

100 MHz~4000 MHz RF/IF デジタル制御VGA

データシート ADL5243

特長

動作周波数: 100 MHz~4000 MHz

シリアルおよびパラレル・インターフェース付のデジタル制御 VGA

VGA

6ビット、0.5 dB ステップのデジタル減衰器

ゲイン制御範囲: 31.5 dB、ステップ精度: ±0.25 dB

ゲイン・ブロック・アンプ 1 ゲイン: 2140 MHz で 19.2 dB OIP3: 2140 MHz で 40.2 dBm P1dB: 2140 MHz で 19.8 dBm ノイズ係数: 2140 MHz で 2.9 dB

¼Wドライバ・アンプ2

ゲイン: 2140 MHz で 14.2 dB OIP3: 2140 MHz で 41.1 dBm P1dB: 2140 MHz で 26.0 dBm ノイズ係数: 2140 MHz で 3.7 dB

ゲイン・ブロック、DSA、または¼Wドライバ・アンプを初段

に設定可能

低静止電流: 175 mA

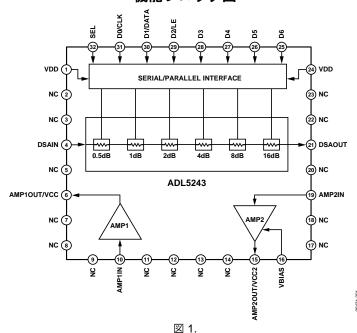
関連デバイス ADL5240 が DSA 付のゲイン・ブロックを内蔵

アプリケーション

ワイヤレス・インフラストラクチャ 自動テスト装置

RF/IF ゲイン制御

概要


ADL5243 は、100 MHz~4000 MHz で動作するデジタル制御の 高性能可変ゲイン・アンプ(VGA)です。

この VGA は、2 個の高性能アンプと 1 個のデジタル・ステップ 減衰器 (DSA)を内蔵しています。アンプ 1 (AMPI)はゲイン=20 dB の内部でマッチングしたゲイン・ブロック・アンプで、アンプ 2 (AMP2)は広帯域¼ W ドライバ・アンプです。DSA は 6 ビットで、31.5 dB のゲイン制御範囲、0.5 dB のステップ、 ± 0.25 dB のステップ精度を持っています。DSA の減衰量は、シリアル・インターフェースまたはパラレル・インターフェースを使って制御することができます。

ゲイン・ブロックと DSA は入力と出力で $50~\Omega$ に内部でマッチングされ、3~個のすべての内部デバイスは個別にバイアスされています。バイアスを個別に行うため、ADL5243 の全部または一部を使うことができるので、デザイン内で容易に再利用することができます。また、ADL5243 のピン配置により、ゲイン・ブロック、DSA、または4~W ドライバ・アンプを初段にすることが可能であるため、シグナル・チェーン内での VGA の柔軟性が大きくなります。

ADL5243 の消費電流は 175 mA で、4.75 V \sim 5.25 V の単電源で動作します。この VGA は熱効率の優れた 5 mm \times 5 mm の 32 ピン LFCSP パッケージを採用し、 -40° C \sim +85 $^{\circ}$ C で動作仕様が規定されています。全部品実装済みの評価用ボードを提供しています。

機能ブロック図

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。
※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。
©2011 Analog Devices, Inc. All rights reserved.

Rev. A

本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03(5402)8200

目次

特長	1
アプリケーション	
概要	
機能ブロック図	
改訂履歴	
仕様	3
絶対最大定格	9
ESD の注意	9
ピン配置およびピン機能説明	10
代表的な性能特性	11

アプリケーション情報	20
基本レイアウト接続	20
SPI のタイミング	21
ADL5243 アンプ 2 のマッチング	23
ADL5243 のループ性能	26
熱に対する考慮事項	26
ハンダ処理と推奨 PCB パターン	26
評価用ボード	27
外形寸法	30
オーダー・ガイド	30

改訂履歴

8/11—Rev. 0 to Rev. A
Changes to Features Section
7/11—Revision 0: Initial Version

仕様

 $VDD = 5V, \ VCC = 5V, \ VCC2 = 5V, \ T_A = 25^{o}C_{\circ}$

表 1.

Parameter	Conditions	Min	Тур	Max	Unit
OVERALL FUNCTION					
Frequency Range		100		4000	MH
AMPLIFIER 1 FREQUENCY = 150 MHz	Using the AMP1IN and AMP1OUT pins				
Gain			18.2		dB
vs. Frequency	±50 MHz		±0.97		dB
vs. Temperature	$-40^{\circ}C \le T_A \le +85^{\circ}C$		±0.07		dB
vs. Supply	4.75 V to 5.25 V		±0.03		dB
Input Return Loss	S11		-10.4		dB
Output Return Loss	S22		-8.2		dB
Output 1 dB Compression Point			18.4		dBn
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$		29.5		dBn
Noise Figure			2.8		dB
AMPLIFIER 1 FREQUENCY = 450 MHz	Using the AMP1IN and AMP1OUT pins				
Gain	, ·		20.6		dB
vs. Frequency	±50 MHz		±0.10		dB
vs. Temperature	$-40^{\circ}C \le T_A \le +85^{\circ}C$		±0.36		dB
vs. Supply	4.75 V to 5.25 V		±0.01		dB
Input Return Loss	S11		-17.8		dB
Output Return Loss	S22		-16.5		dB
Output 1 dB Compression Point			19.5		dBn
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$		38.4		dBn
Noise Figure			2.8		dB
AMPLIFIER 1 FREQUENCY = 748 MHz	Using the AMP1IN and AMP1OUT pins				
Gain			20.8		dB
vs. Frequency	±50 MHz		±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.32		dB
vs. Supply	4.75 V to 5.25 V		±0.01		dB
Input Return Loss	S11		-22.0		dB
Output Return Loss	S22		-21.6		dB
Output 1 dB Compression Point			19.6		dBn
Output Third-Order Intercept	$\Delta f = 1$ MHz, $P_{OUT} = 3$ dBm/tone		39.6		dBn
Noise Figure			2.7		dB
AMPLIFIER 1 FREQUENCY = 943 MHz	Using the AMP1IN and AMP1OUT pins				
Gain		19.0	20.3	22.0	dB
vs. Frequency	±18 MHz		±0.01		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.28		dB
vs. Supply	4.75 V to 5.25 V		±0.02		dB
Input Return Loss	S11		-24.0		dB
Output Return Loss	S22		-21.5		dB
Output 1 dB Compression Point		18.5	19.9		dBn
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$		40.4		dBn
Noise Figure	, 333		2.7		dB

Rev. **A** - 3/30 -

Parameter	Conditions	Min	Тур	Max	Unit
AMPLIFIER 1 FREQUENCY = 1960 MHz	Using the AMP1IN and AMP1OUT pins				
Gain			19.5		dB
vs. Frequency	±30 MHz		±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.26		dB
vs. Supply	4.75 V to 5.25 V		±0.04		dB
Input Return Loss	S11		-13.5		dB
Output Return Loss	S22		-12.4		dB
Output 1 dB Compression Point			19.6		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$		40.4		dBm
Noise Figure			2.9		dB
AMPLIFIER 1 FREQUENCY = 2140 MHz	Using the AMP1IN and AMP1OUT pins				
Gain	The Section of the Se	17.5	19.2	21.5	dB
vs. Frequency	±30 MHz		±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.26		dB
vs. Supply	4.75 V to 5.25 V		±0.05		dB
Input Return Loss	S11		-13.3		dB
Output Return Loss	S22		-12.2		dB
Output 1 dB Compression Point	322	17.5	19.8		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$	17.5	40.2		dBm
Noise Figure	$\Delta I = I$ WHZ, $F_{OUT} = 3$ dBill/toile		2.9		dB
	II-in-al-AMPINII AMPIOLITE-in-		2.9		ub
AMPLIFIER 1 FREQUENCY = 2630 MHz	Using the AMP1IN and AMP1OUT pins	17.5	10.0	21.5	dr.
Gain	COMIL	17.5	19.0	21.5	dB
vs. Frequency	±60 MHz		±0.03		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.22		dB
vs. Supply	4.75 V to 5.25 V		±0.05		dB
Input Return Loss	S11		-17.3		dB
Output Return Loss	S22		-12.3		dB
Output 1 dB Compression Point		17.5	19.5		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$		39.5		dBm
Noise Figure			2.9		dB
AMPLIFIER 1 FREQUENCY = 3600 MHz	Using the AMP1IN and AMP1OUT pins				
Gain			18.0		dB
vs. Frequency	±100 MHz		± 0.10		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		± 0.05		dB
vs. Supply	4.75 V to 5.25 V		±0.12		dB
Input Return Loss	S11		-30.7		dB
Output Return Loss	S22		-9.0		dB
Output 1 dB Compression Point			18.0		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm/tone}$		34.6		dBm
Noise Figure			3.3		dB
AMPLIFIER 2 FREQUENCY = 748 MHz	Using the AMP2IN and AMP2OUT pins		·		
Gain			17.5		dB
vs. Frequency	±50 MHz		±0.14		dB
Input Return Loss	S11		-12.7		dB
Output Return Loss	S22		-8.6		dB
Output 1 dB Compression Point			24.7		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		41.5		dBm
Noise Figure	, 50.		5.6		dB

Rev. **A** — 4/30 —

Conditions	Min	Typ	Max	Unit
Using the AMP2IN and AMP2OUT pins				
		16.5		dB
±18 MHz		±0.05		dB
$-40^{\circ}C \le T_A \le +85^{\circ}C$		±0.39		dB
4.75 V to 5.25 V		±0.10		dB
S11		-11.2		dB
S22		-8.1		dB
		25.0		dBm
$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		43.3		dBm
		5.3		dB
Using the AMP2IN and AMP2OUT pins				
	13.0	14.2	15.5	dB
±30 MHz		±0.03		dB
$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.50		dB
4.75 V to 5.25 V		±0.09		dB
S11		-10.7		dB
S22		-8.1		dB
		26.0		dBm
$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		41.1		dBm
, 501		3.7		dB
Using the AMP2IN and AMP2OUT pins				
		13.0		dB
±60 MHz		±0.13		dB
$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.56		dB
		±0.09		dB
S11		-9.4		dB
S22		-8.3		dB
		24.5		dBm
$\Delta f = 1 \text{ MHz}$, $P_{OUT} = 5 \text{ dBm/tone}$		40.4		dBm
, 66.				dB
Using the DSAIN and DSAOUT pins, minimum attenuation				
		-1.5		dB
+50 MHz				dB
				dB
· ·				dB
				dB
$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		45.2		dBm
	Using the AMP2IN and AMP2OUT pins $\pm 18 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz, } P_{\text{OUT}} = 5 \text{ dBm/tone} \\ \\ \text{Using the AMP2IN and AMP2OUT pins} \\ \pm 30 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz, } P_{\text{OUT}} = 5 \text{ dBm/tone} \\ \\ \text{Using the AMP2IN and AMP2OUT pins} \\ \pm 60 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz, } P_{\text{OUT}} = 5 \text{ dBm/tone} \\ \\ \text{Using the DSAIN and DSAOUT pins, minimum attenuation} \\ \pm 50 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ \text{Between maximum and minimum attenuation states} \\ \text{All attenuation states} \\ $	Using the AMP2IN and AMP2OUT pins $ \pm 18 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz}, P_{\text{OUT}} = 5 \text{ dBm/tone} $ $ \pm 30 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz}, P_{\text{OUT}} = 5 \text{ dBm/tone} $ $ \pm 30 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz}, P_{\text{OUT}} = 5 \text{ dBm/tone} $ $ \pm 60 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ 4.75 \text{ V to } 5.25 \text{ V} \\ \text{S}11 \\ \text{S}22 \\ \Delta f = 1 \text{ MHz}, P_{\text{OUT}} = 5 \text{ dBm/tone} $ Using the DSAIN and DSAOUT pins, minimum attenuation $ \pm 50 \text{ MHz} \\ -40^{\circ}\text{C} \leq \text{T}_{A} \leq +85^{\circ}\text{C} \\ \text{Between maximum and minimum attenuation states} \\ \text{All attenuation states} \\ \text{All attenuation states} $	Using the AMP2IN and AMP2OUT pins	Using the AMP2IN and AMP2OUT pins ±18 MHz $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$ ± 0.05 ± 0.00 S11 ± 0.010 S11 ± 0.010 S11 ± 0.010 Between maximum and minimum attenuation states ± 0.110 ± 0.010 Between maximum and minimum attenuation states ± 0.110 ± 0.010 ± 0

Rev. **A** - 5/30 -

Parameter	Conditions	Min	Тур	Max	Unit
DSA FREQUENCY = 450 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss			-1.4		dB
vs. Frequency	±50 MHz		±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		±0.12		dB
Attenuation Range	Between maximum and minimum attenuation states		30.7		dB
Attenuation Step Error	All attenuation states		±0.14		dB
Attenuation Absolute Error	All attenuation states		±0.39		dB
Input Return Loss			-17.7		dB
Output Return Loss			-17.4		dB
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		41.2		dBm
DSA FREQUENCY = 748 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss			-1.5		dB
vs. Frequency	±50 MHz		±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.12		dB
Attenuation Range	Between maximum and minimum attenuation states		30.9		dB
Attenuation Step Error	All attenuation states		±0.15		dB
Attenuation Absolute Error	All attenuation states		±0.30		dB
Input Return Loss			-17.1		dB
Output Return Loss			-17.1		dB
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		40.4		dBm
DSA FREQUENCY = 943 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss			-1.6		dB
vs. Frequency	±18 MHz		±0.01		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.13		dB
Attenuation Range	Between maximum and minimum attenuation states		30.9		dB
Attenuation Step Error	All attenuation states		±0.15		dB
Attenuation Absolute Error	All attenuation states		±0.28		dB
Input Return Loss			-16.0		dB
Output Return Loss			-15.9		dB
Input 1 dB Compression Point			30.5		dBm
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{\text{OUT}} = 5 \text{ dBm/tone}$		48.3		dBm
DSA FREQUENCY = 1960 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss			-2.5		dB
vs. Frequency	±30 MHz		±0.04		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		±0.18		dB
Attenuation Range	Between maximum and minimum attenuation states		30.8		dB
Attenuation Step Error	All attenuation states		±0.15		dB
Attenuation Absolute Error	All attenuation states		±0.35		dB
Input Return Loss			-10.3		dB
Output Return Loss			-9.6		dB
Input 1 dB Compression Point			31.5		dBm
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		44.7		dBm

Rev. **A** — 6/30 —

Parameter	Conditions	Min	Гур	Max	Unit
DSA FREQUENCY = 2140 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss		-	-2.6		dB
vs. Frequency	±30 MHz	∃	±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$	±	±0.19		dB
Attenuation Range	Between maximum and minimum attenuation states	3	80.9		dB
Attenuation Step Error	All attenuation states	₫	±0.13		dB
Attenuation Absolute Error	All attenuation states	±	±0.32		dB
Input Return Loss		-	-9.8		dB
Output Return Loss		-	-9.3		dB
Input 1 dB Compression Point		3	31.5		dBn
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$	4	14.6		dBn
DSA FREQUENCY = 2630 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss		-	-2.8		dB
vs. Frequency	±60 MHz	<u> </u>	±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$	<u> </u>	±0.21		dB
Attenuation Range	Between maximum and minimum attenuation states	3	31.2		dB
Attenuation Step Error	All attenuation states	<u> </u>	±0.18		dB
Attenuation Absolute Error	All attenuation states	<u> </u>	±0.24		dB
Input Return Loss		_	-10.0		dB
Output Return Loss		_	-9.6		dB
Input 1 dB Compression Point		3	31.5		dBn
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		13.8		dBn
DSA FREQUENCY = 3600 MHz	Using the DSAIN and DSAOUT pins, minimum attenuation				
Insertion Loss		-	-3.0		dB
vs. Frequency	±100 MHz	<u> </u>	±0.02		dB
vs. Temperature	$-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$	<u> </u>	±0.23		dB
Attenuation Range	Between maximum and minimum attenuation states	3	31.7		dB
Attenuation Step Error	All attenuation states	<u> </u>	±0.38		dB
Attenuation Absolute Error	All attenuation states		±0.18		dB
Input Return Loss		_	-12.3		dB
Output Return Loss		_	-11.7		dB
Input 1 dB Compression Point		3	31.0		dBn
Input Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		12.2		dBn
DSA Gain Settling	Using the DSAIN and DSAOUT pins				
Minimum Attenuation to Maximum Attenuation	The same and the s	3	36		ns
Maximum Attenuation to Minimum Attenuation			36		ns
LOOP FREQUENCY = 943 MHz	AMP1–DSA–AMP2, DSA at minimum attenuation				
Gain	2, 25.7	3	34.0		dB
vs. Frequency	±18 MHz		±0.10		dB
Gain Range	Between maximum and minimum attenuation states		29.3		dB
Input Return Loss	S11		-14.2		dB
Output Return Loss	S22		-10.1		dB
Output 1 dB Compression Point			25.1		dBn
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		12.8		dBn
Noise Figure			2.9		dB

Rev. **A** - 7/30 -

Parameter	Conditions	Min	Typ	Max	Unit
LOOP FREQUENCY = 2140 MHz	AMP1 – DSA – AMP2, DSA at minimum attenuation				
Gain			31.3		dB
vs. Frequency	±30 MHz		±0.03		dB
Gain Range	Between maximum and minimum attenuation states		32.5		dB
Input Return Loss	S11		-9.3		dB
Output Return Loss	S22		-5.4		dB
Output 1 dB Compression Point			25.3		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		40.0		dBm
Noise Figure			3.1		dB
LOOP FREQUENCY = 2630 MHz	AMP1 – DSA – AMP2, DSA at minimum attenuation				
Gain			29.5		dB
vs. Frequency	±60 MHz		±0.56		dB
Gain Range	Between maximum and minimum attenuation states		30.0		dB
Input Return Loss	S11		-12.6		dB
Output Return Loss	S22		-5.8		dB
Output 1 dB Compression Point			24.6		dBm
Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 5 \text{ dBm/tone}$		39.3		dBm
Noise Figure			3.1		dB
POWER SUPPLIES					
Voltage		4.75	5.0	5.25	V
Supply Current	AMP1		89	120	mA
	AMP2		86	120	mA
	DSA		0.5		mA

Rev. **A** - 8/30 -

絶対最大定格

表 2.

Parameter	Rating
Supply Voltage (VDD, VCC, VCC2)	6.5 V
Input Power	
AMP1IN	16 dBm
AMP2IN (50 Ω Impedance)	20 dBm
DSAIN	30 dBm
Internal Power Dissipation	1.0 W
θ_{JA} (Exposed Paddle Soldered Down)	34.8°C/W
θ_{JC} (Exposed Paddle)	6.2°C/W
Maximum Junction Temperature	150°C
Lead Temperature (Soldering, 60 sec)	240°C
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	-65°C to +150°C

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒 久的な損傷を与えることがあります。この規定はストレス定格 の規定のみを目的とするものであり、この仕様の動作のセクションに記載する規定値以上でのデバイス動作を定めたものでは ありません。デバイスを長時間絶対最大定格状態に置くとデバイスの信頼性に影響を与えます。

ESD の注意

ESD (静電放電) の影響を受けやすいデバイスです。電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術である ESD 保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESD に対する適切な予防措置を講じることをお勧めします。

Rev. **A** - 9/30 -

ピン配置およびピン機能説明

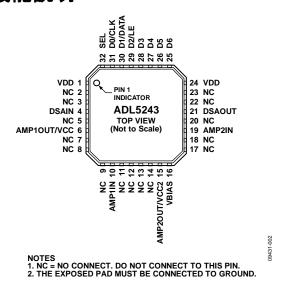


図 2.ピン配置

表 3.ピン機能の説明

ピン番号	記号	説明
1, 24	VDD	DSAの電源電圧。このピンは5V電源に接続します。
2、3、5、7、8、9、11、 12、13、14、17、18、20、 22、23	NC	未接続。このピンは接続しないでください。
4	DSAIN	DSA の RF 入力。
6	AMP1OUT/VCC	アンプ 1 の RF 出力/アンプ 1 の電源電圧。このピンを VCC に接続すると、ゲイン・ブロック・アンプ 1 のバイアスがチョークを介してこのピンに供給されます。
10	AMP1IN	ゲイン・ブロック・アンプ1のRF入力。
15	AMP2OUT/VCC2	アンプ 2の RF 出力/アンプ 2の電源電圧。このピンを VCC2 に接続すると、ドライバ・アンプ 2のバイアスがチョークを介してこのピンに供給されます。
16	VBIAS	ドライバ・アンプ2のバイアス。
19	AMP2IN	アンプ2のRF入力。
21	DSAOUT	DSA の RF 出力。
25	D6	パラレル・モードでのデータビット (LSB)。シリアル・モードでは電源へ接続します。
26	D5	パラレル・モードでのデータビット。シリアル・モードではグラウンドへ接続します。
27	D4	パラレル・モードでのデータビット。シリアル・モードではグラウンドへ接続します。
28	D3	パラレル・モードでのデータビット。シリアル・モードではグラウンドへ接続します。
29	D2/LE	パラレル・モードでのデータビット/シリアル・モードでのラッチ・イネーブル。
30	D1/DATA	パラレル・モードでのデータビット (MSB)/シリアル・モードでのデータ。
31	D0/CLK	パラレル・モードではグラウンドへ接続します。このピンは、シリアル・モードでクロックとして機能します。
32	SEL	セレクト・ピン。このピンは、パラレル動作モードでは電源へ、シリアル動作モードでは グラウンドへ、それぞれ接続します。
	EPAD	エクスポーズド・パッド。エクスポーズド・パッドはグラウンドへ接続する必要があります。

Rev. **A** — 10/30 —

代表的な性能特性

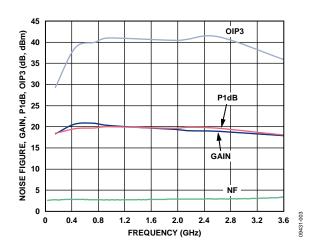


図 3.AMP1: ゲイン、P1dB、P_{OUT} = 3 dBm/トーンでの OIP3、 ノイズ係数の周波数特性

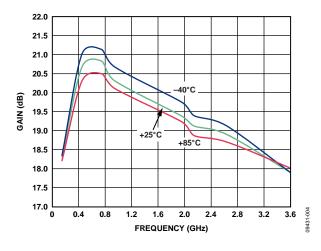


図 4.AMP1: ゲインの周波数特性と温度特性

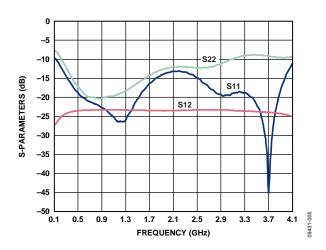


図 5.AMP1:入力リターン損失(S11)、出力リターン損失(S22)、 リバース・アイソレーション(S12)の周波数特性

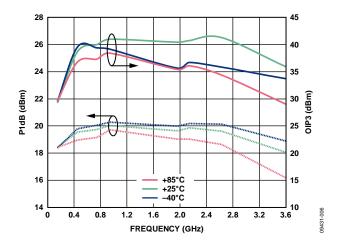


図 6.AMP1: Pout = 3 dBm/トーンでの OIP3 と P1dB の 周波数特性と温度特性

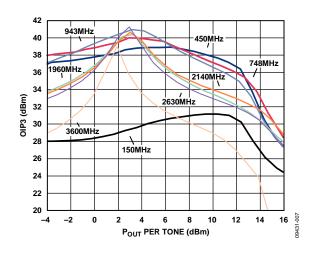


図 7.AMP1: 様々な周波数での Pout 対 OIP3

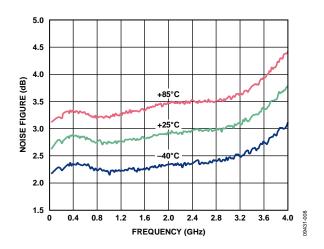


図 8.AMP1:ノイズ係数の周波数特性と温度特性

Rev. **A** — 11/30 —

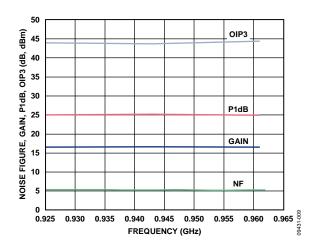


図 9.AMP2-943 MHz:ゲイン、P1dB、P_{OUT} = 5 dBm/トーンでの OIP3、ノイズ係数の周波数特性

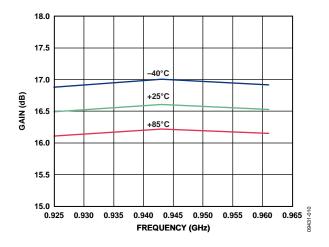


図 10. AMP2-943 MHz: ゲインの周波数特性と温度特性

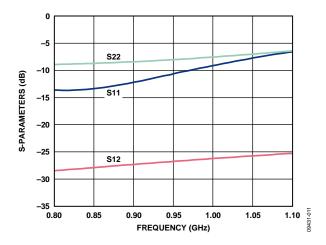


図 11.AMP2-943 MHz: 入力リターン損失(S11)、出力リターン 損失(S22)、リバース・アイソレーション(S12)の周波数特性

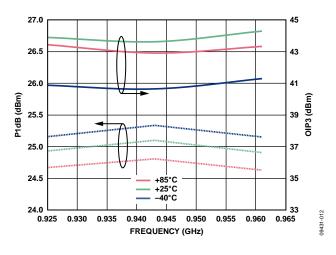


図 12.AMP2-943 MHz: Pout = 5 dBm/トーンでの OIP3 と P1dB の周波数特性と温度特性

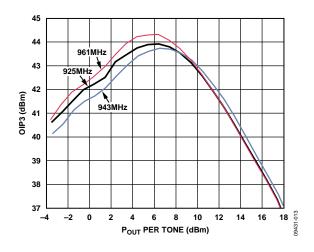


図 13.AMP2-943 MHz:様々な周波数での Pout 対 OIP3

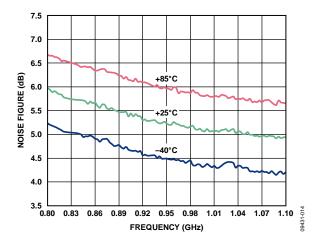


図 14.AMP2-943 MHz: ノイズ係数の周波数特性と温度特性

Rev. **A** — 12/30 —

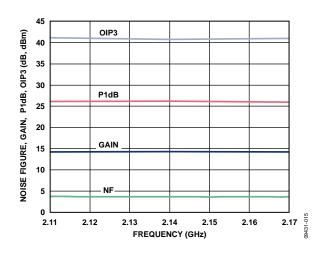


図 15.AMP2-2140 MHz:ゲイン、P1dB、P_{OUT} = 5 dBm/トーンで の OIP3、ノイズ係数の周波数特性

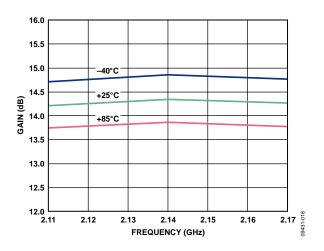


図 16. AMP2-2140 MHz: ゲインの周波数特性と温度特性

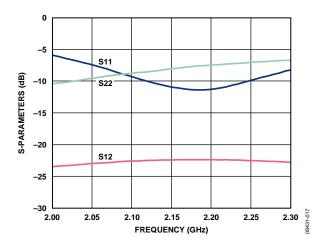


図 17.AMP2-2140 MHz: 入力リターン損失(S11)、出力リターン 損失(S22)、リバース・アイソレーション(S12)の周波数特性

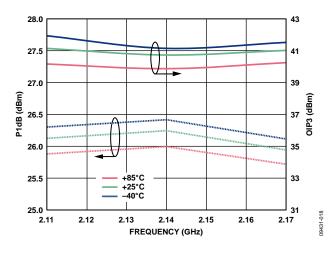


図 18.AMP2-2140 MHz: Pout = 5 dBm/トーンでの OIP3 と P1dB の周波数特性と温度特性

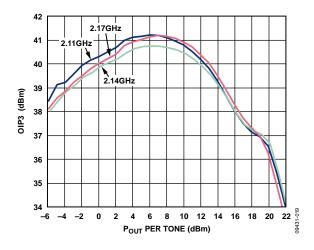


図 19.AMP2-2140 MHz:様々な周波数での Pout 対 OIP3

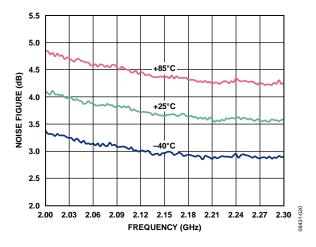


図 20.AMP2-2140 MHz: ノイズ係数の周波数特性と温度特性

Rev. **A** — 13/30 —

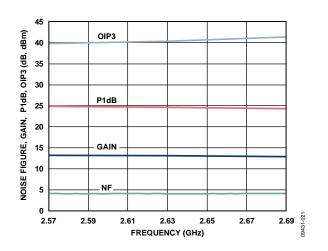


図 21.AMP2-2630 MHz:ゲイン、P1dB、P_{OUT} = 5 dBm/トーンで の OIP3、ノイズ係数の周波数特性

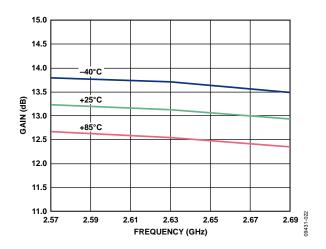


図 22. AMP2-2630 MHz: ゲインの周波数特性と温度特性

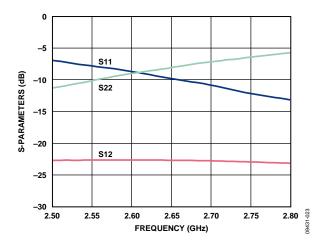


図 23.AMP2-2630 MHz: 入力リターン損失(S11)、出力リターン 損失(S22)、リバース・アイソレーション(S12)の周波数特性

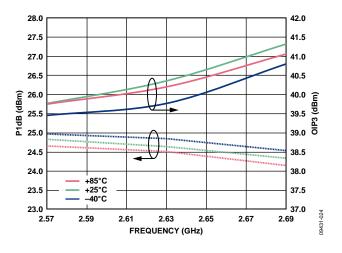


図 24.AMP2-2630 MHz: Pout = 5 dBm/トーンでの OIP3 と P1dB の周波数特性と温度特性

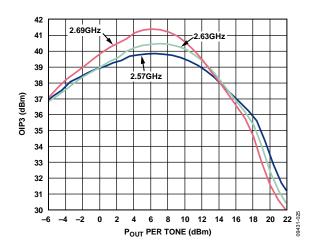


図 25.AMP2-2630 MHz:様々な周波数での Pout 対 OIP3

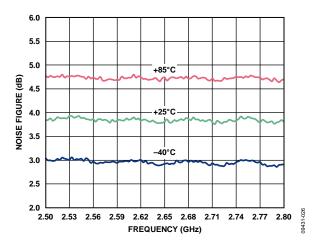


図 26.AMP2-2630 MHz: ノイズ係数の周波数特性と温度特性

Rev. **A** — 14/30 —

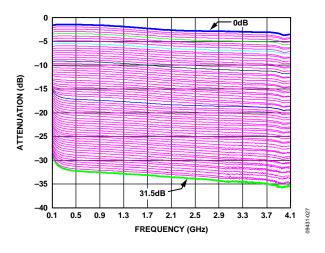


図 27.DSA: 減衰量の周波数特性

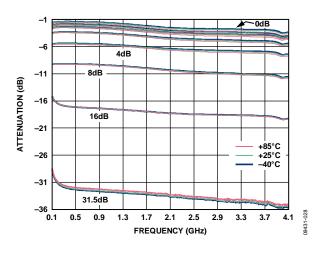


図 28.DSA: 減衰量の周波数特性と温度特性

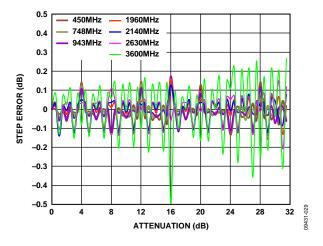


図 29.DSA:減衰量対ステップ誤差

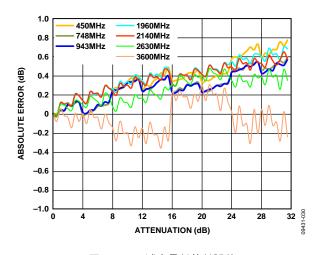


図 30.DSA:減衰量対絶対誤差

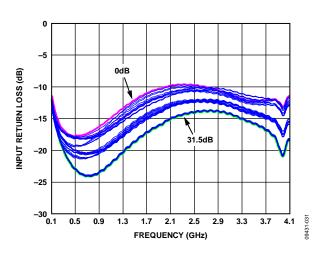


図 31.DSA: 入力リターン損失の周波数特性、すべての状態

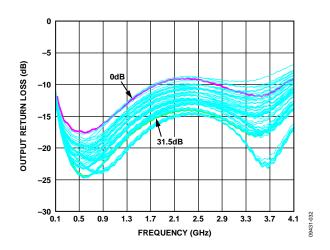


図 32.DSA: 出力リターン損失の周波数特性、すべての状態

Rev. **A** — 15/30 —

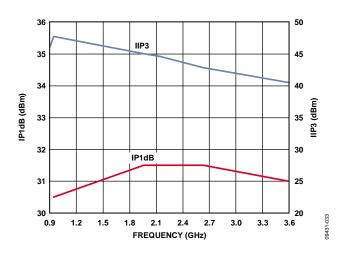


図 33.DSA: 入力 P1dB と入力 IP3 の周波数特性 最小減衰量状態

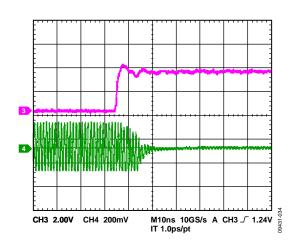


図 34.DSA: ゲインのセトリング・タイム、0 dB \rightarrow 31.5 dB

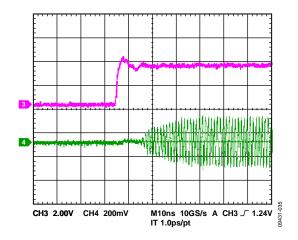


図 35.DSA: ゲインのセトリング・タイム、31.5 dB→0 dB

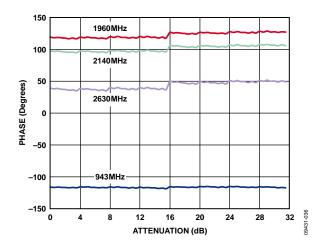


図 36.DSA:減衰量対位相

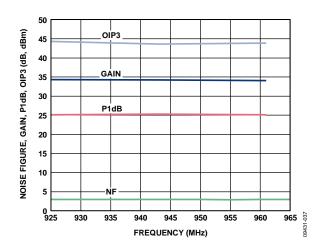


図 37.ループ-943 MHz: ゲイン、P1dB、P_{OUT} = 5 dBm/トーンでの OIP3、ノイズ係数の周波数特性、最小減衰量状態

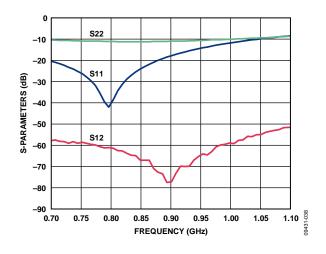


図 38.ループ-943 MHz: 入力リターン損失(S11)、出力リターン 損失(S22)、リバース・アイソレーション(S12)の周波数特性、 最小減衰量状態

Rev. **A** — 16/30 —

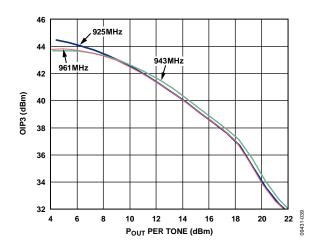


図 39.ループ-943 MHz: 様々な周波数での P_{OUT}対 OIP3 最小減衰量状態

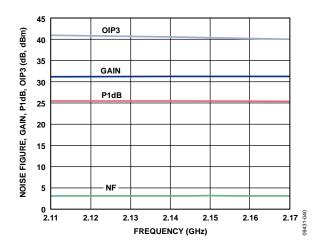


図 40.ループ-2140 MHz: ゲイン、P1dB、P_{OUT} = 5 dBm/トーン での OIP3、ノイズ係数の周波数特性、最小減衰量状態

図 41.ループ-2140 MHz: 入力リターン損失(S11)、出力リターン 損失(S22)、リバース・アイソレーション(S12)の周波数特性、 最小減衰量状態

図 42.ループ-2140 MHz: 様々な周波数での P_{OUT}対 OIP3 最小減衰量状態

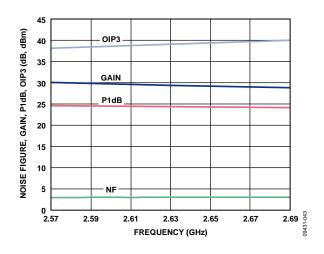


図 43.ループ-2630 MHz: ゲイン、P1dB、P_{OUT} = 5 dBm/トーン での OIP3、ノイズ係数の周波数特性、最小減衰量状態

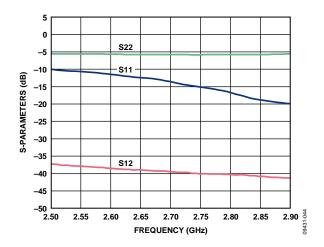


図 44.ループ-2630 MHz: 入力リターン損失(S11)、出力リターン 損失(S22)、リバース・アイソレーション(S12)の周波数特性、 最小減衰量状態

Rev. **A** - 17/30 -

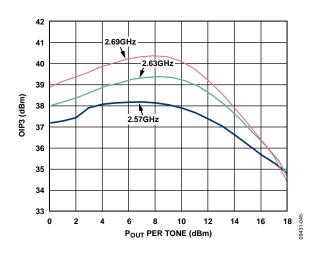


図 45.ループ-2630 MHz: 様々な周波数での P_{OUT}対 OIP3 最小減衰量状態

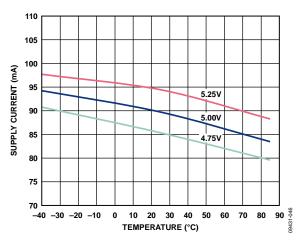


図 46.AMP1: 電源電流対電圧対温度

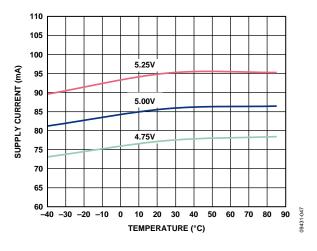


図 47.AMP2: 電源電流対電圧対温度

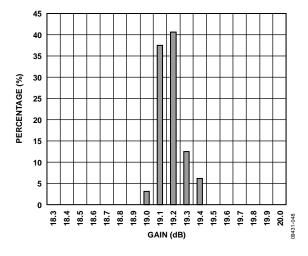


図 48.AMP1:ゲイン分布、2,140 MHz

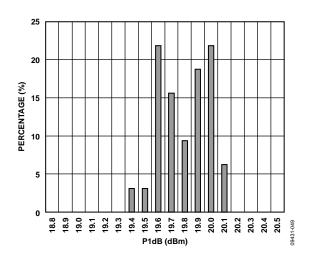


図 49.AMP1: P1dB 分布、2,140 MHz

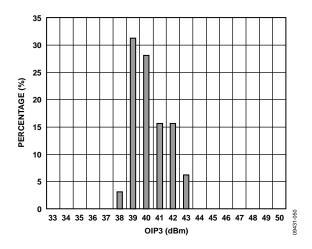


図 50.AMP1: OIP3 分布、2,140 MHz

Rev. **A** — 18/30 —

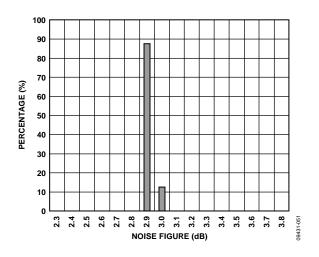


図 51.AMP1:ノイズ係数分布、2,140 MHz

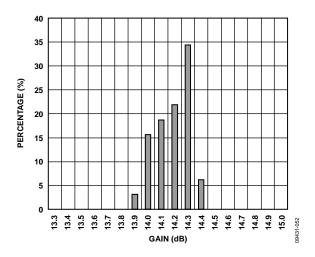


図 52.AMP2:ゲイン分布、2140 MHz

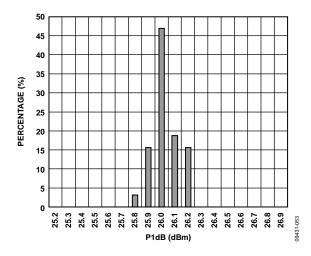


図 53.AMP2: P1dB 分布、2140 MHz

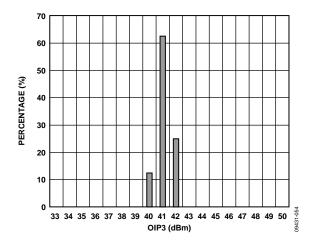


図 54.AMP2: OIP3 分布、2140 MHz

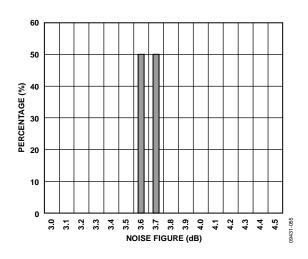


図 55.AMP2: ノイズ係数分布、2140 MHz

Rev. **A** — 19/30 —

アプリケーション情報

基本レイアウト接続

ADL5243 を動作させる基本接続を図 56.に示します。この回路図は、2140 MHz 動作用です。

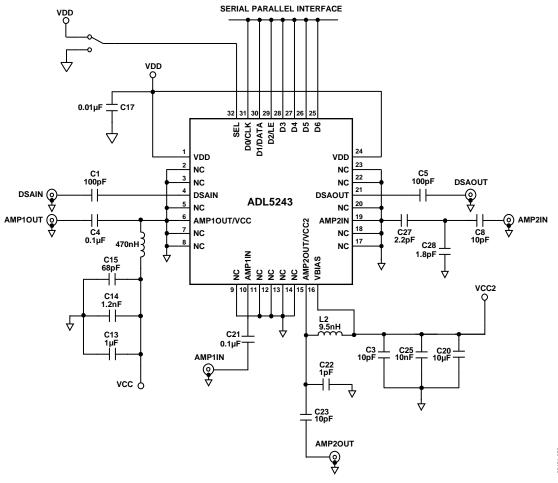


図 56.基本接続

Rev. **A** — 20/30 —

アンプ1の電源

ADL5243 の AMP1 は広帯域ゲイン・ブロックです。DC バイアスはインダクタ L1 を経て供給され、AMP1OUT ピンに接続されています。3 個のデカップリング・コンデンサ (C13、C14、C25)を使って、RF 信号が DC ラインへ伝わるのを防止しています。DC 電源範囲は $4.75\ V\sim5.25\ V$ で、 $VCC\ テスト・ピンに接続する必要があります。$

アンプ 1 RF 入力インターフェース

ピン 10 は、ADL5243 の AMPI の RF 入力です。このアンプは入力で 50 Ω に内部マッチングされているため外付け部品は不要です。DC 阻止コンデンサ (C21)だけが必要です。

アンプ 1 RF 出力インターフェース

ピン 6 は、ADL5243 の AMP1 の RF 出力です。このアンプは出力で $50~\Omega$ に内部マッチングされているため外付け部品は不要です。DC 阻止コンデンサ (C4)だけが必要です。バイアスは、チョーク・インダクタ L1 を経由してこのピンから供給されます。

アンプ2の電源

AMP2 のコレクタ・バイアスは、インダクタ L2 を介して供給され、AMP2OUT ピンに接続されます。ベース・バイアスはピン 16 から供給されます。ベース・バイアスは、コレクタ・バイアスと同じ電源ピンに接続されます。3 個のデカップリング・コンデンサ (C3、C20、C25)を使って、RF 信号が DC ラインへ伝わるのを防止しています。DC 電源範囲は 4.75 V \sim 5.25 V で、VCC2 テスト・ピンに接続する必要があります。

アンプ 2 RF 入力インターフェース

ピン 19 は、ADL5243 の AMP2 の RF 入力です。アンプ入力は、直列と並列のコンデンサとインダクタとして機能するマイクロストリップ・ラインの組み合わせにより 50 Ω に容易にマッチングされます。図 56 に、入力マッチング部品と 2140 MHz 用の構成を示します。

アンプ 2 RF 出力インターフェース

ピン 15 は、ADL5243 の AMP2 の RF 入力です。アンプ出力は、 直列と並列のコンデンサとインダクタとして機能するマイクロストリップ・ラインの組み合わせにより 50 Ωに容易にマッチングされます。さらに、バイアスはこのピンから供給されます。 図 56 に、出力マッチング部品と 2140 MHz 用の構成を示します。

DSA RF 入力インターフェース

ピン4は、ADL5243の DSAの RF 入力です。DSAの入力インピーダンスは全周波数範囲で 50 Ω に近いため、外付け部品は不要です。DC 阻止コンデンサ (C1)だけが必要です。

DSA RF 出力インターフェース

ピン 21 は、ADL5243 の DSA の RF 出力です。DSA の出力インピーダンスは全周波数範囲で $50~\Omega$ に近いため、外付け部品は不要です。DC 阻止コンデンサ (C5)だけが必要です。

DSA SPI インターフェース

ADL5243 の DSA は、シリアル・モードまたはパラレル・モードで動作することができます。ピン 32 (SEL)は、この動作モードを制御します。シリアル動作モードでは SEL をグラウンドへ、パラレル動作モードでは SELを VDD へ、それぞれ接続します。パラレル・モードでは、ピン 25~ピン 30 (D6~D1)がデータビットで、D6 が LSBです。パラレル動作モードでは、ピン 31 (D0)をグラウンドへ接続します。シリアル・モードでは、ピン 29 はラッチ・イネーブル (LE)に、ピン 30 はデータ (DATA)に、ピン 31 はクロック (CLK)に、それぞれなります。ピン 26、ピン 27、ピン 28 はシリアル・モードでは使用しないため、グラウンドへ接続する必要があります。シリアル動作モードでは、ピン 25 (D6)は VDD へ接続する必要があります。ノイズがデジタル信号へ混入するのを防止するため、各データラインに RC フィルタを使用することができます。

SPIのタイミング

SPI のタイミング・シーケンス

図 58 に、6 ビット動作を使用する SPI 機能のタイミング・シーケンスを示します。クロックは最大 20 MHz で動作することができます。シリアル動作モードでは、レジスタ B5 (MSB)が先頭で、レジスタ B0 (LSB)が最後です。

表 4.モードの選択

Pin 32 (SEL)	Functionality
Connect to Ground	Serial mode
Connect to Supply	Parallel mode

表 5.SPI タイミング仕様

Parameter	Limit	Unit	Test Conditions/Comments
Farameter	Lillit	Ullit	Test Conditions/Comments
F_{CLK}	10	MHz	Data clock frequency
t_1	30	ns min	Clock high time
t_2	30	ns min	Clock low time
t_3	10	ns min	Data to clock setup time
t_4	10	ns min	Clock to data hold time
t_5	10	ns min	Clock low to LE setup time
t_6	30	ns min	LE pulse width

Rev. **A** — 21/30 —

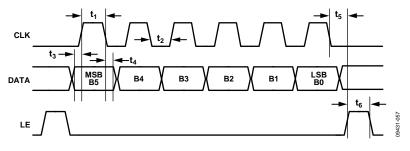


図 57.SPI タイミング図 (MSB ファーストでデータをロード)

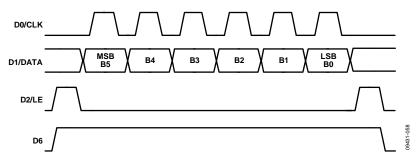


図 58.SPI のタイミング・シーケンス

表 6.DSA 減衰量の真理値表―シリアル・モード

Attenuation State	B5 (MSB)	B4	В3	B2	B1	B0 (LSB)
0 dB (Reference)	1	1	1	1	1	1
0.5 dB	1	1	1	1	1	0
1.0 dB	1	1	1	1	0	1
2.0 dB	1	1	1	0	1	1
4.0 dB	1	1	0	1	1	1
8.0 dB	1	0	1	1	1	1
16.0 dB	0	1	1	1	1	1
31.5 dB	0	0	0	0	0	0

表 7.DSA 減衰量の真理値表—パラレル・モード

Attenuation State	D1 (MSB)	D2	D3	D4	D5	D6 (LSB)
0 dB (Reference)	1	1	1	1	1	1
0.5 dB	1	1	1	1	1	0
1.0 dB	1	1	1	1	0	1
2.0 dB	1	1	1	0	1	1
4.0 dB	1	1	0	1	1	1
8.0 dB	1	0	1	1	1	1
16.0 dB	0	1	1	1	1	1
31.5 dB	0	0	0	0	0	0

Rev. **A** — 22/30 —

ADL5243 アンプ2のマッチング

ADL5243 の AMP2 の入力と出力は、2 個または 3 個の外付け部品とインダクタとして使用されるマイクロストリップ・ラインを使用して容易に $50~\Omega$ にマッチングさせることができます。表8 に、マッチング部品の値を示します。すべてのコンデンサはMurata 社の GRM155 シリーズ (0402~thm)で、インダクタ L1

は Coilcraft® 0603CS シリーズ (0603 サイズ)です。すべての周波数帯域に対して、コンデンサ C22、C26、C28 の配置は重要です。表 9 に、様々な周波数に対する C22、C26、C28 の推奨部品間隔を示します。部品の間隔は、部品の中心からパッケージの縁までで表します。 図 $59\sim$ 図 62 に、マッチング回路を示します。

表 8.部品值

Frequency	C27	C26	C28	C8	C22	C23	L2	R10	R12
748 MHz	0 Ω	Open	5.1 pF	12 pF	1.3 pF	100 pF	56 nH	18 Ω	3.9 nH
943 MHz	0 Ω	3.9 pF	Open	6 pF	1.3 pF	100 pF	56 nH	18 Ω	3.3 nH
2140 MHz	2.2 pF	Open	1.8 pF	10 pF	1 pF	10 pF	9.5 nH	$0~\Omega$	0Ω
2630 MHz	2.7 pF	1.1 pF	Open	10 pF	1.3 pF	20 pF	9.5 nH	0Ω	0Ω

表 9.部品間隔

Frequency	C26: \(\lambda\)1 (mils)	C28: λ2 (mils)	C22: \(\lambda\) (mils)
748 MHz	N/A	315	201
943 MHz	236	N/A	394
2140 MHz	N/A	366	244
2630 MHz	126	N/A	240

Rev. **A** — 23/30 —

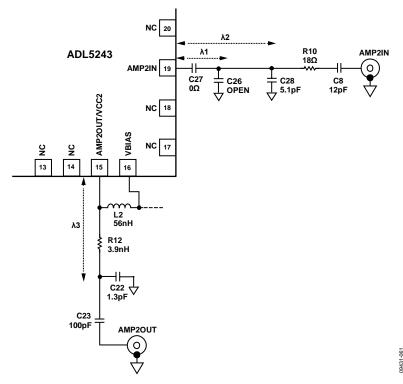


図 59.AMP2: 748 MHz でのマッチング回路

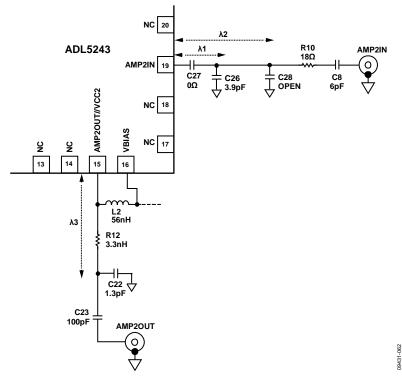


図 60.AMP2: 943 MHz でのマッチング回路

Rev. **A** — 24/30 —

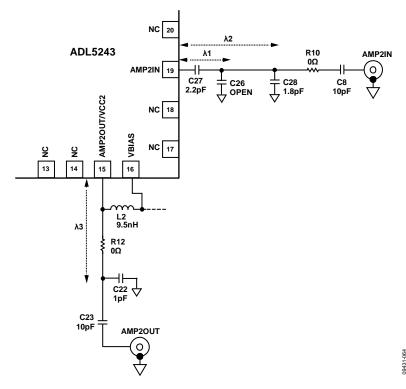


図 61.AMP2: 2140 MHz でのマッチング回路

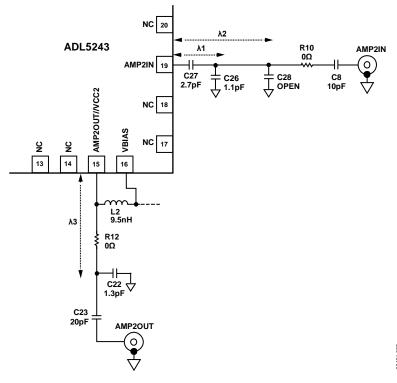


図 62.AMP2: 2630 MHz でのマッチング回路

Rev. **A** — 25/30 —

ADL5243 のループ性能

ADL5243の一般的な構成は、図 63に示す AMPI-DSA-AMP2 モードでの接続です。AMP1 と DSA はもともと広帯域で内部でマッチングされているため、これらの間には AC 結合コンデンサだけが必要です。AMP2 は各動作周波数帯域に対して外部でマッチングさせるため、これらのマッチング部品は AMP2 出力でDSA と AMP2 との間に配置する必要があります。 図 37~図 45に、主な 3 つの動作周波数帯域 (943 MHz、2140 MHz、2630 MHz)に対してループ接続した際の ADL5243 の性能を示します。

図 63.ADL5243 ループのブロック図

熱に対する考慮事項

ADL5243 は、熱効率の優れた 5 mm × 5 mm の 32 ピン LFCSP パッケージを採用しています。ジャンクション—周囲間熱抵抗 (θ_{JA}) は 34.8°C/W です。製品の熱抵抗は、25 銅プラッターのサーマル・ビアを使用した標準 4 層 JEDEC ボードから求めています。サーマル・ビアには伝導性銅ペースト AE3030 を詰めて、熱伝導率は 7.8 W/mk です。また、熱膨張率は α 1=4 × 10^{-5} /°C、 α 2=8.6 × 10^{-5} /°Cです。ジャンクション—ケース間熱抵抗(θ _{JC})は 6.2°C/W です。ここで、ケースはリードフレーム・パッケージのエクスポーズド・パッドです。

最適な熱性能を得るためには、LFCSP のエクスポーズド・パッドの下にできるだけ多くのサーマル・ビアを設けることが推奨されます。前記の熱抵抗値は、最小 25 個のサーマル・ビア(13

ミルのビア直径、25 ミルのビア・パッド、25 ミルのピッチ)を5×5のアレイ状に配置した場合の値です。各ビアは銅メッキされ、穴には伝導性銅ペーストが詰めてあります。最適性能を得るためには、サーマル・ビアに前述の様に等価熱伝導率を持つ伝導性ペーストを詰めるか、あるいは外付けヒート・シンクを使用して迅速に熱を放散させてチップのジャンクション温度に影響を与えないようにすることが推奨されます。また、図 64 に示すようにグラウンド・パターンを広げて熱効率を向上させることも推奨されます。

ハンダ処理と推奨 PCB パターン

図 64 に、ADL5243 の推奨ランド・パターンを示します。熱インピーダンスを小さくするため、 $5 \, \text{mm} \times 5 \, \text{mm} \text{LFCSP} パッケージ のエクスポーズド・パッドをグラウンド・プレーンへハンダ付 けします。熱放散を向上させるため、25 個のエクスポーズド・パッドの下にサーマル・ビアを<math>5 \times 5 \, \text{アレイ状に配置します}$ 。複数のグラウンド層を使用する場合は、ビアを使って相互接続する必要があります。パターン・デザインとレイアウトについては、アプリケーション・ノート $AN-772 \, \lceil \textit{U} - \textit{K} \cdot \textit{T} \text{V} - \textit{LFCSP} \rceil$ の設計および製造ガイ ド」を参照してください。

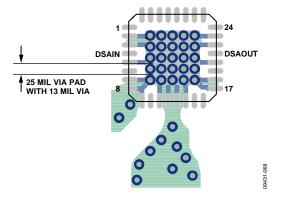


図 64.推奨パターン

Rev. **A** — 26/30 —

評価用ボード

ADL5243 評価用ボードの回路図を図 65 に示します。評価用ボード上のすべての RF パターンは、50 Ω の特性インピーダンスを持ち、Rogers3003 材料で製造されています。パターンは、幅 25 ミル、間隔 20 ミル、絶縁体厚 10 ミルの CPWG です。DSA とアンプの入力と出力は、適切な値のコンデンサで AC 結合して広帯域性能を確保する必要があります。AMP1 のバイアスは AMP1OUT ピンに接続したチョークを介して供給し、同様に AMP2 のバイアスは AMP2OUT ピンに接続したチョークを介して供給します。バイパス・コンデンサは、すべての電源ラインに使用して RF 混入を小さくすることが推奨されます。DSA とアンプのバイアスは個別に供給することができます。あるいは、

抵抗 RI、R2、R11 を介して VDD プレーンに接続することができます。

ADL5243 評価用ボードを AMP1-DSA-AMP2 ループに構成する場合は、コンデンサ C1、C4、C5、C8 と抵抗 R10 を取り外します。C2 に 100 pF を、C6 に 10 pF を、C7 と C24 に 0 Ω を、それぞれ取り付けます。必要に応じて、DSA 出力にシャント・コンデンサ (1.3 pF) を接続して、このループの出力リターン損失を改善させます。

デジタル信号パターン上には、ノイズ混入を防止する RC フィルタが設けてあります。 通常動作では、抵抗 R3 \sim R9 は 0 Ω にし、コンデンサ C9 \sim C15 はオープンにします。

表 10.評価用ボードの設定オプション

Component	Function	Default Value
C1, C5	AC coupling caps for DSA.	C1, C5 = 100 pF
C4, C21	AC coupling capacitors for AMP1.	$C4, C21 = 0.1 \mu\text{F}$
C13, C14, C15	Power supply bypassing capacitors for AMP1. Capacitor C15 should be closest to the device.	$C13 = 1 \mu F$ C14 = 1.2 nF C15 = 68 pF
L1	The bias for AMPI comes through L1 when connected to a 5 V supply. L1 should be high impedance for the frequency of operation, while providing low resistance for the dc current.	L1 = 470 nH
C8	AMP2 input ac-coupling capacitor.	C8 = 10 pF
C23	AMP2 output ac-coupling capacitor.	C23 = 10 pF
C22	AMP2 shunt output tuning capacitor.	C22 = 1.0 pF at 244 mils from edge of package
C26	ANP2 shunt input tuning capacitor.	DNP
C27	AMP2 series input tuning capacitor.	C27 = 2.2 pF
C28	AMP2 shunt input tuning capacitor.	C28 = 1.8 pF at 366 mils from edge of package
C3, C25, C20	Power supply bypassing capacitors for AMP2. Capacitor C3 should be closest to the device.	C3 = 10 pF C25 = 10 nF C20 = 10 μF
L2	The bias for AMP2 comes through L2 when connected to a 5 V supply. L1 should be high impedance for the frequency of operation, while providing low resistance for the dc current.	L2 = 9.5 nH
C17	Power supply bypassing capacitor.	$C17 = 0.1 \mu F$
R10, R12	Placeholder for the series component for the other frequency band.	$R10, R12 = 0 \Omega$
R3, R4, R5, R6, R7, R8, R9	Digital signal filter resistors.	R3, R4, R5, R6, R7, R8, R9 = 0 Ω
C9, C10, C11, C12, C16, C18, C19	Digital signal filter capacitors.	C9, C10, C11, C12, C16, C18, C19 = open
C2, C6, C7, C24	Replace with capacitors and resistors to connect the device in a loop.	C2, C6, C7, C24 = open
R1, R2, R11	Resistors to connect the supply for the amplifier and the DSA to the same VDD plane.	R1, R2 = open
S1	Switch to change between serial and parallel mode operation; connect to a supply for parallel mode and to ground for serial mode operation.	3-pin rocker
P1	Digital control.	9-pin connector

Rev. **A** — 27/30 —

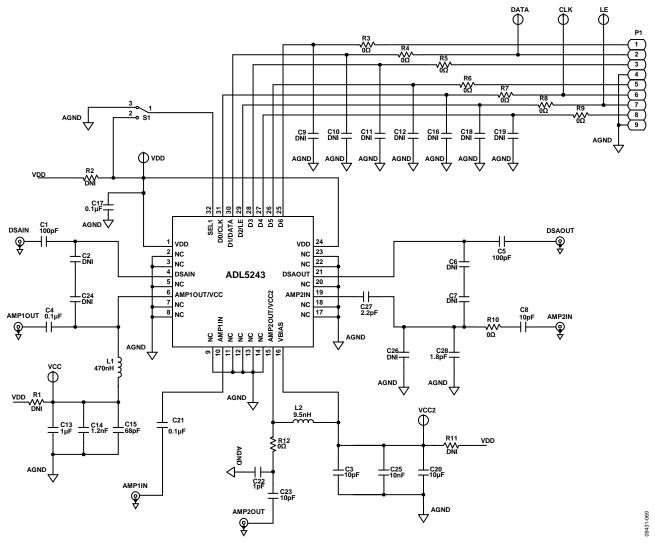
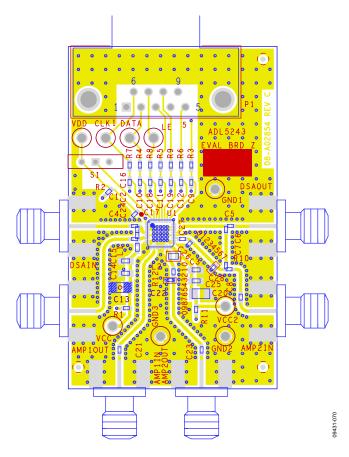
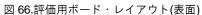




図 65.ADL5243 評価用ボード

Rev. **A** — 28/30 —

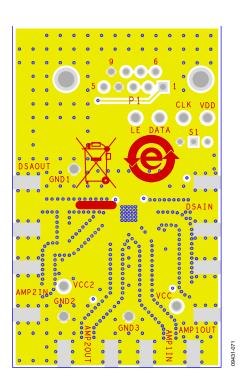


図 67.評価用ボード・レイアウト(裏面)

Rev. **A** — 29/30 —

外形寸法

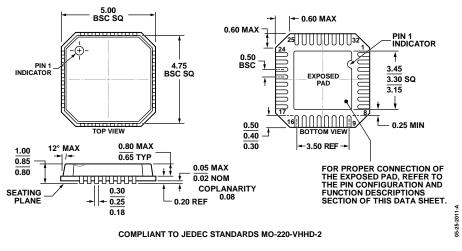


図 68.32 ピン・リードフレーム・チップ・スケール・パッケージ[LFCSP_VQ] 5 mm × 5 mm ボディ、極薄クワッド (CP-32-3) 寸法: mm

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option
ADL5243ACPZ-R7	−40°C to +85°C	32-Lead Lead Frame Chip Scale Package LFCSP_VQ	CP-32-3
ADL5243-EVALZ		Evaluation Board	

¹ Z = RoHS 準拠製品。

Rev. **A** - 30/30 -