	Ι	VDDA1P3_RX_SYNTH	1.3V 電源入力。	
J4	Ι	SPI_DI	SPIシリアル・データ入力。	
J5	Ι	SPI_CLK	SPIクロック入力。	
J6	0	CLK_OUT	クロック出力。このピンは、バッファ付きの外部入力クロック、デジタル制御水 晶発振器(DCXO)、または内部 ADC クロックの分周を出力するように設定で きます。	
J7	I/O	P1_D10/RX_D5_N	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D10として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D5_N として使用する場 合は、内部に LVDS の終端を備えた6 ビット RX 差動出力 LVDS バスの一部とし て機能します。	
J8	I/O	P1_D9/RX_D4_P	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D9として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D4_Pとして使用する場 合は、内部にLVDSの終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	
J9	I/O	P1_D7/RX_D3_P	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D7 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D3_P として使用する場 合は、内部に LVDS の終端を備えた6 ビット RX 差動出力 LVDS バスの一部とし て機能します。	
J10	I/O	P1_D5/RX_D2_P	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D5 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D2_P として使用する場 合は、内部に LVDS の終端を備えた6 ビット RX 差動出力 LVDS バスの一部とし て機能します。	
111	I/O	P1_D3/RX_D1_P	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D3として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D1_Pとして使用する場 合は、内部にLVDSの終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	
J12	I/O	P1_D1/RX_D0_P	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D1として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D0_Pとして使用する場 合は、内部に LVDSの終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	
K1, L1	I	RXIC_P, RXIC_N	受信チャンネル1の差動入力C。また、各ピンはシングルエンド入力としても使用できます。これらのピンは、3GHzを超えると性能が低下します。未使用ピンはグラウンドに接続してください。	
K3	Ι	VDDA1P3_TX_SYNTH	1.3V 電源入力。	
K4	Ι	VDDA1P3_BB	1.3V 電源入力。	
K5	Ι	RESETB	非同期リセット。ロジック・ローでデバイスをリセットします。	
К6	Ι	SPI_ENB	SPIイネーブル入力。SPIバスをイネーブルにするには、このピンをロジック・ローに設定します。	
K7	VΟ	P1_D8/RX_D4_N	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D8 として使用する場合は、12 ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D4_N として使用する場 合は、内部に LVDS の終端を備えた6 ビット RX 差動出力 LVDS バスの一部とし て機能します。	
K8	I/O	P1_D6/RX_D3_N	デジタル・データ・ボート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D6として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D3_Nとして使用する場 合は、内部にLVDSの終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	
К9	I/O	P1_D4/RX_D2_N	デジタル・データ・ボート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D4として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D2_Nとして使用する場 合は、内部に LVDS の終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	

AD9361S-CSL

ピン番号	タイプ 1	記号	説明	
K10	I/O	P1_D2/RX_D1_N	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D2として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D1_N として使用する場 合は、内部に LVDS の終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	
K11	I/O	P1_D0/RX_D0_N	デジタル・データ・ポート P1/受信用差動出力バス。このピンには2つの機能が あります。P1_D0として使用する場合は、12ビットの双方向パラレル CMOS レ ベル・データ・ポート1の一部として機能します。RX_D0_N として使用する場 合は、内部に LVDS の終端を備えた6ビット RX 差動出力 LVDS バスの一部とし て機能します。	
L4	Ι	RBIAS	バイアス入力リファレンス。14.3kΩ(許容誤差 1%)の抵抗を介してこのピンを グラウンドに接続してください。	
L5	Ι	AUXADC	補助 ADC 入力。このピンを使用しない場合は、グラウンドへ接続してください。	
L6	0	SPI_DO	SPIシリアル・データ出力(4線式モード)、3線式モードの場合は高インピーダ ンス。	
M1, M2	Ι	RX1A_P, RX1A_N	受信チャンネル1の差動入力A。また、各ピンはシングルエンド入力としても使 用できます。未使用ピンはグラウンドに接続してください。	
M5	Ι	TX_MON1	送信チャンネル1の電力モニタ入力。このピンを使用しない場合は、グラウンド へ接続してください。	
M7, M8	0	TX1A_P, TX1A_N	送信チャンネル1の差動出力 A。未使用ピンは1.3Vに接続してください。	
M9, M10	0	TX1B_P, TX1B_N	送信チャンネル1の差動出力 B。未使用ピンは 1.3V に接続してください。	
M11, M12	I	XTALP, XTALN	リファレンス周波数用水晶発振器の接続。水晶発振器を使用する場合は、この2 本のピンの間に接続してください。外部クロック源を使用する場合はXTALNに 接続し、XTALPは未接続のままにします。	

¹Iは入力、Oは出力、I/Oは入出力、DNCは接続なしを意味します。

AD9361S-CSL

代表的な性能特性

図 5. RSSI エラーと RX 入力電力の関係、エッジ変調、 (800MHz、-50dBm 入力電力を基準)

図 6. RX EVM と RX 入力電力の関係、64 直交振幅変調(QAM) LTE 10MHz モード、19.2MHz のリファレンス・クロック

図 7. RX EVM と RX 入力電力の関係、GSM モード、30.72MHz のリファレンス・クロック(RF シンセサイザ用に内部で2倍)

図 8. RX EVM と干渉源の電力レベルの関係、 入力電力(P_{IN}) = -82dBm の LTE 10MHz 信号を使用、7.5MHz オフセットで 5MHz の直交周波数分割多重(OFDM)をブロック

図 16. TX 出力電力と TX LO 周波数の関係、 減衰量の設定 = 0dB、シングルトーン出力

図 18. TX 出力電力と搬送波周波数からの周波数オフセットの 関係、f_{LO_TX} = 800MHz、LTE 10MHz ダウンリンク (様々なデジタル減衰量で表示)

図 19. TX 出力電力と搬送波周波数からの周波数オフセットの 関係、fLo_TX = 800MHz、GSM ダウンリンク (様々なデジタル減衰量で表示)、3MHz 範囲

AD9361S-CSL

図 30. TX SNR と TX 減衰量設定の関係、GSM 信号を使用し、 ノイズは 20MHz オフセットで測定

図 31. TX のシングル・サイドバンド除去比の周波数特性、 1.5375MHz オフセット

減衰量の設定 = 0dB、シングルトーン出力

+0. IALO の頃 ブロ2㎡/ 1 A C 向波数の様 40MHz のリファレンス・クロック

図 51. TX SNR と TX 減衰量設定の関係、LTE 20MHz 信号を 使用し、ノイズは 90MHz オフセットで測定

3.075MHz オフセット

5.5GHz の周波数帯域

図 65. TX OIP3 と TX 減衰量設定の関係、f_{LO_TX} = 5.8GHz

7MHz オフセット

パッケージとオーダー情報

外形寸法

図 67. 144 ボール・チップ・スケール・パッケージ・ボール・グリッド・アレイ[CSP_BGA] (BC-144-7) 寸法:mm

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option
AD9361BBCZ-CSL	-40°C to +85°C	144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]	BC-144-7

¹Z=RoHS 準拠製品