

CMOS 低電圧 クワッド SPST スイッチ

ADG711/ADG712/ADG713

特長

+1.8 V~ +5.5 V**単電源動作**

低いON抵抗(2.5 Typ)

平坦な低いON抵抗

- 3 dB帯域幅 > 200 MHz

レールtoレール動作

16ピンのTSSOPパッケージまたはSOICパッケージを使用

高速スイッチング時間

t_{ON} 16 ns

tope 10 ns

消費電力(Typ) < 0.01 mW

TTL/CMOS**互換**

アプリケーション

バッテリ駆動のシステム

通信システム

サンプル&ホールド・システム

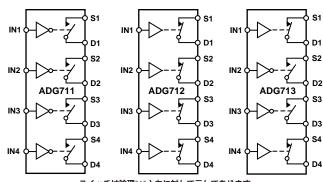
オーディオ信号のルーティング

ビデオ・スイッチング

機械的リード・リレーの置換え

概要

ADG711、ADG712、ADG713は、4個の選択可能なスイッチを内蔵 するモノリシックCMOSデバイスです。これらのスイッチは、低消 費電力でありながら高速スイッチング速度、低いON抵抗、低リーク 電流、広い帯域幅を提供する最新のサブミクロン・プロセスをベー スにデザインされています。


これらのスイッチは + 1.8 V ~ + 5.5 Vの範囲の単電源で動作し、 バッテリ駆動の計測器での使用やアナログ・デバイセズの新世代 DACとADCとの組合せ使用に最適です。高速なスイッチング速度に より、ビデオ信号のスイッチングにも最適です。

ADG711、ADG712、ADG713には、独立した2つのSPST(single-pole/ single-throw)スイッチが内蔵されています。ADG711とADG712は、 デジタル制御ロジックが反転されている点のみが異なります。 ADG711スイッチは該当する制御入力がロジックLowのときターン オンし、ADG712はロジックHighのときターンオンします。ADG713 は、デジタル制御ロジックがADG711と同じ2個のスイッチと、ロ ジックが反転している2個のスイッチを内蔵しています。

各スイッチは両方向に対して等しいON特性を持っています。 ADG713は、切断後の接続を保証するブレーク・ピフォ・メーク・ スイッチング動作を行います。

ADG711/ADG712/ADG713は、16ピンのTSSOPまたは16ピンの SOICパッケージで供給されます。

機能ブロック図

スイッチは論理"1"入力に対して示してあります。

製品のハイライト

- 1. +1.8 V ~ +5.5 V の単電源動作。ADG711、ADG712、ADG713は高性 能を提供し、+3/電源と+5/電源で仕様を保証しています。
- 非常に低いR_{ON}を持っています(5 Vで4.5 Max、3 Vで8 Max)。 電源電圧 + 1.8 Vでは、全温度範囲でR_{ON}は35 (Typ)です。
- 3. 低いON抵抗での平坦性。
- 4. 3 dB帯域幅 > 200 MHz。
- 5 低消費電力.

CMOS構造により低消費電力を保証。

- 6. **高速**t_{ON}/t_{OFF}。
- 7. ブレーク・ピフォ・メーク・スイッチング。 この機能により、スイッチをマルチプレクサとして使用する際に チャンネルの短絡を防止することができます(ADG713の場合)。
- 8. 16ピンTSSOPパッケージまたは16ピンSOICパッケージを使用。

アナログ・デバイセズ社が提供する情報は正確で信頼できるものを期していますが、 当社はその情報の利用、また利用したことにより引き起こされる第3者の特許または権 利の侵害に関して一切の責任を負いません。さらにアナログ・デバイセズ社の特許また は特許の権利の使用を許諾するものでもありません。

(特に指定のない限り、V_{DD} = +5 V ± 10%、GND = 0 V、全ての仕様は - 40 ~ +85)

	I	Bバージョン		
パラメータ	- 40 ~ +	25 - 40 ~ + 85	単位	テスト条件/コメント
アナログ・スイッチ				
アナログ信号範囲		$0 V \sim V_{DD}$	V	
ON抵抗(R _{on})	2.5		typ	$V_S = 0 V \sim V_{DD}$, $I_S = -10 \text{ mA}$;
	4	4.5	max	テスト回路1
チャンネル間のON抵抗の整合(R _{ON})		0.05	typ	$V_{S} = 0 V \sim V_{DD}, I_{S} = -10 \text{ mA}$
		0.3	max	
ON抵抗平坦性(R _{FLAT(ON)})	0.5		typ	$V_{S} = 0 V \sim V_{DD}$, $I_{S} = -10 \text{ mA}$
		1.0	max	
リーク電流				$V_{DD} = +5.5 \text{ V}$
ソースOFF 時リーク I _s (OFF)	± 0.01		nA typ	$V_S = 4.5 \text{ V}/1 \text{ V}, V_D = 1 \text{ V}/4.5 \text{ V};$
	± 0.1	± 0.2	nA max	テスト 回路 2
ドレインOFF時リークIp (OFF)	± 0.01		nA typ	$V_S = 4.5 \text{ V}/1 \text{ V}, V_D = 1 \text{ V}/4.5 \text{ V};$
	± 0.1	± 0.2	nA max	テスト 回路 2
チャンネルON時リークIp、Is(ON)	± 0.01		nA typ	$V_{S} = V_{D} = 4.5 \text{ V}$. \times . \times . \times 1 V;
	± 0.1	± 0.2	nA max	テスト 回路 3
デジタル入力				
入力High電圧、V _{INH}		2.4	V min	
入力Low 電圧、 V _{INL}		0.8	V max	
入力電流				
I _{INL} またはI _{INH}	0.005		μ A typ	V _{IN} = V _{INI} またはV _{INH}
INC - 11 - 11 INFI		± 0.1	μ A max	IN INCOMPANY
ダイナミック特性 ²		-		
ton	11		ns typ	$R_L = 300$, $C_L = 35 pF$
ON		16	ns max	V _s =3 V 、テスト回路 4
t _{OFF}	6	10	ns typ	$R_L = 300$, $C_L = 35 pF$
OFF	O	10	ns max	V _s =3 V 、テスト回路 4
プレーク・ピフォ・メーク時間遅延、t。	6	10	ns typ	$R_L = 300$, $C_L = 35 pF$
(ADG713 の場合)	O	1	ns min	$V_{S1} = V_{S2} = 3 V$ 、テスト回路5
電荷注入	3	ı	pC typ	$V_{s1} - V_{s2} - 3V_{s} - V_{s1} - V_{s2} - 3V_{s} - V_{s1} - V_{s2} - 3V_{s1} - V_{s2} - 3V_{s1} - V_{s2} - 3V_{s2} - 3V_{s1} - V_{s2} - 3V_{s2} - 3V_{s$
名171年/八	3		розур	マップ
OFF 時アイソレーション	- 58		dB typ	$R_L = 50$, $C_L = 5$ pF, $f = 10$ MHz
Oll May 1170 737	- 78		dB typ	$R_L = 50$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$;
	70		db typ	「
チャンネル間クロストーク	- 90		dB typ	$R_L = 50$, $C_L = 5$ pF, $f = 10$ MHz
) F) TIVIA) LIXI)	- 90		ив тур	「
- 3 dB 帯域幅	200		MHz typ	アスト回頃 [©] R _L = 50 、C _L = 5 pF; テスト回路9
C _S (OFF)	10		pF typ	NL-30 (OL-3pi,)へ「回 聞3
C _D (OFF)	10		1	
	22		pF typ pF typ	
C_D , C_S (ON)			Pi typ	
電源条件	0.004			$V_{DD} = +5.5 V$
I_{DD}	0.001	4.0	μ A typ	デジタル入力=0∨または 5∨
		1.0	μ A max	

¹ Bパージョンの温度範囲: 40 ~ +85 。 2 デザインで保証しますが、製造テストは行いません。 仕様は予告なく変更されることがあります。

仕様¹(特に指定のない限り、Vpp = +3 V±10%、GND = 0 V、全ての仕様は - 40 ~ +85)

		Вバー	·ジョン		
パラメータ	- 40 ~	+ 25	- 40 ~ + 85	単位	テスト条件/コメント
アナログ・スイッチ					
アナログ信号範囲			$0 V \sim V_{DD}$	V	
ON 抵抗(R _{ON})	5		5.5	typ	$V_S = 0 V \sim V_{DD}$, $I_S = -10 \text{ mA}$;
			8	max	テスト回路1
チャンネル間のON抵抗の整合(R _{ON})	0.1			typ	$V_{S} = 0 V \sim V_{DD}$, $I_{S} = -10 \text{ mA}$
			0.3	max	
ON 抵抗平坦性(R _{FLAT(ON)})			2.5	typ	$V_{S} = 0 V \sim V_{DD}$, $I_{S} = -10 \text{ mA}$
リーク電流 リーク電流					V _{DD} = +3.3 V
ソースOFF時リークIs (OFF)	± 0.01			nA typ	$V_{S} = 3 V/1 V_{\bullet} V_{D} = 1 V/3 V_{;}$
	± 0.1		± 0.2	nA max	- - - - - - - - - - - - - - - - - - -
ドレインOFF時リークI _D (OFF)	± 0.01			nA typ	$V_{S} = 3 V/1 V_{\bullet} V_{D} = 1 V/3 V_{;}$
	± 0.1		± 0.2	nA max	テスト 回路 2
チャンネルON時リークI _D 、I _s (ON)	± 0.01			nA typ	V _s =V _D =3 Vまたは1 V;
2 0 - 2	± 0.1		± 0.2	nA max	テスト回路 3
デジタル入力					
入力 High電圧、V _{INH}			2.0	V min	
入力Low 電 圧、V _{INL}			0.4	V max	
入力電流					
I _{INI} またはI _{INH}	0.005			μ A typ	V _{IN} = V _{INI} またはV _{INH}
INC INII			± 0.1	μ Amax	IN INC. SALES INTO
ダイナミック特性 ²					
ton	13			ns typ	$R_{L} = 300$, $C_{L} = 35 pF$
U			20	ns max	V _s =2 V、 テスト回路 4
t _{OFF}	7			ns typ	$R_L = 300$, $C_L = 35 pF$
O. I			12	ns max	V _s =2 V、 テスト回路 4
プレーク・ピフォ・メーク時間遅延、t _∩	7			ns typ	$R_L = 300$, $C_L = 35 pF$
(ADG713 の場合)			1	ns min	$V_{S1} = V_{S2} = 2 V$ 、テスト回路5
電荷注入	3			pC typ	$V_s = 1.5 V$, $R_s = 0$, $C_L = 1 nF$;
	-			1 - 91	テスト回路6
OFF 時アイソレーション	- 58			dB typ	$R_L = 50$, $C_L = 5$ pF, $f = 10$ MHz
	- 78			dB typ	$R_L = 50$, $C_L = 5$ pF, $f = 1$ MHz;
				31	テスト回路7
チャンネル間クロストーク	- 90			dB typ	$R_1 = 50$, $C_1 = 5$ pF, $f = 10$ MHz
				31	テスト回路8
- 3 dB 帯域幅	200			MHz typ	R _L = 50 、C _L = 5 pF; テスト回路9
C _s (OFF)	10			pF typ	
C _D (OFF)	10			pF typ	
C_D , C_s (ON)	22			pF typ	
電源条件				1 21	V _{DD} = +3.3 V
	0.001			μ A typ	プジタル入力=0 Vまたは3 V
'טטי	0.001			ן איייטף	

REV.0 - 3 -

注 1 Bパージョンの温度範囲: -40 ~ +85 。 2 デザインで保証しますが、製造テストは行いません。 仕様は予告なく変更されることがあります。

絶対最大定格¹ (特に指定のない限り、T_A = + 25) GNDに対するV_{DD} - 0.3 V ~ +6 V アナログ、デジタル入力² - 0.3 V ~ V_{DD} + 0.3 V または30 mAのいずれか先に発生する方 連続電流、SまたはD 30 mA ビーク電流、SまたはD 100 mA (1 ms、10%デューティ・サイクル(最大)でパルス化) 動作温度範囲 工業用(Bバージョン) - 40 ~ +85 保存温度範囲 - 65 ~ +150 接合温度 + 150 TSSOPパッケージ、消費電力 430 mW 」 A熱インピーダンス 150 /W 」 C熱インピーダンス 27 /W

SOIC パッケージ 、消 費電 力	52	0 mW
_{」A} 熱インピーダンス	125	/W
_ル 熱インピーダンス	42	/W
ピン温度、ハンダ処理		
蒸着(60 sec)	+ ;	215
赤外線(15 sec)	+ ;	220
ESD		. 2 kV
注		

上記の絶対最大定格を超えるストレスを加えるとデバイスに永久的な損傷を与えることがあります。この規定はストレス定格の規定のみを目的とするものであり、この仕様の動作セクションに記載する規定値以上でのデバイス動作を定めたものではありません。デバイスを長時間絶対最大定格状態に置くとデバイスの信頼性に影響を与えます。同時に1項目の絶対最大定格しか加えることはできません。

² IN、SまたはDにおける過電圧は、内部ダイオードでクランプされます。電流は最大定格値 に制限する必要があります。

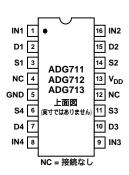
注意

ESD(静電放電)の影響を受けやすいデバイスです。4000 Vもの高圧の静電気が人体やテスト装置に容易に帯電し、検知されることなく放電されることもあります。このADG711/ADG712/ADG713には当社独自のESD保護回路を備えていますが、高エネルギーの静電放電にさらされたデバイスには回復不能な損傷が残ることもあります。したがって、性能低下や機能喪失を避けるために、適切なESD予防措置をとるようお奨めします。

オーダー・ガイド

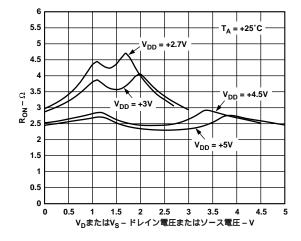
モデル	温度範囲	パッケージ	パッケージ・オプション
ADG711BR	- 40 ~ +85	0.15インチ・スモール・アウトライン(SOIC)	R-16A
ADG712BR	- 40 ~ + 85	0.15インチ・スモール・アウトライン(SOIC)	R-16A
ADG713BR	- 40 ~ + 85	0.15インチ・スモール・アウトライン(SOIC)	R-16A
ADG711BRU	- 40 ~ + 85	薄型シュリンク・スモール・アウトライン(TSSOP)	RU-16
ADG712BRU	- 40 ~ + 85	薄型シュリンク・スモール・アウトライン(TSSOP)	RU-16
ADG713BRU	- 40 ~ + 85	薄型シュリンク・スモール・アウトライン(TSSOP)	RU-16

表I. 真理值表(ADG711/ADG712)


ADG711入力	ADG712入力	スイッチ状態
0	1	ON
1	0	OFF

表II. 真理值表(ADG713)

ロジック	スイッチ1、4	スイッチ2、3
0	OFF	ON
_1	ON	OFF


ピン配置

(TSSOP/SOIC)

V_{DD}	正電源電位。	t _{OFF}	デジタル制御入力から出力がOFFに切り替
GND	グランド(0V) 電位。		わるまでの遅延。
S	ソース端子。入力または出力。	t_{D}	アドレスが別のアドレスに切り替わるとき
D	ドレイン端子。入力または出力。		に、両スイッチの90%ポイントで測定した
IN	ロジック制御入力。		"OFF"時間または"ON"時間(ADG713の場合)。
R _{on}	DとS の間の抵抗。	クロストーク	1つのチャンネルから別のチャンネルに寄生
R _{on}	任意の2チャンネル間のON抵抗の整合すな		容量を経由して結合する不要な信号の大き
	わちR _{ON} max-R _{ON} min。		ಕ.
R _{FLAT(ON)}	平坦性は、規定のアナログ信号範囲で測定し	オフ時のアイソレーション	"OFF"状態のスイッチを通過して結合する不
	たON抵抗の最大値と最小値の差として定義		要信号の大きさ。
	されます。	電荷注入	スイッチング時に、デジタル入力からアナロ
I _s (OFF)	スイッチ"OFF"時のソース・リーク電流。		グ出力に伝達されるグリッチ・インパルス
I _D (OFF)	スイッチ"OFF"時のドレイン・リーク電流。		の大きさ。
I _D , I _S (ON)	スイッチ"ON"時のチャンネル・リーク電流。	帯域幅	3 dBだけ出力が減衰する点の周波数。
V _D (V _S)	端子Dと端子Sのアナログ電圧。	ON 応答	スイッチが"ON"する際の周波数応答
C _s (OFF)	スイッチ"OFF"時のソース容量。	ON 損失	"ON"状態のスイッチの両端間に生ずる電圧
C _D (OFF)	スイッチ"OFF"時のドレイン容量。		降下。オンの周波数応答カーブの非常に低
C_D , C_S (ON)	スイッチ"ON"時の容量。		い周波数で、信号が0dBから何dB減衰するか
t _{on}	デジタル制御入力から出力がONに切り替わ		で表されます。
	るまでの遅延。テスト回路4参照。		

代表的な性能特性

図1. V_D (V_S)の関数としてのON抵抗

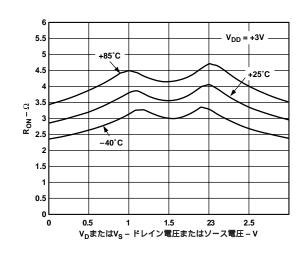
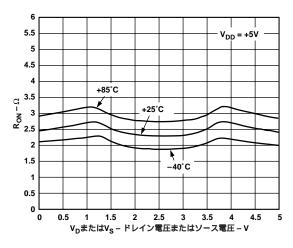



図2. 種々の温度に対する V_D (V_S)の関数としてのON抵抗 V_{DD} = 3 V

REV.0 - 5 -

ADG711/ADG712/ADG713 代表的な性能特性

図3. **種々の温度に対する**V_D(V_S)の関数としてのON抵抗V_{DD} = 5 V

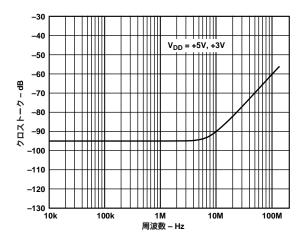


図6.クロストークと周波数の関係

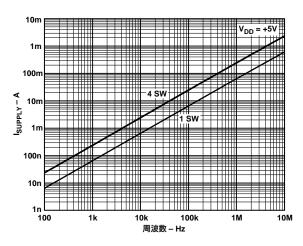


図4. 電源電流と入力スイッチング周波数の関係

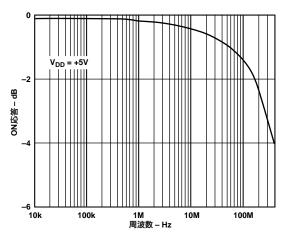


図7. ON応答と周波数の関係

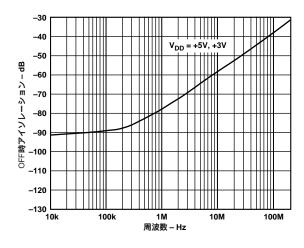


図5. OFF時のアイソレーションと周波数の関係

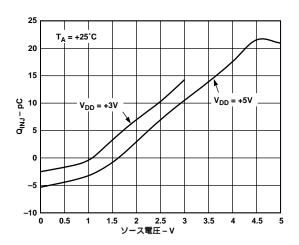


図8. 電荷注入とソース電圧の関係

- 6 - REV.0

応用例

図9に、プログラマブルなゲインを持つ光検出回路を示します。 AD820は出力オペアンプとして使っています。回路内に示す抵抗値 を使い、スイッチの異なる組合せを使うと、2~16の範囲のゲインが 得られます。

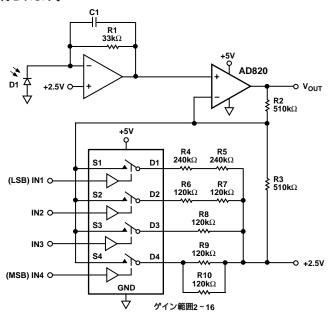
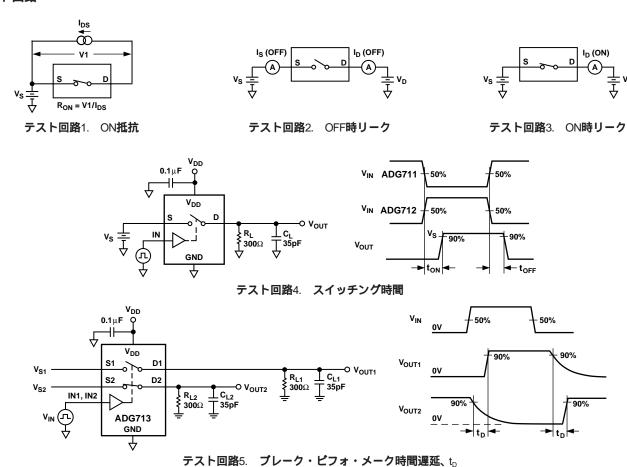
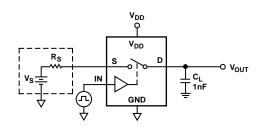
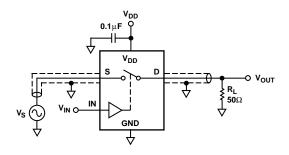
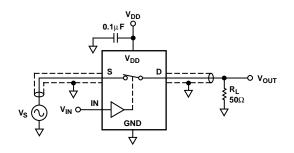




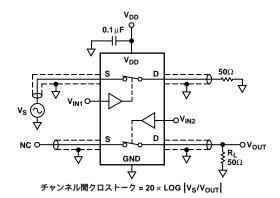

図9. プログラマブルなゲインを持つ光検出回路

テスト回路

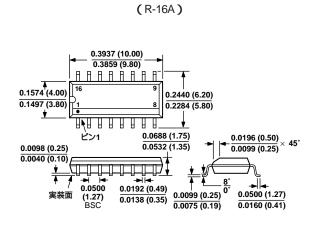


REV.0 - 7 -

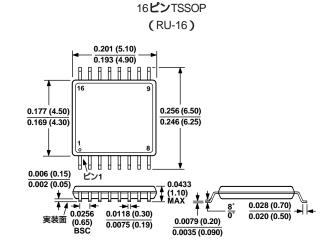



テスト回路6. 電荷注入

テスト回路7. OFF時のアイソレーション



テスト回路9. 帯域幅



テスト回路8. チャンネル間クロストーク

外形寸法 サイズはインチと(mm)で示します。

16ピン細型SOIC

データシート 変更履歴

05/3/28 アナログ·デバイセズ株式会社

型番: ADG711/712/713

以下の箇所が間違っておりましたので変更いたしました。

P1 機能ブロック図キャプション

変更前

「スイッチは論理'0'入力に対して示してあります。」

変更後

「スイッチは論理'1'入力に対して示してあります。」