ANALOG DEVICES デュアル・ログ検出器/コントローラ

ADL5519

特長

広帯域幅: 1 MHz~10 GHz デュアル・チャンネル出力ポートとチャンネル差出力ポート 正確にスケールされた温度センサーを内蔵 ダイナミック・レンジ: 62 dB (±3 dB) 8 GHz まで±1 dB で 50 dB 以上 温度安定性: ±0.5 dB (-40℃~+85℃) 低ノイズ検出器出力/コントローラ出力 パルス応答時間: 6 ns/8 ns (立ち下がり時間/立ち上がり時間) 電源: 60 mA で 3.3 V~5.5 V 高速 SiGe 製造プロセスを採用 小型フットプリント: 5 mm × 5 mm、32 ピン LFCSP 動作温度範囲: -40℃~+125℃

アプリケーション

RF トランスミッタ・パワー・アンプの直線化とゲイン/電力制御 無線リンク・トランスミッタの電力モニター デュアルチャンネル・ワイヤレス・インフラストラクチャ無線 アンテナ VSWR モニター 基地局、WLAN、WiMAX、レーダーでの RSSI 計測

機能ブロック図

概要

ADL5519は、AD8317を2個内蔵したデュアル復調ログアンプで す。RF入力信号をデシベル・スケール出力に変換します。 ADL5519は、両RF計測チャンネルの正確にスケールされた独立 な対数電圧を出力します。このデバイスには2つの出力ポート (OUTPとOUTN)が追加されており、OUTAチャンネルとOUTB チャンネルとの間の測定値差を出力します。チャンネル・マッ チング機能を内蔵しているため、温度と製造プロセスの変動に 対するログアンプ出力の耐性が向上しています。

温度センサー・ピンは、デバイスの全動作温度範囲で温度に比 例する、スケールされた電圧を出力します。

ADL5519 は、1 MHz~8 GHz の信号に対して正確な対数適合度 を維持し、10 GHz までの有効動作を提供します。 ±3 dB ダイナ ミック・レンジは 62 dB (typ)で、±1 dB ダイナミック・レンジは 50 dB 以上です(50 Ω)。ADL5519 の応答時間は 6 ns/8 ns (立ち下が り時間/立ち上がり時間)で、50 MHz 以上のパルス・レートまでの RF バースト検出が可能です。このデバイスは、周囲温度に対し て優れたログ・インターセプト安定性を持っています。デバイ スの電源は 3.3 V~5.5 V です。消費電流は 60 mA (typ)で、デバ イスをディスエーブルすると、1 mA 以下に減少します。 このデバイスは、4 個のログアンプ計測値を同時に出力するこ とができます。dB 値でリニアな計測値が OUTA と OUTB から 出力され、これらは傾き-22 mV/dB でスケールされています。 OUTA と OUTB との間のログアンプの差は、OUTP と OUTN に 差動信号またはシングルエンド信号として出力されます。オプ ションの電圧を VLVL に加えると、OUTP と OUTN をグラウン ド・レベルより上にオフセットする同相モード・リファレン ス・レベルを与えることができます。広帯域幅の出力ピンは、 多くのシステム・ソリューションをサポートすることができま す。

ADL5519 出力ピンを使って可変ゲイン・アンプ(VGA)へ制御電 圧を与えるように、任意の出力ピンを設定することができます。 コントローラ・アプリケーションで使用できるようにするため には、出力ピンの広帯域幅ノイズを小さくすることに特に注意 が必要です。

ADL5519は、SiGe バイポーラ IC プロセスで製造され、5 mm × 5 mm の 32 ピン LFCSP パッケージを採用し、動作温度範囲は -40℃~+125℃です。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に 関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、 アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様 は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©2007 Analog Devices, Inc. All rights reserved.

Rev. 0

アナログ・デバイセズ株式会社

本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03(5402)8200 大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪 MT ビル 2 号 電話 06(6350)6868

目次

特長1
アプリケーション1
機能ブロック図1
概要1
改訂履歷2
仕様3
絶対最大定格
ESD に関する注意8
ピン配置およびピン機能説明9
代表的な性能特性10
動作原理19
ADL5519の使用方法20
基本接続
入力信号の接続
温度センサーのインターフェース
VREFインターフェース
パワーダウン・インターフェース
セットポイント・インターフェース—VSTA、VSTB
出力インターフェース—OUTA、OUTB22
差出力—OUTP、OUTN23
キャラクタライゼーションの説明

改訂履歴

1/08—Revision 0: Initial Version

誤差計算の基礎	23
デバイスのキャリブレーション	24
キャリブレーション・ポイントの選択による精度調整	24
温度補償の調整	25
傾きの変更	26
チャンネル・アイソレーション	26
出力フィルタ	27
パッケージについての考慮事項	27
8 GHZ 以上での動作	27
アプリケーション情報	28
計測モード	28
コントローラ・モード	28
自動ゲイン制御	30
安定したゲインのトランスミッタ/レシーバ	32
VSWR の測定	34
評価ボード	36
設定オプション	36
評価ボードの回路図とアートワーク	37
外形寸法	39
オーダー・ガイド	39

仕様

特に指定のない限り、電源電圧 $V_P = VPSR = VPSR = VPSB = 5 V$ 、 $C_{LPF} = 1000 \text{ pF}$ 、 $T_A = 25^{\circ}C$ 、INHA と INHB の終端抵抗= 50 Ω_{\circ}

表 1.					
Parameter	Conditions	Min	Тур	Max	Unit
SIGNAL INPUT INTERFACE	INHA, INHB (Pin 25, Pin 32)				
Specified Frequency Range		0.001		10	GHz
DC Common-Mode Voltage			$V_{\rm P} - 0.7$		v
MEASUREMENT MODE, 100 MHz OPERATION	ADJA (Pin 21) = 0.65 V, ADJB (Pin 4) = 0.7 V; OUTA, OUTB (Pin 15, Pin 10) shorted to VSTA, VSTB (Pin 17, Pin 8); OUTP, OUTN (Pin 13, Pin 12) shorted to FBKA, FBKB (Pin 14, Pin 11), respectively; sinusoidal input signal; error referred to best-fit line using linear regression between P_{INHA} , $P_{INHB} = -40$ dBm and -10 dBm				
Input Impedance			1670 0.47		ΩpF
OUTA, OUTB ± 1 dB Dynamic Range			51		dB
	$-40^{\circ}C < T_A < +85^{\circ}C$		42		dB
OUTA, OUTB Maximum Input Level	±1 dB error		-1		dBm
OUTA, OUTB Minimum Input Level	±1 dB error		-52		dBm
OUTA, OUTB, OUTP, OUTN Slope ¹			-22		mV/dB
OUTA, OUTB Intercept ¹			22		dBm
Output Voltage (High Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -16 \text{ dBm}$		0.7		v
Output Voltage (Low Power In)	OUTA. OUTB @ P_{INHA} . $P_{INHB} = -40 \text{ dBm}$		1.37		v
OUTP OUTN Dynamic Gain Range	+1 dB error		50		dB
	$-40^{\circ}C < T_{A} < +85^{\circ}C$		44		dB
Temperature Sensitivity	Deviation from OUTA OUTB @ 25°C				ub
	$-40^{\circ}C < T_{A} < +85^{\circ}C$, Pinua, Pinup = -16 dBm		+0.25		dB
	$25^{\circ}C < T_{A} < 85^{\circ}C$ P _{DUA} P _{DUB} = -40 dBm		+0.16		dB
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < \pm 25^{\circ}\text{C}$ P _{DVIA} P _{DVID} = -40 dBm		-0.6		dB
	Distribution of OUTP OUTN from 25° C		0.0		ub
	$25^{\circ}C < T_A < 85^{\circ}C, P_{INHA} = -16 \text{ dBm}, P_{INHB} = -30 \text{ dBm}, \text{typical}$ error = -0.09 dB		±0.25		dB
	-40° C < T _A < +25°C, P _{INHA} = -16 dBm, P _{INHB} = -30 dBm,typical error = 0.25 dB		±0.4		dB
	25° C < T _A < 85° C, P _{INHA} = -40 dBm, P _{INHB} = -30 dBm, typical error = 0.05 dB		±0.25		dB
	$-40^{\circ}C < T_A < +25^{\circ}C, P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error = -0.23 dB		±0.45		dB
Input A-to-Input B Isolation			80		dB
Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$ when OUTB/Slope = 1 dB		60		dB
Input B-to-OUTA Isolation	Frequency separation = 1 kHz, P_{INHB} = -50 dBm, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB		60		dB
MEASUREMENT MODE, 900 MHz OPERATION	ADJA = 0.6 V, ADJB = 0.65 V; OUTA, OUTB shorted to VSTA, VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear regression between P_{INHA} , $P_{INHB} = -40$ dBm and -10 dBm				
Input Impedance			925 0.54		$\Omega \ pF$
OUTA, OUTB ± 1 dB Dynamic Range			54		dB
	$-40^{\circ}C < T_A < +85^{\circ}C$		49		dB
OUTA, OUTB Maximum Input Level	±1 dB error		-2		dBm
OUTA, OUTB Minimum Input Level	±1 dB error		-56		dBm
OUTA, OUTB, OUTP, OUTN Slope			-22		mV/dB
OUTA, OUTB Intercept			20.3		dBm
Output Voltage (High Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -10 \text{ dBm}$		0.67		v
Output Voltage (Low Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -40 \text{ dBm}$		1.34		v
OUTP, OUTN Dynamic Gain Range	±1 dB error		55		dB

¹ 傾きとインターセプトは、指定された入力周波数で、電力レベル-40 dBm と-10 dBm との間の最適適合直線を計算することにより求めます。

Paramatar	Conditions	Min Tyn	May Unit
	$-40^{\circ}C < T < 185^{\circ}C$	190 A8	dB
Temperature Sensitivity	$40 C < T_A < +65 C$ Deviation from OUTA OUTB @ 25°C	40	ub
Temperature Sensitivity	$-40^{\circ}C < T_{\star} < +85^{\circ}C P_{max}, P_{max} = -16 \text{ dBm}$	+0.25	dB
	$25^{\circ}C < T_{A} < 85^{\circ}C$ P_{mm} $P_{mm} = -40 \text{ dBm}$	+0.25	dB
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < 45^{\circ}\text{C}$, P_{NHA} , $P_{\text{NHB}} = -40^{\circ}\text{dBm}$	-0.5	dB
	$40 C < T_A < +25 C, T_{\text{INHA}}, T_{\text{INHB}} = 40 \text{ dBm}$	0.5	ub
	$25^{\circ}C < T_{\star} < 85^{\circ}C$ Prove = -16 dBm Prove = -30 dBm typical	+0.25	dB
	$25 \text{ C} < 1_{\text{A}} < 65 \text{ C}, 1_{\text{INHA}} = 10 \text{ dBm}, 1_{\text{INHB}} = 50 \text{ dBm}, \text{typical}$ error = -0.08 dB	±0.23	ub
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -16 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}$	±0.4	dB
	typical error = 0.3 dB		
	$25^{\circ}C < T_A < 85^{\circ}C$, $P_{INHA} = -40 \text{ dBm}$, $P_{INHB} = -30 \text{ dBm}$, typical error = 0.17 dB	±0.25	dB
	$-40^{\circ}C < T_A < +25^{\circ}C, P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error = -0.19 dB	±0.4	dB
Input A-to-Input B Isolation		75	dB
Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$	50	dB
	when OUTB/Slope = 1 dB		
Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB	50	dB
MEASUREMENT MODE	ADIA $= 0.5 \text{ V}$ ADIR $= 0.55 \text{ V}$ QUTA QUTB shorted to VSTA		
1.9 GHz OPERATION	VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear		
	regression between P_{INHA} , $P_{INHB} = -40$ dBm and -10 dBm	505110.05	
Input Impedance		525 0.36	Ω∥pF
OUTA, OUTB ± 1 dB Dynamic Range	1000	55	dB
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	49	dB
OUTA, OUTB Maximum Input Level	$\pm 1 \text{ dB error}$	-4	dBm
OUTA, OUTB Minimum Input Level	$\pm 1 \text{ dB error}$	-59	dBm
OUTA, OUTB, OUTP, OUTN Slope		-22	mV/dB
OUTA, OUTB Intercept		18	dBm
Output Voltage (High Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -10 \text{ dBm}$	0.62	V
Output Voltage (Low Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -40 \text{ dBm}$	1.28	V
OUTP, OUTN Dynamic Gain Range	$\pm 1 \text{ dB error}$	55	dB
	$-40^{\circ}\text{C} < T_{\text{A}} < +85^{\circ}\text{C}$	48	dB
Temperature Sensitivity	Deviation from OUTA, OUTB @ 25°C	0.2	10
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -16 \text{ dBm}$	±0.2	dB
	$25^{\circ}C < T_A < 85^{\circ}C, P_{INHA}, P_{INHB} = -40 \text{ dBm}$	+0.25	dB
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$	-0.5	dB
	Distribution of OUTP, OUTN from 25°C	0.2	10
	$25^{\circ}C < I_A < 85^{\circ}C, P_{INHA} = -16 \text{ dBm}, P_{INHB} = -30 \text{ dBm}, typical error = -0.07 \text{ dB}$	±0.3	dB
	$-40^{\circ}C < I_A < +25^{\circ}C, P_{INHA} = -16 \text{ dBm}, P_{INHB} = -30 \text{ dBm}, \text{typical}$ error = 0.23 dB	±0.4	dB
	$25^{\circ}C < T_A < 85^{\circ}C$, $P_{INHA} = -40 \text{ dBm}$, $P_{INHB} = -30 \text{ dBm}$, typical error = 0.16 dB	±0.3	dB
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm},$	±0.4	dB
	typical error = -0.22 dB		
Input A-to-Input B Isolation		65	dB
Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$ when OUTB/Slope = 1 dB	46	dB
Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB	46	dB
MEASUREMENT MODE, 2.2 GHz OPERATION	ADJA = 0.48 V, ADJB = 0.6 V; OUTA, OUTB shorted to VSTA, VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively;		
	sinusoidal input signal; error referred to best fit line using linear		
Turnet Turne den ee	regression between P_{INHA} , $P_{INHB} = -40$ dBm and -10 dBm	40010 24	
		408 0.34	
$OUTA, OUTD \pm T $ dB Dynamic Kange	-40°C < T < 185°C	55 50	
	$-40 C < 1_A < +60 C$	50	aв

ParameterNumTypNumTypNumContOUTA, OUTB Maximum Input Leelif dB error-5dBmOUTA, OUTB Minimum Input Leelif dB error-60dBmOUTA, OUTB Maximum Input LeelOUTA, OUTB Maximum Input LeelOUTA, OUTB Maximum Input Leel00TA, OUTB Maximum Input LeelOUTA, OUTB Maximum Input LeelOUTA, OUTB B e Pana, Pana = -10 dBm0.6VOUTB, OUTD PAnama Chain RangeOUTA, OUTB B e Pana, Pana = -16 dBm0.6VOUTB, OUTD PAnama Chain Range-10 dBm, Pana = -20 dBm, Pa	Donomotor	Conditions	Min	T	Mari	TI:4																																																																																																																														
OUTA, OUTB Maxman Input Level OUTA, OUTB Maxman Input Level 1 dB error-5 -50 -60 -60 -72 -72 -72 -73 -74 <td>Parameter</td> <td></td> <td>Min</td> <td><u>1yp</u></td> <td>Max</td> <td>Unit</td>	Parameter		Min	<u>1yp</u>	Max	Unit																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OUTA, OUTB Maximum Input Level	$\pm 1 \text{ dB error}$		-5		dBm																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OUTA, OUTB Minimum Input Level	$\pm 1 \text{ dB error}$		-60		dBm																																																																																																																														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OUTA, OUTB, OUTP, OUTN Slope			-22		mV/dB																																																																																																																														
Output Voltage (High Prover In) OUTA, OUTB @ Pasta, Pasta = 10 dBm 0.6 V Output Voltage (High Prover In) OUTA, OUTB @ Pasta, Pasta = 10 dBm 1.26 V OUTO, OUTD Dynamic Gain Range -10 dB error 56 dB -40°C < T_A < 45°C	OUTA, OUTB Intercept			16.9		dBm																																																																																																																														
Output Value (Low Power In) OUTA. OUTB @ Press, Pass = -0 dBm 1.26 V OUTP. OUTN Dynamic Gan Rage 1.4 B error 56 dB -40°C < T_a < 18°C	Output Voltage (High Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -10 \text{ dBm}$		0.6		V																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Output Voltage (Low Power In)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -40 \text{ dBm}$		1.26		V																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OUTP, OUTN Dynamic Gain Range	±1 dB error		56		dB																																																																																																																														
Temperature Sensitivity Deviation from OUTA OUTB @ 25°C Hermitian		$-40^{\circ}C < T_A < +85^{\circ}C$		40		dB																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Temperature Sensitivity	Deviation from OUTA, OUTB @ 25°C																																																																																																																																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$-40^{\circ}C < T_A < +85^{\circ}C, P_{INHA}, P_{INHB} = -16 \text{ dBm}$		±0.28		dB																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$25^{\circ}C < T_A < 85^{\circ}C, P_{INHA}, P_{INHB} = -40 \text{ dBm}$		+0.3		dB																																																																																																																														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		-0.5		dB																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Distribution of OUTP, OUTN from 25°C																																																																																																																																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25° C < T _A < 85° C, P _{INHA} = -16 dBm, P _{INHB} = -30 dBm,typical error = -0.07 dB		±0.25		dB																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$-40^\circ\text{C} < \text{T}_A < +25^\circ\text{C}, \text{P}_{\text{INHA}} = -16 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ error = 0.25 dB		±0.4		dB																																																																																																																														
$ \begin{array}{cccc} -40^{\circ}\mathrm{C} \cdot \mathrm{T}_{\mathrm{c}} + 25^{\circ}\mathrm{C}, P_{NIM} = -40 \mathrm{dBm}, P_{NIH} = -30 \mathrm{dBmypical error} \\ = -0.2 22 \mathrm{dB} & 60 & \mathrm{dB} \\ \end{array} \\ \begin{array}{cccc} \mathrm{lnput} \ \mathrm{Ato} \ \mathrm{OUTB} \ \mathrm{Isolation} & \mathrm{Frequency separation} = 1 \mathrm{kHz}, P_{\mathrm{SNH}} = -50 \mathrm{dBm}, P_{\mathrm{NHA}} - P_{\mathrm{INHB}} & 46 & \mathrm{dB} \\ \end{array} \\ \begin{array}{ccccc} \mathrm{lnput} \ \mathrm{Isolation} & \mathrm{Frequency separation} = 1 \mathrm{kHz}, P_{\mathrm{SNH}} = -50 \mathrm{dBm}, P_{\mathrm{NHA}} - P_{\mathrm{INHB}} & 46 & \mathrm{dB} \\ \end{array} \\ \begin{array}{cccccc} \mathrm{MEASUREMENT} \ \mathrm{MODE}, & \mathrm{AD1} = 0.32 \mathrm{OUTA}, \mathrm{OUTB} \ \mathrm{shorde} \ \mathrm{to} \ \mathrm{VSTA}, \\ \mathrm{VSTB} \ \mathrm{OUTD}, \mathrm{OUTB} \ \mathrm{shorde} \ \mathrm{Isolation} & I$		25° C < T _A < 85° C, P _{INHA} = -40 dBm, P _{INHB} = -30 dBm,typical error = 0.17 dB		±0.25		dB																																																																																																																														
$ \begin{array}{ c c c c c } \mbox{Input A-to-Input B Isolation} & & & & & & & & & & & & & & & & & & &$		$-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40 \text{ dBm}$, $P_{INHB} = -30 \text{ dBm}$ typical error $= -0.22 \text{ dB}$		±0.4		dB																																																																																																																														
Input A-to-OUTB IsolationFrequency separation = 1 kHz, P_{PNLA} = -50 dBm, P_{INHA} - P_{INHB}46dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{PNIB} - P_{00} dBm, P_{INHB} - P_{INHA}46dBMEASUREMENT MODE, 3.6 GHz OPERATIONADJA = 0.33 V ADJB = 0.42; OUTA, OUTB shorted to VSTA, VSTB, OUTP, OUTN Shorted to PKAR, BFBK, respectively: sinuscidal input signal; error referred to best fil line using linear 	Input A-to-Input B Isolation			60		dB																																																																																																																														
Input B-to-OUTA IsolationInfer OOTD IS JOSP and to = 1 kHz, Point = -50 dBm, P _{INHB} – P _{INHA} when OUTA/SIope = 1 dB46dBMEASUREMENT MODE, 3.6 GHZ OPERATIONADA = 0.35 V ADB = 0.42; OUTA, OUTB shorted to VSTA, VSTB, OUTP, OUTD Shorted to PEKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear regression between P _{NNA} , P _{Nm} = -40 dBm and -10 dBm187 0.666 ΩpF Input Inpedance OUTA, OUTB ± 1 dB Dynamic Range-40°C < T_A < +85°C	Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$ when OUTB/Slone = 1 dB		46		dB																																																																																																																														
MEASUREMENT MODE, 3.6 GHz OPERATIONADIA = 0.35 V ADIB = 0.42 (OTTA, OUTB shorted to VSTA, VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively; simusoidal input signal; error referend to best fit line using linear 	Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$		46		dB																																																																																																																														
MEASUREMENT MODE, 3.6 GHZ OPERATIONADJA = 0.53 V ADJB = 0.42; OUTA, OUTB shorted to VS1A, VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear regression between $P_{PSNA}, P_{DSNB} = -40$ dBm and -10 dBm187 0.66 ΩpF Input Impedance OUTA, OUTB batter due to FBKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear regression between $P_{PSNA}, P_{DSNB} = -40$ dBm and -10 dBm187 0.66 ΩpF OUTA, OUTB Maximum Input Level OUTA, OUTB Minimum Input Level i dB error = 1 dB error17dBmOutput Voltage (High Power In) OUTA, OUTB @ Psnux, Posts = -10 dBm0.62VOUTA, OUTB Minimum Gian Range = 41 dB error = 40°C < T_A < +85°C																																																																																																																																				
Input ImpedanceImput ImpedanceImput ImpedanceImput ImpedanceImput Imput I	MEASUREMENT MODE, 3.6 GHz OPERATION	ADJA = 0.35 V ADJB = 0.42; OUTA, OUTB shorted to VSTA, VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear regression between P_{INHA} , $P_{\text{INHB}} = -40$ dBm and -10 dBm																																																																																																																																		
OUTA, OUTB ± 1 dB Dynamic Range54dBOUTA, OUTB ± 1 dB Dynamic Range $-40^{\circ}C < T_A < \pm 85^{\circ}C$ 44dBOUTA, OUTB Mainmun Input Level ± 1 dB error -4 dBmOUTA, OUTB Minimun Input Level ± 1 dB error -58 dBmOUTA, OUTB, OUTP, OUTN Slope 17 dBmOUTA, OUTB Munimun Input Level $00TA, OUTB Munimun Input Level17dBmOUTA, OUTB, OUTP, OUTN Slope00TA, OUTB @ P_{NHA}, P_{NHB} = -10 dBm0.62VOutput Voltage (Low Power In)00TA, OUTB @ P_{NHA}, P_{NHB} = -40 dBm1.31V0UTA, OUTD Dynamic Gain Range\pm 1 dB error52dB-40^{\circ}C < T_A < \pm 85^{\circ}C42dB0CTA, OUTD Dynamic Gain Range-40^{\circ}C < T_A < \pm 85^{\circ}C42dB-40^{\circ}C < T_A < \pm 85^{\circ}C, P_{NHA}, P_{NHB} = -16 dBm\pm 0.4dB25^{\circ}C < T_A < 85^{\circ}C, P_{NHA}, P_{NHB} = -40 dBm-0.45dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA}, P_{NHB} = -40 dBm-0.45dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA} = -16 dBm, P_{NHB} = -30 dBm, typical error= -0.31 dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA} = -16 dBm, P_{NHB} = -30 dBm, typical\pm 0.4dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA} = -40 dBm, P_{NHB} = -30 dBm, typical\pm 0.5dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA} = -40 dBm, P_{NHB} = -30 dBm, typical\pm 0.5dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA} = -40 dBm, P_{NHB} = -30 dBm, typical\pm 0.5dB-40^{\circ}C < T_A < \pm 25^{\circ}C, P_{NHA} =$	Input Impedance			187 0.66		$\Omega \ pF$																																																																																																																														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OUTA, OUTB ± 1 dB Dynamic Range			54		dB																																																																																																																														
OUTA, OUTB Maximum Input Level OUTA, OUTB Minimum Input Level OUTA, OUTB, OUTP, OUTN Slope OUTA, OUTB Intercept $\pm 1 \text{ dB error}$ -4 dBm dBmOUTA, OUTB, OUTP, OUTN Slope OUTA, OUTB Intercept $\pm 1 \text{ dB error}$ -58 dBm -22.5 mV/dB OUTA, OUTB Intercept0OUTA, OUTB $\oplus \text{Psata, Pistin} = -10 \text{ dBm}$ 0.62 V Output Voltage (High Power In) OUTP, OUTN Dynamic Gain RangeOUTA, OUTB $\oplus \text{Psata, Pistin} = -40 \text{ dBm}$ 1.31 V OUTA, OUTB (aver In) OUTP, OUTN Dynamic Gain RangeDeviation from OUTA, OUTB $\oplus 25^{\circ}\text{C}$ 42 dB Temperature SensitivityDeviation from OUTA, OUTB $\oplus 25^{\circ}\text{C}$ $-40^{\circ}\text{C} < T_A < 85^{\circ}\text{C}, PistiA, PistiB = -16 \text{ dBm}$ $\pm 0.4 \text{ dB}$ $25^{\circ}\text{C} < T_A < 85^{\circ}\text{C}, PistiA, PistiB = -16 \text{ dBm}$ $\pm 0.4 \text{ dB}$ $25^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA, PistiB = -40 \text{ dBm}$ -0.45 $40^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA, PistiB = -16 \text{ dBm}, PistiB = -30 \text{ dBm}, PistiB = -30 \text{ dBm}, typical error}$ $\pm 0.25 \text{ dB}$ $\pm 0.025 \text{ dB}$ $-00^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA = -16 \text{ dBm}, PistiB = -30 \text{ dBm}, typical error$ $\pm 0.3 \text{ dB}$ $\pm 0.45 \text{ dB}$ $-00^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA = -40 \text{ dBm}, PistiB = -30 \text{ dBm}, typical error$ $\pm 0.3 \text{ dB}$ $\pm 0.45 \text{ dB}$ $-00^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA = -40 \text{ dBm}, PistiB = -30 \text{ dBm}, typical error$ $\pm 0.3 \text{ dB}$ $\pm 0.5 \text{ dB}$ -0.07 dB $\pm 0^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA = -40 \text{ dBm}, PistiB = -30 \text{ dBm}, typical error$ $\pm 0.3 \text{ dB}$ $\pm 0.5 \text{ c}$ $-00^{\circ}\text{C} < T_A < 425^{\circ}\text{C}, PistiA = -40 \text{ dBm},$,	$-40^{\circ}C < T_{A} < +85^{\circ}C$		44		dB																																																																																																																														
OUTA, OUTB Minimum Input Level OUTA, OUTB Intercept1 dB error-58 -722.5dBm mV/dBOutput Voltage (Lgw Power In) OUTA, OUTB @ PINHA, PINHB = -10 dBm0.62VOutput Voltage (Lgw Power In) OUTA, OUTB @ PINHA, PINHB = -40 dBm1.31VOUTA, OUTB @ PINHA, PINHB = -40 dBm1.31VOUTA, OUTB @ PINHA, PINHB = -40 dBm52dBTemperature SensitivityDeviation from OUTA, OUTB @ 25°C -40°C < T_A < +85°C, PINHA, PINHB = -40 dBm	OUTA OUTB Maximum Input Level	+1 dB error		-4		dBm																																																																																																																														
OTA, OUTB, OUTP, OUTN Slope OUTA, OUTB InterceptIf use choicuse output OUTA, OUTB Slope OUTA, OUTB InterceptIf use choicuse output OUTA, OUTB @ P_NNA, P_NNB = -10 dBm-22.5 17mW/dB dBmOutput Voltage (High Power In) OUTA, OUTB @ P_NNA, P_NNB = -40 dBm0.62VVOUTA, OUTB Wer In) OUTP, OUTN Dynamic Gain Range $\pm 1 dB \ error$ $-40^{\circ}C < T_A < +85^{\circ}C$ 42dBTemperature SensitivityDeviation from OUTA, OUTB @ 25^{\circ}C $-40^{\circ}C < T_A < +85^{\circ}C, P_{NHA, P_NHB} = -16 \ dBm$	OUTA OUTB Minimum Input Level	+1 dB error		-58		dBm																																																																																																																														
OUTA, OUTB InterceptDUTA, OUTB (output Voltage (High Power In)OUTA, OUTB @ P _{INHA} , P _{INHB} = -10 dBmD.62VOutput Voltage (Low Power In)OUTA, OUTB @ P _{INHA} , P _{INHB} = -40 dBm1.31VOUTP, OUTN Dynamic Gain Range±1 dB error52dB-40°C < T_A < +85°C	OUTA OUTB OUTP OUTN Slope			-22.5		mV/dB	Output Voltage (High Power In) Output Voltage (High Power In) Output Voltage (Low Power In)OUTA, OUTB @ P_{NHA} , $P_{NHB} = -10$ dBm0.62 V 0UTA, OUTB @ P_{NHA} , $P_{NHB} = -40$ dBm1.31 VOUTP, OUTN Dynamic Gain Range±1 dB error52dB $-40^{\circ}C < T_A < +85^{\circ}C$ 42dBTemperature SensitivityDeviation from OUTA, OUTB @ 25^{\circ}C42dB $-40^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -16$ dBm±0.4dB $25^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -40$ dBm+0.6dB $-40^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -40$ dBm-0.45dB $00^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -40$ dBm-0.45dB $-40^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -30$ dBm, typical error±0.25dB $-00^{\circ}D dB$ $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{NHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical error±0.45dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{NHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical±0.45dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.45dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.5dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.5dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.5dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, $P_{DNHB} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, $P_{DNHB} = -50$ d	OUTA OUTB Intercent			17		dBm	Output Voltage (High Fower In)OUTA, OUTB @ PINHA, FINHB = -100 dBm0.02VOutput Voltage (Low Power In)OUTA, OUTB @ PINHA, FINHB = -100 dBm1.31VOUTP, OUTN Dynamic Gain Range±1 dB error52dB-40°C < T_A < +85°C	Output Voltage (High Power In)	OUTA OUTP @ P P = -10 dPm		0.62		W	Output Voltage (Low Power III)OUTA, OUTB @ PINHA, PINHB = -40 dBm1.51VOUTP, OUTN Dynamic Gain Range ± 1 dB error52dB $-40^{\circ}C < T_A < +85^{\circ}C$ 42 dBTemperature SensitivityDeviation from OUTA, OUTB @ 25°C42dB $-40^{\circ}C < T_A < +85^{\circ}C, P_{INHA}, P_{INHB} = -16 dBm$	Output Voltage (High Power III)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -10$ dBii		0.62		V	OUTP, OUTN Dynamic Gain Range $\equiv 1$ dB error 52 dB $-40^{\circ}C < T_A < +85^{\circ}C$ 42 dBTemperature SensitivityDeviation from OUTA, OUTB @ $25^{\circ}C$ $-40^{\circ}C < T_A < +85^{\circ}C$, $P_{INHA}, P_{INHB} = -16$ dBm ± 0.4 dB $-40^{\circ}C < T_A < +85^{\circ}C$, $P_{INHA}, P_{INHB} = -40$ dBm ± 0.6 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA}, P_{INHB} = -40$ dBm -0.45 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA}, P_{INHB} = -40$ dBm -0.45 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.25 dB -0.07 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.25 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.3 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.3 dB -0.31 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.3 dB -0.31 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.5 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHB} = -30$ dBm,typical ± 0.5 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB <td>Output Voltage (Low Power In)</td> <td>$OUTA, OUTB @ P_{INHA}, P_{INHB} = -40 \text{ dBm}$</td> <td></td> <td>1.51</td> <td></td> <td>V</td>	Output Voltage (Low Power In)	$OUTA, OUTB @ P_{INHA}, P_{INHB} = -40 \text{ dBm}$		1.51		V	Temperature SensitivityDeviation from OUTA, OUTB @ 25°C $-40°C < T_A < +85°C, P_{INHA}, P_{INHB} = -16 dBm\pm 0.4dB25°C < T_A < 85°C, P_{INHA}, P_{INHB} = -40 dBm$	OUTP, OUTN Dynamic Gain Range			52		dB	Temperature SensitivityDeviation from OUTA, OUTB @ 25° C $= -40^{\circ}$ C < T _A < $+85^{\circ}$ C, $P_{INHA}, P_{INHB} = -40$ dBm ± 0.4 dB 25° C < T _A < $+85^{\circ}$ C, $P_{INHA}, P_{INHB} = -40$ dBm ± 0.6 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA}, P_{INHB} = -40$ dBm -0.45 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA}, P_{INHB} = -30$ dBm, typical error ± 0.25 dB 25° C < T _A < $+25^{\circ}$ C, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical error ± 0.25 dB -0.07 dB -0.07 dB ± 0.45 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical error ± 0.45 dB -0.07 dB 25° C < T _A < $+35^{\circ}$ C, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical ± 0.45 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical error ± 0.3 dB -0.31 dB -0.14 dB 40 dB -0.14 dB 40 dBInput A-to-Input B IsolationFrequency separation = 1 kHz, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB $Nhen$ OUTB/Slope = 1 dB 40 dB $Nhen$ OUTB/Slope = 1 dB 20 dB		$-40^{\circ}\text{C} < 1_{\text{A}} < +85^{\circ}\text{C}$		42		dB	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temperature Sensitivity	Deviation from OUTA, OUTB @ 25°C		<u>.</u>		15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -16 \text{ dBm}$		±0.4		dB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$25^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		+0.6		dB	Distribution of OUTP, OUTN from 25°C ± 0.25 dB $25^{\circ}C < T_A < 85^{\circ}C, P_{INHA} = -16 dBm, P_{INHB} = -30 dBm, typical error$		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		-0.45		dB	$= -0.07 \text{ dB}$ $= -0.07 \text{ dB}$ $= -0.07 \text{ dB}$ $= -0.07 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -16 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.45$ dB $= -0.27 \text{ dB}$ $= 25^{\circ}\text{C} < \text{T}_{A} < 85^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -50 \text{ dBm}, \text{P}_{\text{INHA}} - \text{P}_{\text{INHB}}$ $= 20 \text{ dB}$ $= -40^{\circ}\text{C} < 100^{\circ}\text{C} = 1 \text{ dB}$ $= -50^{\circ}\text{dBm}, \text{P}_{\text{INHB}} = -50^{\circ}\text{dBm}, \text{P}_{\text{INHB}} = -20^{\circ}\text{dB}$ $= -20^{\circ}\text{C} < -20^{\circ}\text{dB}$ $= -20^{\circ}\text{C} < -20^{\circ}\text{C}$		Distribution of OUTP, OUTN from 25°C 25°C $< T_A < 85°C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error		±0.25		dB	error = 0.27 dB ± 0.3 dB $25^{\circ}\text{C} < T_A < 85^{\circ}\text{C}, P_{\text{INHA}} = -40 \text{ dBm}, P_{\text{INHB}} = -30 \text{ dBm}, typical error}$ ± 0.3 dB $= 0.31 \text{ dB}$ $-40^{\circ}\text{C} < T_A < +25^{\circ}\text{C}, P_{\text{INHA}} = -40 \text{ dBm}, P_{\text{INHB}} = -30 \text{ dBm}, typical$ ± 0.5 dBInput A-to-Input B Isolation 40 dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, P_{\text{INHA}} = -50 \text{ dBm}, P_{\text{INHA}} - P_{\text{INHB}} 20 dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{\text{INHB}} = -50 \text{ dBm}, P_{\text{INHB}} - P_{\text{INHB}} 20 dBwhen OUTB/Slope = 1 dBFrequency separation = 1 kHz, P_{\text{INHB}} = -50 \text{ dBm}, P_{\text{INHB}} - P_{\text{INHA}} 20 dB		= -0.07 dB - $40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -16 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$		±0.45		dB	$ \begin{bmatrix} = 0.31 \text{ dB} \\ -40^{\circ}\text{C} < T_{A} < +25^{\circ}\text{C}, P_{INHA} = -40 \text{ dBm}, P_{INHB} = -30 \text{ dBm}, typical \\ error = -0.14 \text{ dB} \end{bmatrix} \pm 0.5 \qquad \text{dB} \\ \begin{bmatrix} 1 \text{ nput A-to-Input B Isolation} \\ 1 \text{ nput A-to-OUTB Isolation} \end{bmatrix} \qquad Frequency separation = 1 \text{ kHz}, P_{INHA} = -50 \text{ dBm}, P_{INHA} - P_{INHB} \\ \text{when OUTB/Slope} = 1 \text{ dB} \end{bmatrix} 20 \qquad \text{dB} \\ Frequency separation = 1 \text{ kHz}, P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHB} \\ \text{when OUTB/Slope} = 1 \text{ dB} \end{bmatrix} 20 \qquad \text{dB} \\ \text{when OUTA/Slope} = 1 \text{ dB} \end{cases} $		error = 0.27 dB $25^{\circ}C < T_A < 85^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical error		±0.3		dB	Input A-to-Input B Isolation40dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, P_{INHA} = -50 dBm, P_{INHA} - P_{INHB}20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{INHB} = -50 dBm, P_{INHB} - P_{INHA}20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{INHB} = -50 dBm, P_{INHB} - P_{INHA}20dBwhen OUTA/Slope = 1 dBGGG		= 0.31 dB -40°C < T_A < +25°C, P_{INHA} = -40 dBm, P_{INHB} = -30 dBm,typical		±0.5		dB	Input A-to-Input B Isolation40dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}, P_{INHA} - P_{INHB}$ 20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHA}$ 20dBwhen OUTB/Slope = 1 dBFrequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHA}$ 20dB	T AAA T OPT 14	$c_{1101} = -0.14 \text{ dB}$		40		ID	Input A-to-OUTB IsolationFrequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}, P_{INHA} - P_{INHB}$ 20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHA}$ 20dBwhen OUTA/Slope = 1 dBwhen OUTA/Slope = 1 dB20dB	Input A-to-Input B Isolation			40		ав	Input B-to-OUTA Isolation Frequency separation = 1 kHz , $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ 20 dB when OUTA/Slope = 1 dB	Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$ when OUTB/Slope = 1 dB		20		ав		Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB		20		dB
OUTA OUTB OUTP OUTN Slope			-22.5		mV/dB																																																																																																																															
Output Voltage (High Power In) Output Voltage (High Power In) Output Voltage (Low Power In)OUTA, OUTB @ P_{NHA} , $P_{NHB} = -10$ dBm0.62 V 0UTA, OUTB @ P_{NHA} , $P_{NHB} = -40$ dBm1.31 VOUTP, OUTN Dynamic Gain Range±1 dB error52dB $-40^{\circ}C < T_A < +85^{\circ}C$ 42dBTemperature SensitivityDeviation from OUTA, OUTB @ 25^{\circ}C42dB $-40^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -16$ dBm±0.4dB $25^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -40$ dBm+0.6dB $-40^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -40$ dBm-0.45dB $00^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -40$ dBm-0.45dB $-40^{\circ}C < T_A < +85^{\circ}C$, P_{NHA} , $P_{NHB} = -30$ dBm, typical error±0.25dB $-00^{\circ}D dB$ $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{NHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical error±0.45dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{NHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical±0.45dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.45dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.5dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.5dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical±0.5dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, $P_{DNHB} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, $P_{DNHB} = -50$ d	OUTA OUTB Intercent			17		dBm																																																																																																																														
Output Voltage (High Fower In)OUTA, OUTB @ PINHA, FINHB = -100 dBm0.02VOutput Voltage (Low Power In)OUTA, OUTB @ PINHA, FINHB = -100 dBm1.31VOUTP, OUTN Dynamic Gain Range±1 dB error52dB-40°C < T_A < +85°C	Output Voltage (High Power In)	OUTA OUTP @ P P = -10 dPm		0.62		W																																																																																																																														
Output Voltage (Low Power III)OUTA, OUTB @ PINHA, PINHB = -40 dBm1.51VOUTP, OUTN Dynamic Gain Range ± 1 dB error52dB $-40^{\circ}C < T_A < +85^{\circ}C$ 42 dBTemperature SensitivityDeviation from OUTA, OUTB @ 25°C42dB $-40^{\circ}C < T_A < +85^{\circ}C, P_{INHA}, P_{INHB} = -16 dBm$	Output Voltage (High Power III)	OUTA, OUTB @ P_{INHA} , $P_{INHB} = -10$ dBii		0.62		V																																																																																																																														
OUTP, OUTN Dynamic Gain Range $\equiv 1$ dB error 52 dB $-40^{\circ}C < T_A < +85^{\circ}C$ 42 dBTemperature SensitivityDeviation from OUTA, OUTB @ $25^{\circ}C$ $-40^{\circ}C < T_A < +85^{\circ}C$, $P_{INHA}, P_{INHB} = -16$ dBm ± 0.4 dB $-40^{\circ}C < T_A < +85^{\circ}C$, $P_{INHA}, P_{INHB} = -40$ dBm ± 0.6 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA}, P_{INHB} = -40$ dBm -0.45 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA}, P_{INHB} = -40$ dBm -0.45 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.25 dB -0.07 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.25 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.3 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.3 dB -0.31 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.3 dB -0.31 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error ± 0.5 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHB} = -30$ dBm,typical ± 0.5 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB -0.01 dB $-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB <td>Output Voltage (Low Power In)</td> <td>$OUTA, OUTB @ P_{INHA}, P_{INHB} = -40 \text{ dBm}$</td> <td></td> <td>1.51</td> <td></td> <td>V</td>	Output Voltage (Low Power In)	$OUTA, OUTB @ P_{INHA}, P_{INHB} = -40 \text{ dBm}$		1.51		V																																																																																																																														
Temperature SensitivityDeviation from OUTA, OUTB @ 25°C $-40°C < T_A < +85°C, P_{INHA}, P_{INHB} = -16 dBm\pm 0.4dB25°C < T_A < 85°C, P_{INHA}, P_{INHB} = -40 dBm$	OUTP, OUTN Dynamic Gain Range			52		dB																																																																																																																														
Temperature SensitivityDeviation from OUTA, OUTB @ 25° C $= -40^{\circ}$ C < T _A < $+85^{\circ}$ C, $P_{INHA}, P_{INHB} = -40$ dBm ± 0.4 dB 25° C < T _A < $+85^{\circ}$ C, $P_{INHA}, P_{INHB} = -40$ dBm ± 0.6 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA}, P_{INHB} = -40$ dBm -0.45 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA}, P_{INHB} = -30$ dBm, typical error ± 0.25 dB 25° C < T _A < $+25^{\circ}$ C, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical error ± 0.25 dB -0.07 dB -0.07 dB ± 0.45 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical error ± 0.45 dB -0.07 dB 25° C < T _A < $+35^{\circ}$ C, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm, typical ± 0.45 dB -40° C < T _A < $+25^{\circ}$ C, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical error ± 0.3 dB -0.31 dB -0.14 dB 40 dB -0.14 dB 40 dBInput A-to-Input B IsolationFrequency separation = 1 kHz, $P_{INHA} = -50$ dBm, $P_{INHA} - P_{INHB}$ 20 dB $Nhen$ OUTB/Slope = 1 dB 40 dB $Nhen$ OUTB/Slope = 1 dB 20 dB		$-40^{\circ}\text{C} < 1_{\text{A}} < +85^{\circ}\text{C}$		42		dB																																																																																																																														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temperature Sensitivity	Deviation from OUTA, OUTB @ 25°C		<u>.</u>		15																																																																																																																														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -16 \text{ dBm}$		±0.4		dB																																																																																																																														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$25^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		+0.6		dB																																																																																																																														
Distribution of OUTP, OUTN from 25°C ± 0.25 dB $25^{\circ}C < T_A < 85^{\circ}C, P_{INHA} = -16 dBm, P_{INHB} = -30 dBm, typical error$		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		-0.45		dB																																																																																																																														
$= -0.07 \text{ dB}$ $= -0.07 \text{ dB}$ $= -0.07 \text{ dB}$ $= -0.07 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -16 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.45$ dB $= -0.27 \text{ dB}$ $= 25^{\circ}\text{C} < \text{T}_{A} < 85^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -40 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$ $= 0.31 \text{ dB}$ $= -40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -50 \text{ dBm}, \text{P}_{\text{INHA}} - \text{P}_{\text{INHB}}$ $= 20 \text{ dB}$ $= -40^{\circ}\text{C} < 100^{\circ}\text{C} = 1 \text{ dB}$ $= -50^{\circ}\text{dBm}, \text{P}_{\text{INHB}} = -50^{\circ}\text{dBm}, \text{P}_{\text{INHB}} = -20^{\circ}\text{dB}$ $= -20^{\circ}\text{C} < -20^{\circ}\text{dB}$ $= -20^{\circ}\text{C} < -20^{\circ}\text{C}$		Distribution of OUTP, OUTN from 25°C 25°C $< T_A < 85°C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error		±0.25		dB																																																																																																																														
error = 0.27 dB ± 0.3 dB $25^{\circ}\text{C} < T_A < 85^{\circ}\text{C}, P_{\text{INHA}} = -40 \text{ dBm}, P_{\text{INHB}} = -30 \text{ dBm}, typical error}$ ± 0.3 dB $= 0.31 \text{ dB}$ $-40^{\circ}\text{C} < T_A < +25^{\circ}\text{C}, P_{\text{INHA}} = -40 \text{ dBm}, P_{\text{INHB}} = -30 \text{ dBm}, typical$ ± 0.5 dBInput A-to-Input B Isolation 40 dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, P_{\text{INHA}} = -50 \text{ dBm}, P_{\text{INHA}} - P_{\text{INHB}} 20 dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{\text{INHB}} = -50 \text{ dBm}, P_{\text{INHB}} - P_{\text{INHB}} 20 dBwhen OUTB/Slope = 1 dBFrequency separation = 1 kHz, P_{\text{INHB}} = -50 \text{ dBm}, P_{\text{INHB}} - P_{\text{INHA}} 20 dB		= -0.07 dB - $40^{\circ}\text{C} < \text{T}_{A} < +25^{\circ}\text{C}, \text{P}_{\text{INHA}} = -16 \text{ dBm}, \text{P}_{\text{INHB}} = -30 \text{ dBm}, \text{typical}$		±0.45		dB																																																																																																																														
$ \begin{bmatrix} = 0.31 \text{ dB} \\ -40^{\circ}\text{C} < T_{A} < +25^{\circ}\text{C}, P_{INHA} = -40 \text{ dBm}, P_{INHB} = -30 \text{ dBm}, typical \\ error = -0.14 \text{ dB} \end{bmatrix} \pm 0.5 \qquad \text{dB} \\ \begin{bmatrix} 1 \text{ nput A-to-Input B Isolation} \\ 1 \text{ nput A-to-OUTB Isolation} \end{bmatrix} \qquad Frequency separation = 1 \text{ kHz}, P_{INHA} = -50 \text{ dBm}, P_{INHA} - P_{INHB} \\ \text{when OUTB/Slope} = 1 \text{ dB} \end{bmatrix} 20 \qquad \text{dB} \\ Frequency separation = 1 \text{ kHz}, P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHB} \\ \text{when OUTB/Slope} = 1 \text{ dB} \end{bmatrix} 20 \qquad \text{dB} \\ \text{when OUTA/Slope} = 1 \text{ dB} \end{cases} $		error = 0.27 dB $25^{\circ}C < T_A < 85^{\circ}C$, $P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm, typical error		±0.3		dB																																																																																																																														
Input A-to-Input B Isolation40dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, P_{INHA} = -50 dBm, P_{INHA} - P_{INHB}20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{INHB} = -50 dBm, P_{INHB} - P_{INHA}20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, P_{INHB} = -50 dBm, P_{INHB} - P_{INHA}20dBwhen OUTA/Slope = 1 dBGGG		= 0.31 dB -40°C < T_A < +25°C, P_{INHA} = -40 dBm, P_{INHB} = -30 dBm,typical		±0.5		dB																																																																																																																														
Input A-to-Input B Isolation40dBInput A-to-OUTB IsolationFrequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}, P_{INHA} - P_{INHB}$ 20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHA}$ 20dBwhen OUTB/Slope = 1 dBFrequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHA}$ 20dB	T AAA T OPT 14	$c_{1101} = -0.14 \text{ dB}$		40		ID																																																																																																																														
Input A-to-OUTB IsolationFrequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}, P_{INHA} - P_{INHB}$ 20dBInput B-to-OUTA IsolationFrequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}, P_{INHB} - P_{INHA}$ 20dBwhen OUTA/Slope = 1 dBwhen OUTA/Slope = 1 dB20dB	Input A-to-Input B Isolation			40		ав																																																																																																																														
Input B-to-OUTA Isolation Frequency separation = 1 kHz , $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ 20 dB when OUTA/Slope = 1 dB	Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$ when OUTB/Slope = 1 dB		20		ав																																																																																																																														
	Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB		20		dB																																																																																																																														

Parameter	Conditions	Min	Tvn	Max	Unit
MEASUREMENT MODE	$\Delta DIA = 0.58 \text{ V}$ $\Delta DIB = 0.7 \text{ V}$: OUTA OUTB shorted to VSTA	wiiii	TJP	Mux	Cint
5.8 GHz OPERATION	VSTB: OUTP. OUTN shorted to FBKA. FBKB respectively:				
	sinusoidal input signal; error referred to best fit line using linear				
	regression between P_{INHA} , $P_{INHB} = -40 \text{ dBm}$ and -20 dBm				
Input Impedance			28 1.19		ΩpF
OUTA, OUTB ± 1 dB Dynamic Range			53		dB
	$-40^{\circ}C < T_A < +85^{\circ}C$		45		dB
OUTA, OUTB Maximum Input Level	±1 dB error		-2		dBm
OUTA, OUTB Minimum Input Level	±1 dB error		-55		dBm
OUTA, OUTB, OUTP, OUTN Slope			-22.5		mV/dB
OUTA, OUTB Intercept			20		dBm
Output Voltage (High Power In)	OUTA OUTB @ P_{INUA} $P_{INUB} = -10 \text{ dBm}$		0.68		V
Output Voltage (Low Power In)	OUTA OUTB @ P_{DMA} $P_{\text{DMB}} = -40 \text{ dBm}$		1 37		v
OUTP OUTN Dynamic Gain Pange	$\pm 1 dB \operatorname{error}$		53		dB
6011,0011 Dynamic Gain Range	$-40^{\circ}C < T < 185^{\circ}C$		JJ 16		dD
Tomponoturo Consitivity	$40 C < I_A < +65 C$		40		uD
Temperature Sensitivity	$\frac{1}{2} \frac{1}{2} \frac{1}$		0.25		П
	$-40 \text{ C} < 1_{\text{A}} < +85 \text{ C}, P_{\text{INHA}}, P_{\text{INHB}} - 100 \text{ D}$		±0.23		
	$25^{\circ}C < I_A < 85^{\circ}C, P_{INHA}, P_{INHB} = -40 \text{ dBm}$		+0.25		dB
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		-0.4		dB
	Distribution of OUTP, OUTN from 25°C				
	$25^{\circ}C < T_A < 85^{\circ}C, P_{INHA} = -16 \text{ dBm}, P_{INHB} = -30 \text{ dBm}, \text{typical error}$ = 0.02 dB		±0.3		dB
	$-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error = 0.25 dB		±0.4		dB
	$25^{\circ}C < T_A < 85^{\circ}C, \ P_{INHA} = -40 \ dBm, \ P_{INHB} = -30 \ dBm, typical \ error = 0.13 \ dB$		±0.3		dB
	$-40^{\circ}C < T_A < +25^{\circ}C, P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical error = 0.06 dB		±0.5		dB
Input A-to-Input B Isolation			45		dB
Input A-to-OUTB Isolation	Frequency separation = 1 kHz, $P_{INHA} = -50 \text{ dBm}$, $P_{INHA} - P_{INHB}$		48		dB
	when OUTB/Slope = 1 dB				
Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB		48		dB
MEASUREMENT MODE, 8 GHz OPERATION	ADJA = 0.72 V, ADJB = 0.82 V to GND; OUTA, OUTB shorted to VSTA, VSTB; OUTP, OUTN shorted to FBKA, FBKB, respectively; sinusoidal input signal; error referred to best fit line using linear regression between P_{INHA} , $P_{\text{INHB}} = -40$ dBm and -20 dBm				
Input Impedance			$+10\ -1.92$		ΩpF
OUTA. OUTB ± 1 dB Dynamic Range			48		dB
, ,	$-40^{\circ}C < T_{A} < +85^{\circ}C$		38		dB
OUTA OUTB Maximum Input Level	+1 dB error		0		dBm
OUTA OUTB Minimum Input Level	+1 dB error		-48		dBm
OUTA OUTB OUTP OUTN Slope			-22		mV/dB
OUTA OUTB Intercept			26		dBm
Output Voltage (High Power In)	OUTA OUTB @ P P = -10 dBm		0.81		V
Output Voltage (Low Power In)	OUTA OUTB @ P_{INHA} , $P_{\text{INHB}} = 10$ dBm		1.49		V
Output Voltage (Low Power III)	1 dD amor		1.40 50		dD.
OUTF, OUTN Dynamic Gam Kange			50		uD JD
	$-40^{\circ}\text{C} < 1_{\text{A}} < +85^{\circ}\text{C}$		42		aв
Temperature Sensitivity	Deviation from OUTA, OUTB @ 25°C		0.4		15
	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}, \text{P}_{\text{INHA}}, \text{P}_{\text{INHB}} = -16 \text{ dBm}$		±0.4		dB
	$25^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}, \text{ P}_{\text{INHA}}, \text{ P}_{\text{INHB}} = -40 \text{ dBm}$		-0.1		dB
	$-40^{\circ}C < T_A < +25^{\circ}C, P_{INHA}, P_{INHB} = -40 \text{ dBm}$		+0.5		dB
	Distribution of OUTP, OUTN from 25° C 25° C $<$ T $< 85^{\circ}$ C P $_{\rm error} = -16$ dBm P $_{\rm error} = -30$ dBm typical error		+0.3		dB
	= 0.2 dB		±0.5		
	$-40^{\circ}C < T_A < +25^{\circ}C$, $P_{INHA} = -16$ dBm, $P_{INHB} = -30$ dBm,typical error = 0.09dB		±0.5		dB
	$25^{\circ}\mathrm{C} < \mathrm{T_A} < 85^{\circ}\mathrm{C}, \ \mathrm{P_{INHA}} = -40 \ \mathrm{dBm}, \ \mathrm{P_{INHB}} = -30 \ \mathrm{dBm}, \ \mathrm{typical \ error} = -0.07 \mathrm{dB}$		±0.3		dB
	$-40^\circ C < T_A < +25^\circ C, P_{INHA} = -40$ dBm, $P_{INHB} = -30$ dBm,typical		±0.5		dB

Parameter	Conditions	Min	Tun	Mov	Unit
	error = $0.17 dB$	IVIIII	тур	Max	Umt
Input A-to-Input B Isolation			45		dB
Input A-to-OUTB Isolation	Example concretion = $1 k H_Z P_{1} = -50 dP_m P_{1} = -9$		30		dB
I	when OUTB/Slope = 1 dB				
Input B-to-OUTA Isolation	Frequency separation = 1 kHz, $P_{INHB} = -50 \text{ dBm}$, $P_{INHB} - P_{INHA}$ when OUTA/Slope = 1 dB		30		dB
OUTPUT INTERFACE	OUTA, OUTB; OUTP, OUTN				
OUTA, OUTB Voltage Range	VSTA, VSTB = 1.7 V , RF in = open		0.3		v
	VSTA, VSTB = 0 V, RF in = open		$V_{\rm P} - 0.4$		v
OUTP, OUTN Voltage Range	FBKA, FBKB = open and OUTA < OUTB, $R_L \ge 240 \Omega$ to ground		0.09		v
	FBKA, FBKB = open and OUTA > OUTB, $R_I \ge 240 \Omega$ to ground		$V_{\rm P} = 0.15$		v
Source/Sink Current	Output held at 1 V to 1% change		10		mA
Capacitance Drive			1		nF
Output Noise	INHA, INHB = 2.2 GHz, -10 dBm, f _{NOISE} = 100 kHz, CLPA, CLPB		10		nV/√Hz
Fall Time	Input level = no signal to -10 dBm, 80% to 20%, CLPA, CLPB = 10 pF		12		ns
	Input level = no signal to -10 dBm, 80% to 20%, CLPA, CLPB =		6		ns
Rise Time	Input level = -10 dBm to no signal, 20% to 80%, CLPA, CLPB = 10 s^{-10}		16		ns
	Input level = -10 dBm to no signal, 20% to 80%, CLPA, CLPB =		8		ns
Video Des desideb	open		10		MII-
(or Envelope Bandwidth)			10		MHZ
SETPOINT INTERFACE	VSTA VSTB				
Nominal Input Range	Input level = $0 dBm$ measurement mode		0.38		v
rommar mpat range	Input level = -50 dBm , measurement mode		1.6		v
Input Resistance	Controller mode sourcing 50 µA		40		kO
DIFFERENCE LEVEL ADIUST	VLVL (Pin 6)		10		N22
Input Voltage	OUTP OUTN = FBKA FBKB			$V_{\rm P} - 1$	v
Input Resistance	OUTP OUTN = FBKA FBKB		100	VF I	kQ.
TEMPERATURE COMPENSATION	ADIA ADIB		100		
Input Resistance	ADJA, ADJB = 0.9 V, sourcing 50 µA		13		kΩ
Disable Threshold Voltage	ADJA, ADJB = open		$V_{\rm P} = 0.4$		v
VOLTAGE REFERENCE	VREF (Pin 5)				
Output Voltage			1.15		v
Temperature Sensitivity	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +25^{\circ}\text{C}$: relative $\text{T}_{\text{A}} = 25^{\circ}\text{C}$		+26		uV/°C
, i i i i i i i i i i i i i i i i i i i	$25^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}$; relative $\text{T}_{\text{A}} = 25^{\circ}\text{C}$		-26		µV/°C
Current Limit Source/Sink			3/3		mA
TEMPERATURE REFERENCE	TEMP (Pin 19)				
Output Voltage			1.36		v
Temperature Sensitivity	$-40^{\circ}C < T_{A} < +125^{\circ}C$		4.5		mV/°C
Current Limit Source/Sink			4/50		mA/µA
POWER-DOWN INTERFACE	PWDN (Pin 28)				
Logic Level to Enable	Logic low enables		0		v
Logic Level to Disable	Logic high disables		$V_{\rm P} - 0.2$		v
Input Current	Logic high PWDN = 5 V		2		μA
1	Logic low PWDN = $0 V$		20		uA
Enable Time	PWDN low to OUTA, OUTB at 100% final value, CLPA, CLPB = open. RF in $= -10$ dBm		0.4		μs
Disable Time	PWDN high to OUTA, OUTB at 10% final value, CLPA, CLPB = open, RF in = 0 dBm		0.25		μs
POWER INTERFACE	VPSA, VPSB, VPSR				
Supply Voltage		3.3		5.5	v
Quiescent Current			60		mA
vs. Temperature	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		147		µA/°C
Disable Current	ADJA, ADJB = $PWDN = V_P$		<1		mA

絶対最大定格

表 2.

Parameter	Rating
Supply Voltage: VPSA, VPSB, VPSR	5.7 V
V _{SET} Voltage: VSTA, VSTB	0 to V_P
Input Power (Single-Ended, Re: 50 Ω) INHA, INLA, INHB, INLB	12 dBm
Internal Power Dissipation	420 mW
θ_{JA}	42°C/W
Maximum Junction Temperature	142°C
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (Soldering, 60 sec)	260°C

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒 久的な損傷を与えることがあります。この規定はストレス定格 の規定のみを目的とするものであり、この仕様の動作の節に記 載する規定値以上でのデバイス動作を定めたものではありませ ん。デバイスを長時間絶対最大定格状態に置くとデバイスの信 頼性に影響を与えます。

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスで す。電荷を帯びたデバイスや回路ボードは、検知 されないまま放電することがあります。本製品は 当社独自の特許技術である ESD 保護回路を内蔵 してはいますが、デバイスが高エネルギーの静電 放電を被った場合、損傷を生じる可能性がありま す。したがって、性能劣化や機能低下を防止する ため、ESD に対する適切な予防措置を講じるこ とをお勧めします。

ピン配置およびピン機能説明

表 3. ピン機能の説明

ピン番 号	記号	
1	COMR	低インピーダンスを介してコモンへ接続します。
2	COMR	低インピーダンスを介してコモンへ接続します。
3	VPSB	チャンネル Bの正電源。3.3 V~5.5 Vの電源電圧を接続します。
4	ADJB	
5	VREF	リファレンス電圧(1.15 V)。
6	VLVL	差出力の DC 同相モード調整。
7	CLPB	チャンネル B のループ・フィルタ・ピン。
8	VSTB	チャンネル B のセットポイント制御入力。
9	NC	未接続。
10	OUTB	チャンネル B の出力電圧。
11	FBKB	OUTN オペアンプの差オペアンプ帰還ピン。
12	OUTN	差出力(OUTB-OUTA+VLVL)。
13	OUTP	差出力(OUTA - OUTB + VLVL)。
14	FBKA	OUTP オペアンプの差オペアンプ帰還ピン。
15	OUTA	チャンネルAの出力電圧。
16	NC	未接続。
17	VSTA	チャンネルAのセットポイント制御入力。
18	CLPA	チャンネルAのループ・フィルタ・ピン。
19	TEMP	温度センサー出力(1.3 V、傾き 4.5 mV/°C)。
20	VPSR	差出力と温度特性センサーの正電源。3.3 V~5.5 Vの電源電圧を接続します。
21	ADJA	共用ピン:チャンネルAの温度調整ピンおよびOUTAのパワーダウン・インターフェース。
22	VPSA	チャンネルAの正電源。3.3 V~5.5 Vの電源電圧を接続します。
23	COMR	低インピーダンスを介してコモンへ接続します。
24	COMR	低インピーダンスを介してコモンへ接続します。
25	INHA	チャンネル A の AC 結合 RF 入力。
26	INLA	チャンネルAのAC結合RFコモン。
27	COMR	低インピーダンスを介してコモンへ接続します。
28	PWDN	差出力と温度特性センサーのパワーダウン。
29	COMR	低インピーダンスを介してコモンへ接続します。
30	COMR	低インピーダンスを介してコモンへ接続します。
31	INLB	チャンネルBのAC結合RFコモン。
32	INHB	チャンネル B の AC 結合 RF 入力。
	パドル	内部で COMR に接続。

代表的な性能特性

図 3.OUTA、OUTB 電圧および対数適合度対入力振幅 100 MHz、 代表的デバイス、ADJA、ADJB = 0.65 V、0.7 V、正弦波、 シングルエンド駆動

図 4.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 45 個のデバイス入力振幅、周波数= 100 MHz、 ADJA、ADJB = 0.65 V、0.7 V、正弦波、シングルエンド駆動

図 5. 45 個のノミナル・ロット・デバイスにおける[OUTA - OUTB]電 位差の温度分布、周波数= 100 MHz、ADJA、ADJB = 0.65 V、0.7 V、正弦波、シングルエンド駆動

図 6.OUTP、OUTN のゲイン誤差および電圧対入力振幅、 100 MHz、代表的デバイス、ADJA、ADJB = 0.65 V、0.7、 正弦波、シングルエンド駆動、P_{INHB} = -30 dBm、 チャンネル A 掃引

図 7.45 個のノミナル・ロット・デバイスにおける[OUTP - OUTN] ゲイン誤差の分布および電圧対入力振幅、周囲で正規化後の温度 周波数= 100 MHz、ADJA、ADJB = 0.65 V、0.7 V、正弦波、 シングルエンド駆動、P_{INHB} = -30 dBm、 チャンネル A 掃引

図 8.OUTA、OUTB 電圧および対数適合度対入力振幅 900 MHz、 代表的デバイス、ADJA、ADJB = 0.6 V、0.65 V、 正弦波、シングルエンド駆動

図 9.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 45 個のデバイス入力振幅、周波数= 900 MHz、 ADJA、ADJB = 0.6 V、0.65 V、正弦波、シングルエンド駆動

図 10. 45 個のノミナル・ロット・デバイスにおける[OUTA-OUTB] 電位差の温度分布、周波数= 900 MHz、 ADJA、ADJB = 0.6 V、0.65 V、正弦波、シングルエンド駆動

図 11.OUTP、OUTN のゲイン誤差および電圧対入力振幅、 900 MHz、代表的デバイス、ADJA、ADJB = 0.6 V、0.65、 正弦波、シングルエンド駆動、 P_{INHB} = -30 dBm、チャンネル A 掃引

図 12.45 個のノミナル・ロット・デバイスにおける[OUTP-OUTN] ゲイン誤差の分布および電圧対入力振幅、周囲で正規化後の温度 周波数= 900 MHz、ADJA、ADJB = 0.6 V、0.65 V、正弦波、 シングルエンド駆動、P_{INHB} = −30 dBm、チャンネル A 掃引

図 13.OUTA、OUTB 電圧および対数適合度対入力振幅 1.9 GHz、 代表的デバイス、ADJA、ADJB = 0.5 V、0.55 V、 正弦波、シングルエンド駆動

図 14.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 45 個のデバイス入力振幅、周波数= 1.9 GHz、 ADJA、ADJB = 0.5 V、0.55 V、正弦波、シングルエンド駆動

図 15. 45 個のノミナル・ロット・デバイスにおける[OUTA-OUTB] 電位差の温度分布、周波数= 1.9 GHz、ADJA、ADJB = 0.5 V、0.55 V、正弦波、シングルエンド駆動

図 16.OUTP、OUTN ゲイン誤差および電圧対入力振幅、1.9 GHz、 B入力= -30 dBm、A入力掃引、代表的デバイス、 ADJA、ADJB = 0.5 V、0.55 V、正弦波、シングルエンド駆動、 P_{INHB} = -30 dBm、チャンネルA掃引

図 17.45 個のノミナル・ロット・デバイスにおける[OUTP-OUTN] ゲイン誤差の分布および電圧対入力振幅、周囲で正規化後の温度周 波数= 1.9 GHz、ADJA、ADJB = 0.5 V、0.55 V、正弦波、シングル エンド駆動、P_{INHB} = -30 dBm、チャンネル A 掃引

図 18.OUTA、OUTB 電圧および対数適合度対入力振幅 2.2 GHz、代 表的デバイス、ADJA、ADJB = 0.48 V、0.6 V、正弦波、 シングルエンド駆動

図 19.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 45 個以上のノミナル・ロット・デバイスの入力振幅、 周波数= 2.2 GHz、ADJA、ADJB = 0.48 V、0.6 V、正弦波、 シングルエンド駆動

図 20. 45 個のノミナル・ロット・デバイスにおける[OUTA-OUTB] 電位差の温度分布、周波数= 2.2 GHz、 ADJA、ADJB = 0.48 V、0.6 V、正弦波、シングルエンド駆動

図 21.OUTP、OUTN のゲイン誤差および電圧対入力振幅、 2.2 GHz、代表的デバイス、ADJA、ADJB = 0.48 V、0.6V、 正弦波、シングルエンド駆動 P_{INHB} = -30 dBm、チャンネル A 掃引

図 22.45 個のノミナル・ロット・デバイスにおける[OUTP - OUTN] ゲイン誤差の分布および電圧対入力振幅、 周囲で正規化後の温度周波数= 2.2 GHz、 ADJA、ADJB = 0.48 V、0.6 V、正弦波、シングルエンド駆動、 P_{INHB} = −**3**0 dBm、チャンネル A 掃引

図 23.OUTA、OUTB 電圧および対数適合度対入力振幅 3.6 GHz、 代表的デバイス、ADJA、ADJB = 0.35 V、0.42 V、 正弦波、シングルエンド駆動

図 24.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 45 個以上のノミナル・ロット・デバイスの入力振幅、 周波数= 3.6 GHz、ADJA、ADJB = 0.35 V、0.42 V、正弦波、 シングルエンド駆動

図 25. 45 個のノミナル・ロット・デバイスにおける[OUTA-OUTB] 電位差の温度分布、周波数= 3.6 GHz、 ADJA、ADJB = 0.35 V、0.42 V、正弦波、シングルエンド駆動

図 26.OUTP、OUTN のゲイン誤差および電圧対入力振幅、 3.6 GHz、代表的デバイス、ADJA、ADJB = 0.35 V、0.42V、 正弦波、シングルエンド駆動、P_{INHB} = -30 dBm、 チャンネル A 掃引

図 27.45 個のノミナル・ロット・デバイスにおける[OUTP - OUTN] ゲイン誤差の分布および電圧対入力振幅、周囲で正規化後の温度 周波数= 3.6 GHz、ADJA、ADJB = 0.35 V、0.42 V、正弦波、 シングルエンド駆動、P_{INHB} = -30 dBm、チャンネルA 掃引

図 28.OUTA、OUTB 電圧および対数適合度対入力振幅、5.8 GHz、 代表的デバイス、ADJA、ADJB = 0.58 V、0.7 V、正弦波、 シングルエンド駆動

図 29.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 15 個以上の複数ロット・デバイスの入力振幅、周波数= 5.8 GHz、 ADJA、ADJB = 0.58 V、0.7 V、正弦波、シングルエンド駆動

図 30. 45 個のノミナル・ロット・デバイスにおける[OUTA-OUTB] 電位差の温度分布、周波数=5.8 GHz、 ADJA、ADJB = 0.58 V、0.7 V、正弦波、シングルエンド駆動

図 31.OUTP、OUTN のゲイン誤差および電圧対入力振幅、 5.8 GHz、代表的デバイス、ADJA、ADJB = 0.58 V、0.7 V、 正弦波、シングルエンド駆動、 P_{INHB} = -30 dBm、チャンネル A 掃引

図 32.45 個のノミナル・ロット・デバイスにおける[OUTP - OUTN] ゲイン誤差の分布および電圧対入力振幅、周囲で正規化後の温度 周波数= 5.8 GHz、ADJA、ADJB = 0.58 V、0.7 V、正弦波、 シングルエンド駆動、P_{INHB} = −30 dBm、チャンネル A 掃引

図 33.OUTA、OUTB 電圧および対数適合度対入力振幅 8 GHz、 代表的デバイス、ADJA、ADJB = 0.72 V、0.82 V、正弦波、 シングルエンド駆動

図 34.周囲温度で正規化した OUTA 誤差と OUTB 誤差の温度分布対 45 個以上のノミナル・ロット・デバイスの入力振幅、 周波数= 8 GHz、ADJA、ADJB = 0.72 V、0.82 V、 正弦波、シングルエンド駆動

図 35. 45 個のノミナル・ロット・デバイスにおける[OUTA-OUTB] 電位差の温度分布、周波数=8 GHz、 ADJA、ADJB = 0.72 V、0.82 V、正弦波、シングルエンド駆動

図 36.OUTP、OUTN のゲイン誤差および電圧対入力振幅、8 GHz、 代表的デバイス、ADJA、ADJB = 0.72 V、0.82 V、 正弦波、シングルエンド駆動 P_{INHB} = -30 dBm、チャンネル A 掃引

図 37.45 個のノミナル・ロット・デバイスにおける[OUTP - OUTN] ゲイン誤差の分布および電圧対入力振幅、周囲で正規化後の温度 周波数=8 GHz、ADJA、ADJB = 0.72 V、0.82 V、正弦波、 シングルエンド駆動、P_{INHB} = -30 dBm、チャンネル A 掃引

図 38.シングルエンド入力インピーダンス(S11)の周波数特性 Z₀ = 50 Ω

図 39.4000 個のデバイスの VREF ピン電圧の分布

図 40.4000 個のデバイスの TEMP ピン電圧の分布

図 42.OUTA、OUTB のノイズ・スペクトル密度 CLPA、CLPB = Open

図 41.45 個のデバイスの VREF ピン電圧変化の温度特性

図 44. OUTA、OUTB のノイズ・スペクトル密度、 CLPA、CLPB = 0.1 µF、周波数= 2140 MHz

図 45.さまざまな RF 入力レベルの RF バースト入力に対する出力応 答、キャリア周波数= 900 MHz、CLPA = オープン

図 46.さまざまな RF 入力レベルの RF バースト入力に対する出力応 答、キャリア周波数= 900 MHz、CLPA =オープン

図 47.さまざまな RF 入力レベルのパワーダウン・モードを使った出 力応答、キャリア周波数= 900 MHz、CLPA =オープン

図 48.さまざまな RF 入力レベルのパワーダウン・モードを使った出 力応答、キャリア周波数= 900 MHz、CLPA = 0.1 µF

図 49.電源電流対 V_{PWDN}、V_{ADJA}、V_{ADJB}

動作原理

ADL5519 は、10 GHz までの RF 計測アプリケーションと電力制 御アプリケーションで使用するように特別にデザインされた 2 チャンネル 6 ステージのデュアル復調ログアンプです。 ADL5519 は、ログ検出器/コントローラ・コア AD8317 の派生品 です。ADL5519 のインターセプト温度変化特性は、50 dB 範囲 で厳しく抑えてあります。各計測チャンネルの性能は、AD8317 の場合と同じです。回路全体のブロック図を図 50 に示します。

各計測チャンネルは、高周波性能を強化する当社独自の高速 SiGe 製造プロセスを採用したフル差動デザインです。に、チャ ンネル A の信号パスの基本ブロック図を示します。この機能は チャンネル B の信号パスの場合と同じです。

±1 dB の対数適合度誤差を持つ最大入力(typ)は、-5 dBm (50 Ω) です。入力換算ノイズ・スペクトル密度は 1.15 nV/√Hz です。 この値は 10.5 GHz 帯域幅で 118 μV rms の電圧、すなわちノイ ズ電力-66 dBm (50Ω)に相当します。このノイズ・スペクトル密 度がダイナミック・レンジの下限を決定しますが、ADL5519 の 下端精度は、復調伝達特性のカーブを特別に調整して内部ノイ ズから発生する誤差を部分的に補償することにより改善されま す。コモン・ピンは、プリント回路ボード(PCB)のグラウンドに 対する高品質の低インピーダンス接続を提供します。内部で COMR ピンに接続されているパッケージ・パドルも PCB のグラ ウンドに接続して、チップから PCB までの熱抵抗を減少させる 必要があります。

対数関数は、6 個のカスケード接続されたゲイン・ステージに より区分的に近似されます。対数近似の詳細については、 AD8307 データ・シートを参照してください。各セルの公称電 圧ゲインは9dBで、3 dB 帯域幅は 10.5 GHz です。高精度のバ イアスを使って、ゲインは温度と電源の変動に対して安定化さ れています。全体の DC ゲインは、ゲイン・ステージがカスケ ード接続であるため高くなっています。オフセット補償ループ を採用して、カスケード接続されたセル内でオフセットを補正 しています。各ゲイン・ステージの出力では、2 乗則検出器セ ルを使って信号を整流しています。

RF 信号電圧は、信号レベルに比例して増える平均値を持つ、変 動する差動電流に変換されます。6 個のゲイン・ステージと検 出器セルの他に、各計測チャンネルの入力にもう 1 個検出器が 接続されていて、合計 54 dB のダイナミック・レンジを提供し ます。検出器電流が加算されフィルタされた後に、次の関数が 加算ノードで形成されます。

$I_D \times \log_{10}(V_{IN}/V_{INTERCEPT})$

(1)

ここで、 I_D は内部設定された検出器電流。 V_{IN} は入力信号電圧。 $V_{INTERCEPT}$ はインターセプト電圧。すなわち、 $V_{IN} = V_{INTERCEPT}$ の とき、出力電圧は0 Vになります(ただし、0 Vになることが可能な場合)。

ADL5519の使用方法

基本接続

ADL5519の仕様は、最大 10 GHz の動作になっています。このため、機能間で十分にアイソレーションされた低インピーダンスの電源ピンの使用が不可欠です。 3.3 V~5.5 V の電源電圧を VPSA、VPSB、VPSR に接続する必要があります。 100 pF と 0.1 μ F の電源デカップリング・コンデンサをこれらの電源ピンの近くに接続する必要があります(図 53 参照)。

LFCSP パッケージのパドルは内部で COMR に接続されていま す。最適な熱性能と電気性能を得るためには、このパドルを低 インピーダンスのグラウンド・プレーンへハンダ付けする必要が あります。

入力信号の接続

ADL5519 入力は差動ですが、シングル・エンドでキャラクタラ イゼーションされ、広く使用されます。ADL5519 をシングルエ ンド・モードで使用する場合、INHA ピンと INHB ピンは AC 結 合で、INLA ピンと INLB ピンは AC 結合でグラウンドへ、それぞ れ接続する必要があります。結合コンデンサは 47 nF で、1 MHz ~10 GHz の入力周波数に対するセラミック 0402 型コンデンサ が推奨されます。結合コンデンサは、INHA と INHB および INLA と INLB の各ピンの近くに配置する必要があります。結合 コンデンサの値は、入力ステージのハイパス・カットオフ周波 数を下げるとき、大きくすることができます。

ハイパス・コーナーは、入力結合コンデンサと内部 10 pF ハイ パス・コンデンサにより設定されます。INHA と INHB および INLA と INLB の DC 電圧は、電源電圧より約 1 個分のダイオー ド電圧降下だけ低くなっています。

図 52.1 チャンネルの入力インターフェース

入力リアクタンスをマッチングさせることができますが、一般 にこのリアクタンスのマッチングは不要です。外付けの 52.3 Ω シャント抵抗(入力結合コンデンサの信号側に接続、図 53 参照) と比較的高い入力インピーダンスとの組み合わせにより、十分 広い帯域で 50 Ωにマッチングさせることができます。

結合時定数 50 × C_c/2 により、3 dB 減衰のハイパス・コーナーは f_{HP} = 1/($2\pi \times 50 \times C_c$)になります。ここで、C1 = C2 = C3 = C4 = C_c。typ 値 47 nF を使用すると、このハイパス・コーナーは約 68 kHz になります。高周波アプリケーションでは、f_{HP} をできるだけ 大きくして、低周波信号の不要な結合を小さくする必要がありま す。低周波アプリケーションでは、ローパス・フィルタを構成 する簡単な RC 回路を、同じ理由で入力に接続する必要がありま す。このローパス・フィルタは一般に結合コンデンサのジェネレ ータ側に配置して、与えられたハイパス・コーナー周波数に対 して必要な容量値を小さくする必要があります。

図 53.測定モードでの動作用の基本接続

温度センサーのインターフェース

ADL5519の温度センサー出力は、4 mAの駆動能力を持っていま す。出力電圧の温度スケール・ファクタは約 4.48 mV/℃です。 27℃での絶対電圧(typ)は約 1.36 V です。

図 54.TEMP インターフェースの簡略化した回路図

VREF インターフェース

VREF ピンは非常に安定したリファレンス電圧を出力します。 **VREF** ピンの電圧は 1.15 V で、3 mA の駆動能力を持っています。 等価内部抵抗は **VREF** と **COMR** の間に接続され 3 mA のシンク 機能を持っています。

パワーダウン・インターフェース

27℃での ADL5519 の動作電流とスタンバイ電流は、それぞれ約 60 mA と 1 mA 以下です。ADL5519 を完全にパワーダウンさせ るためには、PWDN、ADJA、ADJB の各ピンを電源電圧から 200 mV 以内にする必要があります。パワーオンすると、出力は 静止状態値の 0.1 dB 以内(約 0.5 μs 以内)になります。リファレ ンス電圧はこれより遥かに短い時間で、フル精度になります。

このウェイクアップ応答時間は、入力結合回路および CLPA ピ ンと CLPB ピンの容量に依存して変化します。PWDN は、 OUTP、OUTN、VREF、TEMP の各ピンをディスエーブルしま す。パワーダウン・ピン PWDN は高インピーダンスのピンです。

ADJA ピンと ADJB ピンを電源電圧から 200 mV 以内にすると、 それぞれ OUTA と OUTB がディスエーブルされます。

セットポイント・インターフェース—VSTA、 VSTB

VSTA入力と**VSTB**入力は高インピーダンス(40 kΩ)ピンで、内 部オペアンプ入力を駆動します。 V_{SET} 電圧は内部抵抗 1.5 kΩ の 両端の電圧で、電流 I_{SET} を流します。 V_{OUT} の一部が**VSTA** と **VSTB**に加えられると、帰還ループのため次が成立します。

$$-I_D \times \log_{10}(V_{IN}/V_{INTERCEPT}) = I_{SET}$$
(2)

 $V_{SET} = V_{OUT}/2x$ の場合、 $I_{SET} = V_{OUT}/(2x \times 1.5 \text{ k}\Omega)$ になります。

したがって、次が得られます。

 $V_{OUT} = (-I_D \times 1.5 \text{ k}\Omega \times 2\text{x}) \times \log_{10}(V_{IN}/V_{INTERCEPT})$

図 55.VSTA と VSTB インターフェースの簡略化した回路図

傾きは $-I_D \times 2x \times 1.5 \text{ k}\Omega = -22 \text{ mV/dB} \times x$ で与えられます。たと えば、グラウンドへ接続する抵抗デバイダを使って $V_{OUT}/2$ の V_{SET} 電圧を発生すると、x = 2 になります。傾きは-880 V/ディ ケードすなわち-44 mV/dB に設定されます。詳細については、 傾きの変更のセクションを参照してください。

出力インターフェース—OUTA、OUTB

OUTA ピンと OUTB ピンは、プッシュプル出力ステージから駆動されます。出力の立ち上がり時間は、主に CLPA と CLPB の変化により制限されます。立ち下がり時間は、負荷容量および OUTA と OUTB のプルダウン抵抗により決定される RC で制限された変化によります。1.6 kΩ の内部プルダウン抵抗があります。OUTA と OUTB での抵抗負荷は、内部プルダウン抵抗と並列に接続されて、放電時間を短くします。OUTA と OUTB は、10 mA 以上の電流を供給することができます。

図 56.OUTA と OUTB インターフェースの簡略化した回路図

差出力—OUTP、OUTN

ADL5519は、チャンネル差を出力するためにレール to レールの 出力能力を持つオペアンプを2個内蔵しています。

OUTA と OUTB の出力ドライバの場合と同様に、出力ステージ は 10 mA 以上を駆動する能力を持っています。OUTA と OUTB は内部で 1 kΩ 抵抗を介して各オペアンプの入力に接続されてい ます。VLVL ピンは 1 kΩ 抵抗を介して、両オペアンプの正ピン へ接続され、レベル・シフトを提供しています。負帰還ピンも 1 kΩ 抵抗を介して使用可能です。VLVL の入力インピーダンスは 1 kΩで、FBKA と FBKB の入力インピーダンスは 1 kΩです。こ れらのピンの接続については、図 57 を参照してください。

図 57.OUTP と OUTN インターフェースの簡略化した回路図

OUTP を FBKA に接続した場合、OUTP は次式で与えられます。 *OUTP = OUTA - OUTB + VLVL* (3)

OUTN を FBKB に接続した場合、	OUTN は次式で与えられます。
OUTN = OUTB - OUTA + VLV	L (4)

図 58.オペアンプの接続(すべての抵抗は1kΩ±20%)

この構成では、4 個のすべての計測値(OUTA、OUTB、OUTP、 OUTN)が同時に得られます。差動出力は OUTP – OUTN から得 られ、VLVLを使って ADC 接続の同相モード・レベルを調整す ることができます。これは差動 ADC の駆動だけでなく、VLVL の温度変動除去にも便利です。

キャラクタライゼーションの説明

多くの ADL5519 キャラクタライゼーションで使用される一般的 なハードウェア構成を図 59 に示します。この例で使用される信 号ソースは、Agilent Technologies 社製の E8251A です。INHA 入 カピンと INHB 入カピンは Agilent 社の信号ソースから駆動され、 出力電圧を電圧計で測定します。

図 59.一般的なキャラクタライゼーションの構成

誤差計算の基礎

入力電力と出力電圧を使って、傾きとインターセプト値を計算 します。傾きとインターセプトは、-40 dBm~-10 dBmの入力範 囲で線形回帰を使って計算します。傾きとインターセプトの項 を使って、理想直線を描きます。誤差は、測定した出力電圧と 理想出力直線との差です。これは、デバイスの直線性を表しま す。傾き、インターセプト、誤差の計算については、デバイス のキャリブレーションのセクションを参照してください。

リニア応答から CW 波形までの誤差は、各デバイスの傾きとイ ンターセプトを使って計算しているため絶対精度を表しません。 ただし、誤差により直線性と変調のデバイス応答に対する影響 を確認することができます。同様に、限界温度で、誤差は 25℃ の理想直線性能からの出力電圧の変化を表しています。グラフ に表示したデータは、ADL5519 のキャラクタライゼーションで 観測された代表的な誤差分布です。

ADL5519 のパルス応答については、立ち上がり/立ち下がり時間が 6 ns/8 ns です。最高速の応答時間を得るためには、OUTA と OUTB の容量を最小に維持する必要があります。出力ピンの容量は、CLPA ピンと CLPB ピンの等しい容量と相殺させて、出力でのリンギングを防止する必要があります。

デバイスのキャリブレーション

2.2 GHz で測定された ADL5519 の伝達関数を図 60 に示します。 この図は、出力電圧対入力電力、および計算した誤差対入力電 力を示しています。入力電力が-60 dBm から-5 dBm へ変化する と、出力電圧は 1.7 V から約 0.5 V へ変化します。

図 60. キャリブレーション・ポイントを持つ 2.2 GHz での伝達関数

傾きとインターセプトはデバイスごとに変わるので、ボード・ レベルのキャリブレーションは最高精度を実現するように実施 する必要があります。出力電圧の式は次のように書くことがで きます。

 $V_{OUT} = 傾き \times (P_{IN} - インターセプト)$ (6)

ここで、*傾き*は出力電圧変化を入力電力 P_{IN} で除算してデシベ ル(dB)で表した値。 \mathcal{A} ンターセプトは、出力電圧が 0 V になる 電力の計算値。0 Vの出力電圧は実現しないことに注意してく ださい。

ー般に、キャリブレーションは、2 つの既知の信号レベルを ADL5519 入力に加えて、対応する出力電圧を測定することによ り行われます。キャリブレーション・ポイントは一般に、デバ イスの dB で表したリニアな動作範囲内で選択されます (仕様の セクション参照)。

傾きとインターセプトの計算は次の式を使って行います。

傾き= (V_{OUT1} - V_{OUT2})/(P_{IN1} - P_{IN2}) (7)

インターセプト=
$$P_{INI} - (V_{OUTI}/ 傾き)$$
 (8)

傾きとインターセプトを計算したら、検出器の出力電圧に基づ いて入力電力を計算する式を書くことができます。

 $P_{IN}(Unknown) = (V_{OUT1(MEASURED})/ 傾き) + インターセプト (9)$ 電力計算値の対数適合度誤差は次式で計算されます。

誤差(dB) =
$$(V_{OUT(MEASURED)} - V_{OUT(UDEAL)})/ 傾き$$
 (10)

図 60 に、25℃での誤差と、ログアンプをキャリブレーションする温度を示します。フル・ダイナミック・レンジで誤差は 0 dB でないことに注意してください。これは、ログアンプが動作領域内でも理想的な V_{OUT} 対 P_{IN} の式に従わないことによります。キャリブレーション・ポイントでの誤差-35 dBm と-11 dBm は、定義により 0 dB になります。

図 60 には、-40℃と+85℃での出力電圧の誤差もプロットして あります。これらの誤差プロットは、25℃での傾きとインター セプトを使用して計算したものです。これは、温度に対しての キャリブレーションが実用的でない量産環境でのキャリブレー ションに適合するものです。

キャリブレーション・ポイントの選択による精度 調整

アプリケーションによっては、1 つの電力レベルまたは限られ た入力範囲で非常に高い精度が必要とされる場合があります。 たとえば、ワイヤレス・トランスミッタでは、高電力アンプ (HPA)の精度がフル・パワー付近で最も重要になります。

AGC 制御ループのようなアプリケーションでは、優れた直線性 と温度特性性能が広い入力電力範囲て必要になります。温度クロ スオーバー・ポイント(-40℃~-80℃で性能ドリフトがない電力 レベル)は、温度補償の調整のセクションに示す方法を使って、 高電力レベルから中電力レベルへシフトすることができます。 このシフトにより、電力範囲全体で温度性能を均等になります。 伝達関数の直線性は、キャリブレーション・ポイントを変更す ることにより均等化することができます。

図 61 に、図 60 で使用したキャリブレーション・ポイントを-46 dBm と-22 dBm へ変更することによる均等化を示します。キャ リブレーション・ポイントのこの調整では、50 dB のダイナミッ ク・レンジで直線性を±0.25 dB 以上に変えますが、-40 dBm~ -25 dBm の電力レベルでの直線性が少し低下します。

キャリブレーション・ポイントは、アプリケーションに適するように選択する必要がありますが、一般に、ログアンプ伝達関数の非リニア部分(この例では、-10 dBm 以上または-40 dBm 以下)でキャリブレーション・ポイントを選択することはありません。

図 61.リニア・レンジの端付近(2.14 GHz)で キャリブレーション・ポイントを 選択することによる ダイナミック・レンジの拡張

ログアンプ検出器の誤差関数を表現するもう1つの方法を図図 62に示します。この例では、高温と低温でのデシベル(dB)誤差 を周囲温度での出力電圧を基準として計算しています。これは 前のプロットと比較した場合の重要な違いであり、周囲温度で の理想伝達関数を基準としてすべての誤差が計算されています。

図 62.25℃、2.14 GHz での出力電圧を基準とした誤差の温度特性 (25℃での伝達関数の非直線性を除去)

このもう 1 つの技術を使うと、周囲温度での誤差は、定義によ り、0 になります(図図 62 参照)。デバイスの伝達関数が理論式 $V_{OUT} =$ 傾き× ($P_{IN} - 4 \lor 9 - e \lor r$)に一致する場合に、この値 は有効ですが、実際には ms アンプは完全にこの式に一致しな いため(特にリニア動作範囲の外側では)、このプロットは、誤 差を除去するために十分なキャリブレーション・ポイントを採 用しない限り、形だけの直線性の改善とダイナミック・レンジ の拡張になってしまいます。

図図 62 は、周囲温度での(非理想)出力電圧を基準とした特定の 電力レベルでの温度ドリフトの予測に便利なツールです。

温度補償の調整

ADL5519 の温度性能は、入力電力-10 dBm で出力電圧が最小温 度ドリフトを持つように、最適化されています。ある指定され た周波数に対して ADJA ピンと ADJB ピンに入力する電圧を表 4 に示します。ただし、表 4 はすべての周波数を記載していな いため、実測が必要です。 ADJA と ADJB を使ったデバイスの温度ドリフト補償により、 柔軟性が大幅に向上します。最適調整電圧を求めるときは、周 囲温度と所望の温度限界で ADJA と ADJB を掃引し、出力電圧 をモニターしながら数点の電力レベルを探します。インターセ クション・ポイントによって、最適調整電圧が決まります。温 度安定性の最高レベルを実現するためには、さらに微調整が必 要です。適切な値で、全定格温度範囲での温度ドリフト誤差 ±0.5 dB (typ)を実現することができます。

表 4.ADJA と ADJB の推奨電圧レベル

Frequency	Recommended ADJA, ADJB Voltage (V)
100 MHz	0.65, 0.7
900 MHz	0.6, 0.65
1.9 GHz	0.5, 0.55
2.2 GHz	0.48, 0.6
3.6 GHz	0.35, 0.42
5.8 GHz	0.58, 0.7
8 GHz	0.72, 0.82

温度ドリフトの補償には当社独自の技術が採用されています。 補償の絶対値は、周波数と回路ボードの材料により変わります。

ADJA と ADJB は、高インピーダンス・ピンです。ADJA と ADJB \sim 加える電圧は、抵抗デバイダを介して VREF から供給 することができます。

図図 63 に、ADJA と ADJB インターフェースの簡略化した回路 図を示します。

図 63.ADJA、ADJB インターフェース簡略化した回路図

傾きの変更

セットポイント・インターフェース—VSTA、VSTB のセクショ ンで説明したように、セットポイント・インターフェース (VSTA と VSTB)へ帰還される OUTA と OUTB の出力電圧をスケ ーリングすることにより、傾きを容易に大きくすることができ ます。OUTA と OUTB からのフル信号が VSTA と VSTB に加え られると、公称値-22 mV/dB の傾きになります。この値は、 OUTA ピンおよび OUTB ピンと VSTA ピンおよび VSTB ピンと の間に電圧デバイダを接続することにより、大きくすることが できます(図図 64)。

図 64.傾きを大きくするための外付け回路

VSTA と VSTB の入力抵抗は約 40 kΩです。スケーリング抵抗値 は、誤差を小さくするように注意深く選択する必要があります。 これらの抵抗も出力ピンの負荷になるため、負荷駆動能力が小 さくなることに注意する必要があります。

式11を使って抵抗値を計算することができます。

$$RI = R2' \left(\frac{S_D}{-22} - 1\right) \tag{11}$$

ここで、 S_D はミリボルト/デシベル(mV/dB)で表した所望の傾き。 R2/は40 kΩと並列に接続した R2の値。

たとえば、R1 = 1.65 kΩ および R2 = 1.69 kΩ (R2' = 1.62 kΩ)の場 合、公称傾きは-44 mV/dB に増えます。

傾きが大きくなると、ループ・コンデンサ(CLPA と CLPB)を大 きくして、安定性を確保し、選択した平均時間を維持する必要が あります。傾きは、標準的な手順に従い、出力ピンの後ろに電 圧デバイダを接続することにより、小さくすることができます。

チャンネル・アイソレーション

ADL5519 の両チャンネルを同時に使用するときは、アイソレー ションを考慮する必要があります。考慮すべき 2 つのアイソレ ーション条件は、一方の RF チャンネル入力から他方の RF チャ ンネル入力へのアイソレーションと、一方の RF チャンネル入力 から他方のチャンネル出力へのアイソレーションです。 ADL5519 の両チャンネルを使用するとき、RF 入力(INHA と INHB)を互いにアイソレーションするレイアウトに注意を払う必 要があります。PC ボード上での結合が両タイプのアイソレーシ ョンに影響を与えます。 大部分のアプリケーションでは、温度に対して安定なカプラー と、異なる値を持つ温度に対して安定で正確な減衰器を使って ADL5519 に入力される電力を調整することができます。アイソ レーションが問題となる場合、動作周波数で、期待される最小 検出可能電力が ADL5519 の最小検出可能電力から大きく離れな いように入力電力を調整することが有効です。

ADL5519 の最小検出可能電力ポイントは、デバイスごとに少し 変動します。このため両チャンネル上の信号が最小可能電力レ ベルで等化されます。これにより、全体のアイソレーション条 件が小さくなり、デバイスの RF 入力に減衰器が追加されて、RF チャンネルの入力アイソレーション条件が小さくなることがあ ります。

RF チャンネル入力から他方の RF チャンネル入力へのアイソレ ーションの測定は簡単で、一方の入力から他方の入力への損失 をネットワーク・アナライザで測定することにより行われます。 その結果は、このデータ・シートの仕様のセクションに示して あります。RF 信号と直列に減衰器を接続すると、チャンネル入 力-入力間アイソレーションが減衰器の値だけ大きくなることに 注意してください。

ー方の RF チャンネル入力と他方のチャンネル出力との間のアイ ソレーションはこれより少し複雑です。このアイソレーション を測定する最も容易な方法(このデータシートで使用)は、一方 のチャンネルを入力で予想される最小電力レベル(このデータ・ シートでは約-50 dBm)に設定し、低電力チャンネルの出力が 22 mV だけ変化するまで他方のチャンネルの入力電力レベルを上げ ます。-50 dBm は検出器のリニア領域内にあるため、22 mV は 出力での1 dB 変化になります。

両 RF チャンネルへの入力が同じ周波数である場合、アイソレ ーションは ADL5519 に入力される両 RF 信号間の位相シフトに も依存します。この関係は、高電力信号を一方の RF チャンネル へ入力し、周波数を少しずらした低電力信号を他方の RF チャ ンネルへ入力することにより、明らかにすることができます。

低電力チャンネルの出力をオシロスコープで観測すると、2 つ のチャンネル間の周波数差(ビート)に等しい周波数を持つ全波整 流の正弦波に似たリップルを持っていることが分かります。リ ップルの振幅は、特定の位相オフセットでのアイソレーション を反映しており(周波数が少し異なる 2 つの信号は、位相が常に 変化する 2 つの信号のように見えます)、そのリップルの周波数 は周波数オフセットに直接関係しています。

仕様のセクションに示すデータは、ワーストケースの振幅と位 相オフセットの場合です。チャンネル A とチャンネル B の RF 信号の周波数が少し異なる場合、ADL5519 内部のロールオフ応 答のため、CLPA と CLPB に接続したコンデンサと 2 つの信号 間の周波数オフセットに依存して、入力-出力間アイソレーショ ンが大きくなります。

出力フィルタ

RF バーストを使う精確な信号電力検出は、ADL5519 が RF 電力 の変化に迅速に応答できる場合に実現できます。最大のビデオ 帯域幅すなわち高速な立ち上がり時間が要求されるアプリケー ションの場合、CLPA ピンと CLPB ピンの容量が非常に小さい ことが要求されます(容量よってはリンギングが小さくなりま す)。

グラウンド基準のコンデンサ(C_{RLT})を CLPA ピンと CLPB ピンに 接続すると、10 MHz の公称出力ビデオ帯域幅は減少します(図図 65 参照)。これは一般に出力リップル(正弦波信号のような対称 入力波形の入力周波数の2倍)を抑えるときに行われます。

図 65.ポスト復調帯域幅の削減

CFLTは次式を使って選択します。

 $C_{FLT} = \frac{1}{\left(\pi \times 1.5 \text{ k}\Omega \times Video Bandwidth\right)} - 3.5 \text{ pF}$ (12)

ビデオ帯域幅は一般に、最小入力周波数の約 1/10 以下の周波数 に設定します。CLPA ピンと CLPB ピンの大きなコンデンサ値 には問題ありません。これらの大きなコンデンサ値は、復調後 の対数出力の出力リップル(入力周波数の 2 倍)を確実に除去し ます。変調された信号では、変調による妨害を除去するためフ ィルタの追加(CFLT容量の増加)が必要になることがあります。

パッケージについての考慮事項

ADL5519 は小型の 32 ピン LFCSP を採用しています。デバイス 底部の大型露出パドルは、熱的な利点と回路グラウンドへの低 インダクタンス・パスを提供します。このパッケージ機能を正 しく使用するため、PCB の RF/DC コモン・グラウンド・リファ レンスとパドルをできるだけ多くのビアを使って接続して、イ ンダクタンスと熱抵抗を小さくする必要があります。

8 GHZ 以上での動作

ADL5519 は最大 8 GHz の動作仕様ですが、最大 10 GHz の縮小 ダイナミック・レンジで有効な計測精度を提供します。 図図 66 に、入力周波数 10 GHz に対する各温度での ADL5519 の性能を 示します。この高周波性能は、図 53 に示す構成を使って実現さ れています。表示したダイナミック・レンジは代表的なデバイス 性能より狭くなっていますが、ADL5519 は直線性誤差 3 dB 以下 で 30 dB の計測範囲を提供することができます。

8 GHz 以上の周波数に対してインピーダンス・マッチを採用すると、ADL5519の感度と測定範囲を向上させることができます。

ADJA, ADJB = 1.8 V, 1.8 V

アプリケーション情報

計測モード

OUTA と OUTB をそれぞれ VSTA と VSTB に接続すると、 ADL5519 は計測モードになります。このデバイスは、オフセット電圧、負の傾き、入力信号範囲の上端で V_{OUTA} と V_{OUTB} の計測インターセプトを持っています。

ADL5519の出力電圧対入力信号電圧は、数ディケード範囲で dB値で表すと直線になります。この関数の式は次のようになり ます。

 $V_{OUT} = x \times V_{SLOPE/DEC} \times \log_{10}(V_{IN}/V_{INTERCEPT}) =$ (13)

 $x \times V_{SLOPE/dB} \times 20 \times \log_{10}(V_{IN}/V_{INTERCEPT})$ (14)

ここで、xは $V_{SET} = V_{OUT}/x$ の帰還係数。 $V_{SLOPE/DEC}$ は公称-440 mV/ディケードすなわち-22 mV/dB。 $V_{INTERCEPT}$ は、 V_{OUT} 対 V_{IN} カーブの dB で表した直線部分の x 軸インターセプト。 $V_{INTERCEPT}$ は正弦波入力信号に対して 2 dBV。

0.45 Vのオフセット電圧 V_{OFFSET}は、V_{OUT}の最小値が x × V_{OFFSET} になるように、内部で検出器信号に加算されます。x = 1の場合、 V_{OUT}最小値は 0.45 V になります。

傾きは製造プロセスと温度特性の変動に対して非常に安定しています。底 10 の対数を使用し、 $V_{SLOPE,DEC}$ はボルト/ディケードで表します。1 ディケードは 20 dB に対応します。 $V_{SLOPE/DEC}$ /20 = $V_{SLOPE/dB}$ は V/dB で表した傾きです。

式 13 と式 14 から分かるように、Vour 電圧は負の傾きを持って います。これは、負帰還構成の多くの VGA のゲインを制御す るためにも正しい傾き極性です。傾きとインターセプトは周波 数により少し変化するため、アプリケーションに適する傾きと インターセプトの値については仕様のセクションを参照してく ださい。

復調ログアンプは入力信号電圧に応答し、入力信号電力には応 答しませんが、電力の意味で高周波信号の振幅を議論すること は慣習になっています。この場合、電圧を対応する電力レベル へ変換するために、システムの特性インピーダンス Z₀を知る必 要があります。次式を使ってこの変換を行います。

$P (dBm) = 10 \times \log_{10}(V_{rms}^2/(Z_0 \times 1 \text{ mW}))$	(15)
$P (dBV) = 20 \times \log_{10}(V_{rms}/1 V_{rms})$	(16)

$P (dBm) = P (dBV) - 10 \times \log_{10}(Z_0 \times 1 \text{ mW}/1 V_{rms}^2)$ (17)

たとえば、50 Ω システムで dBm (1 mW 基準のデシベル)で表し た正弦波入力信号 P_{INTERCEPT} は、

 $P_{INTERCEPT}$ (dBm) = $P_{INTERCEPT}$ (dBV) - 10 × log₁₀(Z_0 × 1 mW/1 V_{rms}^2) = 2 dBV - 10 × log₁₀(50 × 10⁻³) = 15 dBm

200 Ωシステムでの方形波入力信号の場合は、

 $P_{INTERCEPT} (dBm) = -1 \ dBV - 10 \times \log_{10}[(200 \ \Omega \times 1 \ mW/1V_{rms}^2)]$ = +6 dBm

波形に依存するインターセプト変動の詳細については、AD8313 と AD8307の両データ・シートを参照してください。

チャンネル A とチャンネル B に対する入力信号は-5 dBm~-55 dBm の公称入力ダイナミック・レンジで掃引されるため、出力 振幅は 0.5 V~1.6 V の範囲になります。OUTA と OUTB の電圧 も内部でゲイン 1 の差アンプに入力さます。入力電力が掃引さ れると、OUTP 振幅は約 0.5 V~1.75 V の範囲に、OUTN 振幅は 約 1.75 V~0.5 V に、それぞれなります。VLVL ピンは、OUTP と OUTN の同相モード電圧を設定します。VREF ピンと VLVL ピン との間に抵抗デバイダを接続すると、1.15 V 以下の出力同相モー ド電圧を設定することができます。INHA と INHB との間の大 きな差を測定するときは、チップ内部の信号リークの影響を受 けることがあります。

コントローラ・モード

ADL5519 は、計測デバイスとしての他に、信号レベルの設定と 制御を行うように設定することができます。2 個のログ検出器 は、VGA または可変電圧減衰器(VVA)の出力電力レベルの設定 と制御を行うように個別に設定することができます。コントロ ーラ・モードで1 チャンネルを動作させることについては、 AD8317 データシートのコントローラ・モードのセクションを参 照してください。

あるいは、アンプまたはシグナル・チェインのゲインの測定と 制御を行うように、2 個の検出器を設定することができます。チ ャンネル差出力を使うと、ADL5519 RF 入力への帰還ループを 制御することができます。FBKA と OUTP との間にコンデンサ を接続すると、内蔵の 1kΩ 帰還抵抗が 0 を構成するので(内蔵抵 抗の値は製造プロセスにより±20%も変動します)、積分器が構成 されます。チャンネル A を駆動し、チャンネル B ~ VGA を介 して OUTP からの帰還ループを接続すると、OUTP は次のよう に電圧値を積分します。

OUTB = (OUTA + VLVL)/2(18)

OUTN からの出力値は役立つときも役立たないときもあります。 次式で与えられます。

(19)

ただし、VLVL < OUTA/3 の場合。

その他の場合、

OUTN = 0 V

VLVL を OUTA ピンに接続すると、OUTB は帰還ループにより OUTA に一致します。この柔軟性により、与えられた電力レベ ルと周波数での一方のチャンネル動作を測定する機能が提供さ れ、同時に他方のチャンネルは別の周波数の所望の電力レベル に設定することができます。ADJA ピンと ADJB ピンに加える電 圧は、出力電圧の温度ドリフトを小さくするように慎重に選択 する必要があります。温度ドリフトは、チャンネル A とチャン ネル B のドリフトの統計的な和です。前述のように、VLVL を 使って、スレーブ・チャンネルを他のチャンネルと異なる電力 で動作させることができます。

2 つのチャンネルを異なる電力レベルで動作させると、IC 内の メタル配線の電圧降下のためにスタティックなオフセットが発 生します。 帰還ループで反転が必要な場合には、OUTN と OUTP との間に コンデンサを接続して、OUTN を積分器として使うことができ ます。このために OUTB と OUTP の出力式が変わります。

 $OUTB = 2 \times OUTA - VLVL \tag{21}$

VLVL < OUTA/2 の場合、

OUTN = 0 V(22)

その他の場合、

 $OUTN = 2 \times VLVL - OUTA$

(23)

チャンネル A を駆動し、チャンネル B を帰還ループを介するス レーブとする場合には、式 18~式 23 は有効です。チャンネル B を駆動し、チャンネル A をスレーブとする場合には、OUTB を OUTAへ、OUTN を OUTPへ、それぞれ変更して、これらの式を 変えることができます。

自動ゲイン制御

図図 67 に、アンプまたはシグナル・チェインに対する自動ゲイン制御を提供するように、ADL5519 を接続する方法を示します。 その他のピンは説明を分かり安くするために省略しています。 この構成では、両検出器が計測モードで接続され、CLPA と CLPB で使用される該当するフィルタ機能が復調された対数出 力に対して十分なフィルタ機能を提供するようにします。ただ し、OUTA も内蔵差アンプの VLVL ピンに接続されます。さら に、差アンプの OUTP 出力は、可変ゲイン・エレメント(VVA ま たは VGA)を駆動し、積分器として動作するようにコンデンサを 介して FBKA 入力に接続します。

OUTA は OUTB より大きいと仮定します。OUTA は VLVL も駆動するため、この電圧は OUTP を駆動するオペアンプの非反転入力にも接続されます。このために、OUTP から積分コンデンサを介して FBKA 入力へ電流が流れます。これにより、OUTP の電圧が上昇します。ゲイン制御伝達関数 VGA/VVA が正の場合、これによりゲインが増加して、INHA への入力信号が大きくなります。積分器の出力電圧は 2 つの入力チャンネルの電力が等しくなるまで上昇し、シグナル・チェインのゲインが 1 になります。

0 dB 以外のゲインが必要な場合には、いずれかの RF パスに減 衰器を使うことができます(図図 67 参照)。あるいは、電力スプ リッタまたは異なる結合係数の方向性カプラーを使うこともで きます。もう 1 つの便利なオプションは、OUTA 以外の VLVL に電圧を加えることです。詳細については、式 18 とコントロー ラ・モードのセクションを参照してください。

VGA/VVA が負のゲイン制御検出を持つ場合には、積分コンデンサを FBKB に接続して、差アンプの OUTN 出力を使うことができます。あるいは、入力を交換することができます。

積分コンデンサの選択は、AGC ループの応答時間に影響を与え ます。値が小さいときは応答時間が高速になりますが不安定に なります。値が大きいと、応答時間が低速になります。コンデン サが大きすぎると、オペアンプの容量駆動能力のために発振が 発生することもあります。自動ゲイン制御では、CLPA と CLPB のコンデンサが復調された対数出力のフィルタを構成するため に必要であり、ループ応答時間にも影響を与えます。

図 67.自動ゲイン制御用のコントローラ・モードでの動作

安定したゲインのトランスミッタ/レシーバ

温度に対して安定な正確なゲインを持つトランスミッタまたは レシーバには、多くのアプリケーションがあります。たとえば、 デジタル・プリディストーションを採用するマルチキャリア基 地局のハイパワー・アンプ(HPA)は電力検出器と補助レシーバを 持つことがあります。補助レシーバが温度に対して安定な正確な ゲインを持つ場合、電力検出器とそれに接続されるすべての部品 が不要になります。ゲインが設定されたレシーバでは、補助レ シーバの ADC が送信される全体の電力だけでなく、マルチキャ リア HPA の各キャリアの電力も測定することができます。検出 器を使用しない場合、補助レシーバ内の部品間変動により温度に 対して正確なキャリブレーションを行うことは補助レシーバにと って非常に困難です。

ADL5519 をコントローラ・モードで使うと、広い入力電力/温 度範囲でレシーバ・ゲインを一定に維持することができます。 このアプリケーションでは、差出力を使ってレシーバ・ゲイン を一定に維持します。図図 69 に、これを実施する方法を示しま す。

RF入力を、19 dB のカプラーを使用する INHB に接続し、シグナ ル・チェインからダウンコンバートした出力を 19 dB のカプラ ーを使用する INHA に接続します。100 pF のコンデンサを FBKA と OUTP との間に接続して、積分器を構成します。OUTA を VLVL に接続して、OUTB が OUTA に等しくなるように OUTP に VGA を調整させます。回路ゲインは、入力カプラーと出力カ プラーの結合値の差と検出器へのパス損失の差によって設定さ れます。これらは異なる周波数で動作しているため、ADJA ピン と ADJB ピンへ該当する電圧を加える必要があります。ADJA は 0.6 V に設定し、ADJB は 0.65 V に設定して、入力電力範囲の 中心に向かって-40℃/+85℃クロスオーバー・ポイントを設定し ます。 推奨 ADJA 値の 80 MHz を使用すると、 クロスオーバー・ ポイントが高い電力レベルへ移動します。

図図 68 に、図図 69 の回路の結果を示します。入力電力は、-47 dBm~+8 dBm で掃引します。出力電力を測定し、ゲインは +25℃、-40℃、+85℃で計算します。等しい値のカプラーを入力 と出力で使用すると、予測ゲインは約 0 dB になります。パス損 失の差と異なる 2 つの周波数の使用による差のため、平均ゲイ ンは約 2.5 dB になります。この構成では、約 50 dB の制御範囲と 0.2 dB の温度ドリフトが得られます。補助レシーバに対しては、 5 dB 以下の温度変動が計算されます。電力レベルが温度クロス オーバー・ポイントと一致するように選択されると、約 0.1 dB の 温度変動が予測されます。入力電力レベルに対する大部分のゲ イン変化は、異なる周波数での性能差から発生します。

図 68.安定したゲインを持つレシーバの性能

図 69.安定したゲインを持つレシーバの回路

VSWR の測定

ワイヤレス・トランスミッタ内の反射電力の測定は、しぱしば 見落とされる重要な補助機能です。アンテナから反射して戻っ てくる電力は、電圧定在波比(VSWR)または反射係数(リターン 損失とも呼ばれます)を使って規定されます。良くない VSWR により、TV 放送システムにゴーストが発生することがありま す。これは、アンテナから反射された信号がパワー・アンプで 再び反射されて、再度放送されるために発生します。ワイヤレ ス通信システムでは、ゴーストはマルチパスのような現象を発 生させます。VSWR が良くないと送信品質が低下します。同軸 ケーブルまたはアンテナの損傷から発生する致命的な VSWR は、 最悪の場合、トランスミッタを壊します。

ADL5519 は、広いダイナミック・レンジで入力信号の対数に比例する出力電圧を出力します。対数で応答するデバイスは、 VSWR 計測アプリケーションで重要な利点を提供します。ゲイン または反射損失を計算するため、2 つの信号電力の比(出力/入力 または逆方向/順方向)を計算する必要があります。アナログ・ デバイダをリニア応答ダイオード検出器と組み合わせて使って この計算を行う必要がありますが、対数応答検出器を使うと、 簡単な減算のみで済みます(log(A/B) = log(A) - log(B)であるため)。

デュアル RF 検出器は、ディスクリートで実現した場合に比べ ると別の比較も持っています。2 つのデバイス(この場合 2 つの RF 検出器)が 1 つのシリコンから製造された場合、同じ動作を行 う傾向があり、両デバイスは、たとえば似た温度ドリフト特性 を持ちます。加算ノードで、このドリフトが相殺されて温度に 対する安定度が向上します。

図図 71 では、2 個の方向性カプラーを使用し、一方は順方向の 電力を、他方は逆方向の電力を、それぞれ測定します。これら の信号を検出器に入力する前に減衰をさらに追加しています。 ADL5519 のデュアル検出器は、各検出器で 50 dB の計測範囲を 持っています。所望の出力電力範囲で反射係数を測定できるよ うに減衰レベルの設定では注意が必要です。

この例で使用されたレベル・プランを図図 70 にグラフで示しま す。この例では、HPA からの予測出力電力範囲は 30 dB で、20 dBm~50 dBm の範囲です。この電力範囲で、ADL5519 は 0 dB (短絡、オープン、または負荷) ~-20 dB の反射係数を正確に測定 することができます。 ADL5519 の各検出器は、-5 dBm ~-55 dBm の公称入力範囲を持っています。この例では、+50 dBm の最大順方向電力が検出器入力で-10 dBm に減衰されます(この減衰は方向性カプラーと後続の減衰の合成結合係数により実現)。この減衰により、検出器での最大電力がリニア動作範囲に収まります。また、HPA が最小電力レベル+20 dBm で送信している場合、検出器入力電力は-40 dBm になりますが、この場合も入力動作範囲内に入ります。

図 70.ADL5519 VSWR のレベル・プラン

慎重なレベル・プランを使ってデュアル検出器内で入力電力レ ベルを一致させて、これらの電力レベルが検出器のリニア動作 範囲内に入るようにする必要があります。逆方向パスからの電 力は55 dB減衰させられますが、これは検出器が0 dBまでの反射 電力を測定できることを意味します。大部分のアプリケーション では、反射係数がある最小値(たとえば 10 dB)を下回って低下し たとき、シャットダウンするようにシステムがデザインされて います。ADL5519 を使うと、ダイナミック・レンジが広いため フル反射が許容されます。反射が非常に少なく(リターン損失 20 dB)かつ HPA が+20 dBm で送信する場合、逆方向パス検出器の入 力電力は-55 dBm になります。

図 図 71のアプリケーション回路では、リターン損失、順方向電 カ、逆方向電力の直接読み出しが可能です。アンテナに供給さ れる電力を最適化するために順方向と逆方向の位相差(位相角) が必要な場合には、AD8302 を使用することができます。この デバイスはリターン損失を表す出力と 2 つの信号間の位相差を 表す出力を提供します。ただし、AD8302 は順方向または逆方 向の絶対電力は提供しません。

図 71.反射係数測定用の ADL5519 の構成

評価ボード

設定オプション

表 5.評価ボード(Rev. A)の設定オプション

Component	Description	Default Conditions	
VPOS, VPSB, VPSR, GND, GND1, GND3	Supply and Ground Connections. VPOS, VPSB, and VPSR are internally connected. GND, GND1, and GND3 are internally connected.	Not applicable	
R0A, R0B, R5, R6, R30, R31, C1, C2, C3, C4	Input Interface. The 52.3 Ω resistors in the R30 and R31 positions combine with the ADL5519 internal input impedance to give a broadband input impedance of about 50 Ω . C1, C2, C3, and C4 are dc-blocking capacitors. A reactive impedance match can be implemented by replacing R5, R6, R30, and R31 with an inductor and by replacing C1, R0A and C4, R0B with appropriately valued capacitors.	R30, R31 = 52.3 Ω (Size 0402), C1 to C4 = 47 nF (Size 0402) R0A, R0B = 0 Ω R5, R6 = open	
R14	Temperature Sensor Interface. Temperature sensor output voltage is available at the test point labeled TEMP. R14 can be used as a pull-down resistor.	R14 = open (Size 0603)	
R13, R17, R18, R19, R27, R28, R29	Temperature Compensation Interface. A voltage source at ADJA, ADJB can be used to optimize the temperature performance for various input frequencies. The pads for R27/R28 or R27/R29 can be used for voltage dividers from the VREF node to set the ADJA, ADJB voltages at different frequencies. The individual log channels can be disabled by installing 0 Ω resistors at R18 and R19.	R13, R17, R18, R19, R28, R29 = open (Size 0603) R27 = 0 Ω (Size 0603)	
R8, R12, R15, R16, R20, R21, R22, R23, C13, C14	Output Interface, Measurement Mode. In measurement mode, a portion of the output voltage is fed back to VSTA, VSTB via R8, R12. The magnitude of the slope of the OUTA, OUTB output voltage response can be increased by reducing the portion of V_{OUTA} , V_{OUTB} that is fed back to VSTA, VSTB. The slope can be decreased by implementing a voltage divider by using R20 and R16 or R21 and R15. R20 and R21 can also be used as a back-terminating resistor or as part of a single-pole, low-pass filter.	R8, R12, R20, R21 = 0 Ω (Size 0603) R15, R16, R22, R23 = open (Size 0603) C13, C14 = open (Size 0603)	
R8, R12, R22, R23	Output Interface, Controller Mode. In this mode, the 0 Ω resistors must be removed, leaving R8 and R12 open. In controller mode, the ADL5519 can control the gain of an external component. A setpoint voltage is applied to VSTA, VSTB, the value of which corresponds to the desired RF input signal level applied to the corresponding ADL5519 RF input. A sample of the RF output signal from this variable-gain component is selected, typically via a directional coupler, and applied to ADL5519 RF input. The voltage at OUTA, OUTB is applied to the gain control of the variable gain element. A control voltage is applied to VSTA, VSTB. The magnitude of the control voltage can optionally be attenuated via the voltage divider comprising R8, R12 and R22, R23; or a capacitor can be installed in the R22, R23 position to form a low-pass filter along with R8, R12.	R8, R12, R22, R23 = open (Size 0603)	
R3, R4, R11, R24, R25, R26, C7, C8, C11, C12, C15, C16	Power Supply Decoupling. The nominal supply decoupling consists of a 100 pF filter capacitor placed physically close to the ADL5519 and a 0.1 μ F capacitor placed nearer to each power supply input pin.	R3, R4, R11, R24, R25, R26 = 0 Ω (Size 0603) C7, C8, C11 = 100 pF (Size 0603) C12, C15, C16 = 0.1 μ F (Size 0603)	
R1, R2, R9, R10	Output Interface, Difference. R9 and R10 can be replaced with a capacitor to form an integrator for constant gain controller mode	R1, R2, R9, R10 = 0Ω (Size 0603)	
C9, C10	Filter Capacitor. The low-pass corner frequency of the circuit that drives OUTA, OUTB can be lowered by placing a capacitor between CLPA, CLPB and ground. Increasing this capacitor increases the overall rise/fall time of the ADL5519 for pulsed input signals. See the Output Filtering section for more details.	C9, C10 = 1000 pF (Size 0603)	
R7, C6	VLVL Interface. VREF can be used to drive VLVL through a voltage divider formed using R7 and C6.	R7 = open (Size 0603) C6 = open (Size 0603)	

評価ボードの回路図とアートワーク

図 73.上面のレイアウト

図 75.裏面のレイアウト

外形寸法

オーダー・ガイド

Model	Temperature Range	Package Description	Package Option
ADL5519ACPZ-R71	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-8
ADL5519ACPZ-R2	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-8
ADL5519ACPZ-WP ^{, 2}	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-8
ADL5519-EVALZ		Evaluation Board	

¹Z=RoHS 準拠製品

² WP =ワッフル・パック。