

300mA、低ドロップアウトの CMOSリニア・レギュレータ

ADP1712/ADP1713/ADP1714

特長

最大出力電流:300mA 入力電圧範囲: 2.5~5.5V

軽負荷効率

I_{GND}=75μA @100μA負荷 低いシャットダウン電流:<1µA

きわめて低いドロップアウト電圧:170mV@300mA負荷

初期精度: ±1%

ライン、負荷、温度の変動に対する精度: ±2%

ソフト・スタート機能付きの16の固定出力電圧オプション:

0.75~3.3V (ADP1712)

調整可能な出力電圧オプション: 0.8~5.0V (ADP1712調整 可能バージョン)

リファレンス・バイパス機能付きの16の固定出力電圧オプション: 0.75~3.3V (ADP1713)

トラッキング機能付きの16の固定出力電圧オプション:

0.75~3.3V (ADP1714) 低い出力ノイズ:40µV rms 高いPSRR: 72dB@1kHz

小型の2.2µFセラミック出力コンデンサによる安定性

優れた負荷/ライン過渡応答 電流制限と熱過負荷保護 ロジック制御のイネーブル 5ピンTSOTパッケージ

アプリケーション

携帯電話

デジタル・カメラとオーディオ機器 携帯型バッテリ駆動機器 ポストDC/DCレギュレーション

概要

小型5ピンTSOTパッケージのADP1712/ADP1713/ADP1714 は、2.5~5.5Vの入力電圧で動作し、最大300mAの出力電流を 供給する低ドロップアウトのリニア・レギュレータです。 300mAの負荷時に170mVという低いドロップアウト電圧で効 率を向上し、広範な入力電圧範囲で動作します。 ADP1712/ADP1713/ADP1714は最新のスケーリング・アーキ テクチャを採用しているため、100μA負荷の駆動時にグラウン ド電流が75μΑと非常に低く、バッテリ駆動の携帯型機器に最

ADP1712/ADP1713/ADP1714には、16種類の固定出力電圧オ プションがあります。ADP1712には、分圧器を外付けして出 力電圧を0.8~5.0Vの範囲で任意に設定できる調整可能バー ジョンがあります。ADP1712の固定バージョンでは、外付け

代表的なアプリケーション回路

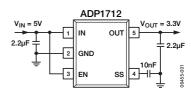


図1. ソフト・スタート用コンデンサを使用する固定出力電圧 のADP1712 (3.3V時)

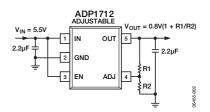


図2. 出力電圧を調整できるADP1712 (0.8~5.0V)

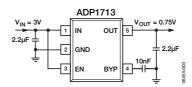


図3. バイパス・コンデンサを使用する固定出力電圧の ADP1713 (0.75V時)

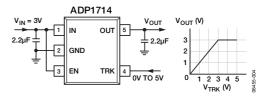


図4. 出力電圧をトラッキングするADP1714

コンデンサによりソフト・スタート時間を設定できます。 ADP1713は、リファレンス・バイパス用コンデンサを接続す ることで、出力電圧ノイズを低減し、電源変動除去比を改善で きます。ADP1714には、外部電圧レールまたはリファレンス に対して出力を追従させるトラッキング機能があります。

ADP1712/ADP1713/ADP1714は、小型の2.2µFセラミック出 力コンデンサで安定した動作ができるように最適化されていま す。優れた過渡性能が得られるとともに、ボード上の使用する スペースが最小限となります。1本のイネーブル・ピンで全デ バイスの出力電圧を制御し、INが最小スレッショールドを下回 るとアンダー電圧ロックアウト回路がレギュレータをオフにし ます。短絡保護や熱過負荷保護機能も備わっているため、悪条 件のときにデバイスの損傷を防止します。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の カーロップ・アンログ は、近代する 日本 は 日本 ともの いめる かっと まっか とまっか とまっか まっか 利用に関して、あるいは利用によって生じる 第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有 に属します

- トはREVISIONが古い場合があります。最新の内容については、英語版をご参照ください。 © 2007 Analog Devices, Inc. All rights reserved.

REV. 0

社/〒105-6891

東京都港区海岸1-16-1 ニューピア竹芝サウスタワービル 電話03 (5402) 8200

大阪営業所/〒532-0003 大阪府大阪市淀川区宮原3-5-36 新大阪MTビル2号 電話06(6350)6868

目次

特長	バイパス用コンデンサ (ADP1713)1
アプリケーション1	トラック・モード (ADP1714)1
代表的なアプリケーション回路1	イネーブル機能1
概要1	
改訂履歴 2	アプリケーション情報1
仕様3	コンデンサの選択1
絶対最大定格	電流制限と熱過負荷保護1
熱抵抗値5	熱に関する対策1
ESDに関する注意5	PCボードのレイアウトのポイント1
ピン配置と機能の説明6	外形寸法1
代表的な性能特性7	オーダリング・ガイド1
動作原理10	
ソフト・スタート機能 (ADP1712)10	
調整可能な出力電圧 (ADP1712の調整可能バージョン)11	

改訂履歴

1/07—Revision 0: Initial Version

2 REV. 0

仕様

特に指定のない限り、 $V_{\rm IN}$ = $(V_{\rm OUT}+0.5V)$ または2.5V (いずれか大きい方)、 $I_{\rm OUT}=10$ mA、 $C_{\rm IN}=C_{\rm OUT}=2.2\mu$ F、 $T_{\rm A}=25$ \mathbb{C}_{\circ}

表1

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT VOLTAGE RANGE	V _{IN}	$T_{J} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	2.5		5.5	V
OPERATING SUPPLY CURRENT	I_{GND}	$I_{OUT} = 0 \mu A$		60		μΑ
		$I_{OUT} = 0 \mu A, T_J = -40^{\circ} C \text{ to } +125^{\circ} C$		7.5	70	μΑ
		$I_{OUT} = 100 \mu A$ $I_{OUT} = 100 \mu A, T_{I} = -40^{\circ} C \text{ to } +125^{\circ} C$		75	05	μΑ
		$I_{OUT} = 100 \mu\text{A}, \ I_{J} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$ $I_{OUT} = 100 \text{mA}$		210	85	μΑ
		$I_{OUT} = 100 \text{ mA}$ $I_{OUT} = 100 \text{ mA}, T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		210	250	μA μA
		I _{OUT} = 300 mA		365	230	μΑ
		$I_{OUT} = 300 \text{ mA}$, $T_1 = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		303	420	μΑ
SHUTDOWN CURRENT	I _{GND-SD}	EN = GND		0.1	.20	μΑ
SHOTDOWN CORRENT	IGND-SD	EN = GND $EN = GND, T_1 = -40^{\circ}C \text{ to } +125^{\circ}C$		0.1	1.0	μΑ
FIXED OUTPUT VOLTAGE	V _{OUT}	$I_{OUT} = 10 \text{ mA}$	-1		+1	%
ACCURACY (ADP1712 FIXED,	V OUT	$100 \mu\text{A} < I_{\text{OUT}} < 300 \text{mA}, T_{\text{J}} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	$\begin{vmatrix} 1 \\ -2 \end{vmatrix}$		+2	%
ADP1713, AND ADP1714)		100 M 1 100T 2 500 MM 1, 1 j = 40 C to 1125 C			12	100
ADJUSTABLE OUTPUT VOLTAGE	V _{OUT}	$I_{OUT} = 10 \text{ mA}$	0.792	0.8	0.808	V
ACCURACY (ADP1712 ADJUSTABLE) ¹		$100 \mu\text{A} < I_{\text{OUT}} < 300 \text{mA}, T_{\text{J}} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	0.784	0.8	0.816	V
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = (V_{OUT} + 0.5 \text{ V}) \text{ to } 5.5 \text{ V}, T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-0.25		+0.25	%/V
LOAD REGULATION ²	$\Delta V_{OUT}/\Delta I_{OUT}$	I _{OUT} = 10 mA to 300 mA		0.001		%/mA
		$I_{OUT} = 10 \text{ mA to } 300 \text{ mA}, T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			0.004	%/mA
DROPOUT VOLTAGE ³	V _{DROPOUT}	$I_{OUT} = 100 \text{ mA}, V_{OUT} \ge 3.0 \text{ V}$		60	70	mV
		$I_{OUT} = 100 \text{ mA}, V_{OUT} \ge 3.0 \text{ V}, T_{J} = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$			80	mV
		$I_{OUT} = 300 \text{ mA}, V_{OUT} \ge 3.0 \text{ V}$		170	205	mV
		$I_{OUT} = 300 \text{ mA}, V_{OUT} \ge 3.0 \text{ V}, T_{J} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			230	mV
		$I_{OUT} = 100 \text{ mA}, 2.5 \text{ V} \le V_{OUT} < 3.0 \text{ V}$		70	85	mV
		$I_{OUT} = 100 \text{ mA}, 2.5 \text{ V} \le V_{OUT} < 3.0 \text{ V}, T_J = -40^{\circ}\text{C to}$ +125°C			95	mV
		$I_{OUT} = 300 \text{ mA}, 2.5 \text{ V} \le V_{OUT} < 3.0 \text{ V}$		200	235	mV
		$I_{OUT} = 300 \text{ mA}, 2.5 \text{ V} \le V_{OUT} < 3.0 \text{ V}, T_J = -40^{\circ}\text{C to}$			270	mV
		+125°C				
START-UP TIME ⁴	T _{START-UP}					
ADP1712 Adjustable and ADP1714				70		μs
ADP1712 External Soft Start		$C_{SS} = 10 \text{ nF}$		7.3		ms
ADP1713		With 10 nF bypass capacitor		90		μs
CURRENT LIMIT THRESHOLD ⁵	I _{LIMIT}		380	500	700	mA
THERMAL SHUTDOWN THRESHOLD	TS _{SD}	T _J rising		150		°C
THERMAL SHUTDOWN HYSTERESIS	TS _{SD-HYS}			15		°C
SOFT-START SOURCE CURRENT (ADP1712 WITH EXTERNAL SOFT START)	SS _{I-SOURCE}	SS = GND	0.8	1.2	1.5	μΑ
UVLO ACTIVE THRESHOLD	UVLO _{ACTIVE}	V_{IN} falling	2			V
UVLO INACTIVE THRESHOLD	UVLO _{INACTIVE}	$V_{\rm IN}$ rising			2.45	V
UVLO HYSTERESIS	UVLO _{HYS}			250		mV
		1				

REV. 0 — 3 —

Parameter	Symbol	Conditions		Тур	Max	Unit
V _{OUT} to VTRK ACCURACY (ADP1714)	V _{TRK-ERROR}	$0 \text{ V} \le V_{TRK} \le (0.5 \text{ X } V_{OUT(NOM)}), V_{OUT(NOM)} \le 1.8 \text{ V},$ $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			+40	mV
		$ \begin{aligned} 0 \ V &\leq V_{TRK} \leq (0.5 \ X \ V_{OUT(NOM)}), \ V_{OUT(NOM)} > 1.8 \ V, \\ T_J &= -40 ^{\circ} C \ to + 125 ^{\circ} C \end{aligned} $	-80		+80	mV
EN INPUT LOGIC HIGH	V _{IH}	$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}$	1.8			V
EN INPUT LOGIC LOW	V _{IL}	$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}$			0.4	V
EN INPUT LEAKAGE CURRENT	V _{I-LEAKAGE}	EN = IN or GND		0.1	1	μΑ
ADJ INPUT BIAS CURRENT (ADP1712 ADJUSTABLE)	ADJ _{I-BIAS}			30	100	nA
OUTPUT NOISE	OUT _{NOISE}					
ADP1713		10 Hz to 100 kHz, V_{IN} = 5.0 V, V_{OUT} = 0.75 V, with 10 nF bypass capacitor		40		μV rms
ADP1712 and ADP1714		10 Hz to 100 kHz, $V_{IN} = 5.0 \text{ V}$, $V_{OUT} = 3.3 \text{ V}$		380		μV rms
POWER SUPPLY REJECTION RATIO	PSRR					
ADP1713		1 kHz, V_{IN} = 5.0 V, V_{OUT} = 0.75 V, with 10 nF bypass capacitor		72		dB
ADP1712 and ADP1714		$1 \text{ kHz}, V_{IN} = 5.0 \text{ V}, V_{OUT} = 3.3 \text{ V}$		65		dB

OUTをADJに直接接続する場合の精度。外部の帰還抵抗を使用してOUT電圧を設定する場合、調整モード時の絶対精度は使用する抵抗の許容誤差によります。
10mAおよび300mA負荷を用いたエンドボイント計算に基づきます。負荷が10mA未満の場合の代表的な負荷レギュレーション性能については、図10を参照。
ドロップアウト電圧は、入力電圧を公称出力電圧に設定する場合の入出力間の電圧差です。2.5Vを超える出力電圧のみに適用できます。
スタートアップ時間は、ENの立上がりエッジからOUTが公称値の95%に達するまでの時間です。
電流制限スレッショールドは、出力電圧が規定された代表値の90%に低下するときの電流値です。たとえば、1.0Vの出力電圧の電流制限値は、出力電圧を1.0Vの90%、すなわたの2012年である。電流があります。 ち0.9Vに低下させる電流となります。

絶対最大定格

表2

Parameter	Rating
IN to GND	-0.3 V to +6 V
OUT to GND	−0.3 V to IN
EN to GND	-0.3 V to +6 V
SS/ADJ/BYP/TRK to GND	-0.3 V to +6 V
Storage Temperature Range	-65°C to $+150$ °C
Operating Junction Temperature Range	-40°C to $+125$ °C
Lead Temperature, Soldering (10 sec)	300°C
Soldering Conditions	JEDEC J-STD-020

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作セクションに記 載する規定値以上でのデバイス動作を定めたものではありませ ん。デバイスを長時間絶対最大定格状態に置くと、デバイスの 信頼性に影響を与えることがあります。

熱抵抗値

 θ_{JA} は最悪の条件、すなわち回路ボードに表面実装パッケージを ハンダ付けした状態で規定しています。

表3. 熱抵抗值

Package Type	θ_{JA}	Unit
5-Lead TSOT	170	°C/W

ESDに関する注意

ESD (静電放電) の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

REV. 0 — 5 —

ピン配置と機能の説明

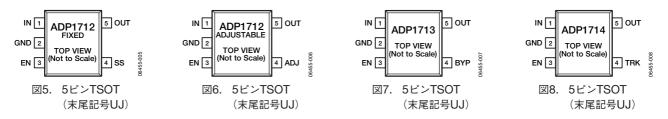


表4. ピン機能の説明

ADP1712 固定 バージョンの ピン番号	ADP1712 調整可能 バージョンの ピン番号	ADP1713 のピン番号	ADP1714 のピン番号	記号	説明
1	1	1	1	IN	レギュレータの入力電源。2.2μF以上のコンデンサを 使用して、INとGNDの間をバイパスします。
2	2	2	2	GND	グラウンド
3	3	3	3	EN	イネーブル入力。ENをハイレベルに駆動するとレ ギュレータがターンオンし、ローレベルに駆動すると ターンオフします。自動スタートアップにする場合は、 ENをINに接続してください。
4				SS	ソフト・スタート。SSとGND間にコンデンサを接続 して、出力のスタートアップ時間を設定します。
	4			ADJ	調整。OUTとADJ間に抵抗分圧器を接続して、出力電 圧を設定します。
		4		ВҮР	バイパス。BYPとGND間に1nF以上のコンデンサ (10nFを推奨) を接続して、低ノイズ・アプリケー ション用に内部リファレンス・ノイズを低減します。
			4	TRK	トラック。TRKピンの電圧に出力が追従します。(詳細については「動作原理」を参照してください。)
5	5	5	5	OUT	安定化された出力電圧。2.2μF以上のコンデンサを使用して、OUTとGNDの間をバイパスします。

代表的な性能特性

特に指定のない限り、 V_{IN} =3.8V、 I_{OUT} =10mA、 C_{IN} = C_{OUT} =2.2 μ F、 T_{A} =25 $^{\circ}$ C。

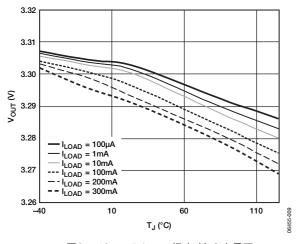


図9. ジャンクション温度 対 出力電圧

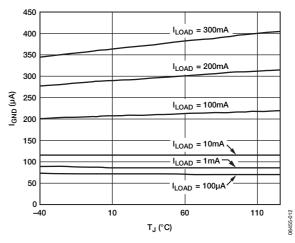


図12. ジャンクション温度 対 グラウンド電流

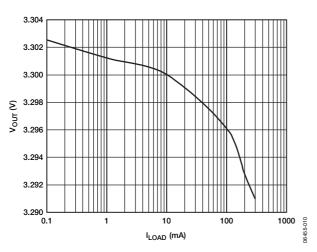


図10. 負荷電流 対 出力電圧

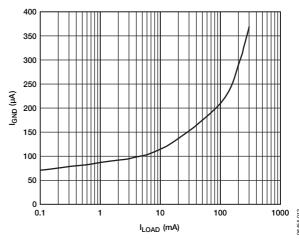


図13. 負荷電流 対 グラウンド電流

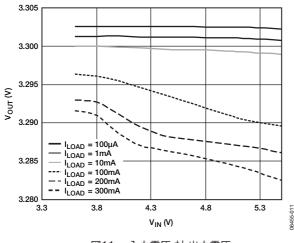


図11. 入力電圧 対 出力電圧

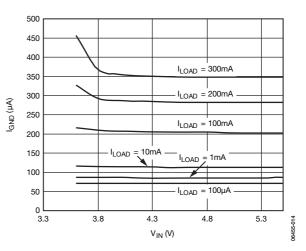


図14. 入力電圧 対 グラウンド電流

REV. 0 — 7 –

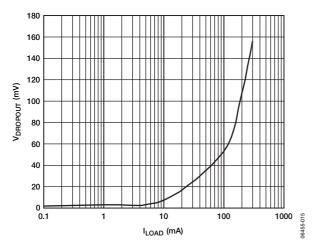


図15. 負荷電流 対 ドロップアウト電圧

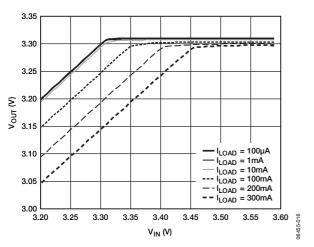


図16. 入力電圧 対 出力電圧(ドロップアウト時)

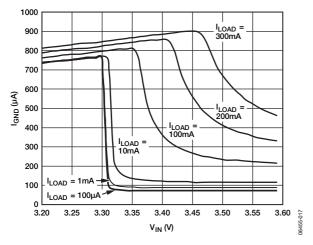


図17. 入力電圧 対 グラウンド電流 (ドロップアウト時)

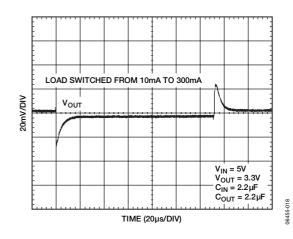


図18. 負荷過渡応答

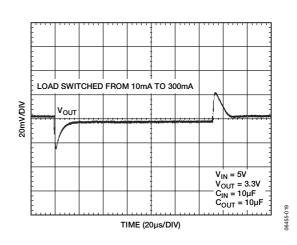


図19. 負荷過渡応答

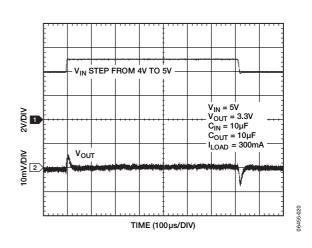


図20. ライン過渡応答

8 REV. 0

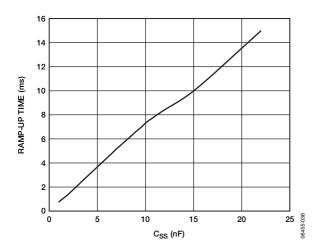


図21. ソフト・スタート用コンデンサの容量 対 出力電圧のランプアップ時間

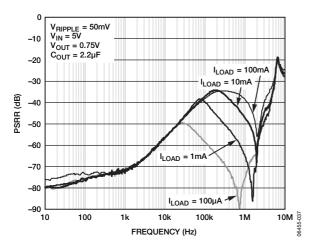


図22. ADP1713の電源変動除去比の周波数特性 (10nFのバイパス・コンデンサ使用)

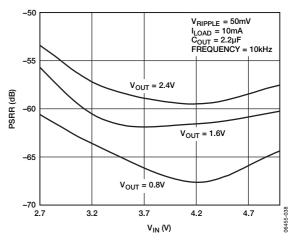


図23. ADP1712調整可能バージョンの入力電圧 対 電源変動除去比

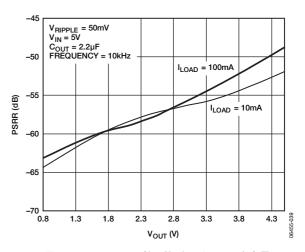


図24. ADP1712調整可能バージョンの出力電圧 対 電源変動除去比

REV. 0 — 9 —

動作原理

ADP1712/ADP1713/ADP1714は、独自開発の最新アーキテクチャを採用した低ドロップアウトのリニア・レギュレータです。わずか2.2μFの小さいセラミック出力コンデンサを1本使用するだけで、高い電源変動除去比(PSRR)と優れたラインおよび負荷過渡応答を実現します。いずれも2.5~5.5Vの入力レールで動作し、最大300mAの出力電流を供給します。最新のスケーリング・アーキテクチャを採用しているため、軽負荷の駆動時にグラウンド電流がごくわずかになります。シャットダウン・モード時のグラウンド電流の代表値は、1μA未満です。

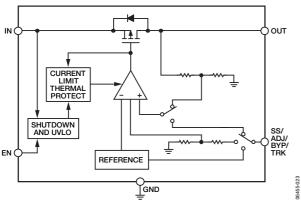


図25. 内部ブロック図

ADP1712/ADP1713/ADP1714の内部は、リファレンス、誤差アンプ、帰還型分圧器、PMOSパス・トランジスタで構成されています。出力電流はPMOSパス・デバイスから供給しますが、誤差アンプがPMOSパス・デバイスを制御します。誤差アンプは出力からの帰還電圧とリファレンス電圧を比較し、その差を増幅します。帰還電圧がリファレンス電圧よりも低ければ、PMOSデバイスのゲートを低くし、通過する電流を多くして出力電圧を上げます。帰還電圧がリファレンス電圧よりも高いと、PMOSデバイスのゲートを高くするため、これによって通過する電流の量が減少し、出力電圧が低下します。

ADP1712には、出力電圧が固定されたバージョンと調整可能なバージョンの2つがあります。固定出力電圧は、内部帰還ネットワークを使用して $0.75\sim3.3$ Vの範囲の16の値の1つに内部設定されます。調整可能なバージョンの出力電圧は、OUTとADJの間に分圧器を外付けして、 $0.8\sim5.0$ Vの範囲で任意に設定できます。ADP1713とADP1714は、固定出力電圧のオプションのみです。ADP1712の固定バージョンは、SSピンとGNDの間にソフト・スタート用コンデンサを外付けして、スタートアップ時の出力電圧ランプを制御できます。ADP1713では、BYPピンとGNDの間にリファレンス・バイパス用コンデンサを外付けして、出力電圧ノイズを低減し、電源変動除去比を改善できます。ADP1714にはトラック・ピンがあり、出力電圧をTRKピンの電圧に追従させることができます。

ENピンのロジック・レベルによって、出力がアクティブかどうかを決めます。ENがハイレベルのときに出力がオンになり、ローレベルのときにオフになります。

ソフト・スタート機能(ADP1712)

スタートアップの制御が必要なアプリケーションのために、ADP1712にはプログラマブルなソフト・スタート機能があります。プログラマブルなソフト・スタートはスタートアップ時の突入電流を低減し、電圧シーケンシングに利用できます。ソフト・スタートを実行するには、SSとGNDの間に容量の小さいセラミック・コンデンサを接続します。スタートアップ時に、 1.2μ Aの電流ソースがコンデンサに充電します。ADP1712のスタートアップ時の出力電圧はSS上の電圧によって制限され、公称出力電圧まで滑らかにランプアップします。ソフト・スタート時間は、以下の式で計算できます。

$$T_{SS} = V_{REF} \times (C_{SS}/I_{SS}) \tag{1}$$

上の式で、

 T_{cc} はソフト・スタート期間。

 V_{REF} はリファレンス電圧 (0.8V)。

 C_{SS} はSSとGNDの間に接続するソフト・スタート用コンデンサの容量。

 I_{SS} はSSからのソース電流 (1.2 μ A)。

ADP1712を停止すると (ENを使用)、ソフト・スタート用コンデンサは内部の100Ω抵抗を介してGNDに放電します。

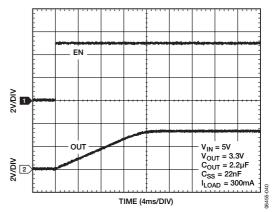


図26. 外部ソフト・スタート用コンデンサを用いたOUTの ランプアップ

ADP1712の調整可能バージョンやADP1713とADP1714にはソフト・スタート用のピンがないため、この機能は内部のソフト・スタート用コンデンサが行います。ソフト・スタートのランプアップ時間は約24μsに設定されています。



図27. 内部ソフト・スタート用コンデンサを用いたOUTの ランプアップ

調整可能な出力電圧(ADP1712の調整可能 バージョン)

ADP1712の調整可能バージョンでは、出力電圧を $0.8\sim5.0$ Vの範囲で任意に設定できます。OUTとADJの間に抵抗分圧器を接続することで出力電圧を設定します。以下の式を用いて、出力電圧を計算します。

$$V_{OUT} = 0.8 \text{V} (1 + RI/R2)$$
 (2)

上の式で、

R1はOUTとADJの間の抵抗の値。 R2はADJとGNDの間の抵抗の値。

ADJに入る最大バイアス電流は100nAであるため、バイアス電流による誤差が0.5%未満になるように、R2は60k Ω 未満にします。

バイパス用コンデンサ (ADP1713)

ADP1713では、外部バイパス用コンデンサを内部リファレンスに接続して、出力電圧ノイズを低減し、電源変動除去比を改善できます。1nF以上(10nFを推奨)の低リーク電流のコンデンサをBYPピンとGNDピンの間に接続する必要があります。

トラック・モード(ADP1714)

ADP1714には、トラック・モード機能があります。図28に示すように、TRKピンの電圧が公称出力電圧よりも低ければ、OUTはTRKピン上の電圧と等しくなります。それ以外の場合は、公称出力電圧に調整されます。

たとえば、ADP1714の公称出力電圧を3Vとする場合を考えてみましょう。TRKピンの電圧が3Vよりも高ければ、OUTは3Vの公称出力電圧を維持します。TRKピンの電圧が3Vよりも低くなると、OUTはTRKピンの電圧を追従します。OUTは公称電圧から0VまでのTRKピン電圧を追従できます。TRKと誤差アンプ入力の間には分圧器があり、その分圧比はOUTと誤差アンプの間の分圧器と同じです。この分圧器によって、出力電圧がトラッキング電圧に等しくなります。2つの分圧器の分圧比は、所望の出力電圧によりパッケージング後のトリミングで設定します。

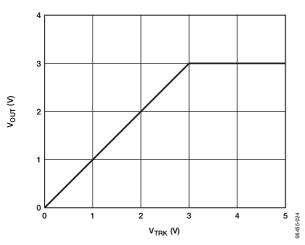


図28. ADP1714のトラッキング電圧 対 出力電圧 (公称出力電圧3Vの場合)

イネーブル機能

ADP1712/ADP1713/ADP1714は、ENピンを使用して、通常の動作条件下でOUTピンをオン/オフします。図29に示すように、ENの立上がり電圧がアクティブ・スレッショールドに達すると、OUTがターンオンします。ENの立下がり電圧が非アクティブ・スレッショールドに達すると、OUTがターンオフします。

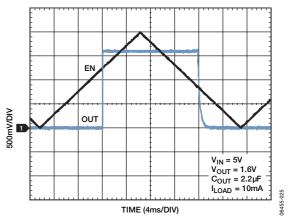


図29. ADP1712調整可能バージョンの代表的なENピン動作

この図から分かるように、ENピンにはヒステリシスが組み込まれているため、ENピンの電圧がスレッショールド・ポイントを通るとき、ピン上のノイズを原因とするオン/オフ発振を防止します。

ENピンのアクティブ/非アクティブ・スレッショールドは、IN電圧によります。そのため、これらのスレッショールドは入力電圧の変化によって変動します。図30に、入力電圧が2.5~5.5Vの範囲で変化するときの代表的なENアクティブ/非アクティブ・スレッショールドを示します。

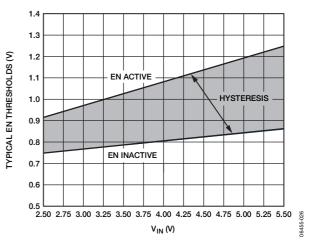


図30. 入力電圧 対 ENピンのスレッショールドの代表的特性

アンダー電圧ロックアウト(UVLO)

ADP1712/ADP1713/ADP1714にはアンダー電圧ロックアウト 回路があり、INピン上の電圧を監視します。INピン上の電圧が 2V (min) を下回ると、回路が起動してOUTピンをオフにします。

REV. 0 — 11 —

アプリケーション情報

コンデンサの選択

出力コンデンサ

ADP1712/ADP1713/ADP1714は、省スペースの小型セラミック・コンデンサを使用するように設計されていますが、実効直列抵抗(ESR)の値に注意すれば、一般によく使用されるコンデンサを利用することもできます。出力コンデンサのESRは、LDO制御ループの安定性に影響します。ADP1712/ADP1713/ADP1714の安定性のためには、 $500m\Omega$ 以下のESRで最低2.2 μ Fのコンデンサを推奨します。負荷電流の変化に対する過渡応答も、出力コンデンサの影響を受けます。容量が大きい出力コンデンサを使用すれば、負荷電流の大きい変化に対するADP1712/ADP1713/ADP1714の過渡応答が改善します。図31と図32に、それぞれ2.2 μ Fと10 μ Fの出力コンデンサを使用する場合の過渡応答を示します。

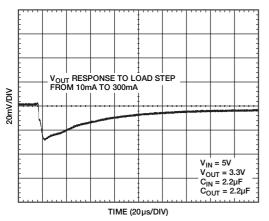


図31. 出力の過渡応答 (C_{OUT}=2.2µF)

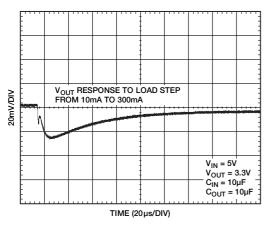


図32. 出力の過渡応答 (C_{OUT}=10µF)

入力バイパス用コンデンサ

INピンとGNDの間に 2.2μ Fのコンデンサを接続すると、特に長い入力パターン配線を使用する場合や信号源インピーダンスが高い場合でも回路がPCボードのレイアウトによる影響を受けにくくなります。 2.2μ Fよりも大きい出力容量が必要な場合は、対応する入力コンデンサの容量を大きくすることを推奨します。

入力および出力コンデンサの特性

最小容量と最大ESRの条件を満たしている限り、品質の良いセラミック・コンデンサならどれでもADP1712/ADP1713/ADP1714に使用できます。セラミック・コンデンサはさまざまな誘電体で製造されており、温度範囲や印加電圧に対する特性がそれぞれ異なります。必要な温度範囲とDCバイアス条件で最小容量を確保できる十分な誘電体のコンデンサにする必要があります。電圧定格値が6.3Vまたは10VのX5RもしくはX7Rの誘電体を推奨します。Y5VとZ5Uの誘電体は温度特性とDCバイアス特性が劣るため、推奨できません。

電流制限と熱過負荷保護

ADP1712/ADP1713/ADP1714では、電流と熱の過負荷保護回路によって過度の消費電力による損傷から保護します。ADP1712/ADP1713/ADP1714は、出力負荷が500mA(typ)に達すると電流制限を行います。出力負荷が500mAを超えると、出力電圧が低下して一定の電流制限を維持します。

内蔵の過熱負荷保護回路は、ジャンクション温度を最大150℃ (typ) に制限します。過酷な条件下 (周囲温度と消費電力が高い条件) でジャンクション温度が上昇して150℃を超えると、出力がターンオフして、出力電流がゼロになります。ジャンクション温度が135℃ (typ) を下回ると、出力が再びターンオンして、出力電流が公称値に戻ります。

OUTとグラウンドの間にハード短絡が発生する場合について考えてみましょう。まず、ADP1712/ADP1713/ADP1714の電流制限により、500mAのみが短絡回路に入ります。ジャンクションの自己発熱が高くて150 を超えてしまうと、サーマル・シャットダウンが機能して、出力がターンオフし、出力電流がゼロになります。ジャンクション温度が冷却して135 でを下回ると、出力がターンオンし、500mAが短絡回路に入ります。これによって、再びジャンクション温度が上昇して150 を超えます。この135 ~ 150 ~ 0 ~ 0 ~ 0 電流発振が生じ、出力の短絡状態が続く限りこれが繰り返されます。

電流制限と熱制限は、偶発的に生じる過負荷からデバイスを守ることを目的としています。信頼性の高い動作にするには、ジャンクション温度が125℃を超えないようにデバイスの消費電力を外部で制限する必要があります。

熱に関する対策

動作の信頼性を維持するには、ADP1712/ADP1713/ADP1714 のジャンクション温度が125℃を超えないようにする必要があります。ジャンクション温度を最大値以内に維持するには、ジャンクション温度を変化させるパラメータに注意する必要があります。こうしたパラメータには、周囲温度、パワー・デバイスの消費電力、ジャンクションと周囲空気の間の熱抵抗値(θ_{JA})があります。 θ_{JA} の値は、パッケージのアセンブリ部品やGNDピンをPCボード上にハンダ付けするときの銅の量によって異なります。表5に、さまざまなPCボードの銅サイズに対する5ピンTSOTパッケージの代表的な θ_{JA} 値を示します。

表5

Copper Size (mm²)	θ _{JA} (°C/W)
0^1	170
50	152
100	146
300	134
500	131

ADP1712/ADP1713/ADP1714のジャンクション温度は、以下の式から計算できます。

$$T_{I} = T_{A} + (P_{D} \times \theta_{IA}) \tag{3}$$

上の式で、

 T_A は、周囲温度

 P_D は、ダイの消費電力。これは、以下の式で求めることができます。

$$P_D = \left[\left. (V_{\mathit{IN}} - V_{\mathit{OUT}}) \times I_{\mathit{LOAD}} \right] + \left(V_{\mathit{IN}} \times I_{\mathit{GND}} \right) \tag{4}$$

上の式で、

 I_{LOAD} は負荷電流。

 I_{GND} はグラウンド電流。

 V_{IN} と V_{OUT} はそれぞれ入力電圧と出力電圧

グラウンド電流による消費電力はごく微小であるため、無視できます。したがって、ジャンクション温度の計算式を以下のように簡単にすることができます。

$$T_{J} = T_{A} + \{ [(V_{IN} - V_{OUT}) \times I_{LOAD}] \times \theta_{JA} \}$$

$$(5)$$

式4に示すように、一定の周囲温度、入出力間の電圧差、連続負荷電流の場合、PCボードのジャンクション温度が上昇して125 C を超えないようにするための最小の銅サイズ条件があります。以下の図に、さまざまな周囲温度、負荷電流、入出力間の電圧差、PCボードの銅面積の場合のジャンクション温度の計算値を示します。

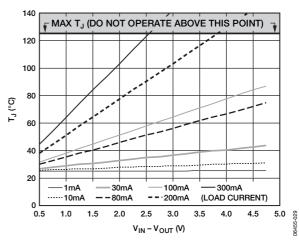


図33. 500mm²のPCボード銅面積(T_A=25℃)

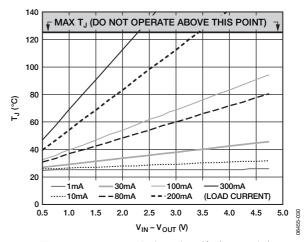


図34. 100mm 2 のPCボード銅面積(T_A =25 $^{\circ}$ C)

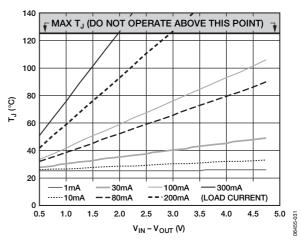


図35. 0mm²のPCボード銅面積(T_A=25℃)

REV. 0 — 13 —

MAX T, (DO NOT ÓPERATE ABÔVE THIS POINT) 120 100 80 60 40 20 -30mA 100mA (LOAD CURRENT) -- 80mA --·200mA ----10mA 3.5 0.5 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0 $V_{IN} - V_{OUT} (V)$

図36. 500mm²のPCボード銅面積(T_A=50℃)

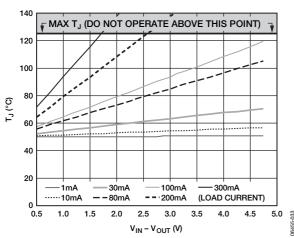


図37. 100mm²のPCボード銅面積(T_A=50℃)

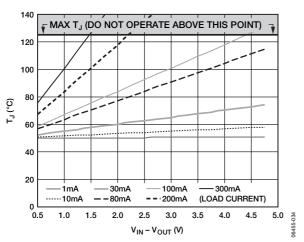


図38. 0mm²のPCボード銅面積 (T_A=50℃)

PCボードのレイアウトのポイント

ADP1712/ADP1713/ADP1714のピンに付着させる銅の量を増やすことによって、パッケージからの熱の消散を改善できます。ただし、表5から明らかなように最終的には限界点に達し、これを超えると銅のサイズを増やしてもほとんど熱の消散のメリットは得られません。

入力コンデンサは、INピンとGNDピンのできる限り近くに配置します。出力コンデンサは、OUTピンとGNDピンのできる限り近くに配置してください。ADP1712の調整可能バージョンでは、ソフト・スタート用コンデンサをSSピンのできる限り近くに配置します。ADP1713では、内部リファレンス・バイパス用コンデンサをBYPピンのできる限り近く配置してください。0402サイズまたは0603サイズのコンデンサと抵抗を使用すると、スペースが限られているボード上で可能な限り小さいフットプリントを実現できます。

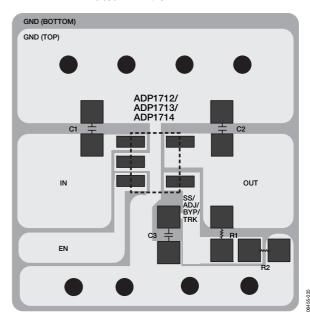
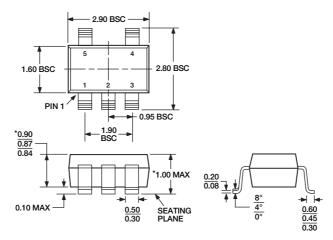



図39. PCボードのレイアウト例

— 14 — REV. 0

外形寸法

*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.

図40. 5ピン薄型スモール・アウトライン・トランジスタ・パッケージ [TSOT] (UJ-5) 寸法単位:mm

オーダリング・ガイド

Model	Temperature Range	Output Voltage (V)	Package Description	Package Option	Branding
ADP1712AUJZ-0.75R7 ¹	-40°C to +125°C	0.75	5-Lead TSOT	UJ-5	L3S
ADP1712AUJZ-0.8-R71	−40°C to +125°C	0.80	5-Lead TSOT	UJ-5	L3T
ADP1712AUJZ-0.85R71	−40°C to +125°C	0.85	5-Lead TSOT	UJ-5	L3U
ADP1712AUJZ-0.9-R71	-40°C to +125°C	0.90	5-Lead TSOT	UJ-5	L3V
ADP1712AUJZ-0.95R71	-40°C to +125°C	0.95	5-Lead TSOT	UJ-5	L3W
ADP1712AUJZ-1.0-R71	-40°C to +125°C	1.00	5-Lead TSOT	UJ-5	L3X
ADP1712AUJZ-1.05R7 ¹	-40°C to +125°C	1.05	5-Lead TSOT	UJ-5	L3Y
ADP1712AUJZ-1.1-R71	-40°C to +125°C	1.10	5-Lead TSOT	UJ-5	L3Z
ADP1712AUJZ-1.15R7 ¹	-40°C to +125°C	1.15	5-Lead TSOT	UJ-5	L4H
ADP1712AUJZ-1.2-R71	−40°C to +125°C	1.20	5-Lead TSOT	UJ-5	L4J
ADP1712AUJZ-1.3-R71	−40°C to +125°C	1.30	5-Lead TSOT	UJ-5	L4K
ADP1712AUJZ-1.5-R71	−40°C to +125°C	1.50	5-Lead TSOT	UJ-5	L4L
ADP1712AUJZ-1.8-R71	−40°C to +125°C	1.80	5-Lead TSOT	UJ-5	L4M
ADP1712AUJZ-2.5-R71	−40°C to +125°C	2.50	5-Lead TSOT	UJ-5	L4N
ADP1712AUJZ-3.0-R71	−40°C to +125°C	3.00	5-Lead TSOT	UJ-5	L4P
ADP1712AUJZ-3.3-R71	−40°C to +125°C	3.30	5-Lead TSOT	UJ-5	L4Q
ADP1712AUJZ-R7 ¹	-40°C to $+125$ °C	0.8 to 5	5-Lead TSOT	UJ-5	L4R

REV. 0 — 15 —

Model	Temperature Range	Output Voltage (V)	Package Description	Package Option	Branding
ADP1713AUJZ-0.75R7 ¹	-40°C to +125°C	0.75	5-Lead TSOT	UJ-5	L4U
ADP1713AUJZ-0.8-R71	-40°C to +125°C	0.80	5-Lead TSOT	UJ-5	L4V
ADP1713AUJZ-0.85R71	-40°C to +125°C	0.85	5-Lead TSOT	UJ-5	L4W
ADP1713AUJZ-0.9-R71	-40°C to +125°C	0.90	5-Lead TSOT	UJ-5	L4X
ADP1713AUJZ-0.95R71	-40°C to $+125$ °C	0.95	5-Lead TSOT	UJ-5	L4Y
ADP1713AUJZ-1.0-R71	-40°C to +125°C	1.00	5-Lead TSOT	UJ-5	L4Z
ADP1713AUJZ-1.05R71	-40°C to +125°C	1.05	5-Lead TSOT	UJ-5	L50
ADP1713AUJZ-1.1-R71	-40°C to +125°C	1.10	5-Lead TSOT	UJ-5	L51
ADP1713AUJZ-1.15R71	-40°C to +125°C	1.15	5-Lead TSOT	UJ-5	L52
ADP1713AUJZ-1.2-R71	-40°C to +125°C	1.20	5-Lead TSOT	UJ-5	L53
ADP1713AUJZ-1.3-R71	-40°C to +125°C	1.30	5-Lead TSOT	UJ-5	L54
ADP1713AUJZ-1.5-R71	-40°C to +125°C	1.50	5-Lead TSOT	UJ-5	L55
ADP1713AUJZ-1.8-R71	-40°C to +125°C	1.80	5-Lead TSOT	UJ-5	L56
ADP1713AUJZ-2.5-R7 ¹	-40°C to +125°C	2.50	5-Lead TSOT	UJ-5	L57
ADP1713AUJZ-3.0-R71	-40°C to +125°C	3.00	5-Lead TSOT	UJ-5	L58
ADP1713AUJZ-3.3-R7 ¹	-40°C to $+125$ °C	3.30	5-Lead TSOT	UJ-5	L59
ADP1714AUJZ-0.75R7 ¹	−40°C to +125°C	0.75	5-Lead TSOT	UJ-5	L5A
ADP1714AUJZ-0.8-R71	-40°C to +125°C	0.80	5-Lead TSOT	UJ-5	L5C
ADP1714AUJZ-0.85R71	-40°C to +125°C	0.85	5-Lead TSOT	UJ-5	L5D
ADP1714AUJZ-0.9-R71	-40°C to +125°C	0.90	5-Lead TSOT	UJ-5	L5E
ADP1714AUJZ-0.95R71	-40°C to +125°C	0.95	5-Lead TSOT	UJ-5	L5F
ADP1714AUJZ-1.0-R71	-40°C to +125°C	1.00	5-Lead TSOT	UJ-5	L5G
ADP1714AUJZ-1.05R7 ¹	-40°C to +125°C	1.05	5-Lead TSOT	UJ-5	L5H
ADP1714AUJZ-1.1-R7 ¹	-40°C to +125°C	1.10	5-Lead TSOT	UJ-5	L5J
ADP1714AUJZ-1.15R71	−40°C to +125°C	1.15	5-Lead TSOT	UJ-5	L5K
ADP1714AUJZ-1.2-R71	−40°C to +125°C	1.20	5-Lead TSOT	UJ-5	L5L
ADP1714AUJZ-1.3-R71	−40°C to +125°C	1.30	5-Lead TSOT	UJ-5	L5M
ADP1714AUJZ-1.5-R7 ¹	-40°C to $+125$ °C	1.50	5-Lead TSOT	UJ-5	L5N
ADP1714AUJZ-1.8-R71	-40°C to $+125$ °C	1.80	5-Lead TSOT	UJ-5	L5P
ADP1714AUJZ-2.5-R7 ¹	-40°C to $+125$ °C	2.50	5-Lead TSOT	UJ-5	L5Q
ADP1714AUJZ-3.0-R71	-40°C to $+125$ °C	3.00	5-Lead TSOT	UJ-5	L5R
ADP1714AUJZ-3.3-R71	-40°C to $+125$ °C	3.30	5-Lead TSOT	UJ-5	L5S

⁻¹ Z=鉛フリー製品