

VCO 内蔵マイクロ波 広帯域シンセサイザ

データシート

ADF4371

特長

RF 出力周波数範囲:62.5MHz~32,000MHz フラクショナル N シンセサイザおよび インテジャーN シンセサイザ

高分解能 39 ビット・フラクショナル・モジュール

PFD スプリアス(代表値): -90dBc 積算実効値ジッタ: 38fs(1kHz~100MHz) 正規化位相ノイズ・フロア: -234dBc/Hz 位相周波数検出器(PFD)動作: 最大 250MHz

基準周波数動作:最大 600MHz

1、2、4、8、16、32、または64出力によるプログラマブルな 割り振り

RF8x および RFAUX8x で 62.5MHz~8,000MHz 出力

RF16x で 8,000MHz~16,000MHz 出力 RF32x で 16,000MHz~32,000MHz 出力

ロック時間:自動キャリブレーション使用時は約 3ms ロック時間:自動キャリブレーションをバイパスする場合は

<30µs

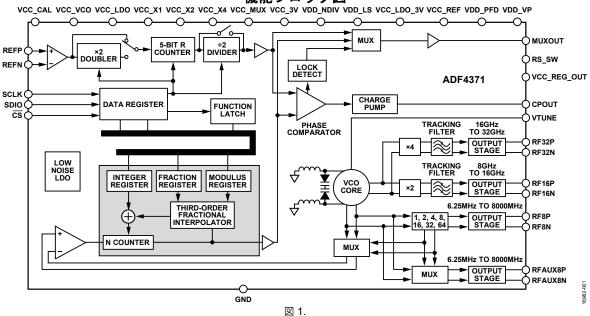
アナログ電源とデジタル電源:3.3V

VCO 電源: 3.3V および 5V RF 出力ミュート機能 7mm×7mm 48 ピン LGA パッケージ

アプリケーション

ワイヤレス・インフラストラクチャ(移動通信用マルチ キャリア・グローバル・システム(MC-GSM)、5G)

式験装置/計測器 クロック生成 航空宇宙/防衛


概要

ADF4371 を外部ループ・フィルタおよび外部基準周波数と併せて使用することで、フラクショナル N またはインテジャーN フェーズ・ロック・ループ (PLL) シンセサイザが実現できます。広帯域マイクロ波の電圧制御発振器 (VCO) 設計により、62.5MHz~32GHzの周波数の生成が可能です。

ADF4371 には基本出力周波数 4000MHz~8000MHz の VCO が搭載されています。更に、VCO 周波数を結合して1、2、4、8、16、32、または 64 個の回路に割り振ることで、RF8x で 62.5MHz という低い無線周波数 (RF) の出力周波数を生成できます。周波数乗算器は、RF16x で 8GHz~16GHzの周波数を生成します。周波数 4 逓倍器は、RF32x で 16GHz~32GHz の周波数を生成します。RFAUX8x は RF8x の周波数範囲を 2 倍にする他、VCO 出力への直接アクセスを可能にします。不要な周波数逓倍積を抑えるために、乗算器と RF16x および RF32x の出力段との間には高調波フィルタがあります。

すべてのオンチップ・レジスタは、3線式インターフェースによって制御されます。ADF4371は、3.15V~3.45Vのアナログ電源とデジタル電源で動作し、VCO電源では5Vで動作します。また、ADF4371には、ハードウェアおよびソフトウェア向けのパワーダウン・モードも搭載されています。

機能ブロック図

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料はREVISION が古い場合があります。最新の内容については、英語版をご参照ください。

©2019 Analog Devices, Inc. All rights reserved.

Rev. 0

本 社/〒105-6891

東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 10F 雷話 03 (5402) 8200

大 阪営業所/〒532-0003

大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F 電話 06 (6350) 6868

名古屋営業所/〒451-6038

愛知県名古屋市西区牛島町 6-1 名古屋ルーセントタワー 38F 電話 052 (569) 6300

目次

特長	1
アプリケーション	1
概要	1
機能ブロック図	1
改訂履歴	2
仕様	3
タイミング仕様	7
絶対最大定格	8
熱抵抗	8
ESD に関する注意	8
ピン配置およびピン機能の説明	9
代表的な性能特性	11
動作原理	16
RF シンセサイザ、実際例	16
リファレンス入力感度	16
リファレンス・ダブラとリファレンス分周器	17
スプリアス最適化と高速ロック	17
ジッタの最適化	17
スプリアスのメカニズム	17
ロック時間	17
回路の説明	19
リファレンス入力	19

RF N 分周器19
PFD とチャージ・ポンプ20
MUXOUT とロック検出20
ダブル・バッファ20
VCO
出力段21
ダブラ21
4 逓倍器22
出力段のミュート22
SPI
デバイス設定23
ステップ 1:SPIインターフェースの設定23
ステップ 2: 初期化シーケンス23
ステップ 3:周波数更新シーケンス23
アプリケーション情報24
電源24
LGA パッケージの PCB 設計ガイドライン24
出力マッチング24
レジスタの一覧25
レジスタの詳細27
外形寸法48
1 18 18 19

改訂履歴

1/2019—Revision 0: Initial Version

仕様

特に指定のない限り、 $4.75V \le VCC_VCO \le 5.25V$ 、他のすべての電源ピン $(AV_{DD}) = 3.3V \pm 5\%$ 、GND = 0V、 50Ω を基準とする dBm、 $T_A = 全動作温度範囲。$

表 1.

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
REFP AND REFN CHARACTERISTICS						
Input Frequency					1	
Single-Ended Mode		10		500	MHz	ダブラをディスエーブル
Differential Mode		10		600	MHz	ダブラをディスエーブル
Single-Ended or Differential Mode		10		125	MHz	ダブラをイネーブル
Input Sensitivity						
Single-Ended Mode		0.4		$\mathrm{AV}_{\mathrm{DD}}$	V p-p	REFPを AV _{DD} /2 でバイアス、AC カップリ
						ングにより AV _{DD} /2 バイアスを確保
Differential Mode		0.4		1.8	V p-p	LVDS (低電圧差動伝送) および LVPECL (低電圧ポジティブ・エミッタ結合ロジック) 互換、REFP および REFN は 2.1V にバイアス、AC カップリングにより 2.1V バイアスを確保
Input Capacitance						
Single-Ended Mode			6.9		pF	
Differential Mode			1.4		pF	
Input Current				±150	μA	シングルエンド・リファレンスに設定
				300	μΑ	差動リファレンスに設定
Phase Detector Frequency				160	MHz	フラクショナル・モード
				250	MHz	インテジャー・モード
CHARGE PUMP						
Charge Pump Current, Sink and Source	I_{CP}					
High Value			5.6		mA	
Low Value			0.35		mA	
Current Matching			3		%	0.5 V \leq CPOUT ピンの電圧(V_{CP}) \leq VDD_VP -0.5 V
I_{CP} vs. V_{CP}			3		%	$0.5V \le V_{CP} \le VDD_{VP} - 0.5V$
I_{CP} vs. Temperature			1.5		%	$V_{CP} = 2.5V$
LOGIC INPUTS						CS、SDIO、SCLK、CEは3Vロジック
Input High Voltage	$V_{\rm INH}$	1.17			V	
Input Low Voltage	V_{INL}			0.63	V	
Input Current	$I_{\rm INH}/I_{\rm INL}$			±1	μΑ	
Input Capacitance	C_{IN}		3.0		pF	
LOGIC OUTPUTS						
Output High Voltage	V_{OH}	$\begin{array}{c} AV_{DD} \\ -0.4 \end{array}$			V	3.3V 出力を選択
		1.5	1.87 5		V	1.8V 出力を選択
Output High Current	I_{OH}			500	μΑ	
Output Low Voltage	V_{OL}			0.4	V	出力ロー電流(I _{OL})= 500μA

Rev. 0 - 3/48 -

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
POWER SUPPLIES Supply Voltage (except VCO) ¹	$\mathrm{AV}_{\mathrm{DD}}$	3.15		3.45	V	VCC_CAL、VCC_X4、VDD_X4、 VCC_X1、VDD_X1、VCC_X2、 VCC_MUX、VCC_3V、VDD_NDIV、 VDD_LS、VCC_LDO_3V、VCC_REF、 VDD_PFD、VDD_VP は AV _{DD} としてグルー プ化され、同電圧。
Supply Voltage (except VCO)	AI_{DD}		190	260	mA	すべての出力をディスエーブル
Output Dividers						
Divider = 2			14	20	mA	2 分周ごとに 7mA 電流(代表値)を追加消費
Divider = 64			50	65	mA	
VCO Supply Voltage	VCC_V CO					
		3.15	3.3	3.45	V	3.3V 条件
		4.75	5	5.25	V	5V 条件
VCO Supply Current	I_{VCO}		80	120	mA	3.3V 条件
			135	180	mA	5V 条件
RF8x Supply Current						RF8P と RF8N の出力段はプログラマブルであり、VCC_X1 に追加電流が流れる
			25		mA	-4dBm 設定
			39		mA	-1dBm 設定
			52		mA	2dBm 設定
			65		mA	5dBm設定
RFAUX8x Supply Current			42		mA	-4dBm 設定
			56		mA	−1dBm 設定
			70		mA	2dBm 設定
			84		mA	5dBm 設定
RF16x Supply Current			90	120	mA	
RF32x Supply Current			160	210	mA	" I'- 7 " F F F T T T T T T T T T T T T T T T T
Low Power Sleep Mode			5.1	6.2	mA	ハードウェア・パワーダウン 3.3V VCO の 場合
			8	9.5	mA	ハードウェア・パワーダウン 5V VCO の場合
			21.5	25	mA	ソフトウェア・パワーダウン 3.3V VCO の 場合
			23.7	28	mA	ソフトウェア・パワーダウン 5 V VCO の場合
RF OUTPUT CHARACTERISTICS						
VCO Frequency Range		4000		8000	MHz	基本波 VCO の範囲
RF8P and RF8N Output Frequency		62.5		8000	MHz	
RFAUX8P and RFAUX8N Output Frequency		62.5		8000	MHz	a vigo III k
RF16P and RF16N Output Frequency		8000		16000	MHz	2×VCO 出力
RF32P and RF32N Output Frequency VCO Sensitivity	V	16000		32000	MHz	4×VCO 出力
For 5 V	K_{V}		80		MHz/V	VCO 周波数 = 6GHz、K _v プロットについて は図 39 を参照
For 3.3 V			60		MHz/V	VCO 周波数 = 6 GHz、 K_V プロットについて
Frequency Pushing (Open-Loop)			8		MHz/V	は図 40 を参照
Frequency Pulling (Open-Loop) Frequency Pulling (Open-Loop)			0.5		MHz/V MHz	電圧定在波比(VSWR)=2:1 RF8P および RF8N
			30		MHz	VSWR = 2:1 RF16x
Maintain Lock Temperature Range ²				125	°C	デバイスを再設定しなくともロックを維持

Rev. 0 - 4/48 -

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
Harmonic Content						
Second Harmonic RF8P and RF8N			-25		dBc	VCO基本出力(RF8P)
			-25		dBc	VCO 分周出力(RF8P)
Third Harmonic RF8P and RF8N			-12		dBc	VCO基本出力(RF8P)
			-15		dBc	VCO 分周出力(RF8P)
Second Harmonic RF16P and RF16N			-30		dBc	20GHz で測定
Third Harmonic RF16P and RF16N			-30		dBc	30 GHz で測定
Second Harmonic RF32P and RF32N			-30		dBc	40 GHz で測定
Third Harmonic RF32P and RF32N			-30		dBc	60 GHz で測定
Fundamental VCO Feedthrough			-62		dBc	RF16x = 10GHz, VCO 周波数 = 5GHz
			-30		dBc	RF8Pおよび RF8N = 1GHz、 VCO 周波数 = 4GHz
RF Output Power Maximum Setting ³			7		dBm	RF8P = 4GHz、VCC_X1 ~ 7.5nH インダクタ
			5		dBm	RF8P = 8GHz、VCC_X1 へ 7.5nH インダクタ
			0		dBm	RF16x = 8GHz
			4		dBm	RF16x = 16GHz
			-1		dBm	RF32x = 16GHz
			-7		dBm	RF32x = 32GHz
RF Output Power Variation			±1		dB	RF8PおよびRF8N = 5GHz
			±1		dB	RF16x = 10GHz
			±1		dB	RF32x = 20GHz
RF Output Power Variation (over Frequency)			±2		dB	RF8x および RFAUX8x = 4GHz~8GHz
			±2.5		dB	$RF16x = 8GHz \sim 16GHz$
			±5		dB	$RF32x = 16GHz \sim 32GHz$
Level of Signal with RF Output Disabled			-50		dBm	RF8PおよびRF8N = 1GHz
			-44		dBm	RF8PおよびRF8N = 8GHz
			-41		dBm	RF8PおよびRF8N=8GHz、5V VCOの場
			-75		dBm	RF16P = 8GHz
			-55		dBm	RF16P = 16GHz
			-85		dBm	RF32P = 16GHz
JOISE CHARACTERISTICS			-70		dBm	RF32P = 32GHz
Fundamental VCO Phase Noise Performance where VCC VCO = 5 V						オープンループ状態での VCO ノイズ、 VCC_VCO = 5V
			-117		dBc/Hz	4.0GHz 搬送波から 100kHz オフセット
			-139		dBc/Hz	4.0GHz 搬送波から 1MHz オフセット
			-156		dBc/Hz	4.0GHz 搬送波から 10MHz オフセット
			-112		dBc/Hz	5.7GHz 搬送波から 100kHz オフセット
			-136		dBc/Hz	5.7GHz 搬送波から 1MHz オフセット
			-153		dBc/Hz	5.7GHz 搬送波から 10MHz オフセット
			-109		dBc/Hz	8.0GHz 搬送波から 100kHz オフセット
			-133		dBc/Hz	8.0GHz 搬送波から 1MHz オフセット
RF16x Output Phase Noise Performance where			-152		dBc/Hz	8.0GHz 搬送波から 10MHz オフセット VCC_VCO = 5V
VCC_VCO=5 V						
			-106		dBc/Hz	11.4GHz 搬送波から 100kHz オフセット
			-130		dBc/Hz	11.4GHz搬送波から 1MHzオフセット
			-146		dBc/Hz	11.4GHz搬送波から 10MHzオフセット
			-103		dBc/Hz	16GHz 搬送波から 100kHz オフセット
			-127		dBc/Hz	16GHz搬送波から 1MHzオフセット
			-145		dBc/Hz	16GHz搬送波から 10MHzオフセット

Rev. 0 - 5/48 -

パラメータ	記号	Min	Тур	Max	単位	テスト条件/コメント
RF32x Output Phase Noise Performance where VCC_VCO = 5 V						VCC_VCO = 5V
_			-100		dBc/Hz	24GHz 搬送波から 100kHz オフセット
			-123		dBc/Hz	24GHz 搬送波から 1MHz オフセット
			-140		dBc/Hz	24GHz 搬送波から 10MHz オフセット
			-97		dBc/Hz	32GHz 搬送波から 100kHz オフセット
			-121		dBc/Hz	32GHz 搬送波から 1MHz オフセット
			-137		dBc/Hz	32GHz 搬送波から 10MHz オフセット
Fundamental VCO Phase Noise Performance where VCC VCO = 3.3 V						オープンループ状態での VCO ノイズ、 VCC_VCO = 3.3V
			-116		dBc/Hz	4.0GHz 搬送波から 100kHz オフセット
			-137		dBc/Hz	4.0GHz 搬送波から 1MHz オフセット
			-156		dBc/Hz	4.0GHz 搬送波から 10MHz オフセット
			-111		dBc/Hz	5.7GHz 搬送波から 100kHz オフセット
			-133		dBc/Hz	5.7GHz搬送波から 1MHzオフセット
			-153		dBc/Hz	5.7GHz搬送波から 10MHzオフセット
			-109		dBc/Hz	8.0GHz 搬送波から 100kHz オフセット
			-132		dBc/Hz	8.0GHz 搬送波から 1MHz オフセット
			-153		dBc/Hz	8.0GHz 搬送波から 10MHz オフセット
Normalized Inband Phase Noise Floor						
Fractional Channel ⁴			-233		dBc/Hz	
Integer Channel ⁵			-234		dBc/Hz	
Normalized 1/f Noise ⁶	PN1_f		-127		dBc/Hz	10kHz オフセット; 1GHz に正規化
Integrated RMS Jitter			38		fs	Wenzel オーブン制御の水晶発振器 (OCXO) を基準周波数入力 (REF _{IN}) として使用、インテジャーNモード、位相周波 数検出器 (PFD) = 245.76MHz、300kHzル ープ・フィルタ帯域幅、1kHz~100MHz
Integer Boundary Spurs (Filtered)			-90		dBc	インテジャー・チャンネルから 960kHz オ フセット
Inband Integer Boundary Spur (Unfiltered)			-55		dBc	インテジャー・チャンネルから 5kHz オフ セットで測定
Spurious Signals Due to PFD Frequency			-90		dBc	
FREQUENCY LOCK TIME ⁷						
Lock Time with Automatic Calibration			3		ms	
Lock Time with Automatic Calibration Bypassed			30		μs	

 $^{^1}$ T_A = 25 $^{\circ}$ C、 AV_{DD} = 3.3V、 VCC_{VCO} = 5.0V、プリスケーラ = 4/5、基準周波数(f_{REFP}) = 50MHz、PFD 周波数(f_{PFD}) = 50MHz、RF 周波数(f_{RF}) = 5001MHz。RF8x をイネーブル。すべての RF 出力をディスエーブル。

Rev. 0 - 6/48 -

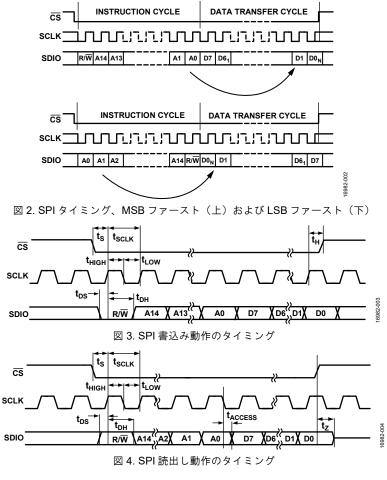
² 設計および特性評価により確保。

³ EV-ADF4371SD2Z 評価用ボードの差動出力を Marki BAL-0036 バランを使用して結合し、評価用ボードとケーブルの損失を除いて、スペクトラム・アナライザで測定した RF 出力電力。 RF8P、RF8N、RFAUX8P、および RFAUX8N 用に選択された最大の電力出力。

⁴ この値を使用して、アプリケーションの位相ノイズを計算します。VCO 出力から見た帯域内位相ノイズ性能を計算するには、次式を使用します。 $-233+10\log{(f_{PPD})}+20logN$ 。求まった値は、フラクショナル・チャンネルの最低ノイズ・モードです。

 $^{^5}$ この値を使用して、アプリケーションの位相ノイズを計算します。 15 VCO 出力から見た帯域内位相ノイズ性能を計算するには、次式を使用します。 15 1

⁶ PLL 位相ノイズは、1/f(フリッカ)ノイズと正規化 PLL ノイズ・フロアから構成されます。無線周波数(f_{RF})および周波数オフセット (f) での 1/f ノイズの寄与分を計算する式は、 $PN1_f+10log$ (10kHz/f) +20log(10kHz/f) で与えられます。正規化位相ノイズ・フロアとフリッカ・ノイズの両方が ADIsimPLL 設計ツールでモデル化されています。


⁷ ロック時間は、代表的な評価用ボード構成で 100MHz ジャンプでの測定です。

タイミング仕様

表 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
Serial Port Interface (SPI) Timing		See Figure 2, Figure 3, and Figure 4				
SCLK Frequency	f_{SCLK}				50	MHz
SCLK Period	t_{SCLK}		20			ns
SCLK Pulse Width High	$t_{ m HIGH}$		10			ns
SCLK Pulse Width Low	t_{LOW}		10			ns
SDIO Setup Time	t_{DS}		2			ns
SDIO Hold Time	t_{DH}		2			ns
SCLK Falling Edge to SDIO Valid Propagation Delay	t _{ACCESS}		10			ns
CS Rising Edge to SDIO High-Z	t_Z		10			ns
CS Fall to SCLK Rise Setup Time	$t_{\rm S}$		2			ns
SCLK Fall to CS Rise Hold Time	$t_{\rm H}$		2			ns

タイミング図

SCLK DON'T CARE

SDIO DON'T RIW A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1

図 5.3 線式、MSB ファースト、降順データ、ストリーミング

Rev. 0 - 7/48 -

絶対最大定格

特に指定のない限り、TA=25℃。

表 3.

Parameter	Rating
AV _{DD} Rails to GND ¹	-0.3 V to +3.6 V
AV _{DD} Rails to Each Other	-0.3 V to +0.3 V
VCC_VCO to GND ¹	-0.3 V to +5.5 V
VCC_VCO to AV _{DD}	$-0.3 \text{ V to AV}_{DD} + 2.8 \text{ V}$
CPOUT to GND ¹	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
VTUNE to GND	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Digital Input and Output Voltage to GND ¹	$-0.3 \text{ V to AV}_{DD} + 0.3 \text{ V}$
Analog Input and Output Voltage to GND ¹	$-0.3~\mathrm{V}$ to $\mathrm{AV_{DD}} + 0.3~\mathrm{V}$
REFP and REFN to GND ¹	-0.3 V to $AV_{DD} + 0.3 \text{ V}$
REFP to REFN	±2.1 V
Temperature	
Operating Range	-40°C to +105°C
Storage Range	−65°C to +125°C
Maximum Junction	125 °C
Reflow Soldering	
Peak	260°C
Time at Peak	30 sec
Electrostatic Discharge (ESD)	
Charged Device Model	1.0 kV
Human Body Model	4.0 kV
Transistor Count	
Complementary Metal-Oxide Semiconductor (CMOS)	131439
Bipolar	4063

 $^{^{1}}$ GND = 0V.

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板 (PCB) の設計と動作環境に直接 関連しています。PCB の熱設計には細心の注意が必要です。

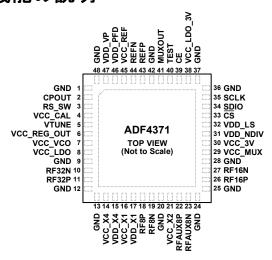
 θ_{1A} は、1 立方フィートの密封筐体内で測定された、自然対流でのジャンクションと周囲の間の熱抵抗です。 θ_{1C} は、ジャンクションとケースの間の熱抵抗です。

表 4. 熱抵抗

Package Type	θ_{JA}	θ_{JC}	Unit
CC-48-4 ¹	25	14.4	°C/W

¹テスト条件 1: 熱抵抗のシミュレーション値は、JESD51 規格に基づいています。

ESD に関する注意



ESD (静電放電) の影響を受けやすいデバイスです。 電荷を帯びたデバイスや回路ボードは、検知されない

まま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

Rev. 0 - 8/48 -

ピン配置およびピン機能の説明

NOTES

1. THE LAND GRID ARRAY (LGA) HAS AN EXPOSED PAD THAT MUST BE SOLDERED TO A METAL PLATE ON THE PCB FOR MECHANICAL REASONS AND TO GND.

図 6. ピン配置

表 5. ピン機能の説明

ピン番号	記号	説明
1, 9, 12, 13, 20, 24, 25, 28, 36, 37, 42, 48	GND	グラウンド・リターン。
2	CPOUT	チャージ・ポンプ出力。イネーブルすると、この出力は外部ループ・フィルタに±I _{CP} を供給します。ループ・フィルタの出力は VTUNE に接続され、内部 VCO を駆動します。
3	RS_SW	ループ・フィルタ・スイッチ。高速ロックのアプリケーションでループ・フィルタ抵抗のスイッチングに 使用されます。
4	VCC_CAL	内部キャリブレーション・モニタ回路用電源。このピンの電圧は $3.15V\sim3.45V$ の範囲です。 VCC_CAL は AV_{DD} と同じ値、すなわち、公称 $3.3V$ でなければなりません。
5	VTUNE	VCO への制御入力。この電圧は出力周波数を決定し、CPOUT 出力電圧をフィルタ処理して得られます。
6	VCC_REG_OUT	VCO 電源レギュレータ出力。VCO レギュレータの出力電源電圧はこのピンで得られ、10μF のコンデンサで GND にデカップリングし、VCC_VCO ピンに短絡する必要があります。外付け LDO レギュレータを VCC_VCO に接続する場合は、このピンをオープンにします。
7	VCC_VCO	VCO の電源。このピンの電圧は 4.75V~5.25V の範囲です。このピンのできるだけ近くにデカップリング・コンデンサを配置し、アナログ・グランド・プレーンに接続します。最適な性能を得るために、この電源はクリーンで低ノイズでなければなりません。
8	VCC_LDO	VCO レギュレータへの電源ピン。内部レギュレータを使用する場合は、ここから電源を VCC_LDO に接続します。このピンの電圧は 4.75V~5.25V の範囲です。外部レギュレータを使用する場合は、このピンを VCC_VCO に短絡します。
10	RF32N	4 逓倍器出力。このピンは次段に AC または DC カップリングします。未使用時はこのピンをパワーオフできます。使用しない場合、このピンはオープン状態にできます。
11	RF32P	相補4逓倍器出力。このピンは次段にACまたはDCカップリングします。未使用時はこのピンをパワーオフできます。使用しない場合、このピンはオープン状態にできます。
14	VCC_X4	4 逓倍器 RF 出力の電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
15	VDD_X4	4 逓倍器回路のデジタル電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
16	VCC_X1	メイン $ m RF$ 出力の電源。このピンの電圧は $ m AV_{DD}$ と同じ値でなければなりません。
17	VDD_X1	メイン RF 出力のデジタル電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
18	RF8P	メイン RF 出力。次段に AC カップリングします。出力レベルはプログラマブルです。 VCO の基本出力または分周出力を取り出せます。
19	RF8N	相補メイン RF 出力。このピンは次段に AC カップリングします。出力レベルはプログラマブルです。 VCO の基本出力または分周出力を取り出せます。
21	VCC_X2	2 逓倍 RF 出力の電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
22	RFAUX8P	補助 RF 出力。次段に AC カップリングします。未使用時はこのピンをパワーオフできます。

Rev. 0 - 9/48 -

	÷3 P	5K DD
ピン番号	記号	説明
23	RFAUX8N	相補補助 RF 出力。このピンは次段に AC カップリングします。未使用時はこのピンをパワーオフできます。
26	RF16P	2 逓倍 VCO 出力。このピンは次段に AC または DC カップリングします。未使用時はこのピンをパワーオフできます。使用しない場合、このピンはオープン状態にできます。
27	RF16N	相補2逓倍VCO出力。このピンは次段にACまたはDCカップリングします。未使用時はこのピンをパワーオフできます。使用しない場合、このピンはオープン状態にできます。
29	VCC_MUX	VCO マルチプレクサの電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
30	VCC_3V	アナログ電源。このピンの電圧は AV _{DD} と同じ値でなければなりません。
31	VDD_NDIV	N 分周器電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
32	VDD_LS	レベル・シフタ電源。このピンの電圧は AV _{DD} と同じ値でなければなりません。
33	CS	チップ・セレクト、CMOS入力。CSがハイになると、シフト・レジスタに格納されているデータが、アドレス・ビットで選択されているレジスタにロードされます。
34	SDIO	シリアル・データ入出力。この入力は高インピーダンスの CMOS 入力です。
35	SCLK	シリアル・クロック入力。データは、クロックの立上がり(または立下がり)エッジで24ビット・シフト・レジスタにクロック入力されます。この入力は高インピーダンスのCMOS入力です。
38	VCC_LDO_3V	1.8V デジタル・ロジックのレギュレータ入力。このピンの電圧は AVDD と同じ値でなければなりません。
39	CE	チップ・イネーブル。3.3V または AVDD に接続します。
40	TEST	工場テスト・ピン。このピンはグラウンドに接続します。
41	MUXOUT	マルチプレクサ出力。マルチプレクサ出力により、デジタル・ロック検出、アナログ・ロック検出、スケーリングされた RF、またはスケーリングされた基準周波数に外部からアクセスできます。このピンは、4線式 SPI モードでレジスタ設定を出力するように設定できます。
43	REFP	リファレンス入力。シングルエンド・リファレンスでデバイスを駆動する場合は、信号を REFP ピンに AC カップリングします。
44	REFN	相補リファレンス入力。使用しない場合、このピンは GND に AC カップリングします。差動で駆動する場合、REFP と REFN を AC カップリングする必要があります。シングルエンドで駆動する場合、リファレンス信号を REFP に接続し、REFN を GND に AC カップリングする必要があります。差動構成では、差動インピーダンスは 100Ωです。
45	VCC_REF	リファレンス・バッファへの電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。
46	VDD_PFD	PFD \sim \mathcal{O} 電源。このピンの電圧は $\operatorname{AV}_{\operatorname{DD}}$ と同じ値でなければなりません。
47	VDD_VP	チャージ・ポンプ電源。このピンの電圧は AV_{DD} と同じ値でなければなりません。スプリアス信号を最小限に抑えるために、GND に $1μ$ F のデカップリング・コンデンサを接続する必要があります。
	EP	露出パッド。ランド・グリッドアレイ(LGA)には露出パッドがあり、機械的な理由により PCB の金属面にハンダ付けすると共に、GND にハンダ付けする必要があります。

Rev. 0 - 10/48 -

代表的な性能特性

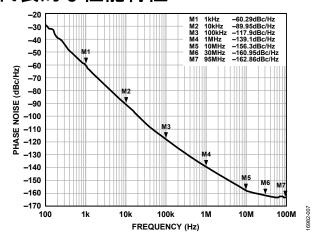


図 7. オープンループ VCO 位相ノイズ、4.0GHz、VCC_VCO = 5V

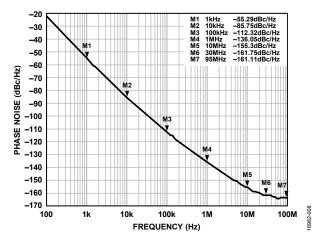


図 8. オープンループ VCO 位相ノイズ、5.7GHz、VCC_VCO = 5V

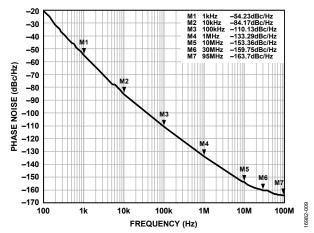


図 9. オープンループ VCO 位相ノイズ、8.0GHz、VCC VCO = 5V

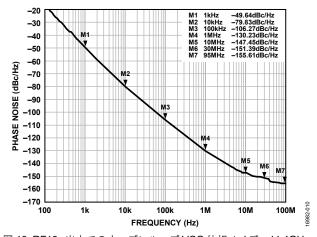


図 10. RF16x 出力でのオープンループ VCO 位相ノイズ、11.4GHz、 VCC_VCO = 5V

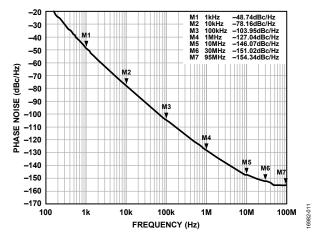


図 11. RF16x 出力でのオープンループ VCO 位相ノイズ、16.0GHz、 VCC_VCO = 5V

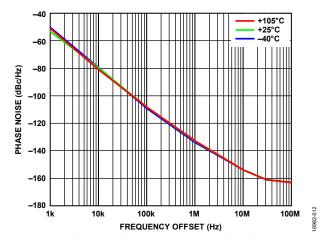


図 12. オープンループ VCO 位相ノイズの温度特性、8.0GHz、 VCC_VCO = 5V

Rev. 0 — 11/48 —

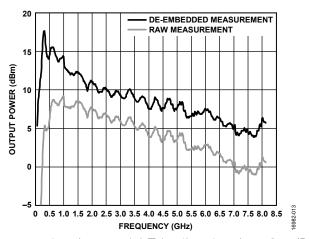


図 13. RF8P および RF8N の出力電力、ボードおよびケーブルの損失を除外、バランによる結合(7.4nH インダクタ、10pF AC カップリング・コンデンサによる低周波数での電力制限)

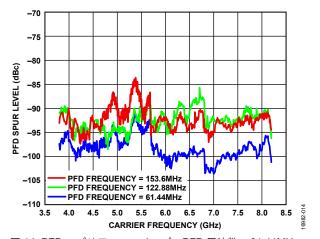


図 14. PFD スプリアス・スイープ、PFD 周波数 = 61.44MHz、 ループ・フィルタ帯域幅 = 100kHz

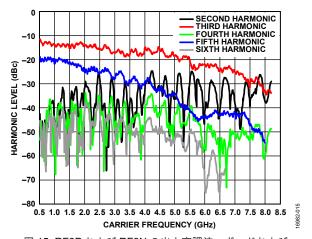


図 15. RF8P および RF8N の出力高調波、ボードおよび ケーブルの損失を除外、バランによる結合

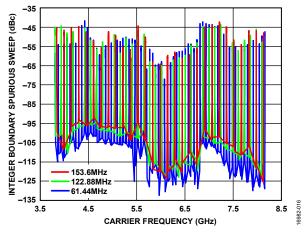


図 16. 整数境界スプリアス・スイープとコーナー周波数の関係、 PFD 周波数 = 61.44MHz、122.88MHz、および 153.6MHz、 ループ・フィルタ帯域幅 = 100kHz

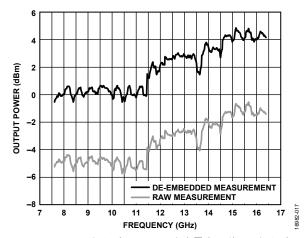


図 17. RF16P および RF16N の出力電力、ボードおよび ケーブルの損失を除外、バランによる結合

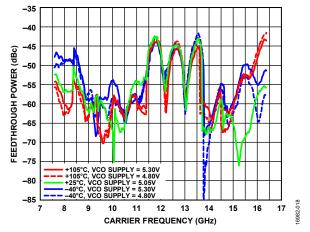


図 18. RF16P および RF16N の VCO フィードスルー、ボードおよび ケーブルの損失を除外、バランによる結合

Rev. 0 – 12/48 –

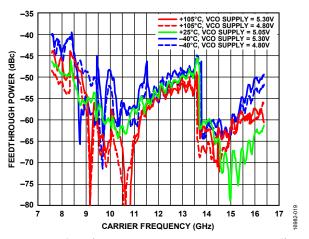


図 19. RF16P および RF16N の VCO × 3 フィードスルー、ボード およびケーブルの損失を除外、バランによる結合

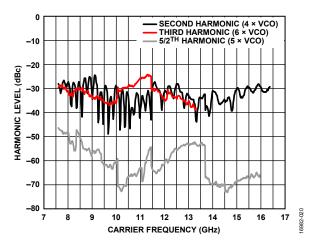


図 20. RF16P および RF16N の出力高調波、ボードおよびケーブルの 損失を除外、バランによる結合

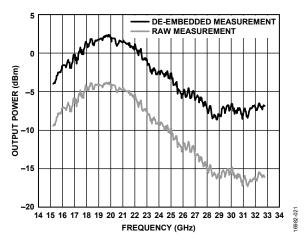


図 21. RF32P および RF32N の出力電力、ボードおよびケーブルの 損失を除外、バランによる結合

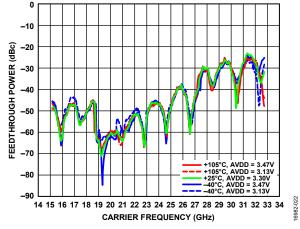


図 22. RF32P および RF32N の VCO フィードスルー、ボードおよび ケーブルの損失を除外、バランによる結合

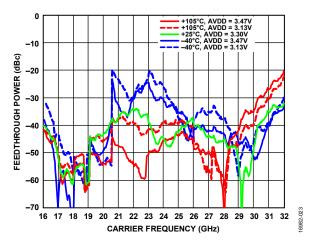


図 23. RF32P および RF32N の VCO ×2 フィードスルー、ボード およびケーブルの損失を除外、バランによる結合

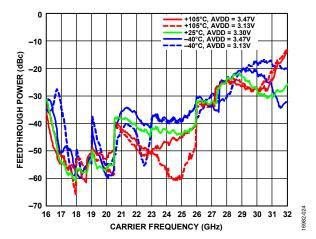


図 24. RF32P および RF32N の VCO \times 3 フィードスルー、ボード およびケーブルの損失を除外、バランによる結合

Rev. 0 — 13/48 —

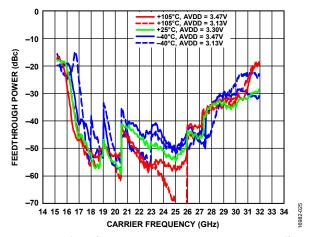


図 25. RF32P および RF32N の VCO \times 5 フィードスルー、ボード およびケーブルの損失を除外、バランによる結合

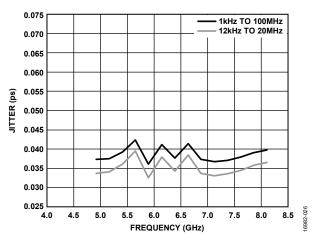


図 26. RMS ジッタ、インテジャーN、 PFD 周波数(f_{PFD})= 245.76MHz、 ループ・フィルタ帯域幅 = 220kHz、VCC_VCO = 5V

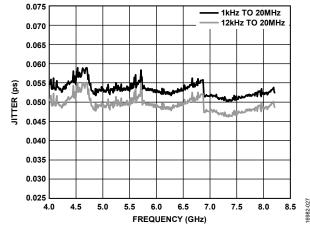


図 27. RMS ジッタ、 フラクショナル N、 f_{PFD} = 153.6MHz、 VCC_VCO = 5V

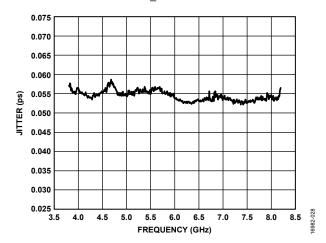


図 28. 1kHz~100MHz で積分した RMS ジッタ、フラクショナル N、 f_{PFD} = 153.6MHz、VCC_VCO = 3.3V

Rev. 0 — 14/48 —

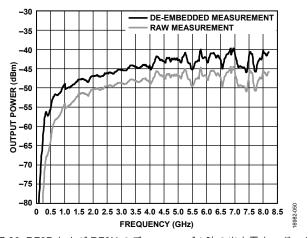


図 29. RF8P および RF8N のディスエーブル時の出力電力、ボード およびケーブルの損失を除外、バランによる結合

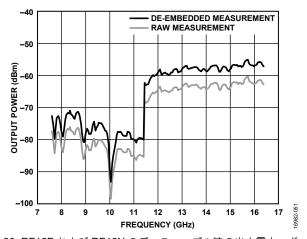


図 30. RF16P および RF16N のディスエーブル時の出力電力、ボード およびケーブルの損失を除外、バランによる結合

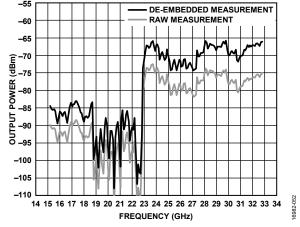


図 31. RF32P および RF32N のディスエーブル時の出力電力、ボード およびケーブルの損失を除外、バランによる結合

Rev. 0 — 15/48 —

動作原理

RF シンセサイザ、実際例

次式を使って ADF4371 シンセサイザを設定します。

$$f_{RFOUT} = INT + \frac{FRAC1 + \frac{FRAC2}{MOD2}}{MOD1} \times \frac{f_{PFD}}{RF\ Divider}$$
 (1)

ここで、

freoutは RF 出力周波数。

INTはインテジャー分周係数。

FRACI はフラクショナル。

FRAC2 は補助フラクショナル。

MOD1 は固定の 25 ビット・モジュラス。

MOD2は補助モジュラス。

RF Divider は VCO 周波数を分周する出力分周比。

$$f_{PFD} = REF_{IN} \times \left((1+D) / (R \times (1+T)) \right)$$
 (2)

ここで、

REFINは基準周波数入力。

Dは REF_{IN} ダブラ・ビット。

Rはリファレンス分周係数。

Tはリファレンス 2 分周ビット (0 または 1)。

例えば、2112.8MHzの f_{RFOUT} が必要とされるユニバーサル・モバイル・テレコミュニケーション・システム(UMTS)では、122.88MHz の REF_{IN} を使用できます。ADF4371 の VCO は 4GHz~8GHz の周波数範囲で動作します。したがって、RF を 2 分周する必要があります(VCO 周波数 = 4225.6MHz、 RF_{OUT} = VCO周波数/RF分周比 = 4225.6MHz/2 = 2112.8MHz)。

フィードバック・パスも重要です。この例では、VCO 出力は出力分周器の前でフィードバックされています(図32を参照)。

この例では、122.88MHz の基準信号を 2 分周して 61.44MHz の fprD を生成します。必要なチャンネル間隔は 200kHz です。

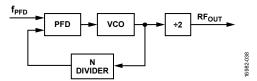


図 32. 出力分周器の前に配置されたクローズドループ

この実際例で使用されている値は次のとおりです。

$$N = f_{VCO_OUT}/f_{PFD} = 4225.6MHz/61.44MHz = 68.7760416666666667$$
 (3)

ここで、

Nは希望するフィードバック・カウンタ N の値。 $frco_{out}$ は出力 分周器を使用しない VCO 電圧制御発振器の出力周波数。fred は位相周波数検出器の周波数。

$$INT = INT (VCO 周波数f_{PFD}) = 68$$
 (4)

ここで、

FRAC は N のフラクショナル部。

$$MOD1 = 33,554,432$$
 (6)

$$FRAC1 = INT \quad (MOD1 \times FRAC = 26,039,637 \tag{7}$$

$$MOD2 = f_{PFD}/GCD \quad (f_{PFD}, f_{CHSP}) = 61.44MHz/GCD$$

(61.44MHz, 200kHz) = 1536 (9)

ここで、

GCD は最大公約数演算子。

$$FRAC2 =$$
 \Re $\times 1536 = 512$ (10)

式2から、

$$f_{PFD} = (122.88 \text{MHz} \times (1+0) /2) = 61.44 \text{MHz}$$
 (11)

$$2112.8MHz = 61.44MHz \times (INT + FRAC1 +$$

$$FRAC2/MOD2) /2^{25})) /2$$
 (12)

ここで、

 $INT = 68_{\circ}$

 $FRAC1 = 26,039,637_{\circ}$

 $MOD2 = 1536_{\circ}$

 $FRAC2 = 512_{\circ}$

RF 分周比= 2。

リファレンス入力感度

入力リファレンス信号のスルー・レートは性能に大きく影響します。このデバイスは、0.4Vp-pまでの非常に小さな振幅の信号と21V/μsのスルー・レートで機能します。ただし、最適性能は、1000V/μsもの高スルー・レートで実現されます。正弦波でこのスルー・レートを実現するには大きな振幅が必要であり、低周波数では不可能なことがあります。ADF4371のジッタと位相ノイズ性能を、PFD周波数が250MHzの場合について図33に、100MHzの場合について図34に示します。最高の性能を実現するには、リファレンス入力信号としてスルー・レートの高い高品質の方形波信号を推奨します。

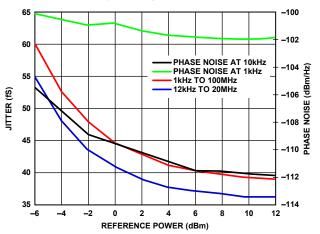


図 33. ジッタと位相ノイズ、f_{PFD} = 250MHz

Rev. 0

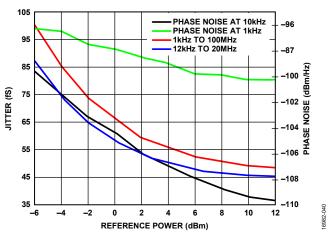


図 34. ジッタと位相ノイズ、f_{PFD} = 100 MHz

リファレンス・ダブラとリファレンス分周器

内蔵リファレンス・ダブラにより、入力リファレンス信号を2逓倍できます。ダブラは、PFDの比較周波数を増やすのに役立ちます。システムのノイズ性能を改善するには、PFD周波数を上昇させます。PFD周波数を2倍にすると、ノイズ性能が3dB(代表値)改善されます。

リファレンス 2 分周機能によりリファレンス信号が 2 分周されるので、PFD 周波数のデューティ・サイクルは 50%になります。

スプリアス最適化と高速ロック

ループ帯域幅を狭くすると、不要なスプリアス信号をフィルタ 処理できます。ただし、こうした帯域幅では通常はロック時間 が長くなります。ループ帯域幅が広いとロック時間は短くなりますが、ループ帯域幅内のスプリアス信号が増加する可能性が あります。

ジッタの最適化

ジッタを最小にしたいアプリケーションでは、PLL の帯域内ノイズの影響をできるだけ小さくするために、できるだけ高い PFD 周波数を使用します。PLL フィルタの帯域幅は、PLL の帯域内ノイズが VCO のオープンループ・ノイズと交差するように設定して、これらのノイズが全体的なノイズに及ぼす影響をできるだけ小さくできるようにします。

この作業には、ADIsimPLL設計ツールを使用します。

ループ・フィルタのさらなる最適化

PLL フィルタは、システム条件に応じて、リファレンス、PFD、VCO ノイズに最適な帯域幅となるように設計されます。この設計に加えて、シグマ・デルタ($\Sigma\Delta$)モジュレータ(SDM)をイネーブルしている場合は、SDM ノイズのフィルタ処理のために更に最適化が必要になることがあります。

ΣΔ モジュレータのノイズ低減

フラクショナル・モードでは、SDM ノイズが明確になり始め、全体的な位相ノイズに寄与し始めます。CPOUT ピンとループ・フィルタの間に直列抵抗を接続すると、このノイズを無視できるレベルにまで低減できます。この抵抗はCPOUT ピンの近くに配置します。妥当な抵抗値であれば、設計されたループ・フィルタのループ帯域幅と位相余裕に影響を与えません。ほとんどの場合、 91Ω で最良の結果が得られます。インテジャー・モードの(SDM をイネーブルしない)場合または狭帯域ループ・フィルタを使用する(SDM ノイズが減衰される)場合、この抵抗は不要です。

スプリアスのメカニズム

このセクションでは、フラクショナル N シンセサイザで発生する 2つの異なるスプリアスのメカニズムと、それらを ADF4371 で最小化する方法について説明します。

整数境界スプリアス

フラクショナル・スプリアス発生のメカニズムの 1 つは、RF VCO 周波数と基準周波数の間の相互作用です。これらの周波数が整数に関連しない場合(これがフラクショナル N シンセサイザの目的です)、スプリアス・サイドバンドはビート・ノートすなわち、リファレンスの整数倍と VCO 周波数の間の周波数差に対応するオフセット周波数で VCO 出力スペクトルに現れます。これらのスプリアスはループ・フィルタによって減衰され、差周波数がループ帯域幅の内側に入る、リファレンスの整数倍に近いチャンネルでより顕著になります。

リファレンス・スプリアス

リファレンス・スプリアスは通常、フラクショナル N シンセサイザでは問題になりません。リファレンス・オフセットがループ帯域幅から大きく外れるためです。ただし、ループをバイパスするリファレンス・フィードスルー・メカニズムは問題を引き起こす可能性があります。低レベルの内蔵リファレンス・スイッチング・ノイズがプリスケーラを介して VCO にフィードスルーすると、リファレンス・スプリアス・レベルが最大で-100dBc になる可能性があります。

ロック時間

PLL ロック時間はいくつかの設定値に分割されます。周波数変更に要する合計ロック時間は、シンセサイザ・ロック、VCO帯域の選択、自動レベル・キャリブレーション(ALC)、およびPLLセトリング時間の4つの別々の時間の合計です。

シンセサイザ・ロック

シンセサイザ・ロックのタイムアウトにより、帯域選択回路に対してVCOキャリブレーションDACがVCO調整電圧(V_{TUNE})の値を安定させることができます。 $SYNTH_LOCK_TIMEOUT$ と TIMEOUTは、VCO キャリブレーションのプロセスが次のフェーズ(VCO 帯域の選択)に進むまでに DAC が最終電圧に安定するための許容時間を選択するものです。

PFD 周波数はこのロジック用のクロックであり、この時間は次式を使用して設定します。

$$\frac{SYNTH_LOCK_TIMEEOUT \times 1024 + TIMEOUT}{f_{PFD}}$$
 (13)

ここで、

SYNTH_LOCK_TIMEOUT は REG0033 で設定。 TIMEOUT は REG0031 と REG0032 で設定。

計算される時間は20μs以上でなければなりません。

SYNTH_LOCK_TIMEOUT ビットの最小値は 2、最大値は 31 です。TIMEOUT の最小値は 2、最大値は 1023 です。

Rev. 0 - 17/48 -

VCO 帯域の選択

VCO 帯域選択クロックを生成するのに、次式のように VCO_BAND_DIV (REG0030 で設定) および PFD 周波数が使用 されます。

$$f_{BSC} = \frac{f_{PFD}}{VCO \quad BAND \quad DIV} \tag{14}$$

計算される時間は2.4MHz未満でなければなりません。

1つの VCO コアと帯域キャリブレーションのステップには 16 クロック・サイクルが必要で、全帯域の選択プロセスには 11 ステップかかるため、次式が得られます。

$$11 \times \frac{16 \times VCO_BAND_DIV}{f_{PFD}} \tag{15}$$

VCO BAND DIV の最小値は1、最大値は255です。

自動レベル・キャリブレーション(ALC)

ALC 機能を使用して、ADF4371 の VCO コアに適切なバイアス 電流を選択します。各ステップで VCO バイアス電圧が安定する のには時間が必要で、その時間は以下の式で設定します。

$$\frac{VCO_ALC_TIMEOUT \times 1024 + TIMEOUT}{f_{PFD}} \tag{16}$$

ここで、

VCO_ALC_TIMEOUT と Timeout は、REG0034、REG0032、および REG0031 で設定します。

計算される時間は50μs以上でなければなりません。

ALC 全体では 63 ステップ必要です。

$$63 \times \frac{VCO_ALC_TIMEOUT \times 1024 + TIMEOUT}{f_{PFD}}$$
 (17)

VCO ALC TIMEOUT の最小値は 2、最大値は 31 です。

PLL のセトリング時間

ループの安定に必要な時間は、ローパス・フィルタの帯域幅に 反比例します。セトリング時間は ADIsimPLL 設計ツールで正確 にモデル化されています。

ロック時間、実際例

f_{PFD} = 61.44MHz と仮定します。

$$VCO_BAND_DIV = Ceiling (f_{PFD}/2,400,000) = 26$$
 (18)

ここで、Ceiling () は最も近い整数に切り上げます。

$$SYNTH_LOCK_TIMEOUT \times 1024 + TIMEOUT > 1228.8 \tag{19}$$

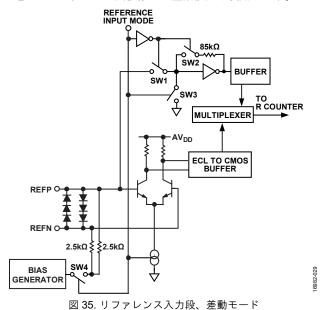
$$VCO_ALC_TIMEOUT \times 1024 + TIMEOUT > 3072$$
 (20)

これらの基準を満たす適切な値はいくつかあります。最小仕様 を考慮すると、以下の値が最適です。

- SYNTH LOCK TIMEOUT = 2 (最小值)
- VCO ALC TIMEOUT = 3
- TIMEOUT = 2

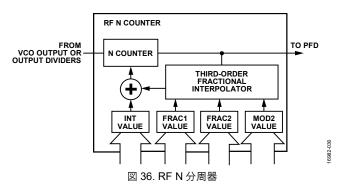
キャリブレーション・プロセスをバイパスすることによって、このデータシートに記載されている値よりもはるかに短いロック時間が可能です。詳細については、アナログ・デバイセズにお問い合わせください。

Rev. 0 — 18/48 —


回路の説明

リファレンス入力

リファレンス入力段を図 35 に示します。リファレンス入力は、シングルエンド信号と差動信号の両方に対応できます。信号を選択するには、リファレンス・モード・ビット(REG0022 のビット 6)を使用します。リファレンス入力に差動信号を使用するには、このビットをハイに設定します。この場合、SW1 とSW2が開き、SW3とSW4が閉じ、差動トランジスタのペアを駆動する電流源がオンになります。差動信号はバッファされ、CMOS コンバータへのエミッタ結合ロジック(ECL)に供給されます。


シングルエンド信号をリファレンスとして使用する場合は、リファレンス信号を REFP に接続し、REG0022 のビット 6 を 0 に設定します。この場合、SW1 と SW2 が閉じ、SW3 と SW4 が開き、差動トランジスタのペアを駆動する電流源がオフになります。

整数境界スプリアスと位相ノイズ性能を最適化するには、500MHz までのすべてのリファレンスでシングルエンド設定を使用します(差動信号を使用する場合においても)。500MHz を超えるリファレンス周波数には差動設定を使用します。

RF N 分周器

RF N分周器により、PLLフィードバック・パスで分周比の設定が可能になります。この分周器が構成されるINT、FRAC1、FRAC2、MOD2の値で分周比を決定します。

INT、FRAC、MOD と R カウンタの関係

INT、FRAC1、FRAC2、MOD1、MOD2 の値を R カウンタと組み合わせると、非整数の f_{PFD} 間隔を持つ出力周波数を生成できます。詳細については、RF シンセサイザの実際例のセクションを参照してください。

fvco out は次式で計算します。

$$f_{VCO\ OUT} = f_{PFD} \times N \tag{21}$$

fpfDは次式で計算します。

$$f_{PFD} = REF_{IN} \times \frac{1+D}{R \times (1+T)}$$
(22)

ここで、

REFINは基準周波数入力。

Dは REF_{IN} ダブラ・ビット。

Rは 10 ビット・バイナリのプログラマブル・リファレンス・カウンタのプリセット分周比($1\sim1023$)。

Tは REF_{IN} の 2 分周ビット (0 または 1)。

目的のフィードバック・カウンタ Nの値は次式で計算します。

$$N = INT + \frac{FRAC1 + \frac{FRAC2}{MOD2}}{MOD1}$$
 (23)

ここで、

INT は 16 ビットのインテジャー値。インテジャー・モードの場合、4/5 プリスケーラでは $INT = 20 \sim 32,767$ 、8/9 プリスケーラでは $64 \sim 65,535$ 。フラクショナル・モードの場合、4/5 プリスケーラでは $INT = 23 \sim 32,767$ 、8/9 プリスケーラでは $75 \sim 65,535$ 。FRAC1 は 1 次モジュラスの分子($0 \sim 33,554,431$)。

FRAC2 は 14 ビット補助モジュラスの分子(0~16,383)。

MOD2 は、プログラマブルな 14 ビット補助フラクショナル・モジュラス($2\sim16,383$)。

MODI は、 2^{25} = 33,554,432 の固定値を持つ 25 ビットの 1 次モジュラス。

これらの計算により、残留周波数誤差のない非常に高い周波数 分解能が得られます。式 23 を適用するには、以下の手順を実行 します。

 VCO_{OUT}/f_{PFD}の除算によりNを計算します。この数の整数 値がINTになります。

Rev. 0 - 19/48 -

- 2. Nの全部の値から INT を引きます。
- 3. 差に 225 を乗算します。この数の整数値が FRAC1 になり ます。
- 4. チャンネル間隔 (fcHSP) に基づく MOD2 を次式で計算します。

$$MOD2 = f_{PFD}/GCD \quad (f_{PFD}, f_{CHSP})$$
 (24)

ここで、

f_{CHSP}は目的のチャンネル間隔周波数。

GCD (fpfD, fcHSP) はPFD周波数とチャンネル間隔周波数の最大公約数。

5. FRAC2 を次式により計算します。

$$FRAC2 = ((N - INT) \times 2^{25} - FRAC1) \times MOD2$$
 (25)

非整数の FRAC2 と MOD2 は、以下の場合にチャンネル間隔に対するゼロ周波数誤差の出力になります。

$$f_{PFD}/GCD$$
 $(f_{PFD}, f_{CHSP}) = MOD2 < 16,383$ (26)

ゼロ周波数誤差が不要な場合、MOD1と MOD2 の分母は共 に作用して 39 ビットの分解能モジュラスを生成します。

INTNモード

FRAC1 と FRAC2 が 0 の場合、シンセサイザはインテジャーNモードで動作します。REG002B の SD_EN_FRAC0 ビットを 1 に設定して SDM をディスエーブルすることを推奨します。これにより、帯域内位相ノイズが改善され、追加される $\Sigma\Delta$ ノイズが減少します。

Rカウンタ

5ビットRカウンタにより、入力基準周波数(REFPとREFNへの入力)を分周して、PFDへのリファレンス・クロックを生成できます。 $1\sim1023$ の分周比が可能です。

PFD とチャージ・ポンプ

PFDはRカウンタとNカウンタから入力を受け取り、それらの位相と周波数の差に比例した出力を生成します。位相周波数検出器の簡略化した回路図を図37に示します。PFDには、バックラッシュ防止パルスの幅を設定する固定の遅延要素が含まれています。このパルスは、PFD伝達関数内でデッド・ゾーンの発生を確実に防止し、リファレンス・スプリアス・レベルを一定にします。VCOが正の調整勾配であるため、このデバイスでは位相検出器の極性を正に設定します。

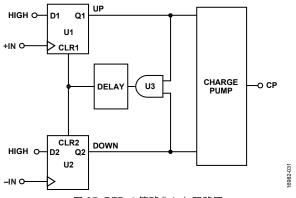


図 37. PFD の簡略化した回路図

MUXOUT とロック検出

ADF4371 の出力マルチプレクサにより、チップ上の様々な内部ポイントにアクセスできます。 MUXOUT セクションのブロック図を図 38 に示します。

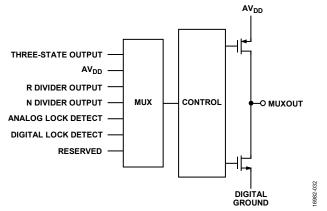


図 38. MUXOUT の回路図

ダブル・バッファ

ADF4371では、メイン・フラクショナル値(FRAC1)、補助モジュラス値(MOD2)、補助フラクショナル値(FRAC2)、リファレンス・ダブラ、リファレンス2分周(RDIV2)、Rカウンタ値、およびチャージ・ポンプ電流設定がダブル・バッファ付きとなっています。ADF4371がダブル・バッファ設定で新しい値を使用する前に、2つのイベントを実行する必要があります。最初に該当するレジスタへの書込みによって新しい値をデバイスにラッチさせ、次いでREG0010に新しい書込みを実行する必要があります。

例えば、モジュラス値が正しくロードされるようにするには、モジュラス値が更新されるたびに REG0010 に書き込む必要があります。

VCO

ADF4371 の VCO コアは、コア A、コア B、コア C、コア D の 4 つの個別の VCO コアで構成され、それぞれ 256 の重複する帯域を使用するため、VCO 感度(K_V)を上げなくとも広い周波数範囲をカバーできます。その結果、位相ノイズおよびスプリアス性能の低下を防ぐことができます。

Rev. 0 — 20/48 —

REG0010 が更新されて自動キャリブレーションが有効になるたびに、VCO と帯域選択ロジックによって適切な VCO と帯域が自動的に選択されます。VTUNE はループ・フィルタの出力から切り離され、内部リファレンス電圧に接続されます。

R カウンタ出力は、帯域選択ロジック用のクロックとして使用されます。帯域選択後、通常の PLL 動作が再開されます。N 分周器が VCO 出力から駆動される場合、 K_V の公称値は 50MHz/V になります。あるいは K_V 値は D で除算されます。N 分周器が RF 出力分周器から駆動される場合、D は出力分周器の値です。

調整電圧 VTUNE が帯域内および帯域間で変化するのに応じて、 VCO の K_V は変動します。広い周波数範囲をカバーする(および出力分周比が変化する)広帯域アプリケーションでは、 $50MH_Z/V$ の値が平均値に最も近いため最も正確な K_V になります。 K_V が基本 VCO 周波数によってどのように変化するかを、 周波数帯域の平均値と共に、図 39 と図 40 に示します。 狭帯域 設計を使用する場合は図 39 と図 40 のほうが役に立つかもしれません。

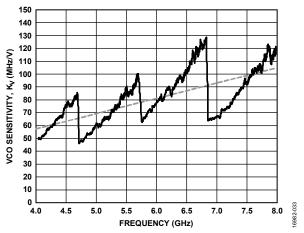


図 39. VCO 感度 K_V の周波数特性、VCC_VCO = 5V

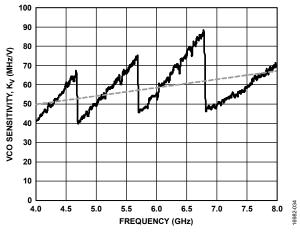


図 40. VCO 感度 K_V の周波数特性、VCC_VCO = 3.3 V

出力段

図 13 に示すように、ADF4371 の RF8P ピンと RF8N ピンは、 VCOのバッファ付き出力で駆動されるバイポーラ NPN 差動ペア のコレクタに接続します。ADF4371 は、VCC X1 ピンに接続さ れた 50Ω の内部抵抗を内蔵しています。消費電力と出力電力の 間の条件を最適化するために、差動ペアのテール電流は REG0025 のビット [1:0] で設定できます。4 つの電流レベルが 設定可能です。これらのレベルでは、約-4dBm、-1dBm、2dBm、 5dBm の出力電力レベルが得られます。 50Ω 負荷への AC カップ リングによって、-4dBm、-1dBm、2dBmのレベルを実現できま す。5dBm レベルでは、VCC X1 に外付けのシャント・インダク タが必要です。インダクタでは 50Ω 抵抗よりも動作周波数が狭 くなります。正確な電力レベルについては、代表的な性能特性 のセクションを参照してください。電力レベルを更に高くする には外付けシャント・インダクタを追加します。この場合、内 部バイアスのみの場合よりも帯域幅が狭くなります。未使用の 相補出力は、使用する出力と同様の回路で終端します。

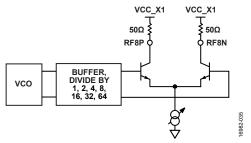


図 41. 出力段

2 逓倍の VCO 出力 (8GHz~16GHz) は RF16 ピンで得られ、これは次段の回路に直接接続できます。4 逓倍出力は RF32P ピンと RF32N ピンで得られ、これらも次段の回路に直接接続できます。RFAUX8P および RFAUX8N は、RF8P および RF8N 出力と同じ機能を提供しますが、必要に応じて、分周した RF8x 周波数または VCO 周波数を出力することもできます。

ダブラ

VCO 周波数を 2 逓倍した周波数は RF16P ピンと RF16N ピンで得られます。未使用時はこの出力をパワーダウンさせることが可能で、その場合は RF16P ピンと RF16N ピンをオープンのままにすることができます。

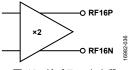


図 42. ダブラの出力段

ADF4371には、VCOとその他の不要な周波数成分を抑制する自動トラッキング・フィルタが搭載されているため、2 逓倍出力が最大化され、VCOと 3×VCOの周波数が出力周波数に関係なく抑制されます。抑圧特性は代表値で50dB未満です。REG0023のビット1を使用して自動トラッキングを有効にすると、最適値が自動的に設定されます。

Rev. 0 — 21/48 —

4 逓倍器とダブラが共にイネーブルされている場合などでは、 係数を (REG0070 で) 手動で設定できます。最適な出力電力、 位相ノイズ、高調波除去の設定を表6に示します。

表 6.2 逓倍出力時のフィルタとバイアスの設定

Frequency (GHz)	Filter	Bias
<8.4	7	3
8.4 to 9.4	6	3
9.4 to 10	5	3
10 to 11.5	4	3
11.5 to 12.2	3	3
12.2 to 13.7	2	3
13.7 to 14.5	1	3
>14.5	0	3

4 逓倍器

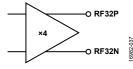


図 43.4 逓倍器の出力段

VCO 周波数を 4 逓倍した周波数は RF32P ピンと RF32N ピンで得られます。未使用時はこの出力をパワーダウンさせることが可能で、その場合は RF32P ピンと RF32N ピンをオープンのままにすることができます。

ADF4371は、出力周波数に関係なく、VCO、2×VCO、3×VCO、5×VCO、およびその他の不要な周波数成分を抑制する自動トラッキング・フィルタを内蔵しています。抑圧特性は代表値で30dB未満です。自動トラッキングでは、4 逓倍出力に最適な係数は設定されません。出力電力、位相ノイズ、高調波除去を最適化するには、自動選択モード(REG0023 のビット 1)を無効にして、表7の設定を手動でREG0071にロードします。

表 7.4 逓倍出力時のフィルタとバイアスの設定

Frequency (GHz)	Filter	Bias
<18	7	3
18 to 19	3	3
19 to 20.5	1	0
20.5 to 26	0	0
>26	0	1

自動トラッキング・モード (REG0023 のビット 1) は、ダブラおよび 4 逓倍器の出力では共通です。これらを同時にイネーブルした場合は、最適な性能を得るために両方の出力のフィルタ係数とバイアス係数を手動でロードします。

出力段のミュート

ADF4371 のもう 1 つの特長は、ADF4371 がロックしたとデジタル・ロック検出回路で測定されるまで、RF8P および RF8N の出力段への供給電流をシャットダウンできることです。REG0025

のロック検出ミュート・ビット(MUTE_LD)によって、この機能が有効になります。

SPI

ADF4371 の SPI により、必要に応じて 3 線式または 4 線式の SPI ポートを介してデバイスを設定できます。このインターフェースは柔軟性を高め、カスタマイズを可能とします。シリアル・ポート・インターフェースは、4 本の制御線、すなわち、SCLK、SDIO、 \overline{CS} 、 \overline{MUXOUT} (3 線式 SPI では使用されない) で構成されます。SPI ポートのタイミング条件を表 2 に詳述します。

SPI プロトコルは、読み書きビットと 15 個のレジスタ・アドレス・ビット、それに続く 8 個のデータ・ビットで構成されています。アドレスとデータの両方のフィールドは、デフォルトでMSB を先頭にし LSB で終了するように構成されます。読出しのタイミングを図 3 に、書込みのタイミングを図 4 に示します。最上位 ビットの 順序 は、REG0000 レジスタの ビット 1 (LSB_FIRST) の設定によって変更が可能で、関連するタイミング図を図 2 に示します。

書込みサイクル時の ADF4371 入力ロジック・レベルは、1.8V ロジック・レベルと互換性があります(表 1 のロジック・パラメータを参照)。読出しサイクルでは、LEV_SEL ビットの設定により、SDIO ピンと MUXOUT ピンの両方を 1.8V(デフォルト)または 3.3V の出力レベルに設定できます。

SPIストリーム・モード

ADF4371 はストリーム・モードをサポートしています。このモードでは、レジスタ・アドレス(命令ワード)の書込みを行うことなく、データ・ビットがシリアルにレジスタにロードされるか、レジスタから読み出されます。このモードは、大量のデータを転送する必要があるとき、または一部のレジスタを繰り返し更新する必要があるときに、タイム・クリティカルなアプリケーションで役立ちます。

スレーブ・デバイスがこのアドレスへのデータの読書きを開始すると、CSがアサートされ、シングル・バイトの書込みが有効(REG0001 のビット 7) にならない限り継続します。スレーブ・デバイスは、アドレス拡張ビット(REG0000 のビット 2)の設定に応じて、アドレスを自動的にインクリメントまたはデクリメントします。

3バイト・ストリーミングの図を図5に示します。命令ヘッダはロジック0で始まって書込みシーケンスであることを示し、レジスタをアドレス指定します。次に、 \overline{CS} がアサートされることなく、レジスタ(N,N-1,N-2)のデータが連続してロードされます。

レジスタは 8 ビットで構成され、レジスタが 8 ビット以上を必要とする場合は、シーケンシャル・レジスタ・アドレスが使用されます。この構成により、ストリーム・モードの使用が可能になり、ロードが簡単になります。例えば、FRAC1WORD はREG0016、REG0015、および REG0014 (MSB から LSB) に格納されます。これらのレジスタは、図 5 に示すように、REG0016を使用し、その後 24 ビットのデータ全体を送信することによってロードできます。

Rev. 0 — 22/48 —

デバイス設定

ADF4371を設定するための推奨手順は以下のとおりです。

- 1. SPIインターフェースを設定。
- 2. 初期化シーケンスを実行。
- 3. 周波数更新シーケンスを実行。

ステップ1: SPI インターフェースの設定

最初に SPI を初期化します。表 8 の値を REG0000 と REG0001 に 書き込みます。

表 8. SPI インターフェースの設定

アドレス	設定	メモ
0x00	0x18	4線式 SPI
0x01	0x00	ストーリング、マスタ・リードバック制御

ステップ2:初期化シーケンス

アドレス 0x7C からアドレス 0x10 への逆の順序で各レジスタに書き込みます。目的の周波数を生成するための適切な値を選択します。周波数更新シーケンスの後に、目的の出力周波数が生成されます。

ステップ3:周波数更新シーケンス

周波数を更新するには、MOD2、FRAC1、FRAC2、および INT を更新する必要があります。したがって、更新シーケンスは以下のようになります。

- 1. REG001A (新規 MOD2WORD [13:8])
- 2. REG0019 (新規 MOD2WORD [7:0])
- 3. REG0018 (新規 FRAC2WORD [13:7])
- 4. REG0017 (新規 FRAC2WORD [6:0])
- 5. REG0016 (新規 FRAC1WORD [23:16])
- 6. REG0015 (新規 FRAC1WORD [15:8])
- 7. REG0014 (新規 FRAC1WORD [7:0])
- 8. REG0011 (新規 BIT INTEGER WORD [15:8])
- 9. REG0010(新規 BIT INTEGER WORD [7:0])

周波数変更は REG0010 への書込みで実行されます。

変更しないレジスタは更新する必要はありません。例えば、インテジャーN PLL の設定(フラクション部分は未使用)の場合、手順 1 から手順 7 を省略します。この場合、必要な更新は REG0011 と REG0010 だけです。

Rev. 0 — 23/48 —

アプリケーション情報

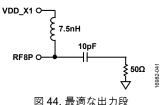
電源

ADF4371 は 4 つのマルチバンド VCO を内蔵しており、全体で 1 オクターブの周波数範囲をカバーします。 VCO 位相ノイズ性能を最適化するには、ADM7150 または LT3045 などの低ノイズ・レギュレータを VCC_VCO ピンに接続することを推奨します。 同じレギュレータを VCC_VCO ピンと VCC_LDO ピンに接続します。 5V VCO 電源に 1μ F のデカップリング・コンデンサを接続することを推奨します。

他のすべての 3.3V電源ピンには、1つの ADM7150 または 1つの LT3045 レギュレータを使用します。 VDD_VP ピンにも 1μ F を推 奨します。 他の電源ピンへの追加のデカップリングは不要です。

LGA パッケージの PCB 設計ガイドライン

チップ・スケール・パッケージの底面には、中央に露出サーマル・パッドがあります。PCB上のサーマル・パッドは、少なくとも露出パッドと同じ大きさである必要があります。PCB上で、サーマル・パッドとパッド・パターンの内側の端との間に最低0.25mmの隙間が必要です。この隙間によって短絡を回避します。


パッケージの熱性能を向上させるには、PCB サーマル・パッドに サーマル・ピアを使用します。ピアを使用する場合は、それら を 1.2mm ピッチのグリッドでサーマル・パッドに組み込みます。ピア直径は 0.3mm ~ 0.3 3mm とし、ピア・バレルを 1 オンスの銅でメッキしてピアに埋め込む必要があります。

ADF4371などのマイクロ波 PLLや VCO シンセサイザの場合は、ボードのスタックアップとレイアウトに注意します。FR4 材料を使用すると、3GHzを超える信号で振幅が減少するため、使用しないでください。代わりに、Rogers 4350、Rogers 4003、または Rogers 3003 の誘電体材料が適しています。

不連続性を最小限に抑え、信号の完全性を最大化するために、 RF 出力のトレースに注意します。ビアの配置と接地は重要です。

出力マッチング

必要に応じて、低周波出力を次段の回路に AC カップリングできます。ただし、より大きな出力電力が必要な場合は、プルアップ・インダクタを使って出力電力レベルを上昇させます。

差動出力が不要な場合は、未使用の出力を終端するか、バラン を使用して両方の出力を結合します。

1GHz より低い周波数では、RF8P ピンと RF8N ピンに 100nH のインダクタを使用することを推奨します。

RF8P ピンと RF8N ピンは差動回路を形成します。可能であれば 各出力に同じ(または類似の)部品を使用します。例えば、同じシャント・インダクタの値、バイパス・コンデンサ、および 終端を使用します。

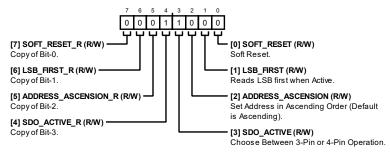
RFAUX8P ピンと RFAUX8N ピンは実質的に RF8P と RF8N と同じであり、RF8P と RF8N について述べた方法で処理する必要があります。

RF16PピンとRF16Nピン、およびRF32PピンとRF32Nピンは、次段の回路に直接接続できます。これらのピンは内部で 50Ω に整合されており、追加のデカップリングは不要です。

Rev. 0 — 24/48 —

レジスタの一覧

表 9. ADF4371 のレジスタの一覧


			1のレジスタ			T	T	T		T	T =	
No. Reserved Res	Reg	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	RW
STRECTION BLASHAĞE		[7:0]	R		ASCENSION_R		SDO_ACTIVE	ASCENSION	LSB_FIRST	SOFT_RESET	0x18	
100 100	0x01	[7:0]		STALLING	READBACK_			RESERVED			0x00	R/W
1909	0x03	[7:0]		RESE	ERVED			CHII	P_TYPE		0x0X	R
0.00	0x04	[7:0]				PRODUC	CT_ID[7:0]				0xXX	R/W
179	0x05	[7:0]				PRODUC	T_ID[15:8]					R/W
10 10 10 10 10 10 10 10		[7:0]		PRODUC	T_GRADE			DEVICE	_REVISION			_
190												R/W
1.00 1.00				T		BIT_INTEGE	R_WORD[15:8]					
190			RESERVED	EN_AUTOCAL	PRE_SEL			RESERVED				_
10												
0.1												
No.										ED LOUWODD		
194 194 195			DESCRIPTION			FRAC2WORD[6:0]	,					
Mode			RESERVED			Modan		/]				
1961 1979			DEGERATED	DILLOG ADI		MOD2W		IODDI12 01				
Mart			RESERVED	PHASE_ADJ		DILACE		/ORD[13:8]				
17-9 17-												
NE												
No.				CP CI	IRRENT	FIIASE_W		PD	RESERVED	CNTR RESET		
\$\cap 0.20					ACCENT		TD_TOL		RESERVED	CIVIK_KESET		
					XOUT		MUXOUT EN		RESI	FRVFD		
			RESERVED	,		RDIV2	Wiekeel_Ek	_		EC LED		
				_	_		RES		TRACKING_FI LTER_MUX_S	RESERVED		R/W
0.25 [7:0] MUTE_LD RESERVED RF_DIVSEL_DB X4_EN X2_EN RF_EN RF_OUT_POWER 0.07 R/W 0.26 [7:0] 1.0 LD_BLS LDP BLEED_GT VCOLDO_PD RF_PBS 0.62 R/W 0.27 [7:0] DOUBLE_BUF LDP BLEED_GT VCOLDO_PD RF_PBS 0.62 R/W 0.28 [7:0] DOUBLE_BUF SESEVED BLEED_FOL RESERVED LD_GUNT LOL_EN 0.03 R/W 0.28 [7:0] RESERVED BLEED_FOL RESERVED LE_SEL RESERVED READ_SEL 0.00 R/W 0.22 [7:0] RESERVED ALC_RECT_DAC_LOW VAR_MOD_EN RESERVED SD_LD_FRACO 0.01 R/W 0.22 [7:0] RESERVED ALC_RECT_DAC_LOW ALC_RECT_DAC_LOW VUN_RECT_DAC_LOW VUN_RECT_DAC_LOW 0.01 R/W 0.22 [7:0] RESERVED RESERVED ALC_RECT_DAC_LOW ALC_RECT_DAC_LOW ALC_RECT_DAC_LOW ALC_RECT_DAC_LOW	0x24	[7:0]	FB SEL		DIV SEL			RES			0x80	R/W
No.			_	RESERVED	RF_DIVSEL_	X4_EN	X2_EN	1		r_power		R/W
	0x26	[7:0]		1		BLEE	ED ICP				0x32	R/W
0.02	0x27		LD	BIAS	LDP	BLEED GATE	BLEED EN	VCOLDO PD	RF	PBS	0xC5	R/W
0x2B 770 RESERVED LSB_PI VAR_MOD_EN RESERVED SD_LOAD_ENB RESERVED SD_EN_FRACO 0x01 RW 0x2C [70] RESERVED ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI VTUNE_CALSET_EN DISABLE_ALC 0x44 RW 0x2D [70] RESERVED RESERVED ALC_RECT_SELECT_VCOI ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI 0x11 RW 0x2E [70] SWITCH_LIDO_3PV_OT RESERVED ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI 0x12 RW 0x30 [70] SWITCH_LIDO_3PV_OT RESERVED ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI 0x94 RW 0x31 [70] SWITCH_LIDO_3PV_OT RESERVED ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI 0x94 RW 0x31 [70] SWITCH_LIDO_3PV_OT RESERVED ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI 0x94 RW 0x31 [70] SWITCH_LIDO_3PV_OT RESERVED ALC_RECT_SELECT_VCOI ALC_REF_DAC_NOM_VCOI 0x94 RW <	0x28	[7:0]			RESE	ERVED		LD_0	COUNT	LOL_EN	0x03	R/W
No. No.	0x2A	[7:0]	RESE	ERVED	BLEED_POL	RESERVED	LE_SEL	RES	ERVED	READ_SEL	0x00	R/W
0x2C [7:0] RESERVED ALC_RECT_SELECT_DAG_LOW_VCOI ALC_REF_DAC_NOM_VCOI VTUNE_CALSET_EN DISABLE_ALC 0x44 RW 0x2D [7:0] RESERVED ALC_RECT_SELECT_VCO2 ALC_REF_DAC_NOM_VCO2 Ox11 RW 0x2E [7:0] RESERVED ALC_RECT_SELECT_VCO2 ALC_REF_DAC_NOM_VCO3 Ox12 RW 0x2F [7:0] SWITCH_LDO_3PM_5 ys RESERVED ALC_RECT_SELECT_VCO3 ALC_REF_DAC_NOM_VCO3 Ox12 RW 0x30 [7:0] SWITCH_LDO_3PM_5 ys RESERVED ALC_RECT_SELECT_VCO3 ALC_REF_DAC_NOM_VCO3 Ox94 RW 0x31 [7:0] SWITCH_LDO_3PM_5 ys RESERVED ALC_RECT_SELECT_VCO3 ALC_REF_DAC_NOM_VCO3 Ox94 RW 0x31 [7:0] SWITCH_LDO_3PM_5 ys RESERVED ALC_RECT_SELECT_VCO3 ALC_REF_DAC_NOM_VCO3 Ox94 RW 0x31 [7:0] ADC_MAC_SELECT_VCO3 ALC_RECT_ALC_RECT_SELECT_VCO3 ALC_RECT_ALC_RECT_SELECT_VCO3 ALC_RECT_ALC_RECT_SELECT_VCO3 Ox94 RW 0x32 [7:0] ADC_MAC_SELECT_SELE	0x2B	[7:0]	RESE	ERVED	LSB_P1	VAR_MOD_EN	RESERVED		RESERVED	SD_EN_FRAC0	0x01	R/W
0x2D [7:0] RESERVED ALC_RECT	0x2C	[7:0]	RESERVED	SELECT_	DAC_LO_	ALC	C_REF_DAC_NOM_			DISABLE_ALC	0x44	R/W
	0x2D	[7:0]			1	ALC_RECT_ SELECT_VCO2	C	AL	C_REF_DAC_NOM_	VCO2	0x11	R/W
The color of th	0x2E	[7:0]		RESERVED			ALC_REF_DA C	AL	C_REF_DAC_NOM_	VCO3	0x12	R/W
0x30 [7:0] VCO_BAND_DIV 0x3F R/W 0x31 [7:0] ADC_MUX_SEL VCO_BAND_DIV 0x3F R/W 0x32 [7:0] ADC_MUX_SEL RESERVED ADC_CTS_CONV ADC_ADC_NUVERSION ADC_BADLE TIMEOUT[9:8] 0x04 R/W 0x33 [7:0] RESERVED ADC_CTS_CONVERSION ENABLE TIMEOUT[9:8] 0x06 R/W 0x34 [7:0] ADC_CTS_DIVIDER VCO_ALC_TIMEOUT 0x92 R/W 0x36 [7:0] ICP_ADJUST_OFFSET 0x30 R/W 0x37 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x38 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x34 [7:0] RESERVED VCO_FSM_	0x2F	[7:0]		RESE	ERVED		ALC_REF_DA	AL	C_REF_DAC_NOM_	VCO4	0x94	R/W
0x31 [7:0] DXA7 R/W 0x32 [7:0] ADC_MUX_SEL RESERVED ADC_AST_CONV ADC_CTS_CONV ADC_NVERSION ADC_NVERSION TIMEOUT[9:8] 0x04 R/W 0x33 [7:0] RESERVED SYNTH_LOCK_TIMEOUT 0x0C R/W 0x34 [7:0] VCO_FSM_TEST_MODES VCO_ALC_TIMEOUT 0x9E R/W 0x35 [7:0] ADC_CLK_DIVIDER 0x4C R/W 0x36 [7:0] ADC_CLK_DIVIDER 0x30 R/W 0x37 [7:0] SI_VACO_SEL SI_VACO_SEL 0x00 R/W 0x38 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VACO_BIAS_CODE 0x00 R/W 0x30 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VACO_BIAS_CODE 0x07 R/W 0x34 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VACO_BIAS_CODE 0x07 R/W 0x34 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VACO_BIAS_CODE 0x07 R/W </td <td>0x30</td> <td>[7:0]</td> <td>_</td> <td>П</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>0x3F</td> <td>R/W</td>	0x30	[7:0]	_	П				1			0x3F	R/W
0x32 [7:0] ADC_MUX_SEL RESERVED ADC_FAST_CONV ADC_CTS_CONV ADC_NVERSION ADC_ENABLE TIMEOUT[9:8] 0x04 R/W 0x33 [7:0] RESERVED SYNTH_LOCK_TIMEOUT 0x0C R/W 0x34 [7:0] VC SM_TEST_MODES VCO_ALC_TIMEOUT 0x9E R/W 0x35 [7:0] ADC_CLK_DIVIDER 0x4C R/W 0x36 [7:0] SI_VO_SEL SI_VO_BLS_CODE 0x00 R/W 0x37 [7:0] SI_VCO_SEL SI_VCO_BLS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x34 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x34 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W												R/W
0x33 [7:0] RESERVED SYNTH_LOCK_TIMEOUT 0x0C R/W 0x34 [7:0] VCO_FSM_TEST_MODES VCO_ALC_TIMEOUT 0x9E R/W 0x35 [7:0] ADC_CLK_DIVIDER 0x4C R/W 0x36 [7:0] ICP_ADJUST_OFFSET 0x30 R/W 0x37 [7:0] SI_BAND_SEL 0x00 R/W 0x38 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x34 [7:0] ADC_OFFSET 0x55 R/W				RESERVED		ADC_CTS_	ADC_		TIMEO	OUT[9:8]		R/W
0x35 [7:0] ADC CLK_DIVIDER 0x4C R/W 0x36 [7:0] ICP_ADJUST_OFFSET 0x30 R/W 0x37 [7:0] SI_BAND_SEL 0x00 R/W 0x38 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x3A [7:0] ADC_OFFSET 0x55 R/W	0x33	[7:0]		RESERVED					OUT		0x0C	R/W
0x36 [7:0] ICP_ADJUST_OFFSET 0x30 R/W 0x37 [7:0] SI_BAND_SEL 0x00 R/W 0x38 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x3A [7:0] CADC_OFFSET 0x55 R/W	0x34	[7:0]	VO	CO_FSM_TEST_MOI	DES			VCO_ALC_TIMEOU	JT		0x9E	R/W
0x37 [7:0] SI_BAND_SEL 0x00 R/W 0x38 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x3A [7:0] ADC_OFFSET 0x55 R/W	0x35	[7:0]		_		ADC_CLE	K_DIVIDER	_			0x4C	R/W
0x38 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x3A [7:0] ADC_OFFSET 0x55 R/W	0x36	[7:0]				ICP_ADJU	ST_OFFSET				0x30	R/W
0x38 [7:0] SI_VCO_SEL SI_VCO_BIAS_CODE 0x00 R/W 0x39 [7:0] RESERVED VCO_FSM_TEST_MUX_SEL SI_VTUNE_CAL_SET 0x07 R/W 0x3A [7:0] ADC_OFFSET 0x55 R/W	0x37	[7:0]				SI_BAI	ND_SEL				0x00	R/W
0x3A [7:0] ADC_OFFSET 0x55 R/W	0x38			SI_VC	CO_SEL	_		SI_VCO_	BIAS_CODE		0x00	R/W
0x3A [7:0] ADC_OFFSET 0x55 R/W	0x39	[7:0]	RESERVED	VC	O_FSM_TEST_MUX	_SEL		SI_VTUN	E_CAL_SET		0x07	R/W
0x3D [7:0] RESERVED SD_RESET RESERVED 0x00 R/W	0x3A	[7:0]				ADC_0	OFFSET	·			0x55	R/W
	0x3D	[7:0]	RESERVED	SD_RESET			RES	ERVED			0x00	R/W

Reg	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	RW
0x3E	[7:0]		RESERVED			CP_T	MODE	RESI	ERVED	0x0C	R/W
0x3F	[7:0]				CLK1_	DIV[7:0]				0x80	R/W
0x40	[7:0]	RESERVED		TRM_IB_VCO_BUI	7		CLK1_	DIV[11:8]		0x50	R/W
0x41	[7:0]				CLK2_DIV	/IDER_1[7:0]				0x28	R/W
0x42	[7:0]		CLK2_DIV	IDER_2[3:0]			CLK2_DIV	IDER_1[11:8]		0x00	R/W
0x47	[7:0]	,	TRM RESD VCO MUX				RESERVED			0xC0	R/W
0x52	[7:0]		TRM_RESD_VCO_BUF		TRM_RESCI_VCO_E	UF	RESI	ERVED	0xF4	R/W	
0x6E	[7:0]		VCO DATA READBACK[7:0]						0x00	R	
0x6F	[7:0]				VCO_DATA_R	READBACK[15:8]				0x00	R
0x70	[7:0]		BAND_SEL_X2			RESERVED		BIAS_	SEL_X2	0x03	R/W
0x71	[7:0]		BAND_SEL_X4			RESERVED		BIAS_SEL_X4		0x60	R/W
0x72	[7:0]	RESERVED	AUX_FREQ_ SEL	POUT	ſ_AUX	PDB_AUX	RESERVED	COUPLED_ VCO	RESERVED	0x32	R/W
0x73	[7:0]	RESERVED				ADC_CLK_ DISABLE	PD_NDIV	LD_DIV	0x00	R/W	
0x7C	[7:0]		RESERVED LOCK_DETEC				LOCK_DETEC T_READBACK	0x00	R		

Rev. 0 — 26/48 —

レジスタの詳細

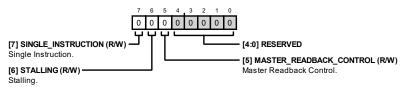

アドレス: 0x00、デフォルト: 0x18、レジスタ名: REG0000

表 10. REG0000 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	SOFT_RESET_R	ビット0のコピー。	0x0	R/W
6	LSB_FIRST_R	ビット1のコピー。	0x0	R/W
5	ADDRESS_ASCENSION_R	ビット2のコピー。	0x0	R/W
4	SDO_ACTIVE_R	ビット3のコピー。	0x1	R/W
3	SDO_ACTIVE	3ピン動作か4ピン動作かを選択。	0x1	R/W
		0:3 ピン。		
		1:4ピン。SDIOピンをイネーブルすると、SDIOピンは入力専用に		
		なります。		
2	ADDRESS_ASCENSION	アドレスを昇順に設定(デフォルトは昇順)。	0x0	R/W
		0:降順		
		1:昇順		
1	LSB_FIRST	アクティブのとき LSB ファーストで読み出す。	0x0	R/W
0	SOFT_RESET	ソフト・リセット。	0x0	R/W
		0:通常動作。		
		1:ソフト・リセット。		

アドレス: 0x01、デフォルト: 0x00、レジスタ名: REG0001

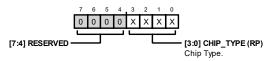


表 11. REG0001 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	SINGLE_INSTRUCTION	単一命令。このビットを1に設定すると、SPIストリーム・モードは	0x0	R/W
		無効になります。		
6	STALLING	ストーリング。	0x0	R/W
5	MASTER_READBACK_CONT ROL	マスタ・リードバック制御。	0x0	R/W
[4:0]	RESERVED	予備。	0x0	R

Rev. 0 — 27/48 —

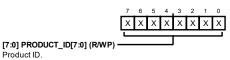

アドレス:0x03、デフォルト:0x0X、レジスタ名:REG0003

表 12. REG0003 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	RESERVED	予備。	0x0	R
[3:0]	CHIP_TYPE	チップ・タイプ。	Prog	RP

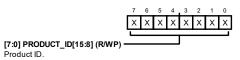

アドレス: 0x04、デフォルト: 0xXX、レジスタ名: REG0004

表 13. REG0004 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	PRODUCT_ID[7:0]	製品 ID。	Prog	R/WP

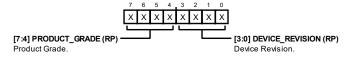

アドレス:0x05、デフォルト:0xXX、レジスタ名:REG0005

表 14. REG0005 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	PRODUCT_ID[15:8]	製品 ID。	Prog	R/WP

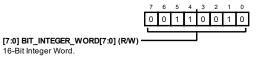

アドレス: 0x06、デフォルト: 0xXX、レジスタ名: REG0006

表 15. REG0006 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	PRODUCT_GRADE	製品グレード。	Prog	RP
[3:0]	DEVICE_REVISION	デバイスのリビジョン。	Prog	RP

アドレス: 0x10、デフォルト: 0x32、レジスタ名: REG0010

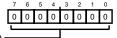
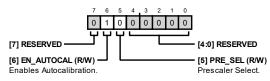


表 16. REG0010 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]		16 ビットのインテジャー・ワード。Nのインテジャー値を設定します。FRAC1、FRAC2、MOD2 などの PLL N カウンタへの更新は、このビット・フィールドによってダブル・バッファされます	0x32	R/W

Rev. 0 — 28/48 —

アドレス:0x11、デフォルト:0x00、レジスタ名:REG0011



[7:0] BIT_INTEGER_WORD[15:8] (R/W) 16-Bit Integer Word.

表 17. REG0011 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	BIT_INTEGER_WORD[15:8]	16 ビットのインテジャー・ワード。Nのインテジャー値を設定しま	0x0	R/W
		す。FRAC1、FRAC2、MOD2 などの PLL N カウンタへの更新は、こ のビット・フィールドによってダブル・バッファされます		
		0) L 9 F - 2 1 1/2 F (C x 9 C 9 2 1/2 - 1 1 9 2) C 4 1 x 9		

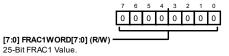

アドレス:0x12、デフォルト:0x40、レジスタ名:REG0012

表 18. REG0012 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
6	EN_AUTOCAL	自動キャリブレーションのイネーブル。	0x1	R/W
		0:VCO自動キャリブレーションをディスエーブル。		
		1:VCO自動キャリブレーションをイネーブル。		
5	PRE_SEL	プリスケーラ選択。デュアル・モジュラス・プリスケーラはこのビットで設定します。N分周器への入力にあるプリスケーラは、N分周器が処理できるように VCO 信号を分周します。プリスケーラの設定はRF 周波数と最小および最大の INT 値に影響します。0:4/5 プリスケーラ。1:8/9 プリスケーラ。	0x0	R/W
[4:0]	RESERVED	予備。	0x0	R

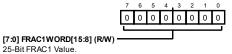

アドレス: 0x14、デフォルト: 0x00、レジスタ名: REG0014

表 19. REG0014 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	FRAC1WORD[7:0]	25 ビットの FRAC1 値。FRAC1 値を設定します。	0x0	R/W

アドレス: 0x15、デフォルト: 0x00、レジスタ名: REG0015

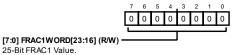


表 20. REG0015 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	FRAC1WORD[15:8]	25 ビットの FRAC1 値。FRAC1 値を設定します。	0x0	R/W

Rev. 0 — 29/48 —

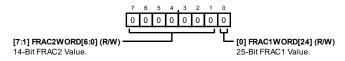

アドレス:0x16、デフォルト:0x00、レジスタ名:REG0016

表 21. REG0016 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	FRAC1WORD[23:16]	25 ビットの FRAC1 値。 FRAC1 値を設定します。	0x0	R/W

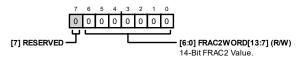

アドレス: 0x17、デフォルト: 0x00、レジスタ名: REG0017

表 22. REG0017 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:1]	FRAC2WORD[6:0]	14 ビットの FRAC2 値。FRAC2 を設定します。	0x0	R/W
0	FRAC1WORD[24:24]	25 ビットの FRAC1 値。FRAC1 値を設定します。	0x0	R/W

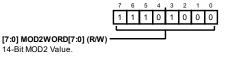

アドレス:0x18、デフォルト:0x00、レジスタ名:REG0018

表 23. REG0018 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
[6:0]	FRAC2WORD[13:7]	14 ビットの FRAC2 値。FRAC2 を設定します。	0x0	R/W

アドレス: 0x19、デフォルト: 0xE8、レジスタ名: REG0019

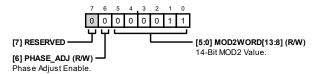


表 24. REG0019 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	MOD2WORD[7:0]	14 ビットの MOD2 値。MOD2 値を設定します。	0xE8	R/W

Rev. 0 - 30/48 -

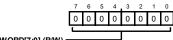
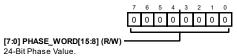

アドレス: 0x1A、デフォルト: 0x03、レジスタ名: REG001A

表 25. REG001A のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
6	PHASE_ADJ	位相調整イネーブル。位相調整をイネーブルするには1に設定します。位相 調整は、電流位相に対して出力の位相を大きくします。 0:位相調整ディスエーブル。 1:位相調整イネーブル。	0x0	R/W
[5:0]	MOD2WORD[13:8]	14 ビットの MOD2 値。MOD2 値を設定します。	0x3	R/W

アドレス:0x1B、デフォルト:0x00、レジスタ名:REG001B



[7:0] PHASE_WORD[7:0] (R/W) 24-Bit Phase Value.

表 26. REG001B のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	PHASE_WORD[7:0]	24 ビットの位相値。位相調整用の位相ワードを設定します。位相調整を使用	0x0	R/W
		しない場合は、位相値を0に設定します。RF出力周波数の位相は24ビット・		
		ステップで調整できます。位相ステップ=位相ワード÷16,777,216×360°。		

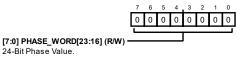

アドレス:0x1C、デフォルト:0x00、レジスタ名:REG001C

表 27. REG001C のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	PHASE_WORD[15:8]	24 ビットの位相値。位相調整用の位相ワードを設定します。位相調整を使用	0x0	R/W
		しない場合は、位相値を0に設定します。RF出力周波数の位相は24ビット・		
		ステップで調整できます。位相ステップ=位相ワード÷16,777,216×360°。		

アドレス:0x1D、デフォルト:0x00、レジスタ名:REG001D

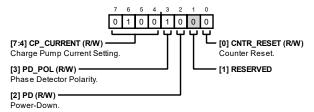


表 28. REG001D のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	PHASE_WORD[23:16]	24 ビットの位相値。位相調整用の位相ワードを設定します。位相調整を使用しない場合は、位相値を 0 に設定します。RF 出力周波数の位相は 24 ビット・ステップで調整できます。位相ステップ = 位相ワード÷16,777,216×360°。	0x0	R/W

Rev. 0 - 31/48 -

アドレス: 0x1E、デフォルト: 0x48、レジスタ名: REG001E

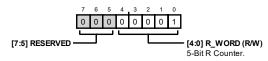


表 29. REG001E のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	CP_CURRENT	チャージ・ポンプ電流設定。チャージ・ポンプ電流を設定します。これらのビットは、ループ・フィルタ設計で使用するチャージ・ポンプの電流を設定します。 0:0.35mA	0x4	R/W
		1: 0.70mA		
		10:1.05mA		
		11 : 1.4mA		
		100 : 1.75mA		
		101 : 2.8mA		
		110 : 2.45mA		
		111 : 2.8mA		
		1000 : 3.15mA		
		1001 : 3.5mA		
		1010 : 3.85mA		
		1011 : 4.2mA		
		1100 : 4.55mA		
		1101 : 4.9mA		
		1110 : 5.25mA		
		1111 : 5.6mA		
3	PD_POL	位相検出器の極性。非反転ループ・フィルタと調整勾配が正の VCO を使用する場合は、位相検出器の極性を正に設定します。反転ループ・フィルタと調整勾配が負の VCO を使用する場合は、位相検出器の極性を正に設定します。非反転ループ・フィルタと調整勾配が負の VCO を使用する場合は、位相検出器の極性を負に設定します。反転ループ・フィルタと調整勾配が正の VCO を使用する場合は、位相検出器の極性を負に設定します。	0x1	R/W
		0: 負の位相検出器極性。		
		1:正の位相検出器極性。		
2	PD	パワーダウン。1 に設定すると、ADF4371 のすべての内部 PLL ブロックがパワーダウンします。VCO と乗算器はパワーアップしたままです。レジスタの値は失われません。ADF4371 がパワーダウン状態から抜け出た(0 に設定)後、ループを再ロックするには REG0010 への書込みが必要です。0:通常動作。	0x0	R/W
		1:パワーダウン。		
1	RESERVED	予備。	0x0	R
0	CNTR_RESET	カウンタ・リセット。1に設定すると、N分周器とRカウンタがリセットされます。PFDに信号は入力されません。 0:通常動作。	0x0	R/W
		1:カウンタ・リセット。		

Rev. 0 — 32/48 —

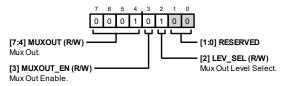

アドレス: 0x1F、デフォルト: 0x01、レジスタ名: REG001F

表 30. REG001F のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	RESERVED	予備。	0x0	R
[4:0]	R_WORD	5 ビット R カウンタ。	0x1	R/W

アドレス: 0x20、デフォルト: 0x14、レジスタ名: REG0020

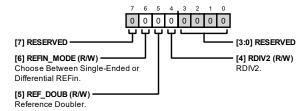


表 31. REG0020 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	MUXOUT	マルチプレクサ出力。MUXOUT_EN=1のときのマルチプレクサ出力信号の設定に使用します。	0x1	R/W
		0:トライステート、ハイ・インピーダンス出力(MUXOUT_EN = 0 の場合にの み機能)。		
		1: デジタル・ロック検出。		
		10:チャージ・ポンプ起動。		
		11:チャージ・ポンプ停止。		
		100 : RDIV2 _o		
		101:N分周器出力。		
		110: VCO テスト・モード。		
		111:予備。		
		1000:ハイ。		
		1001: VCO キャリブレーション R 帯域/2。		
		1010: VCO キャリブレーション N 帯域/2。		
3	MUXOUT_EN		0x0	R/W
		る場合は0に設定します。		
		0: データピンをリードバックに使用。		
		1:マルチプレクサ出力ピンをリードバックに使用。		
2	LEV_SEL	マルチプレクサ出力レベルの選択。マルチプレクサ出力でのロジックの電圧レベ	0x1	R/W
		ルを選択します。		
		0:1.8V ロジック。		
		1:3.3V ロジック。		
[1:0]	RESERVED	予備。	0x0	R

Rev. 0 — 33/48 —

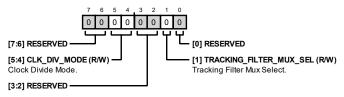

アドレス: 0x22、デフォルト: 0x00、レジスタ名: REG0022

表 32. REG0022 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
6	REFIN_MODE	REF _{IN} をシングルエンドにするか差動にするかを選択。	0x0	R/W
		0:シングルエンド REF _{IN} 。		
		1:差動 REF _{INo}		
5	REF_DOUB	リファレンス・ダブラ。リファレンス・ダブラのブロックを制御します。	0x0	R/W
		0:ダブラをディスエーブル。		
		1:ダブラをイネーブル。		
4	RDIV2	RDIV2。リファレンス・クロックの 2 分周制御。この機能を使用して、50%デューティ・サイクルの信号を PFD に供給できます。	0x0	R/W
		0: RDIV2ディスエーブル。		
		1:RDIV2イネーブル。		
[3:0]	RESERVED	予備。	0x0	R

アドレス:0x23、デフォルト:0x00、レジスタ名:REG0023

表 33. REG0023 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:6]	RESERVED	予備。	0x0	R
[5:4]	CLK_DIV_MODE	クロック分周モード。位相再同期をイネーブルするには、10に設定します。 位相再同期を使用しない場合は、00に設定します。	0x0	R/W
		0:クロック分周器オフ(通常動作)。		
		10:再同期イネーブル。		
[3:2]	RESERVED	予備。	0x0	R
1	TRACKING_FILTER _MUX_SEL	トラッキング・フィルタのマルチプレクサ選択。	0x0	R/W
		0:通常。トラッキング・フィルタ係数は自動的に設定。		
		1:トラッキング・フィルタ係数を SPI から手動で設定(REG0070 と		
		REG0071) 。		
0	RESERVED	予備。	0x0	R

Rev. 0 - 34/48 -

アドレス: 0x24、デフォルト: 0x80、レジスタ名: REG0024

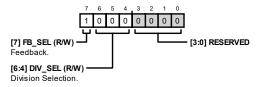
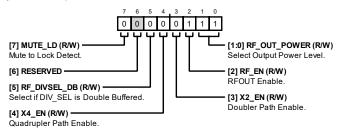



表 34. REG0024 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	FB_SEL	フィードバック。	0x1	R/W
		0:Nカウンタへの分周フィードバック。		
		1:Nカウンタへの基本フィードバック。		
[6:4]	DIV_SEL	分周選択。	0x0	R/W
		0:1分周。		
		1:2分周。		
		10:4分周。		
		11:8分周。		
		100:16分周。		
		101:32分周。		
		110:64分周。		
		111:予備。		
[3:0]	RESERVED	予備。	0x0	R

アドレス: 0x25、デフォルト: 0x07、レジスタ名: REG0025

表 35. REG0025 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	MUTE_LD	ロック検出までミュート。	0x0	R/W
		0:ロック検出までのミュートを無効化。		
		1:ロック検出までのミュートを有効にし、デジタル・ロック検出によるロジック・ハイのアサートにより RF 出力段がゲートされる。		
6	RESERVED	予備。	0x0	R
5	RF_DIVSEL_DB	DIV_SELをダブル・バッファ付きにするかどうかを選択。	0x0	R/W
4	X4_EN	4 逓倍パスをイネーブル。	0x0	R/W
		0:RF4 逓倍器をオフ。		
		1: RF4 逓倍器をオン。		
3	X2_EN	ダブラ・パスをイネーブル。	0x0	R/W
		0: RF ダブラをオフ。		
		1: RF ダブラをオン。		
2	RF_EN	RF _{OUT} イネーブル。	0x1	R/W
		0: RF _{OUT} をディスエーブル。		
		1:RF _{OUT} をイネーブル。		

Rev. 0 — 35/48 —

ビット	ビット名	説明	デフォルト	アクセス
[1:0]	RF_OUT_POWER	出力電力レベルの選択。	0x3	R/W
		$0:-4dBm_{\circ}$		
		$1:-1$ dBm $_{\circ}$		
		10: 2dBm _o		
		11:5dBm _o		

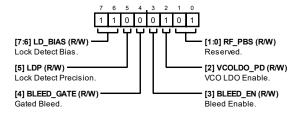

アドレス:0x26、デフォルト:0x32、レジスタ名:REG0026

表 36. REG0026 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	BLEED_ICP	ブリード電流。ブリード電流を設定します。最適ブリード電流は ((4/N) × I _{CP})/3.75で設定します。ここで、I _{CP} はチャージ・ポンプ電流 (μA)です。	0x32	R/W

アドレス: 0x27、デフォルト: 0xC5、レジスタ名: REG0027

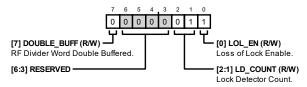


表 37. REG0027 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:6]	LD_BIAS	ロック検出バイアス。ロック検出器のウィンドウ・サイズは、ロック検出器 のバイアスをロック検出器の精度と共に調整することによって設定します。	0x3	R/W
		0:LDP=0の場合、ロック検出遅延は5ns。		
		1:6ns _o		
		10:8ns _o		
		11:ロック検出遅延は12ns (ブリードが大きい場合)		
5	LDP	ロック検出精度。選択した INT または FRAC 操作に応じて、デジタル・ロック検出器の感度を制御します。	0x0	R/W
		0:FRACモード (5ns)		
		1: INTモード (2.4ns)		
4	BLEED_GATE	ゲート・ブリード。	0x0	R/W
		0:ゲート・ブリードをディスエーブル。		
		1: ゲート・ブリードをオン、デジタル・ロック検出(デジタル・ロック検出を有効にする必要があります)。		
3	BLEED_EN	ブリード・イネーブル。ブリード電流がチャージ・ポンプ内部の電流に印加され、チャージ・ポンプの直線性が向上します。この電流により、位相ノイズが減少し、スプリアス性能が向上します。ネガティブ・ブリードをイネーブルするには1に設定します。	0x0	R/W
		0: ネガティブ・ブリードをディスエーブル。		
		1: ネガティブ・ブリードをイネーブル。		
2	VCOLDO_PD	VCO LDO イネーブル。スプリアスおよび位相ノイズ性能を最適化するには、	0x1	R/W
		VCO LDO をディスエーブルします。		
		0: VCO LDO をイネーブル。		
		1: VCO LDO をディスエーブル。		
[1:0]	RF_PBS	予備。	0x1	R/W

Rev. 0 - 36/48 -

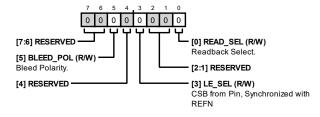

アドレス: 0x28、デフォルト: 0x03、レジスタ名: REG0028

表 38. REG0028 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	DOUBLE_BUFF	RF 分周器ワードをダブル・バッファ。	0x0	R/W
		0:通常動作。		
		1: RF 分周器ワードをダブル・バッファ。		
[6:3]	RESERVED	予備。	0x0	R
[2:1]	LD_COUNT	ロック検出器カウント。ロック検出器の初期値。このフィールドは、デジタル・ロック検出をハイにアサートする前のロック・ウィンドウ内の PFD カウント数を設定します。 0:1024 サイクル 1:2048 サイクル 10:4096 サイクル 11:8192 サイクル	0x1	R/W
0	LOL_EN	ロック喪失イネーブル。ロック喪失をイネーブルした場合、デジタル・ロック検出がアサートされ、リファレンス信号が失われるとデジタル・ロック検出はローになります。ロック喪失機能を有効にするために1に設定することを推奨します。0:ロック喪失ディスエーブル。1:ロック喪失イネーブル。	0x1	R/W

アドレス: 0x2A、デフォルト: 0x00、レジスタ名: REG002A

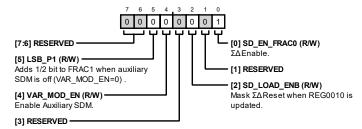


表 39. REG002A のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:6]	RESERVED	予備。	0x0	R
5	BLEED_POL	ブリード極性。ブリード電流の極性を制御します。通常はネガティブで使用します。	0x0	R/W
		0:ネガティブ・ブリード。		
		1:ポジティブ・ブリード(非推奨)。		
4	RESERVED	予備。	0x0	R
3	LE_SEL	ピンからの CSB。 REFN と同期。	0x0	R/W
		0: CSB 同期をディスエーブル。		
		1: CSB 同期をイネーブル。		
[2:1]	RESERVED	予備。	0x0	R
0	READ_SEL	リードバック選択。リードバックする値を選択します。	0x0	R/W
		0:VCO、帯域、およびバイアス補償データをリードバック。		
		1:デバイスのバージョン ID をリードバック。		

Rev. 0 - 37/48 -

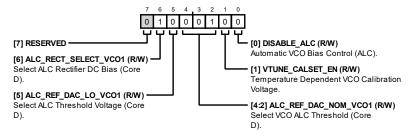

アドレス: 0x2B、デフォルト: 0x01、レジスタ名: REG002B

表 40. REG002B のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:6]	RESERVED	予備。	0x0	R
5	LSB_P1	補助 SDM がオフの場合 (VAR_MOD_EN = 0) 、FRAC1 にハーフ・ビット を追加。通常動作では 0 に設定します。	0x0	R/W
4	VAR_MOD_EN	 補助 SDM のイネーブル。FRAC2=0の場合、このビットは1に設定します。 0:通常動作。 1:補助 SDM をイネーブル。 	0x1	R/W
3	RESERVED	予備。	0x0	R
2	SD_LOAD_ENB	REG0010 の更新時にマスク ΣΔ リセット。	0x0	R/W
1	RESERVED	予備。	0x0	R
0	SD_EN_FRAC0	$\Sigma\Delta$ イネーブル。INT モードでは(FRAC1 = FRAC2 = 0 のとき)1 に設定し、FRAC モードでは 0 に設定します。 0: $\Sigma\Delta$ をイネーブル(フラクショナル・モードの場合)。 1: $\Sigma\Delta$ をディスエーブル(インテジャー・モードの場合)。	0x1	R/W

アドレス: 0x2C、デフォルト: 0x44、レジスタ名: REG002C

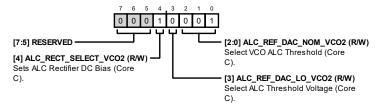


表 41. REG002C のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
6	ALC_RECT_SELECT_ VCOI	ALC 整流 DC バイアス (コア D) の選択。	0x1	R/W
		0:3.3V VCO 動作。		
		1:5V VCO 動作。		
5	ALC_REF_DAC_LO_V CO1	ALC スレッショールド電圧(コア D)の選択。	0x0	R/W
		0:5V VCO 動作。		
		1:3.3V VCO 動作。		
[4:2]	ALC_REF_DAC_NOM _VCO1	VCO ALC スレッショールド電圧(コア D)の選択。	0x1	R/W
		001:3.3V および 5V の VCO 動作。		
1	VTUNE_CALSET_EN	温度依存 VCO キャリブレーション電圧。	0x0	R/W
		0:温度依存 VCO キャリブレーション電圧をディスエーブル。		
		1:温度依存 VCO キャリブレーション電圧をイネーブル。		
0	DISABLE_ALC	自動 VCO バイアス制御(ALC)。	0x0	R/W
		0: ALC を有効化。		
		1: ALC を無効化。		

Rev. 0 - 38/48 -

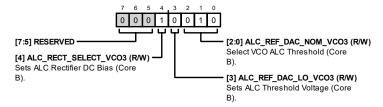

アドレス: 0x2D、デフォルト: 0x11、レジスタ名: REG002D

表 42. REG002D のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	RESERVED	予備。	0x0	R
4	ALC_RECT_SELECT_VCO2	ALC 整流 DC バイアス(コア C)の設定。	0x1	R/W
		0:3.3V VCO動作。		
		1:5V VCO 動作。		
3	ALC_REF_DAC_LO_VCO2	ALCスレッショールド電圧(コア C)の選択。	0x0	R/W
		0:5V VCO 動作。		
		1:3.3V VCO 動作。		
[2:0]	ALC_REF_DAC_NOM_VCO2	VCO ALC スレッショールド電圧(コア C)の選択。	0x1	R/W
		001:3.3V および 5V の VCO 動作。		

アドレス:0x2E、デフォルト:0x12、レジスタ名:REG002E

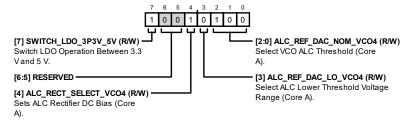


表 43. REG002E のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	RESERVED	予備。	0x0	R
4	ALC_RECT_SELECT_VCO3	ALC 整流 DC バイアス (コア B) の設定。	0x1	R/W
		0:3.3V VCO動作。		
		1:5V VCO 動作。		
3	ALC_REF_DAC_LO_VCO3	ALCスレッショールド電圧(コア B)の設定。	0x0	R/W
		0:5V VCO 動作。		
		1:3.3V VCO 動作。		
[2:0]	ALC_REF_DAC_NOM_VCO3	VCO ALC スレッショールド電圧(コア B)の選択。	0x2	R/W
		010:3.3V および 5V の VCO 動作。		

Rev. 0 - 39/48 -

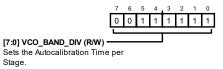

アドレス:0x2F、デフォルト:0x94、レジスタ名:REG002F

表 44. REG002F のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	SWITCH_LDO_3P3V_5V	LDO 動作を 3.3V と 5V との間で切替え。	0x1	R/W
		0:3.3V VCO 動作。		
		1:5V VCO 動作。		
[6:5]	RESERVED	予備。	0x0	R
4	ALC_RECT_SELECT_VCO4	ALC 整流 DC バイアス(コア A)の設定。	0x1	R/W
		0:3.3V VCO 動作。		
		1:5V VCO 動作。		
3	ALC_REF_DAC_LO_VCO4	ALC スレッショールド電圧範囲(コア A)の選択。	0x0	R/W
		0:5V VCO 動作。		
		1:3.3V VCO 動作。		
[2:0]	ALC_REF_DAC_NOM_VCO4	VCO ALC スレッショールド電圧(コア A)の選択。	0x4	R/W
		010:3.3V VCO 動作。		
		100:5V VCO 動作。		

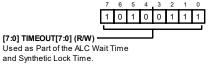

アドレス: 0x30、デフォルト: 0x3F、レジスタ名: REG0030

表 45. REG0030 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	VCO_BAND_DIV	1段あたりの自動キャリブレーション時間の設定。詳細については、ロック時間のセクションを参照してください。	0x3F	R/W

アドレス: 0x31、デフォルト: 0xA7、レジスタ名: REG0031

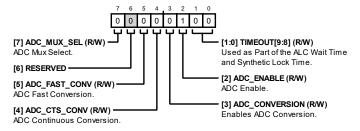


表 46. REG0031 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	TIMEOUT[7:0]	ALC 待機時間および合成ロック時間の一部として使用されます。詳細については、ロック時間のセクションを参照してください。	0xA7	R/W

Rev. 0 - 40/48 -

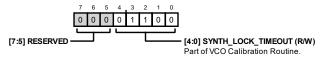

アドレス:0x32、デフォルト:0x04、レジスタ名:REG0032

表 47. REG0032 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	ADC_MUX_SEL	A/D コンバータ (ADC) のマルチプレクサ選択。	0x0	R/W
		0:絶対温度電圧に比例した(PTAT)電圧をADCに入力。		
		1:VTUNE 電圧に比例した電圧を ADC に入力。		
6	RESERVED	予備。	0x0	R
5	ADC_FAST_CONV	ADC 高速変換	0x0	R/W
		0:無効化。		
		1:有効化。		
4	ADC_CTS_CONV	ADC 逐次変換。	0x0	R/W
		0:無効化。		
		1:有効化。		
3	ADC_CONVERSION	ADC 変換の有効化。	0x0	R/W
		0:ADC変換を実行しない。		
		1: ADC をイネーブルしている場合、REG0000 への書込みで ADC 変換を実行。		
2	ADC ENABLE	ADC イネーブル。	0x1	R/W
	_	0: ディスエーブル。		
		1:イネーブル。		
[1:0]	TIMEOUT[9:8]	ALC 待機時間および合成ロック時間の一部として使用されます。詳細については、ロック時間のセクションを参照してください。	0x0	R/W

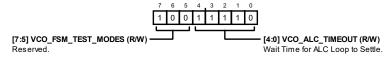

アドレス: 0x33、デフォルト: 0x0C、レジスタ名: REG0033

表 48. REG0033 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	RESERVED	予備。	0x0	R
[4:0]	SYNTH_LOCK_TIME OUT	VCOキャリブレーション・ルーチンの一部。詳細については、ロック時間のセクションを参照してください。	0xC	R/W

アドレス: 0x34、デフォルト: 0x9E、レジスタ名: REG0034

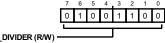


表 49. REG0034 のビットの説明

ビット	ビット名	説明	デフォル	アクセ
			۲	ス
[7:5]	VCO_FSM_TEST_MO DES	予備。	0x4	R/W
[4:0]	VCO_ALC_TIMEOUT	ALC ループが安定するまでの待機時間。詳細については、ロック時間のセクションを参照してください。	0x1E	R/W

Rev. 0 — 41/48 —

アドレス: 0x35、デフォルト: 0x4C、レジスタ名: REG0035



[7:0] ADC_CLK_DIVIDER (R/W) ADC Clock Divider.

表 50. REG0035 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	ADC_CLK_DIVIDER	ADC クロック・ドライバ。ADC_CLK = f_{PFD} /((ADC_CLK_DIV × 4) + 2) .	0x4C	R/W

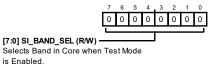

アドレス:0x36、デフォルト:0x30、レジスタ名:REG0036

表 51. REG0036 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	ICP_ADJUST_OFFSET	予備。	0x30	R/W

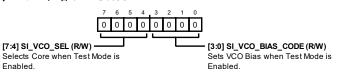

アドレス: 0x37、デフォルト: 0x00、レジスタ名: REG0037

表 52. REG0037 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	SI_BAND_SEL	テスト・モード有効時のコア内帯域を選択。	0x0	R/W

アドレス: 0x38、デフォルト: 0x00、レジスタ名: REG0038

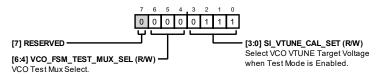


表 53. REG0038 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	SI_VCO_SEL	テスト・モード有効時のコアを選択。	0x0	R/W
		0: すべてのコアをオフ。		
		1: VCO コア D。		
		10: VCO ¬ C.		
		100: VCO コア B。		
		1000: VCO コア A。		
[3:0]	SI_VCO_BIAS_CODE	テスト・モード有効時の VCO バイアスを設定。	0x0	R/W
		0000:最大 VCO バイアス(約 3.2V)。		
		1111:最大 VCO バイアス(約 1.8V)。		

Rev. 0 — 42/48 —

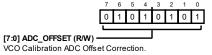

アドレス:0x39、デフォルト:0x07、レジスタ名:REG0039

表 54. REG0039 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
[6:4]	VCO_FSM_TEST_MUX_SEL	VCOテスト・マルチプレクサ選択。	0x0	R/W
		0: ビジー。		
		1:N帯域。		
		10:R帯域。		
		11:予備。		
		100: タイムアウト・クロック。		
		101:最小バイアス。		
		110: ADC ビジー。		
		111:ロジック・ロー。		
[3:0]	SI_VTUNE_CAL_SET	テスト・モード有効時の VCO VTUNE の目標電圧を選択します。	0x7	R/W
		0:58V		
		1: 0.73V		
		10:0.88V		
		11:1.03V		
		100 : 1.18V		
		101 : 1.33V		
		110: 1.48V		
		111 : 1.63V		
		1000 : 1.78V		
		1001 : 1.93V		
		1010 : 2.08V		
		1011 : 2.23V		
		1100 : 2.38V		
		1101 : 2.53V		
		1110 : 2.68V		
		1111 : 2.83V		

アドレス: 0x3A、デフォルト: 0x55、レジスタ名: REG003A

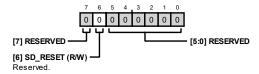


表 55. REG003A のビットの説明

2, 10.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2					
	ビット	ビット名	説明	デフォルト	アクセス
	[7:0]	ADC_OFFSET	VCO キャリブレーション ADC のオフセット補正。	0x55	R/W

Rev. 0 - 43/48 -

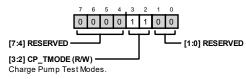

アドレス: 0x3D、デフォルト: 0x00、レジスタ名: REG003D

表 56. REG003D のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
6	SD_RESET	予備。	0x0	R/W
[5:0]	RESERVED	予備。	0x0	R

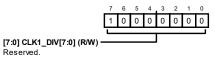

アドレス:0x3E、デフォルト:0x0C、レジスタ名:REG003E

表 57. REG003E のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	RESERVED	予備。	0x0	R
[3:2]	CP_TMODE	チャージ・ポンプ (CP) テスト・モード	0x3	R/W
		0:CPトライステート。		
		11:通常動作。		
[1:0]	RESERVED	予備。	0x0	R

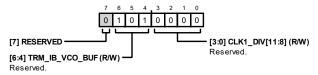

アドレス: 0x3F、デフォルト: 0x80、レジスタ名: REG003F

表 58. REG003F のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	CLK1_DIV[7:0]	予備。	0x80	R/W

アドレス:0x40、デフォルト:0x50、レジスタ名:REG0040

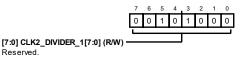


表 59. REG0040 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
[6:4]	TRM_IB_VCO_BUF	予備。	0x5	R/W
[3:0]	CLK1_DIV[11:8]	予備。	0x0	R/W

Rev. 0 — 44/48 —

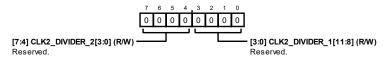

アドレス: 0x41、デフォルト: 0x28、レジスタ名: REG0041

表 60. REG0041 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	CLK2_DIVIDER_1[7:0]	予備。	0x28	R/W

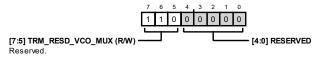

アドレス: 0x42、デフォルト: 0x00、レジスタ名: REG0042

表 61. REG0042 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:4]	CLK2_DIVIDER_2	予備。	0x0	R/W
[3:0]	CLK2_DIVIDER_1[11:8]	予備。	0x0	R/W

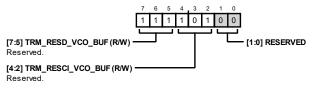

アドレス:0x47、デフォルト:0xC0、レジスタ名:REG0047

表 62. REG0047 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	TRM_RESD_VCO_MUX	予備。	0x6	R/W
[4:0]	RESERVED	予備。	0x0	R

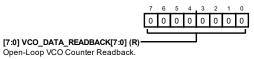

アドレス: 0x52、デフォルト: 0xF4、レジスタ名: REG0052

表 63. REG0052 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	TRM_RESD_VCO_BUF	予備。VCO バッファ・トリム。	0x7	R/W
[4:2]	TRM_RESCI_VCO_BUF	予備。	0x5	R/W
[1:0]	RESERVED	予備。	0x0	R

アドレス:0x6E、デフォルト:0x00、レジスタ名:REG006E

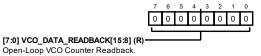


表 64. REG006E のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	VCO_DATA_READBACK [7:0]	オープンループ VCO カウンタのリードバック。	0x0	R

Rev. 0 — 45/48 —

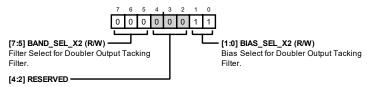

アドレス:0x6F、デフォルト:0x00、レジスタ名:REG006F

表 65. REG006F のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:0]	VCO_DATA_READ	オープンループ VCO カウンタのリードバック。	0x0	R
	BACK[15:8]			

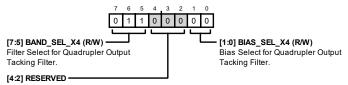

アドレス: 0x70、デフォルト: 0x03、レジスタ名: REG0070

表 66. REG0070 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	BAND_SEL_X2	ダブラ出力トラッキング・フィルタのフィルタを選択。	0x0	R/W
[4:2]	RESERVED	予備。	0x0	R
[1:0]	BIAS_SEL_X2	ダブラ出力トラッキング・バイアスのバイアスを選択。	0x3	R/W

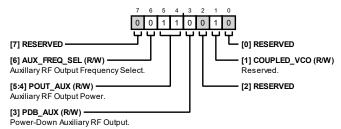
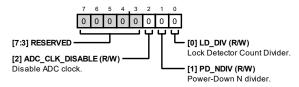

アドレス:0x71、デフォルト:0x60、レジスタ名:REG0071

表 67. REG0071 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:5]	BAND_SEL_X4	4 逓倍器出力トラッキング・フィルタのフィルタを選択。	0x3	R/W
[4:2]	RESERVED	予備。	0x0	R
[1:0]	BIAS_SEL_X4	4 逓倍器出力トラッキング・バイアスのバイアスを選択。	0x0	R/W

アドレス:0x72、デフォルト:0x32、レジスタ名:REG0072


表 68. REG0072 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
7	RESERVED	予備。	0x0	R
6	AUX_FREQ_SEL	補助 RF 出力周波数の選択。 0:分周出力。 1:VCO 出力。	0x0	R/W

Rev. 0 - 46/48 -

ビット	ビット名	説明	デフォルト	アクセス
[5:4]	POUT_AUX	補助 RF 出力電力。補助 RF 出力ポートの出力電力を設定します。	0x3	R/W
		0:-4.5dBm シングルエンド÷-1.5dBm 差動。		
		1:1dBmシングルエンド÷4dBm差動。		
		10:4dBm シングルエンド÷7dBm 差動。		
		11:6dBmシングルエンド÷9dBm差動。		
3	PDB_AUX	パワーダウン補助 RF 出力。	0x0	R/W
		0:補助 RF をオフ。		
		1:補助 RF をオン。		
2	RESERVED	予備。	0x0	R
1	COUPLED_VCO	予備。	0x1	R/W
0	RESERVED	予備。	0x0	R

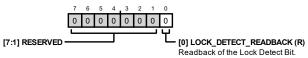

アドレス: 0x73、デフォルト: 0x00、レジスタ名: REG0073

表 69. REG0073 のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:3]	RESERVED	予備。		R
2	ADC_CLK_DISABLE	ADC クロックをディスエーブル。ADC_ENABLE 設定により、このビットは	0x0	R/W
		上書きされます。		
1	PD_NDIV	N分周器をパワーダウン。	0x0	R/W
0	LD_DIV	ロック検出器カウント分周比。REG0028のLD_COUNTビットを32、64、	0x0	R/W
		128、256として選択できるように、ロック検出器のカウント・サイクルを32		
		分周します。		

アドレス:0x7C、デフォルト:0x00、レジスタ名:REG007C

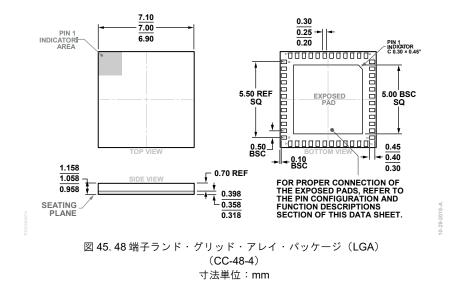


表 70. REG007C のビットの説明

ビット	ビット名	説明	デフォルト	アクセス
[7:1]	RESERVED	予備。	0x0	R
0	LOCK_DETECT_RE ADBACK	ロック検出ビットのリードバック。	0x0	R

Rev. 0 - 47/48 -

外形寸法

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option
ADF4371BCCZ	-40°C to +105°C	48-Terminal Land Grid Array Package [LGA]	CC-48-4
ADF4371BCCZ-RL7	−40°C to +105°C	48-Terminal Land Grid Array Package [LGA]	CC-48-4
EV-ADF4371SD2Z		Evaluation Board	

¹ Z = RoHS 準拠製品。

Rev. 0 - 48/48 -