

デュアル、11 ビット/16 ビット 広帯域チャネライザ搭載 12.6GSPS RF DAC

-タシート

AD9175

マルチバンド・ワイヤレス・アプリケーションをサポート RF DAC ごとに3チャンネルのパイパス可能な 複素データ入力チャンネル

入力チャンネルあたり 3.08GSPS の最大複合入力データ・ レート、11 ビット分解能

1入力チャンネルあたり1個の独立した NCO

独自の低スプリアス/低歪み設計

2 トーン IMD3 = -83dBc (1.84GHz、-7dBFS/トーンの RF 出力時)

SFDR < -80dBc(1.84GHz、-7dBFS の RF 出力時)

8 レーン、15.4Gbps の柔軟な JESD204B インターフェース シングルバンドおよびマルチバンドの用途に対応 高データ・スループットを実現する 12 ビット高密度モード

をサポート 複数チップの同期

JESD204B サブクラス 1 に対応

あらゆる入力データ・レートに対応する設定変更可能なインタ -ポレーション・フィルタ

構成可能なデータ・チャンネル・インターポレーション: 1×、2×、3×、4×、6×、8×

構成可能な最終インターポレーション:1×、2×、4×、6×、 8×、12×

DAC レートで動作する 48 ビットの最終 NCO により、最大 6GHz の周波数合成をサポート

送信イネーブル機能による一層の節電と下流回路の保護 高性能、低ノイズの PLL クロック逓倍器

12.6GSPS の DAC 更新レートをサポート 分周比を選択可能なオブザベーション ADC クロック・ ドライバ

低消費電力

12GSPS、DAC PLL オンでの 2 DAC で 2.54W 10mm×10mm、金属強化サーマル・リッド付き 144 ボール BGA_ED、0.80mm ピッチ

アプリケーション

ワイヤレス通信インフラストラクチャ マルチバンド基地局無線 マイクロ波/E パンド・バックホール・システム 計測器、ATE (自動試験装置) レーダーと電波妨害装置

概要

AD9175 は、最大 12.6GSPS の DAC サンプル・レートをサポー トする高性能なデュアル 16 ビット D/A コンバータ (DAC) で す。15.4Gbps、8 レーンの JESD204B データ入力ポート、高性能 のオンチップ DAC クロック逓倍器に加えて、シングルバンドと マルチバンドのダイレクト to 無線周波数 (RF) ワイヤレス・ア プリケーションを対象としたデジタル信号処理機能を備えてい るのが特長です。

AD9175 には、RF DAC 複素データあたり 3 つの複合データ入力 チャンネルが搭載されています。各入力チャンネルは完全にバ イパス可能です。各データ入力チャンネル(もしくはチャネラ イザ)は、設定変更可能なゲイン段、インターポレーション・ フィルタ、チャンネル数値制御発振器(NCO)を備えているの で、マルチバンド周波数の設計を柔軟に行えます。AD9175 は、 最大 3.08GSPS 複素数 (同相/直角位相 (I/Q)) もしくは最大 3.4GSPS 非複素数 (実数) の入力データ・レートがサポートさ れている他、個々の処理に割り当てられたチャンネルに対して 複数の複素数入力データ・ストリームを配分する機能がありま す。3つのチャネライザの各グループは、必要に応じて追加処 理のため各メイン・データパスに集計されます。各メイン・デ ータパスでは、RF DAC コアの前に、1 個のインターポレーショ ン・フィルタと 1 個の 48 ビット・メイン NCO が備わっていま す。変調器スイッチを使用すると、メイン・データパスの出力 を、DAC0 だけに転送して単一 DAC として動作させることも、 DAC0 および DAC1 の両方に転送してデュアル中間周波数 DAC (IF DAC) として動作させることもできます。

また、AD9175 は超広帯域幅データ・レート・モードもサポー トしており、チャネライザとメイン・データパスをバイパスし、 デュアル 11 ビット DAC として最大データ・レート 3.4GSPS を 提供できます。

AD9175 は 144 ボール BGA ED パッケージを採用しています。

製品のハイライト

- 低消費電力のマルチチャンネル・デュアル DAC 設計によ り、高帯域幅アプリケーションやマルチチャンネル・アプ リケーションにおいて、性能を維持しながら消費電力を削 減できます。
- RF DAC あたり 3 チャンネルのバイパス可能な複素データ 入力チャンネルを使用するか、内蔵変調器スイッチを用い る場合は2つのメイン・データパスを2つの広帯域複素デ ータ・チャネンネルとして使用する構成により、シングル バンドとマルチバンドのワイヤレス・アプリケーションを サポートします。
- 最大複素入力データ・レート(IまたはQあたり)は、11 ビット分解能で最大 3.08GSPS、16 ビット分解能で最大 1.23GSPS です。AD9175 はデュアル DAC として構成する ことも可能で、各 DAC は独立した JESD204B リンクを介 して前述のデータ・レートで動作します。
- 超広帯域幅のシングル DAC モードでは、11 ビット分解能 で 12 ビット SERDES パッキングの場合、3.4GSPS の最大 データ・レートがサポートされます。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料はREVISION が古い場合があります。最新の内容については、英語版をご参照ください。

©2019 Analog Devices, Inc. All rights reserved

Rev 0

社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 10F 電話 03 (5402) 8200

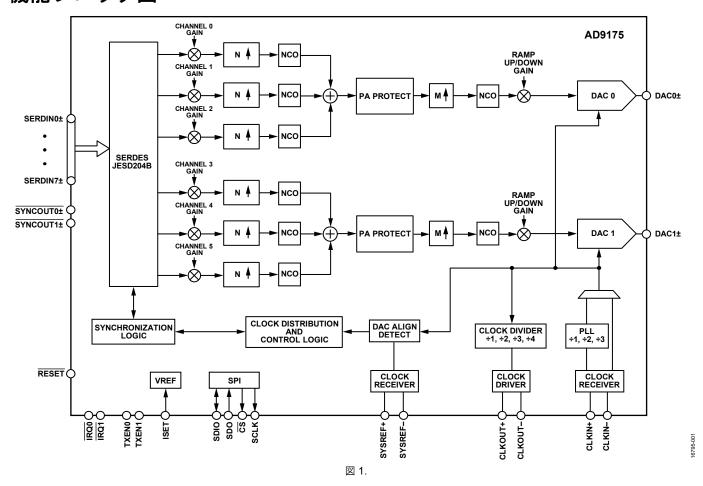
大 阪営業所/〒532-0003

大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F 電話 06 (6350) 6868

名古屋営業所/〒451-6038

愛知県名古屋市西区牛島町 6-1 名古屋ルーセントタワー 38F 電話 052 (569) 6300

目次


特長
アプリケーション1
概要1
製品のハイライト1
改訂履歴2
機能ブロック図
仕様4
DC 仕様
デジタル仕様
最大 DAC 更新レート仕様
電源の DC 仕様
シリアル・ポートと CMOS ピンの仕様
デジタル入力データのタイミング仕様
JESD204B インターフェースの電気的仕様と速度仕様 10
入力データ・レートと信号帯域幅の仕様1
AC 仕様
絶対最大定格14
リフロー・プロファイル14
熱特性14
ESD に関する注意14
ピン配置およびピン機能の説明15
代表的な性能特性18
用語の定義20
動作原理2
シリアル・ポートの動作29
データ・フォーマット29
シリアル・ポート・ピンの説明29
シリアル・ポート・オプション30

JESD204B シリアル・データ・インターフェース
JESD204B の概要31
物理層35
データ・リンク層37
LMFC 信号同期
トランスポート層45
JESD204B のテスト・モード
JESD204B のエラー・モニタリング48
デジタル・データパス51
合計データパス・インターポレーション51
チャンネル・デジタル・データパス52
メイン・デジタル・データパス55
NCO オンリ・モード
変調器スイッチ59
割込み要求動作
割込みサービス・ルーチン
アナログ・インターフェース64
DAC 入力クロック設定64
クロック出力ドライバ66
アナログ出力66
アプリケーション情報
ハードウェアに関する考慮事項
スタートアップ・シーケンス71
レジスタの一覧78
レジスタの詳細89
外形寸法
ナーガー・ガイド 150

改訂履歴

12/2018—Revision 0: Initial Version

機能ブロック図

Rev. 0 - 3/150 -

仕様

DC 仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は I_{J} = -40° C~+118 $^{\circ}$ C での値、代表値は I_{A} = 25 $^{\circ}$ C (I_{J} = 51 $^{\circ}$ C に相当)での値。

表 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
RESOLUTION		16			Bit
ACCURACY					
Integral Nonlinearity (INL)			±7		LSB
Differential Nonlinearity (DNL)			±7		LSB
ANALOG OUTPUTS (DAC0+, DAC0-, DAC1+, DAC1-)					
Gain Error (with Internal ISET Reference)			±15		%
Full-Scale Output Current					
Minimum	$R_{SET} = 5 k\Omega$	14.2	16	17.8	mA
Maximum	$R_{SET} = 5 k\Omega$	23.6	26	28.8	mA
Common-Mode Voltage			0		V
Differential Impedance			100		Ω
DAC DEVICE CLOCK INPUT (CLKIN+, CLKIN-)					
Differential Input Power	$R_{LOAD} = 100 \Omega$ differential on-chip				
Minimum			0		dBm
Maximum			6		dBm
Differential Input Impedance ¹			100		Ω
Common-Mode Voltage	AC-coupled		0.5		V
CLOCK OUTPUT DRIVER (CLKOUT+, CLKOUT-)					
Differential Output Power					
Minimum			-9		dBm
Maximum			0		dBm
Differential Output Impedance			100		Ω
Common-Mode Voltage	AC-coupled		0.5		V
Output Frequency		727.5		3000	MHz
TEMPERATURE DRIFT					
Gain			10		ppm/°C
REFERENCE					
Internal Reference Voltage			0.495		V
ANALOG SUPPLY VOLTAGES					
AVDD1.0		0.95	1.0	1.05	V
AVDD1.8		1.71	1.8	1.89	V
DIGITAL SUPPLY VOLTAGES					
DVDD1.0		0.95	1.0	1.05	V
DAVDD1.0		0.95	1.0	1.05	V
DVDD1.8		1.71	1.8	1.89	V
SERIALIZER/DESERIALIZER (SERDES) SUPPLY VOLTAGES					
SVDD1.0		0.95	1.0	1.05	V

[「]詳細については、DAC入力クロック設定のセクションを参照してください。

Rev. 0 - 4/150 -

デジタル仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流 (I_{OUTFS}) = 20mA。最小値と最大値は T_J = −40°C ~+118°C での値、代表値は T_A = 25°C(T_J = 51°C に相当)での値。

表 2.

Parameter	Test Conditions/Comments	Min	Гур Мах	Unit
DAC UPDATE RATE				
Minimum			2.91	GSPS
Maximum ¹	16-bit resolution, with interpolation	12.6		GSPS
	11-bit resolution, with interpolation	12.6		GSPS
	11-bit resolution, no interpolation	3.4		GSPS
Adjusted ²	16-bit resolution, with interpolation ³	1.23		GSPS
	11-bit resolution, with interpolation	1.54		GSPS
	11-bit resolution, no interpolation ⁴	3.4		GSPS
DAC PHASE-LOCKED LOOP (PLL) VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES				
VCO Output Divide by 1		8.74	12.42	GSPS
VCO Output Divide by 2		4.37	6.21	GSPS
VCO Output Divide by 3		2.91	4.14	GSPS
PHASE FREQUENCY DETECT INPUT FREQUENCY RANGE		25	770	MHz
DAC DEVICE CLOCK INPUT (CLKIN+, CLKIN-) FREQUENCY RANGES				
PLL Off		2.91	12.6	GHz
PLL On	M divider set to divide by 1	25	770	MHz
	M divider set to divide by 2	50	1540	MHz
	M divider set to divide by 3	75	2310	MHz
	M divider set to divide by 4	100	3080	MHz

[「]最大 DAC 更新レートは、選択した JESD204B モードと、その構成で使用するレーン・レートによって異なります。 レーン・レートと電源電圧レベルに応じた最大 DAC レートは表 3 に示します。.

最大 DAC 更新レート仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流 (Ioutes) = 20mA。最小値と最大値は $T_J = -40$ °C~+118°C での値、代表値は $T_A = 25$ °C($T_J = 51$ °C に相当)での値。

表 3.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
MAXIMUM DAC UPDATE RATE					
SVDD1.0 = $1.0 \text{ V} \pm 5\%$	Lane rate > 11 Gbps	11.67			GSPS
	Lane rate ≤ 11 Gbps	12.37			GSPS
$SVDD1.0 = 1.0 V \pm 2.5\%$	Lane rate > 11 Gbps	11.79			GSPS
	Lane rate ≤ 11 Gbps ¹	12.6			GSPS

¹表 2 に示すように、オンチップ PLL を使用する場合の最大 DAC 速度は、12.42GSPS の最大 PLL 速度に制限されます。.

² 調整 DAC 更新レートは、f_{DAC} を使用モードの最小必要インターポレーション係数または最大チャンネル・データ・レートで除した値として計算します。 表 13 に示すように、モードが異なれば最大 DAC 更新レート、最小インターポレーション係数、最大チャンネル・データ・レートも異なります。

³ 1.23GSPS の調整 DAC 更新レートは、すべての 16 ビット分解能モード動作を通じた最大の値です。この表の値は、確保される最小値の上限を表しています。各種動作モードの詳細については、表 13 を参照してください。

 $^{^4}$ 3.4GSPS の調整 DAC 更新レートは、すべての 11 ビット分解能モード動作を通じた最大の値です。この表の値は、確保される最小値の上限を表しています。各種動作モードの詳細については、表 13 を参照してください。

電源の DC 仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は I_{J} = $-40^{\circ}C$ ~ + $118^{\circ}C$ での値、代表値は I_{A} = $25^{\circ}C$ (I_{J} = $51^{\circ}C$ に相当)での値。

表 4.

パラメータ	テスト条件/コメント	Min	Тур	Max	単位
DUAL-LINK MODES					
Mode 1 ($L = 2$, $M = 4$, NP	11.7965GSPS DAC レート、184.32MHz PLL リファレンス・クロック、32x 合				
= 16, N = 16)	計インターポレーション (4x、8x)、-3dBFSで40MHzトーン、チャネン				
	ル・ゲイン=-6dB、チャンネル NCO=±150MHz、メイン NCO=2GHz、				
AVDD1 0	LVDS モードでSYNCOUTx±		725	1020	
AVDD1.0	すべての電源レベルを公称値に設定		725	1020	mA
	すべての電源レベルを 5%の許容誤差に設定		775	1120	mA
AVDD1.8	The state of the s		110	130	mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流				
	すべての電源レベルを公称値に設定		1100	1670	mA
	すべての電源の許容差は5%		1170	1850	mA
DVDD1.8			35	50	mA
SVDD1.0	すべての電源レベルを公称値に設定		290	510	mA
	すべての電源の許容差は5%		305	560	mA
Total Power Dissipation			2.37	3.38	W
Mode 4 ($L = 4$, $M = 4$, NP	11.7965GSPS DAC レート、491.52 MHz PLL リファレンス・クロック、24x 合				
= 16, N = 16)	計インターポレーション(3x、8x)、-3dBFS で 40MHz トーン、チャネン				
	ル・ゲイン=-6dB、チャンネル NCO=±150MHz、メイン NCO=2GHz、 LVDS モードでSYNCOUTx±				
AVDD1.0			725		mA
AVDD1.8			110		mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流		1150		mA
DVDD1.8			35		mA
SVDD1.0			425		mA
Total Power Dissipation			2.56		W
Mode 0 ($L = 1, M = 2, NP$	5.89824GSPS DAC レート、184.32MHz PLL リファレンス・クロック、16x				
= 16, N = 16)	合計インターポレーション (2x、8x)、-3dBFS で 40MHz トーン、チャン				
	ネル NCO ディスエーブル、メイン NCO = 1.8425GHz、LVDS モードで SYNCOUTx±				
AVDD1.0	すべての電源レベルを公称値に設定		400	670	mA
111001.0	すべての電源の許容差は5%		425	745	mA
AVDD1.8	り、CV)电泳V川存在は370		110	130	mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流		110	130	IIIA
D V DD1.0			570	060	A
	すべての電源レベルを公称値に設定		570	960	mA
DUDD1 C	すべての電源の許容差は5%		610	1070	mA
DVDD1.8			35	50	mA
SVDD1.0			175	340	mA
Total Power Dissipation			1.40	2.15	W

Rev. 0 — 6/150 —

パラメータ	テスト条件/コメント	Min	Тур	Max	単位
Mode 3 (L = 2, M = 2, NP	11.7965GSPS DAC レート、184.32MHz PLL リファレンス・クロック、24x				
= 16, N = 16)	合計インターポレーション(3x、8x)、-3dBFSで40MHzトーン、チャン				
	ネル NCO ディスエーブル、メイン NCO = 2.655GHz、LVDS モードで SYNCOUTx±				
AVDD1.0	すべての電源レベルを公称値に設定		725		mA
AVDD1.0	すべての電源の許容差は5%		775		mA
AVDD1.8	り、くの电泳の自存足は370		110		mA
DVDD1.0	 DAVDD1.0 電源と組み合わせた消費電流		110		IIIA
D 1 DD 1.0	すべての電源レベルを公称値に設定		1020		mA
	すべての電源の許容差は5%		1070		mA
DVDD1.8) · C ·) · · · · · · · · · · · · · · ·		35		mA
SVDD1.0	 すべての電源レベルを公称値に設定		245		mA
	すべての電源の許容差は5%		250		mA
Total Power	7 Contains an a Zeros Contains		2.25		W
Dissipation			2.20		''
Mode 9 ($L = 4$, $M = 2$, NP	12GSPS DAC レート、184.32MHz PLL リファレンス・クロック、8x 合計イ				
= 16, N = 16)	ンターポレーション(1x、8x)、-3dBFSで10MHzトーン、チャンネル				
	NCO ディスエーブル、メイン NCO = 3.072GHz、LVDS モードで SYNCOUTx±				
AMDD1 0			740	1020	
AVDD1.0	すべての電源レベルを公称値に設定		740	1030	mA
AMDD1 0	すべての電源の許容差は5%		785	1135	mA
AVDD1.8 DVDD1.0	DAVDD10季海上知り合わせた巡弗雷达		110	130	mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流		1010	1500	4
	すべての電源レベルを公称値に設定		1010	1580	mA
DVDD1 0	すべての電源の許容差は5%		1070	1740	mA
DVDD1.8 SVDD1.0	ナベアの季源しがよれかはに乳ウ		35 530	50 840	mA mA
3 VDD1.0	すべての電源レベルを公称値に設定 すべての電源の許容差は 5%		550	910	mA
Total Power	9~~~00 电源の計谷左は 3%		2.54	3.63	W
Dissipation			2.34	3.03	VV
Mode 2 ($L = 3$, $M = 6$, NP	12GSPS DAC レート、375MHz PLL リファレンス・クロック、48x 合計イン				
= 16, N = 16)	ターポレーション(6x、8x)、-3dBFS で 30MHz トーン、チャネンル・ゲ				
	イン=-11dB、チャンネル NCO=20MHz、メイン NCO=2.1GHz				
AVDD1.0	すべての電源レベルを公称値に設定		735	1030	mA
	すべての電源の許容差は5%		785	1135	mA
AVDD1.8			110	130	mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流				mA
	すべての電源レベルを公称値に設定		1370	1800	mA
	すべての電源の許容差は5%		1460	1980	mA
DVDD1.8			35	50	mA
SVDD1.0	すべての電源レベルを公称値に設定		410	680	mA
	すべての電源の許容差は5%		430	755	mA
Total Power			2.77	3.69	W
Dissipation					+
SINGLE-LINK MODES	2.4CCDC DAG 1 10750 FL DIT 11 7-10/2 4 5 1 5 1 5 1				
Mode 17 (L = 8 , M = 2 , NP = 12 , N = 11)	3.4GSPS DAC レート、187.5MHz PLL リファレンス・クロック、1x 合計イ ンターポレーション(1x、1x)、–3dBFS で 1.2GHz トーン、チャンネル				
	NCOおよびメイン NCO をディスエーブル				
AVDD1.0	すべての電源レベルを公称値に設定		260	510	mA
. =	すべての電源の許容差は5%		275	580	mA
AVDD1.8	7 S. S. SERMALA HIGH VETON AND		85	100	mA
DVDD1.0	 DVDD1.0 電源と組み合わせた消費電流			-00	
	すべての電源レベルを公称値に設定		500	780	mA
	すべての電源の許容差は5%		515	950	mA
DVDD1.8	/ く・/		0.3	1	mA
AVDD1.0	すべての電源レベルを公称値に設定		5	100	mA
. —	すべての電源の許容差は5%	1	3	120	1

Rev. 0 - 7/150 -

パラメータ	テスト条件/コメント	Min	Тур	Max	単位
Total Power			1.2	2.05	W
Dissipation					
DUAL-LINK, MODE 3	6GSPS DAC レート、300MHz PLL リファレンス・クロック、8x 合計インタ				
(NCO ONLY, SINGLE-	ーポレーション (1x、8x) 、入力トーンなし (DC 内部レベル =				
CHANNEL MODE, NO SERDES)	0x50FF) 、チャンネル NCO = 40MHz、メイン NCO = 1.8425GHz				
Mode 3					
AVDD1.0					
111001.0	すべての電源レベルを公称値に設定		410	660	mA
	すべての電源の許容差は5%		435	750	mA
AVDD1.8			110	130	mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流				
	すべての電源レベルを公称値に設定		500	780	mA
	すべての電源の許容差は5%		515	950	mA
DVDD1.8			0.3	1	mA
SVDD1.0	すべての電源レベルを公称値に設定		5	100	mA
	すべての電源の許容差は5%		3	120	mA
Total Power			1.11	1.671	W
Dissipation					
DUAL-LINK, MODE 4	12GSPS DAC レート、500MHz PLL リファレンス・クロック、32x 合計イン				
(NCO ONLY, DUAL-	ターポレーション (4x、8x) 、入力トーンなし (DC 内部レベル=				
CHANNEL MODE, NO SERDES)	0x2AFF)、チャンネル NCO = ±150 MHz、メイン NCO = 2GHz				
Mode 4					
AVDD1.0	すべての電源レベルを公称値に設定		750	1030	mA
	すべての電源の許容差は5%		790	1130	mA
AVDD1.8			110	130	mA
DVDD1.0	DAVDD1.0 電源と組み合わせた消費電流				
	すべての電源レベルを公称値に設定		1200	1590	mA
	すべての電源の許容差は5%		1300	1750	mA
DVDD1.8			0.3	1	mA
SVDD1.0			5	100	mA
Total Power			2.15	2.851	W
Dissipation					

シリアル・ポートと CMOS ピンの仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は I_{J} = $-40^{\circ}C$ ~ + $118^{\circ}C$ での値、代表値は I_{A} = $25^{\circ}C$ (I_{J} = $51^{\circ}C$ に相当)での値。

表 5.

Parameter	Symbol	Test Comments/Conditions	Min	Тур	Max	Unit
WRITE OPERATION		See Figure 53				
Maximum SCLK Clock Rate	f_{SCLK} , $1/t_{SCLK}$		80			MHz
SCLK Clock High	t_{PWH}	SCLK = 20 MHz	5.03			ns
SCLK Clock Low	t_{PWL}	SCLK = 20 MHz	1.6			ns
SDIO to SCLK Setup Time	$t_{ m DS}$		1.154			ns
SCLK to SDIO Hold Time	$t_{ m DH}$		0.577			ns
CS to SCLK Setup Time	$t_{\rm S}$		1.036			ns
SCLK to CS Hold Time	t_{H}		-5.3			ps
READ OPERATION		See Figure 52				
SCLK Clock Rate	f_{SCLK} , $1/t_{SCLK}$				48.58	MHz
SCLK Clock High	t_{PWH}		5.03			ns
SCLK Clock Low	$t_{ m PWL}$		1.6			ns
SDIO to SCLK Setup Time	$t_{ m DS}$		1.158			ns

Rev. 0 — 8/150 —

Parameter	Symbol	Test Comments/Conditions	Min	Тур	Max	Unit
SCLK to SDIO Hold Time	t_{DH}		0.537			ns
CS to SCLK Setup Time	$t_{\rm S}$		1.036			ns
SCLK to SDIO Data Valid Time	$t_{ m DV}$		9.6			ns
SCLK to SDO Data Valid Time	t_{DV}		13.7			ns
CS to SDIO Output Valid to High-Z		Not shown in Figure 52 or Figure 53	5.4			ns
CS to SDO Output Valid to High-Z		Not shown in Figure 52 or Figure 53	9.59			ns
INPUTS (SDIO, SCLK, CS, RESET, TXEN0, and TXEN1)						
Voltage Input						
High	V_{IH}		1.48			V
Low	V_{IL}				0.425	V
Current Input						
High	I_{IH}				± 100	nA
Low	$I_{\rm IL}$		±100			nA
OUTPUTS (SDIO, SDO)						
Voltage Output						
High	V_{OH}					
0 mA load			1.69			V
4 mA load			1.52			V
Low	V_{OL}					
0 mA load					0.045	V
4 mA load					0.175	V
Current Output						
High	I_{OH}			4		mA
Low	I_{OL}			4		mA
INTERRUPT OUTPUTS ($\overline{IRQ0}$, $\overline{IRQ1}$)						
Voltage Output						
High	V_{OH}		1.71			V
Low	V_{OL}				0.075	V

デジタル入力データのタイミング仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は I_{J} = $-40^{\circ}C$ ~ + $118^{\circ}C$ での値、代表値は I_{A} = $25^{\circ}C$ (I_{J} = $51^{\circ}C$ に相当)での値。

表 6.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
LATENCY ¹					
Channel Interpolation Factor, Main Datapath Interpolation Factor	LMFC_VAR_x = 12, LMFC_DELAY_x = 12, unless otherwise noted				
$1\times$, $1\times^2$	JESD204B Mode 15 ³		420		DAC clock cycles
	JESD204B Mode 16		440		DAC clock cycles
	JESD204B Mode 17		590		DAC clock cycles
$1\times$, $8\times^2$	JESD204B Mode 3		1390		DAC clock cycles
	JESD204B Mode 8 ³		1820		DAC clock cycles
	JESD204B Mode 9		1920		DAC clock
1×, 12ײ	JESD204B Mode 8 ³		2700		DAC clock cycles
	JESD204B Mode 9		2840		DAC clock cycles
$2\times$, $6\times^2$	JESD204B Mode 3, Mode 4		1970		DAC clock cycles
	JESD204B Mode 5		1770		DAC clock cycles

Parameter	Test Conditions/Comments	Min Typ Ma:	Unit
2×, 8ײ	JESD204B Mode 0	2020	DAC clock cycles
	JESD204B Mode 3, Mode 4	2500	DAC clock cycles
$3\times$, $6\times^2$	JESD204B Mode 3, Mode 4	2880	DAC clock cycles
7	JESD204B Mode 5, Mode 6	2630	DAC clock cycles
$3\times$, $8\times^2$	JESD204B Mode 3, Mode 4	3310	DAC clock cycles
	JESD204B Mode 5, Mode 6	2980	DAC clock cycles
$4\times$, $6\times^2$	JESD204B Mode 0, Mode 1, Mode 2	2410	DAC clock cycles
$4\times$, $8\times^2$	JESD204B Mode 0, Mode 1, Mode 2	3090	DAC clock cycles
$6\times$, $6\times^2$	JESD204B Mode 0, Mode 1, Mode 2	3190	DAC clock cycles
$6\times$, $8\times^2$	JESD204B Mode 0, Mode 1, Mode 2	4130	DAC clock cycles
$8\times$, $6\times^2$	JESD204B Mode 7	3300	DAC clock cycles
$8\times$, $8\times^2$	JESD204B Mode 7	4270	DAC clock cycles
DETERMINISTIC LATENCY			
Fixed		13	PCLK ⁴
Variable		2	PCLK cycles
SYSREF± TO LMFC DELAY		0	DAC clock cycles

[「]デバイス全体での合計遅延(またはパイプライン遅延)は次式で計算されます:合計遅延=インターフェース遅延+固定遅延+可変遅延+パイプライン遅延。

JESD204B インターフェースの電気的仕様と速度仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は I_{J} = $-40^{\circ}C$ ~ $+118^{\circ}C$ での値、代表値は I_{A} = $25^{\circ}C$ (I_{J} = $51^{\circ}C$ に相当)での値。

表 7.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
JESD204B SERIAL INTERFACE RATE (SERIAL LANE RATE)			3		15.4	Gbps
JESD204B DATA INPUTS						
Input Leakage Current		$T_A = 25$ °C				
Logic High		Input level = $1.0 \text{ V} \pm 0.25 \text{ V}$		10		μΑ
Logic Low		Input level = 0 V		-4		μΑ
Unit Interval	UI		333		66.7	ps
Common-Mode Voltage	V_{RCM}	AC-coupled	-0.05		+1.1	V
Differential Voltage	R_V_{DIFF}		110		1050	mV
Differential Impedance	$Z_{ m RDIFF}$	At dc	80	100	120	Ω
SYSREF± INPUT						
Differential Impedance				100		Ω
DIFFERENTIAL OUTPUTS (SYNCOUT0±, SYNCOUT1±) ¹		Driving 100 Ω differential load				
Output Differential Voltage	V_{OD}		320	390	460	mV
Output Offset Voltage	V_{OS}		1.08	1.12	1.15	V
SINGLE-ENDED OUTPUTS (SYNCOUT0±, SYNCOUT1±)		Driving 100 Ω differential load				
Output Voltage						
High	V_{OH}		1.69			V
Low	V_{OL}				0.045	V
Current Output						
High	I_{OH}			0		mA
Low	I_{OL}			0		mA

¹ IEEE 1596.3 LVDS 規格と互換。

 $^{^2}$ この仕様項目の最初の値はインターポレーション係数で、2番目の値はメイン・データパス・インターポレーション係数です。

 $^{^3}$ LMFC_VAR_x = 7、LMFC_DELAY_x = 4_{\circ}

⁴ PCLK は AD9175 の内部処理クロックで、その値はレーン・レート÷ 40 です。

入力データ・レートと信号帯域幅の仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は $I_{J} = -40^{\circ}C \sim +118^{\circ}C$ での値、代表値は $I_{A} = 25^{\circ}C$ ($I_{J} = 51^{\circ}C$ に相当)での値。

表 8.

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT DATA RATE PER INPUT CHANNEL					
	Channel datapaths bypassed (1× interpolation), single DAC mode, 11-bit resolution			3400	MSPS
	1 complex channel enabled, 16-bit resolution			1230	MSPS
	1 complex channel enabled, 11-bit resolution			3080	MSPS
	2 complex channels enabled			770	MSPS
	3 complex channels enabled			385	MSPS
COMPLEX SIGNAL BANDWIDTH PER INPUT CHANNEL					
	1 complex channel enabled, 16-bit resolution (0.8 \times f _{DATA})			1232	MHz
	1 complex channel enabled, 11-bit resolution (0.8 \times f _{DATA})			2464	MHz
	2 complex channels enabled $(0.8 \times f_{DATA})$			616	MHz
	3 complex channels enabled $(0.8 \times f_{DATA})$			308	MHz
MAXIMUM NCO CLOCK RATE					
Channel NCO				1540	MHz
Main NCO				12.6	GHz
MAXIMUM NCO SHIFT FREQUENCY RANGE					
Channel NCO	Channel summing node = 1.575 GHz, channel interpolation rate $> 1 \times$	-770		+770	MHz
Main NCO	$f_{DAC} = 12.6 \text{ GHz}$, main interpolation rate $> 1 \times$	-6.3		+6.3	GHz
MAXIMUM FREQUENCY SPACING ACROSS INPUT CHANNELS	Maximum NCO output frequency × 0.8			1232	MHz

 $^{^1}$ これらのパラメータの値は、すべての JESD204B 動作モードを通じて取り得る最大の値です。一部のモードでは、他のパラメータのために更に値が制限されます。

Rev. 0 — 11/150 —

AC 仕様

特に指定のない限り、AVDD1.0 = 1.0V、AVDD1.8 = 1.8V、DVDD1.0 = 1.0V、DVDD1.8 = 1.8V、SVDD1.0 = 1.0V、DAC 出力フルスケール電流(I_{OUTFS}) = 20mA。最小値と最大値は I_{J} = -40° C~+ 118° C での値、代表値は I_{A} = 25° C(I_{J} = 51° C に相当)での値。

表 9.

Parameter	Test Conditions/Comments	Min Ty	р Мах	Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)				
Single Tone, $f_{DAC} = 12000$ MSPS, Mode 1 (L = 2, M = 4)	−7 dBFS, shuffle enabled			
$f_{OUT} = 100 \text{ MHz}$		-8	1	dBc
$f_{OUT} = 500 \text{ MHz}$		-8	0	dBc
$f_{OUT} = 950 \text{ MHz}$		-7	5	dBc
$f_{OUT} = 1840 \text{ MHz}$		-8	0	dBc
$f_{OUT} = 2650 \text{ MHz}$		-7	5	dBc
$f_{OUT} = 3700 \text{ MHz}$		-6	7	dBc
Single Tone, $f_{DAC} = 6000$ MSPS, Mode 0 (L = 1, M = 2)	-7 dBFS, shuffle enabled			
$f_{OUT} = 100 \text{ MHz}$		-8	5	dBc
$f_{OUT} = 500 \text{ MHz}$		-8	5	dBc
$f_{OUT} = 950 \text{ MHz}$		-7	8	dBc
$f_{OUT} = 1840 \text{ MHz}$		-7	5	dBc
$f_{OUT} = 2650 \text{ MHz}$		-6	9	dBc
Single Tone, $f_{DAC} = 3000 \text{ MSPS}$, Mode 10 (L = 8, M = 2)	-7 dBFS, shuffle enabled			
$f_{OUT} = 100 \text{ MHz}$,	-8	7	dBc
$f_{OUT} = 500 \text{ MHz}$		-8	4	dBc
$f_{OUT} = 950 \text{ MHz}$		-8	1	dBc
Single-Band Application—Band 3 (1805 MHz to 1880 MHz)	Mode 0, 2× to 8×, f _{DAC} = 6000 MSPS, 368.64 MHz reference clock			
SFDR Harmonics	-7 dBFS, shuffle enabled			
In-Band		-8	2	dBc
Digital Predistortion (DPD) Band	DPD bandwidth = data rate \times 0.8	-8	0	dBc
Second Harmonic		-8	2	dBc
Third Harmonic		-8	0	dBc
Fourth and Fifth Harmonic		-9	5	dBc
SFDR Nonharmonics	-7 dBFS, shuffle enabled			
In-Band	,	-7	4	dBc
DPD Band		-7	4	dBc
ADJACENT CHANNEL LEAKAGE RATIO				
4-Channel WCDMA	-1 dBFS digital backoff			
$f_{DAC} = 1200 \text{ MSPS}, \text{ Mode 1 (L = 2, M = 4)}$	f _{OUT} = 1840 MHz	-7	0	dBc
-bac -1100 -1,00	$f_{OUT} = 2650 \text{ MHz}$	-6		dBc
	$f_{OUT} = 3500 \text{ MHz}$	-6		dBc
$f_{DAC} = 6000 \text{ MSPS}, \text{ Mode } 0 \text{ (L} = 1, M = 2)$	f _{OUT} = 1840 MHz	-7		dBc
That cook into s, mode o (2 1, in 2)	f _{OUT} = 2650 MHz	-6		dBc
THIRD-ORDER INTERMODULATION DISTORTION (IMD3)	Two-tone test, -7 dBFS/tone, 1 MHz spacing		<u> </u>	a D C
$f_{DAC} = 12000 \text{ MSPS}, \text{ Mode 1 (L = 2, M = 4)}$	$f_{OUT} = 1840 \text{ MHz}$	-8	3	dBc
-270 -2000 11000 1 (2 2,112 1)	f _{OUT} = 2650 MHz	-8		dBc
	$f_{OUT} = 3700 \text{ MHz}$	-7		dBc
$f_{DAC} = 6000 \text{ MSPS}, \text{ Mode } 0 \text{ (L} = 1, M = 2)$	$f_{OUT} = 1840 \text{ MHz}$	-7		dBc
1DAC 5000 MOI 5, Mode 0 (E = 1, W = 2)	$f_{OUT} = 2650 \text{ MHz}$	-7		dBc

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
NOISE SPECTRAL DENSITY (NSD)	0 dBFS, NSD measurement taken at 10% away from f _{OUT} , shuffle off				
Single Tone, $f_{DAC} = 12000$ MSPS, Mode 1 (L = 2, M = 4)					
$f_{OUT} = 100 \text{ MHz}$			-169		dBm/Hz
$f_{OUT} = 500 \text{ MHz}$			-168		dBm/Hz
$f_{OUT} = 950 \text{ MHz}$			-166		dBm/Hz
$f_{OUT} = 1840 \text{ MHz}$			-165		dBm/Hz
$f_{OUT} = 2150 \text{ MHz}$			-164		dBm/Hz
Single Tone, $f_{DAC} = 6000$ MSPS, Mode 3 (L = 2, M = 2)					
$f_{OUT} = 100 \text{ MHz}$			-169		dBm/Hz
$f_{OUT} = 500 \text{ MHz}$			-167		dBm/Hz
$f_{OUT} = 950 \text{ MHz}$			-166		dBm/Hz
$f_{OUT} = 1840 \text{ MHz}$			-163		dBm/Hz
$f_{OUT} = 2150 \text{ MHz}$			-162		dBm/Hz
Single Tone, $f_{DAC} = 3000$ MSPS, Mode 10 (L = 8, M = 2)					
$f_{OUT} = 100 \text{ MHz}$			-166		dBm/Hz
$f_{OUT} = 500 \text{ MHz}$			-163		dBm/Hz
$f_{OUT} = 950 \text{ MHz}$			-160		dBm/Hz
SINGLE-SIDEBAND PHASE NOISE OFFSET	Loop filter component values according to \boxtimes 92. are as follows: C1 = 22 nF, R1 = 232 Ω , C2 = 2.4 nF, C3 = 33 nF; PFD frequency = 500 MHz, f_{OUT} = 1.8 GHz, f_{DAC} = 12 GHz				
1 kHz			-97		dBc/Hz
10 kHz			-105		dBc/Hz
100 kHz			-114		dBc/Hz
600 kHz			-126		dBc/Hz
1.2 MHz			-133		dBc/Hz
1.8 MHz			-137		dBc/Hz
6 MHz			-148		dBc/Hz
DAC TO DAC OUTPUT ISOLATION	Taken using the AD9175-FMC-EBZ evaluation board				
Dual Band— $f_{DAC} = 12000 \text{ MSPS}, \text{ Mode } 1 \text{ (L = 2, M = 4)}$					
	$f_{OUT} = 1840 \text{ MHz}$		-77		dB
	$f_{OUT} = 2650 \text{ MHz}$		-70		dB
	$f_{OUT} = 3700 \text{ MHz}$		-68		dB

Rev. 0 — 13/150 —

絶対最大定格

表 10.

Parameter	Rating
ISET, FILT_COARSE, FILT_BYP,	-0.3 V to AVDD1.8 + 0.3 V
FILT_VCM	
${\sf SERDINx} \pm$	-0.2 V to SVDD1.0 + 0.2 V
$\overline{\text{SYNCOUT0\pm}}, \overline{\text{SYNCOUT1\pm}}, \overline{\text{RESET}},$	-0.3 V to DVDD1.8 + 0.3 V
TXEN0, TXEN1, $\overline{IRQ0}$, $\overline{IRQ1}$, \overline{CS} ,	
SCLK, SDIO, SDO	
DAC0±, DAC1±, CLKIN±, CLKOUT±,	-0.2 V to AVDD1.0 + 0.2 V
FILT_FINE	
$SYSREF\pm$	-0.2 V to DVDD1.0 + 0.2 V
AVDD1.0, DVDD1.0, SVDD1.0 to GND	-0.2 V to +1.2 V
AVDD1.8, DVDD1.8 to GND	-0.3 V to 2.2 V
Maximum Junction Temperature (T _J) ¹	118°C
Storage Temperature Range	−65°C to +150°C
Reflow	260°C

1動作モードによっては、周囲温度が仕様値の範囲内であっても、デバイスの動作中にジャンクション温度が最大値近くまで上昇したり、最大値を超えたりすることがあります。このような場合は、デバイスの熱を放出させるために空冷ファンやヒートシンクなどの追加的な措置が必要になることがあります。

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

リフロー・プロファイル

AD9175 のリフロー・プロファイルは、鉛フリー・デバイスに関する JEDEC JESD20 の基準に従っています。最大リフロー温度は 260° C です。

熱特性

熱性能は、プリント回路基板 (PCB) の設計と動作環境に直接 関連しています。PCB の熱設計には細心の注意を払う必要があ ります。

 θ_{IA} は、1立方フィートの密閉容器内で測定される、周囲温度とジャンクション温度の間の熱抵抗です。 θ_{JC} は、ジャンクション温度とケース温度の間の熱抵抗です。

熱抵抗および熱特性パラメータは、様々な空気流速 (m/sec) と PCB 層数に対して指定されています。温度管理を適切に行って、ジャンクション温度が表 10 に示す制限値を超えないようにすることを推奨します。

JEDEC 51-12 に従い表 11 の値を使用してください。

表 11. シミュレーションによる熱抵抗と PCB 層 1

PCB Type	Airflow Velocity (m/sec)	θ_{JA}	$\theta_{ extsf{JC_TOP}}$	$\theta_{ extsf{JC_BOT}}$	Unit
JEDEC	0.0	25.3	2.4^{3}	3.0^{4}	°C/W
2s2p	1.0	22.6	N/A	N/A	°C/W
Board	2.5	21.0	N/A	N/A	°C/W
12-Layer	0.0	15.4	2.4	2.6	°C/W
PCB^2	1.0	13.1	N/A	N/A	°C/W
	2.5	11.6	N/A	N/A	°C/W

¹N/Aは適用なしを意味します。

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。 電荷を帯びたデバイスや回路ボードは、検知されない

まま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

Rev. 0 — 14/150 —

²非 JEDEC の熱抵抗。

³ビアなしの 1SOP PCB。

⁴7×7標準 JEDEC ビアを持つ 1SOP PCB。

ピン配置およびピン機能の説明

	1	2	3	4	5	6	7	8	9	10	11	12
A	GND	SERDIN7+	SERDIN6+	SERDIN5+	SERDIN4+	GND	GND	SERDIN3+	SERDIN2+	SERDIN1+	SERDIN0+	GND
В	GND	SERDIN7-	SERDIN6-	SERDIN5-	SERDIN4-	GND	GND	SERDIN3-	SERDIN2-	SERDIN1-	SERDIN0-	GND
С	SVDD1.0	SVDD1.0	GND	GND	SVDD1.0	DVDD1.8	SVDD1.0	SVDD1.0	GND	GND	SVDD1.0	SVDD1.0
D	SYNCOUT1+	SYNCOUT1-	DVDD1.8	TXEN1	GND	SVDD1.0	GND	TXEN0	IRQ0	DVDD1.8	SYNCOUT0-	SYNCOUT0+
E	DNC	DNC	DVDD1.8	SDO	SCLK	cs	SDIO	RESET	ĪRQ1	DVDD1.8	DNC	DNC
F	GND	GND	GND	DAVDD1.0	DVDD1.0	DVDD1.0	DVDD1.0	DVDD1.0	DAVDD1.0	GND	GND	GND
G	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND
н	SYSREF+	SYSREF-	AVDD1.0	AVDD1.0	AVDD1.0	FILT_FINE	FILT_ COARSE	AVDD1.0	AVDD1.0	AVDD1.0	GND	CLKIN-
J	GND	DNC	GND	GND	GND	AVDD1.0	FILT_BYP	GND	GND	GND	GND	CLKIN+
ĸ	CLKOUT+	GND	AVDD1.8	DNC	AVDD1.8	FILT_VCM	AVDD1.8	GND	GND	AVDD1.8	GND	GND
L	CLKOUT-	GND	AVDD1.8	GND	GND	AVDD1.8	AVDD1.8	GND	GND	AVDD1.8	GND	ISET
М	GND	AVDD1.0	GND	DAC1+	DAC1-	GND	GND	DAC0-	DAC0+	GND	AVDD1.0	GND
DN		OG SUPPLY OG SUPPLY CONNECT										

図 2. ピン配置

表 12.ピン機能の説明

ピン番号	記号	説明
1.0 V Supply		
H3, H4, H5, H8 to H10, J6, M2, M11	AVDD1.0	1.0V クロックおよびアナログ電源。これらのピンは、クロック・レシーバー、クロック分配部、オンチップ DAC クロック逓倍器、および DAC アナログ・コアに電源を供給します。これらのピンにはクリーンな電源レール源が必要です。
F5 to F8	DVDD1.0	1.0V デジタル電源。これらのピンは、DAC デジタル回路に電源を供給します。 これらのピンにはクリーンな電源レール源が必要です。
F4, F9	DAVDD1.0	1.0V D/A 電源。これらのピンは DVDD1.0 電源と電源レールを共有できますが(電気的に接続)、これら 2 本のピンの絶縁を強化するために、PCB レイアウト時に別々の電源プレーンとデカップリング・コンデンサが必要です。これらのピンにはクリーンな電源レール源が必要です。
C1, C2, C5, C7, C8, C11, C12, D6	SVDD1.0	JESD204B データ・インターフェースへの 1.0V SERDES 電源。これらのピンにはクリーンな電源レール源が必要です。
1.8 V Supply		
K3, K5, K7, K10, L3, L6, L7, L10	AVDD1.8	オンチップ DAC クロック逓倍器と DAC アナログ・コアへの 1.8V アナログ電源。これらのピンにはクリーンな電源レール源が必要です。
C6, D3, D10, E3, E10	DVDD1.8	JESD204B データ・インターフェース、および SPI などの他の入出力回路への 1.8V デジタル電源。これらのピンにはクリーンな電源レール源が必要です。

Rev. 0 — 15/150 —

 ピン番号	記号	説明
Ground		
A1, A6, A7, A12, B1, B6, B7, B12, C3, C4, C9, C10, D5, D7, F1 to F3, F10 to F12, G1 to G12, H11, J1, J3 to J5, J8 to J11, K2, K8, K9, K11, K12, L2, L4, L5, L8, L9, L11, M1, M3, M6, M7, M10, M12	GND	デバイス共通グラウンド。
RF Clock		
J12	CLKIN+	正のデバイス・クロック入力。このピンは、DAC PLL がオンになっている時のオンチップ DAC クロック逓倍器 REFCLK へのクロック入力です。このピンは、DAC PLL がオフになっている時の DAC サンプル・クロックまたはデバイス・クロック (DACCLK) へのクロック入力でもあります。この入力は AC カップリングしてください。このピンと CLKIN-の間には内部 100Ω 抵抗が組み込まれています。
H12	CLKIN-	負のデバイス・クロック入力。
K1	CLKOUT+	正のデバイス・クロック出力。このピンは分周された DACCLK のクロック出力で、DAC PLL がオンとオフの両方で使用できます。分周比は 1、2、3、または 4 です。
L1	CLKOUT-	負のデバイス・クロック出力。
System Reference		
н	SYSREF+	正のシステム・リファレンス入力。このピンは AC カップリングすることを推 奨しますが、DC カップリングとすることもできます。DC コモンモード電圧に ついては SYSREF±の仕様を参照してください。
H2	SYSREF-	負のシステム・リファレンス入力。このピンは AC カップリングすることを推 奨しますが、DC カップリングとすることもできます。DC コモンモード電圧に ついては SYSREF±の仕様を参照してください。
On-Chip DAC PLL Loop Filter		
Н6	FILT_FINE	オンチップ DAC クロック逓倍器と PLL 精密ループ・フィルタ入力。PLL を使用しない場合は、このピンをフロート状態にして、制御レジスタにより PLL をディスエーブルします。
Н7	FILT_COARSE	オンチップ DAC クロック逓倍器と PLL 粗ループ・フィルタ入力。PLL を使用しない場合は、このピンをフロート状態にして、制御レジスタにより PLL をディスエーブルします。
J7	FILT_BYP	オンチップ DAC クロック逓倍器と LDO バイパス。このノードに、2~10μF の 高品質セラミック・バイパス・コンデンサを追加します。理想的には、このコンデンサは 10μF X7R 以上の品質のものを使用します。PLL を使用しない場合は、このピンをフロート状態にして、制御レジスタにより PLL をディスエーブルします。
K6	FILT_VCM	オンチップ DAC クロック逓倍器と VCO コモンモード入力。PLL を使用しない場合は、このピンをフロート状態にして、制御レジスタにより PLL をディスエーブルします。
SERDES Data Bits		
A2	SERDIN7+	SERDES データのビット 7、正。
B2	SERDIN7-	SERDES データのビット 7、負。
A3	SERDIN6+	SERDES データのビット 6、正。
В3	SERDIN6-	SERDES データのビット 6、負。
A4	SERDIN5+	SERDES データのビット 5、正。
B4	SERDIN5-	SERDES データのビット 5、負。
A5	SERDIN4+	SERDES データのビット 4、正。
B5	SERDIN4-	SERDES データのビット 4、負。
A8	SERDIN3+	SERDES データのビット 3、正。
B8	SERDIN3-	SERDES データのビット 3、負。
A9	SERDIN2+	SERDES データのビット 2、正。
В9	SERDIN2-	SERDES データのビット 2、負。
A10	SERDIN1+	SERDES データのビット 1、正。
B10	SERDIN1-	SERDES データのビット 1、負。
A11	SERDIN0+	SERDES データのビット 0、正。
B11	SERDIN0-	SERDES データのビット 0、負。

Rev. 0 — 16/150 —

ピン番号	記号	説明
Sync Output		
D12	SYNCOUT0+	正同期(アクティブ・ロー)出力信号、チャンネル・リンク 0。このピンは LVDS または CMOS のどちらかを選択できます。
D11	SYNCOUT0-	負同期(アクティブ・ロー)出力信号、チャンネル・リンク 0。このピンは LVDS または CMOS のどちらかを選択できます。
D1	SYNCOUT1+	正同期(アクティブ・ロー)出力信号、チャンネル・リンク 1。このピンは LVDS または CMOS のどちらかを選択できます。
D2	SYNCOUT1-	負同期 (アクティブ・ロー) 出力信号、チャンネル・リンク 1。このピンは LVDS または CMOS のどちらかを選択できます。
Serial Port Interface		
E4	SDO	シリアル・ポート・データ出力 (DVDD1.8 基準の CMOS レベル)。
E7	SDIO	シリアル・ポート・データ入出力(DVDD1.8 基準の CMOS レベル)。
E5	SCLK	シリアル・ポート・クロック入力(DVDD1.8 基準の CMOS レベル)。
E6	CS	シリアル・ポート・チップ・セレクト、アクティブ・ロー (DVDD1.8 基準の CMOS レベル)。
E8	RESET	リセット、アクティブ・ロー(DVDD1.8 基準の CMOS レベル)。
Interrupt Request		
D9	ĪRQ0	割込み要求 0。このピンはオープン・ドレインのアクティブ・ロー出力です (DVDD1.8 基準の CMOS レベル)。非アクティブ時にこのピンがフロート状態 にならないように、DVDD1.8 にはプルアップ抵抗を接続してください。
E9	ĪRQ1	割込み要求 1。このピンはオープン・ドレインのアクティブ・ロー出力です (DVDD1.8 基準の CMOS レベル)。非アクティブ時にこのピンがフロート状態 にならないように、DVDD1.8 にはプルアップ抵抗を接続してください。
CMOS Input/Outputs		
D8	TXEN0	DAC0 の送信を有効化。CMOS レベルは DVDD1.8 基準で決定されます。
D4	TXEN1	DAC1 の送信を有効化。CMOS レベルは DVDD1.8 基準で決定されます。
DAC Analog Outputs		
M9	DAC0+	DAC0の正の電流出力。
M8	DAC0-	DACOの負の電流出力。
M4	DAC1+	DAC1 の正の電流出力。
M5	DAC1-	DAC1 の負の電流出力。
Reference		
L12	ISET	デバイス・バイアス電流設定ピン。このピンと GND の間に 5kΩ 抵抗を接続します。なるべく許容誤差が 0.1%未満、温度係数が±25ppm/℃ 未満の抵抗を使用してください。
Do Not Connect		
E1, E2, E11, E12, J2, K4	DNC	接続なし。これらのピンには接続しないでください。

Rev. 0 - 17/150 -

代表的な性能特性

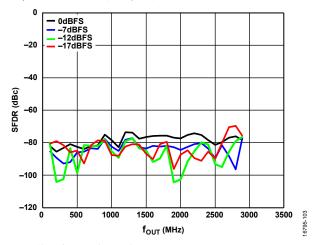


図 3. 第 2 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 0)での関係:6GHz DAC サンプル・レート、 チャンネル・インターポレーション 2×、 メイン・インターポレーション 8×

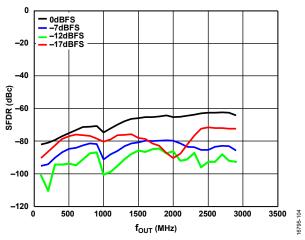


図 4. 第 3 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 0)での関係:6GHz DAC サンプル・レート、 チャンネル・インターポレーション 2×、メイン・ インターポレーション 8×

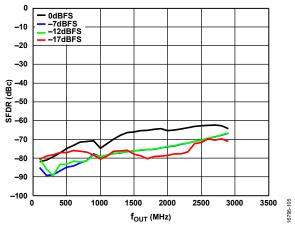


図 5. 最悪高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 0) での関係:6GHz DAC サンプル・レート、 チャンネル・インターポレーション 2^{\times} 、 メイン・インターポレーション 8^{\times}

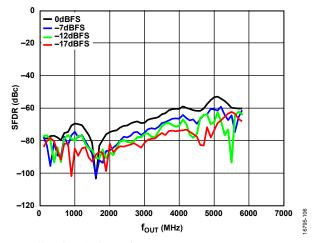


図 6. 第 2 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 1) での関係:12GHz DAC サンプル・レート、 チャンネル・インターポレーション 4×、 メイン・インターポレーション 8×

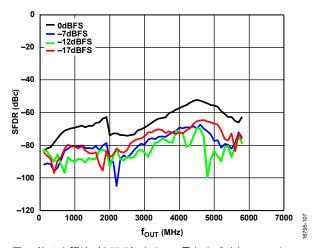


図 7. 第 3 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 1) での関係: 12GHz DAC サンプル・レート、 チャンネル・インターポレーション 4×、 メイン・インターポレーション 8×

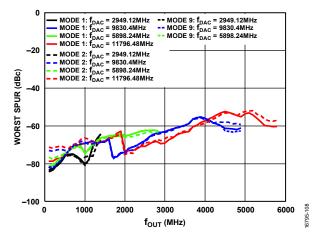


図 8. 最悪スプリアスと f_{OUT} - 異なる f_{DAC} (全モード)での関係: OdB デジタル・スケール

Rev. 0 — 18/150 —

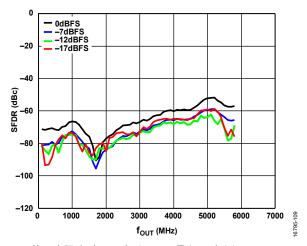


図 9. 第 2 高調波(SFDR)と fout - 異なるデジタル・スケール (モード 2) での関係: 12GHz DAC サンプル・レート、 チャンネル・インターポレーション 4×、 メイン・インターポレーション 8×

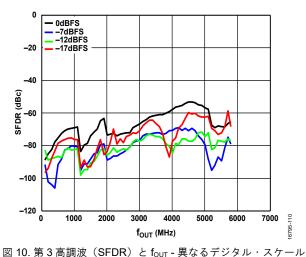


図 10. 弟 3 高調液(SFDR)と four - 異なるテンタル・スケール (モード 2)での関係:12GHz DAC サンプル・レート、 チャンネル・インターポレーション 4×、 メイン・インターポレーション 8×

図 11. 最悪スプリアス(SFDR)と f_{OUT} - 異なるデジタル・スケール(モード 2)での関係:12GHz DAC サンプル・レート、チャンネル・インターポレーション $4\times$ 、メイン・インターポレーション $8\times$

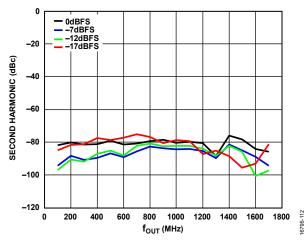


図 12. 第 2 高調波と four - 異なるデジタル・スケール(モード 17)での関係:3.4GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 1×、11 ビット分解能

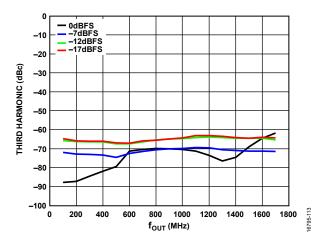


図 13. 第 3 高調波と f_{OUT} - 異なるデジタル・スケール(モード 17)での関係:3.4GHz DAC サンプル・レート、チャンネル・インターポレーション 1×、メイン・インターポレーション 1×、11 ビット分解能

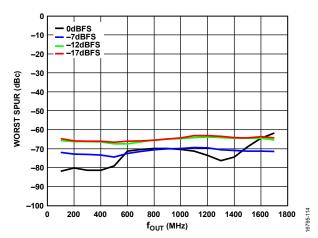


図 14. 最悪スプリアスと f_{OUT} - 異なるデジタル・スケール (モード 17) での関係: 3.4GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 1×、11 ビット分解能

Rev. 0 — 19/150 —

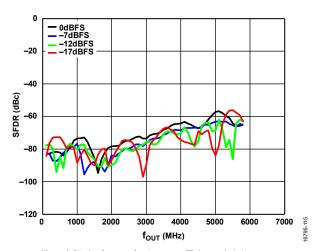


図 15. 第 2 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 9)での関係:12GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 8×

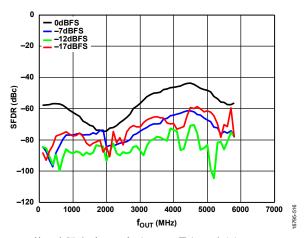


図 16. 第 3 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 9)での関係:12GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 8×

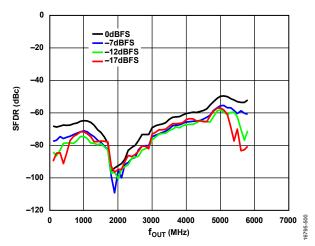


図 17. 第 2 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 23) での関係:12GHz DAC サンプル・レート、チャンネル・インターポレーション 1×、メイン・インターポレーション 6×、11 ビット分解能



図 18. 第 3 高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 23) での関係: 12GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 6×、11 ビット分解能

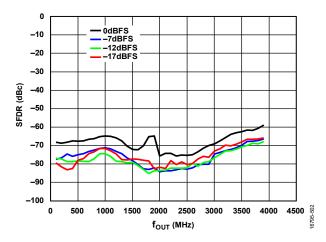


図 19. 最悪高調波(SFDR)と f_{OUT} - 異なるデジタル・スケール (モード 23) での関係: 12GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 6×、11 ビット分解能

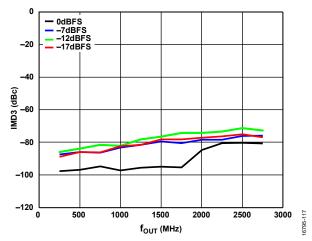


図 20. IMD3 と f_{OUT} -異なるデジタル・スケール(モード 0)での 関係:6GHz DAC サンプル・レート、 チャンネル・インターポレーション 2^x 、 メイン・インターポレーション 8^x 、1MHzトーン間隔

Rev. 0 — 20/150 —

図 21. IMD3 と f_{OUT} -異なる f_{DAC} (モード 0)での関係: チャンネル・インターポレーション 2^{\times} 、メイン・インターポレーション 8^{\times} 、1MHz トーン間隔

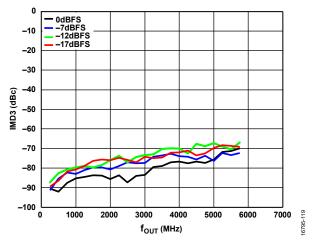


図 22. IMD3 と f_{OUT} -異なるデジタル・スケール(モード 1)での 関係:12GHz DAC サンプル・レート、チャンネル・ インターポレーション 4×、メイン・インターポレーション 8×、 1MHz トーン間隔

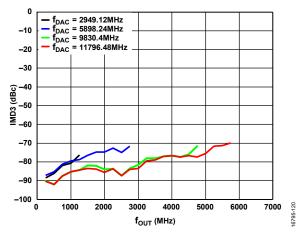


図 23. IMD3 と f_{OUT} -異なる f_{DAC} (モード 1)での関係:チャンネル・インターポレーション $4\times$ 、メイン・インターポレーション $8\times$ 、1MHz トーン間隔、-7dB デジタル・スケール

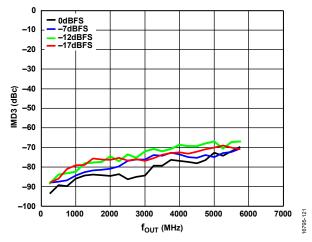


図 24. IMD3 と f_{OUT} -異なるデジタル・スケール(モード 2)での 関係:12GHz DAC サンプル・レート、チャンネル・インターポレーション 4×、メイン・インターポレーション 8×、 1MHz トーン間隔

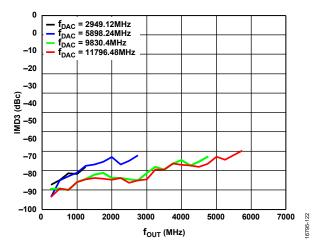


図 25. IMD3 と f_{OUT} -異なる f_{DAC} (モード 2)での関係: チャンネル・インターポレーション 4×、メイン・インターポレーション 8×、1MHz トーン間隔

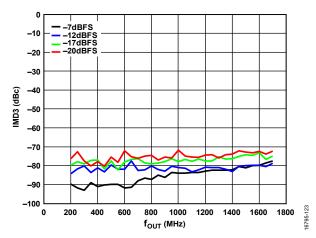


図 26. IMD3 と f_{OUT} -異なるデジタル・スケール(モード 17)で の

関係:3.4GHz DAC サンプル・レート、チャンネル・インターポレーション 1×、メイン・インターポレーション 1×、1MHz トーン間隔、11 ビット分解能

Rev. 0 — 21/150 —

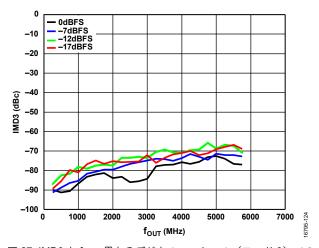


図 27. IMD3 と f_{OUT} -異なるデジタル・スケール(モード 9)での関係:12GHz DAC サンプル・レート、チャンネル・インターポレーション 1×、メイン・インターポレーション12×、1MHz トーン間隔

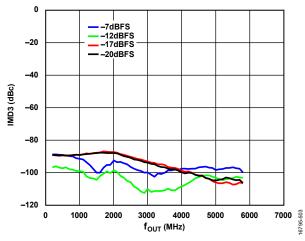


図 28. 最悪 IMD3 と f_{OUT} -異なるデジタル・スケール(モード 23)での関係: 12GHz DAC サンプル・レート、 チャンネル・インターポレーション 1×、 メイン・インターポレーション 6×、1MHz トーン間隔

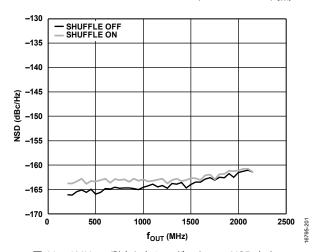


図 29. 70MHz で測定したシングルトーン NSD と f_{OUT} - 11796.48 MHz f_{DAC}、16 ビット分解能、 異なるシャッフル・オプション

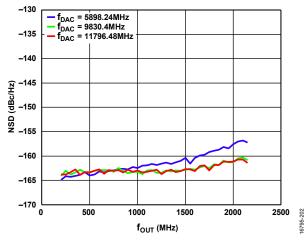


図 30. NSD と f_{OUT} -異なる f_{DAC} での関係:16 ビット分解能、シャッフル・オン、70MHz で測定したシングルトーン

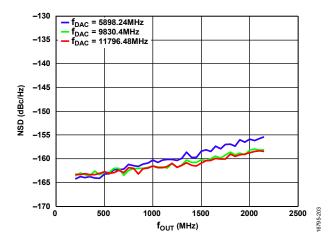


図 31. NSD と f_{OUT} -異なる f_{DAC} での関係:16 ビット分解能、 シャッフル・オン、シングルトーン、 f_{OUT} から 10%のオフセットで測定

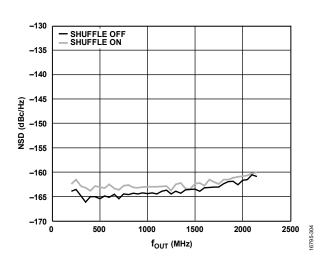


図 32. NSD と f_{OUT} -11796.48 MHz f_{DAC}: 12 ビット分解能、 異なるシャッフル・オプション、シングルトーン、 70MHz で測定

Rev. 0 — 22/150 —

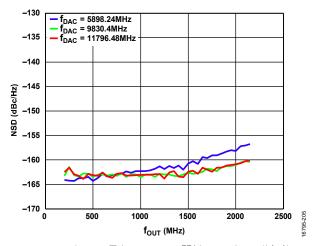


図 33. NSD と f_{OUT} -異なる f_{DAC} での関係:12 ビット分解能、シャッフル・オン、シングルトーン、70MHz で測定

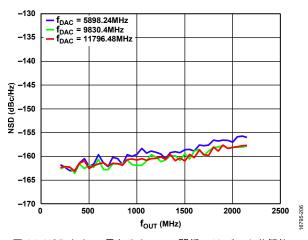


図 34. NSD と f_{OUT} - 異なる f_{DAC} での関係:12 ビット分解能、シャッフル・オン、シングル・トーン、 f_{OUT} から 10%のオフセットで測定

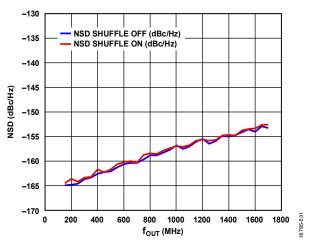


図 35. 70MHz で測定したシングル・トーン NSD と f_{OUT} - 3.4 GHz f_{DAC} 、11 ビット分解能、シャッフル・オフとシャッフル・オン

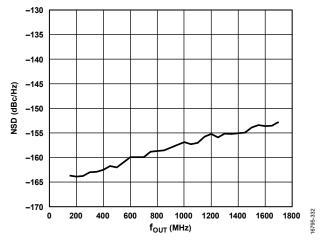


図 36. f_{OUT} から 10%のオフセットで測定したシングル・トーン NSD と f_{OUT} - 3.4GHz f_{DAC}、11 ビット分解能、シャッフル・オン

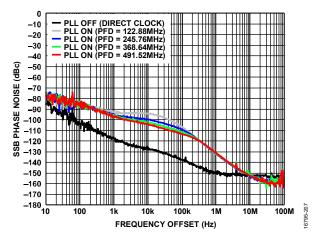


図 37. 単側波帯(SSB)位相ノイズと f_{OUT}オフセット - 異なる PFD 周波数での関係、f_{DAC} = 12GHz、f_{OUT} = 1.8GHz、PLL オン、PLL リファレンス・クロック = 500MHz

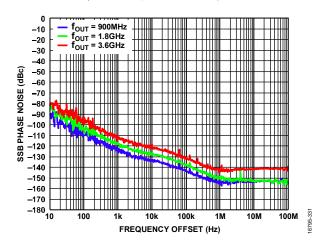


図 38. SSB 位相ノイズと f_{OUT} 周波数オフセット - f_{DAC} = 12GHz、 直接クロック(PLL オフ)

Rev. 0 – 23/150 –

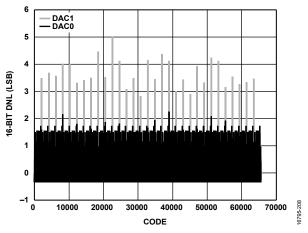


図 39. DNL - I_{OUTFS} = 26mA、16 ビット分解能

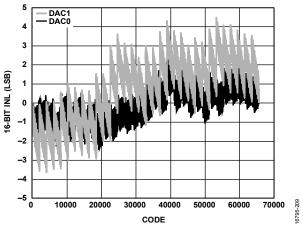


図 40. INL - I_{OUTFS} = 26mA、16 ビット分解能

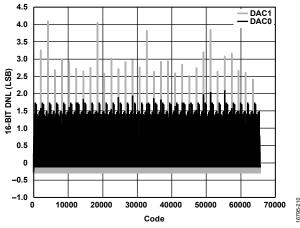


図 41. DNL - I_{OUTFS} = 20mA、16 ビット分解能

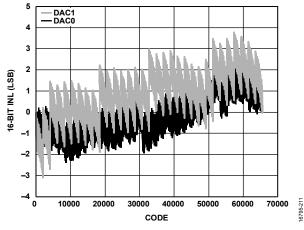


図 42. INL - I_{OUTFS} = 20mA、16 ビット分解能

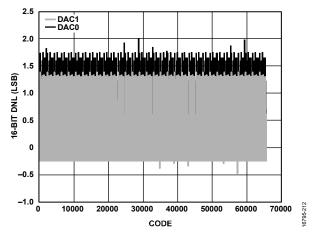


図 43. DNL - I_{OUTFS} = 15.6mA、16 ビット分解能

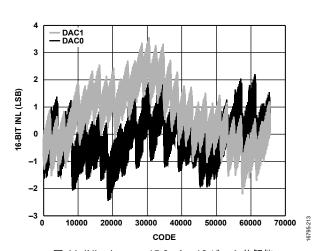


図 44. INL - I_{OUTFS} = 15.6mA、16 ビット分解能

Rev. 0 — 24/150 —

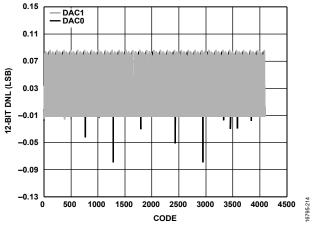


図 45. DNL - I_{OUTFS} = 20mA、12 ビット分解能

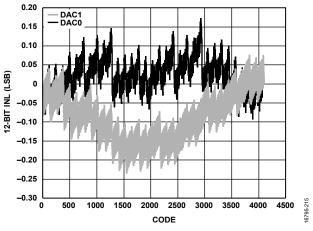


図 46. INL - I_{OUTFS} = 20mA、12 ビット分解能

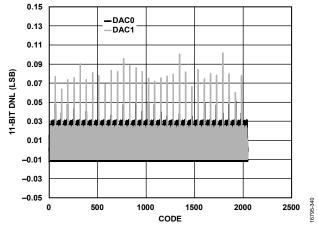


図 47. DNL - I_{OUTFS} = 20mA、11 ビット分解能

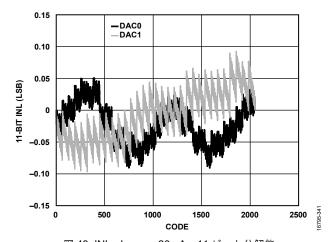


図 48. INL - I_{OUTFS} = 20mA、11 ビット分解能

Rev. 0 — 25/150 —

用語の定義

積分非直線性 (INL)

INL は、ゼロとフルスケールを結ぶ直線により決定される理論 出力と実際のアナログ出力との最大誤差です。

微分非直線性(DNL)

DNL は、デジタル入力コードでの ILSB の変化に対応するアナログ値の変化の測定値で、フルスケールで正規化したものです。

オフセット誤差

オフセット誤差は、出力電流と理想値である 0mA の間の差です。全入力ビットが 0 の場合、DACx+の出力が 0mA となり、全入力ビットが 1 の場合、DACx-の出力が 0mA となることが予想されます。

ゲイン誤差

理論出力範囲と実際の出力範囲の差を言います。実際の幅は、 入力がその最小コードにあるときの出力と、入力がその最大コードにあるときの出力の差によって決定されます。

出力コンプライアンス範囲

出力コンプライアンス範囲は、電流出力型 DAC の出力における 許容電圧範囲です。最大コンプライアンス値を超えて動作させ ると、出力段の飽和またはブレークダウンにより性能に非直線 性が生じることがあります。

温度ドリフト

温度ドリフトは、周囲温度(25°C)時の値から T_{MIN} または T_{MAX} の時の値までの最大変化として規定されます。オフセットとゲインのドリフトは、1°Cあたりのフルスケール・レンジ(FSR)の ppm(百万分率)で表されます。リファレンスのドリフトは、1°Cあたりの ppm で表されます。

セトリング時間

出力が最終値を中心とする規定誤差範囲内に到達するまでに要する時間で、出力変化の開始から測定します。

スプリアスフリー・ダイナミック・レンジ (SFDR)

SFDR は、DAC の DC からナイキスト周波数までの範囲における、出力信号のピーク振幅とピーク・スプリアス信号との差です(デシベル単位)。通常、この帯域内のエネルギーはインターポレーション・フィルタによって除去されます。したがってこの仕様は、インターポレーション・フィルタの効果と、他の寄生カップリング経路が DAC 出力に及ぼす影響を定義します。

S/N比 (SNR)

S/N 比は、ナイキスト周波数未満のすべてのスペクトル成分 (最初の 6 つの高調波と DC を除く) の実効値総和に対する測 定出力信号の実効値の比率です。S/N 比の単位はデシベルです。

インターポレーション・フィルタ

DAC へのデジタル入力をインターポレーション・レート(fdata)の倍数でサンプリングした場合は、fdata/2 付近に急峻な遷移帯域を持つデジタル・フィルタを構成できます。これにより、出力データ・レート(fdac)付近に通常現れるイメージを大幅に抑制することができます。

チャンネル・データパス

チャネライザと呼ばれることもあるチャンネル・データパスは、複素(I/Q)データパスです。チップ内には6つのチャネライザがあり、3つのチャネライザが各メイン・データパスにまとめられています。動作モードに応じて、チャネライザを使用しない場合はバイパスできます。チャネライザを使用する場合は、複素(I/Q)入力データ・ストリームが必要です。各チャンネル・データパスには、独立に制御されるゲイン段とチャンネルNCOが含まれています。動作モードに応じて、選択可能なチャンネル・インターポレーション・ブロックを設定できます。すべてのチャンネルは、同じインターポレーション・レートに設定する必要があります。

メイン・データパス

メイン・データパスとは、チップ内の加算ノードからそれぞれのメイン DAC アナログ・コアまでのデジタル・データパス部分を言います。これらの各メイン・データパスには、オプションのPA 保護ブロックが含まれていますが、この保護ブロックには、伝送パス内のパワー・アンプを損傷させてしまう前に DAC 出力をミュートするためのランプアップ/ダウン・ゲイン段ブロックへのフィード・フォワードが組み込まれています。また、選択可能なメイン・インターポレーション・ブロックがあり、選択した動作モードに応じて構成を設定することができます(どちらのメイン・インターポレーション・ブロックについても同じ構成)。各メイン・データパスには個別に設定可能なメイン NCO も含まれており、動作モードに応じオプションで使用することができます。

隣接チャンネル漏れ率(ACLR)

ACLR は、チャンネル内測定電力と隣接チャンネル測定電圧の比を搬送波基準のデシベル単位 (dBc) で表した値です。

調整 DAC 更新レート

調整 DAC 更新レートは、最小インターポレーション係数で除した DAC 更新レートです。複数のインターポレーション係数を持つ DAC では、明確化のために、それぞれのインターポレーション係数ごとに調整 DAC 更新レートを設定することができます。

物理(PHY)レーン

物理レーンxとはSERDINx±のことを言います。

論理レーン

-26/150 -

論理レーンxとは、クロスバー・ブロック(レジスタ0x308~レジスタ0x30B)によりオプションでリマップされた物理レーンのことを言います。

リンク・レーン

リンク・レーン x とは、リンクごとに考慮される論理レーンを言います。リンク 0 (レジスタ 0x300 [2]=0) をページングするときは、リンク・レーン x = 論理レーン x です。リンク 1 (レジスタ 0x300 [2]=1、デュアルリンクのみ)をページングするときは、リンク・レーン x = 論理レーン x+4 です。

Rev. 0

動作原理

AD9175は、サブクラス 0 およびサブクラス 1 の動作に準拠した 高速 JESD204B SERDES インターフェースを持つ 16 ビットのデュアル RF DAC です。AD9175 の機能ブロック図を図 1 に示します。各 DAC コアには、個別にバイパス可能な 3 個のチャンネルが組み込まれています。これらのチャンネルは、1 チャンネルあたり最大 1.575GSPS のレートの複素データ入力をサポートしています。JESD204B インターフェースは、シングルリンクまたはデュアルリンク動作に設定でき、8 つの高速シリアル・ポートはそれぞれ、チャネライザと呼ばれるチャンネル・データパスに最大 15.4Gbps でデータを伝送できます。LVDS インターフェースや CMOS インターフェースと比べて、SERDES インターフェースを使用した場合は、ピン数、ボード・レイアウト、デバイスへの入力クロック条件などを簡素化することができます。

SERDES インターフェース用のローカル・クロックは、JESD204B 仕様により要求されるデバイス・クロック(CLKIN±ピン)から得られます。デバイス・クロックは、内蔵 PLL のDAC クロックを供給するためのリファレンスとして機能します。あるいは、PLL をバイパスして、DAC クロックを高忠実度の外部クロック源から直接供給することもできます。SERDES インターフェースは、必要な入力データ・レートに応じて、リンク・モードごとに 1、2、3、4、または 8 レーンで動作するように構成できます。デュアルリンク動作では、各リンクはそれぞれ最大 4 レーンを占有できます。

AD9175 のデジタル・データパスは、バイパス可能な (1×) インターポレーション・ブロックをチャンネル・データパスとメイン・データパスの両方に備えています。希望のモードに応じて、チャンネル・データパス用の 2×、3×、4×、6×、8×インターポレーション・オプションと、メイン・データパス用の 2×、4×、6×、8×、12×インターポレーション・オプションもあります。サポートされている各種処理モードと関連するインターポレーション・オプションについては、表 13 を参照してください。

1×インターポレーション (バイパス) を選択していない場合、各チャンネルのデジタル・データパスにより、各チャンネルでゲイン段と NCO ブロックを個別に制御できます。NCO ブロックには、ほぼ無限の精度で信号のデジタル周波数シフトを有効にするための 48 ビット・モジュラス NCO オプションがあります。3 つのチャネライザ・データパスの終点には、最大1.575GSPS で3つのデータパスを1つにまとめ、それぞれのメイン DAC データパスに入力を送信する加算ノードがあり、更にデジタル処理が行われます。

それぞれのメイン DAC データパスには、オプションのパワー・アンプ (PA) 保護ブロック、メイン・データパス・インターポレーション・ブロック、オプションのモジュラス機能を備えたメイン NCO、および PA 保護ブロックから入力されるランプアップ/ランプダウン・ゲイン・ブロックが組み込まれています。更に、オプションのキャリブレーション・トーン機能と、メイン NCO ブロックの一部である 4 つの変調器スイッチ・モードがあります。

各 NCO は、ダイレクト・デジタル合成(DDS)モードではスタンドアロンの NCO として動作できます。NCO トーンのレベルは、SERDES インターフェースからデジタル・データを提供することによって割り当てることも、SPI プログラマブル・レジスタを使用してすべての NCO に一括で割り当てることもできます。周波数は個別に制御できます。

AD9175 はマルチチップ同期も可能で、複数の DAC を同期すると共に、DAC のために一定かつ確定的な遅延(遅延ロック)のパスを確立することができます。各 DAC の遅延は、あるリンクの確立から次のリンクの確立まで、DAC の数クロック・サイクル内に収まる一定の値に止まります。外部アライメント信号(SYSREF±)は、AD9175 を JESD204B サブクラス 1 に準拠したデバイスにします。システム内では、複数の SYSREF±信号処理手段を使用できます。

SPI ポートは様々な機能ブロックを構成して、それらのステータスをモニタします。デバイスを正常に動作させるには、様々な機能ブロックとデータ・インターフェースを予め決められたシーケンスでセットアップする必要があります(スタートアップ・シーケンスのセクションを参照)。JESD204B リンクは単純な SPI 初期化ルーチンによってセットアップされます。このルーチンは、AD9175-FMC-EBZ 評価ボードのパッケージに含まれています。このデータシートには、AD9175 の様々なブロックについての詳細が記載されています。以下では、JESD204B インターフェース、制御パラメータ、およびデバイスのセットアップとモニタに使用する様々なレジスタについて説明します。推奨スタートアップ・ルーチンを実行すれば、信頼性の高いデータ・リンクが設定されます。

Rev. 0 — 27/150 —

表 13. JESD204B がサポートする動作モードとインターポレーションの組み合わせ

<u>X 10. 020020 10 % 7</u>		4B Operation	Modes	Channel Datapath		Main DAC Datapath			
Application	Link Modes	JESD204 B Modes	Lanes per Link	Channels per DAC	Maximum Channel Data Rate (MSPS)	Channel Inter- polation	Main Datapath Interpolation	Maximum DAC Rate (GSPS) ³	Maximum Instantaneous Bandwidth (MHz) ¹
Channelizer Modes (All Complex)									
375 MHz $(N = 16 Bits)$									
Single-Channel	Single, dual	0 0	1	1	385 385	2× 4×, 6×	8× 6×, 8×	6.16 12.6	308 308
Dual-Channel	Single, dual	1	2	2	385	4×, 6×	6×, 8×	12.6	616
Triple-Channel	Single, dual	2	3	3	385	4×, 6×	6×, 8×	12.6	924
500 MHz (N = 12 Bits)									
Single-Channel	Single, dual	5 5	1 1	1	513 513	2× 3×	6× 6×, 8×	6.16 12.6	410.4 410.4
Dual-Channel	Single, dual	6	2	2	513	3×	6×, 8×	12.6	
750 MHz $(N = 16 Bits)$									
Single-Channel	Single, dual	3 3	2 2	1	770 770	1× 2×, 3×	8× 6×, 8×	6.16 12.6	616 616
Dual-Channel	Single, dual	4	4	2 2	770 385	2×, 3× 4×	6×, 8× 8×	12.6 12.6	616 308
187 MHz (N = 16 Bits)									
Dual-Channel	Single, dual	7	1	2	192.5	8×	6×, 8×	12.6	154
Wideband Modes (Complex or Real) 3000 MHz (N = 11 Bits)									
Complex	Single	15, 16	8	1	3080	1×	2×, 4×	12.6	2464
Real, Dual-DAC 1230 MHz (N = 16 Bits)	Single	15, 16	8	1	3080	1×	1×	3.08	1540
Complex, Dual- DAC	Single, dual	8,9	4	24	1230	1×	8×, 12×	12.6	19684
1230 MHz $(N = 11 Bits)$									
Complex, Dual- DAC	Single, dual	13, 14	4	24	1230	1×	2×, 4×	6.16	19684
2000 MHz (N = 11 Bits, NP = 12 Bits)									
Complex, Dual- DAC	Single, dual	23	4	24	2050	1×	4×, 6×	12.6	32804
34,000 MHz (N = 11 Bits, NP = 12 Bits)									
Real, Single-DAC	Single	17	8	1	3400	1×	1×	3.4	1700

[「]複素モードでは、瞬時帯域幅(IBW)は I と Q の両方が占有する帯域幅です(複合 IQ 帯域幅と呼ばれる)。複素モードの帯域幅は、ある程度インターポレーション・フィルタの帯域幅によって制限されます。インターポレーション・フィルタをバイパスして AD9175 を実数オンリ・モードに構成すると、 $IBW = \% \times \tilde{r}$ データ・レートになります。

Rev. 0 — 28/150 —

²最大データ・レートは、表 7 に示す最大レーン・レートに基づいて計算されます。データ・レートは次式に基づいて計算されます:レーン・レート= (10/8) × NP × データ・レート× (M/L)。ここで、NP、M、Lの値は選択するモードにより異なります。

 $^{^3}$ モードごとの最大 DAC レートは、表 3 に示すように、使用する構成の電圧許容値とレーン・レートによって異なります。実現可能な最大レーン・レートは表 7 に示すとおりです。

⁴ 変調器スイッチを正しく構成すると、各チャンネルに独自のメイン・データパス NCO を組み込んだ広帯域のデュアル・チャンネル DAC として動作するように AD9175 を構成できます。この場合、変調器スイッチは、2 つのデータパスから 1 つの DAC コアにデータを供給する加算ノードとして機能するように構成されます。

シリアル・ポートの動作

シリアル制御ポートは柔軟な同期シリアル通信ポートで、業界 標準の様々なマイクロコントローラやマイクロプロセッサとの インターフェースを容易に形成することができます。シリアル 入出力ポートは、Motorola, Inc.の SPI と Intel®の SSR の両方のプ ロトコルを含むほとんどの同期転送フォーマットに使用できま す。このインターフェースを使用すれば、AD9175を構成するす べてのレジスタへの読出しアクセスと書込みアクセスが可能で す。MSBファーストまたはLSBファーストの転送フォーマット がサポートされています。シリアル・ポート・インターフェー スは、4線式または3線式のインターフェースとして構成可能 で、3線式の場合は入力と出力が1つのピン入出力(SDIO)を 共有します。データは、読み書き動作ごとにアドレスを指定し て一度に 1 バイトずつ転送することも、各転送サイクルの最後 にアドレスを自動的にインクリメントしてマルチバイト・モー ドで転送することもできます。こうすると、レジスタ・アドレ スへの複数の読み書き操作が連続している場合、リンク・スル ープットが向上します。

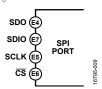


図 49. シリアル・ポート・インターフェース・ピン (144 ボール BGA ED)

AD9175での通信サイクルには2つのフェーズがあります。フェーズ 1 は命令サイクル(デバイスへの命令バイトの書込み)で、最初の16 個の SCLK 立上がりエッジに同期します。命令ワードは、通信サイクルのフェーズ 2、つまりデータ転送サイクルに必要な情報をシリアル・ポート・コントローラに提供します。命令ワードは、次のデータ転送の開始レジスタ・アドレスと、次のデータ転送が読出し操作か書込み操作かを示すフラグを定義します。

CSピンがロジック・ハイからロジック・ローに変わると、シリアル・ポート・タイミングが命令サイクルの初期状態にリセットされます。この状態から、次の16個の立上がりSCLKエッジが、現在の入出力動作の命令ビットを表します。

残りの SCLK エッジは、通信サイクルのフェーズ 2 用です。フェーズ 2 は、デバイスとシステム・コントローラ間における実際のデータ転送です。通信サイクルのフェーズ 2 では、1 つまたは複数のデータ・バイトが転送されます。転送サイクルで N バイトのデータを転送するには、 $8 \times N$ 個の SCLK サイクルが必要です。各転送バイトの最後のビットへの書込みで、レジスタは直ちにデータを更新(ラッチ)します。

FTW と NCO の位相オフセットが変化するのは、周波数調整ワード・ロード要求ビット (DDSM_FTW_LOAD_REQ) または DDSC FTW LOAD REQ) をセットした場合のみです。

データ・フォーマット

命令バイトには、表14に示す情報が含まれます。

表 14. シリアル・ポート命令ワード

I15 (MSB)	I[14:0]
R/\overline{W}	A[14:0]

命令ワードのビット 15 である R/\overline{W} は、命令ワード書込み後に読出し転送を行うか書込み転送を行うかを決定します。 ロジック 1 は読出し動作であることを示し、ロジック 0 は書込み動作であることを示します。

命令ワードの $A14\sim A0$ 、つまりビット $I14\sim$ ビット I0 は、通信 サイクルのデータ転送部分でアクセスされるレジスタを決定します。

マルチバイト転送の場合は A [14:0] が開始アドレスです。残りのレジスタ・アドレスは、アドレス・インクリメント・ビットに基づき、デバイスによって生成されます。アドレス・インクリメント・ビットがハイに設定されると(レジスタ 0x000、ビット5とビット2)、A [14:0] でマルチバイトの SPI 書込みが開始されて、8 ビットの送信/受信ごとに1ずつインクリメントされます。アドレス・インクリメント・ビットを0 に設定すると、アドレスは8 ビットごとに1ずつデクリメントされていきます。

シリアル・ポート・ピンの説明 シリアル・クロック(SCLK)

シリアル・クロック・ピンは、デバイスとやり取りするデータを同期して、内部ステート・マシンを実行します。SCLKの最大周波数は80MHzです。すべてのデータ入力は、SCLKの立上がりエッジでレジスタに取り込まれます。すべてのデータはSCLKの立下がりエッジで出力されます。

チップ・セレクト(CS)

通信サイクルはアクティブ・ロー入力で開始され、制御されます。CSは、同じシリアル通信ライン上で複数のデバイスを使用することを可能にします。この入力がハイの時は、SDIOピンが高インピーダンス状態になります。通信サイクル時は、チップ・セレクトがローになっていなければなりません。

シリアル・データ入出力(SDIO)

このピンは双方向データ・ラインです。4線モードでは、このピンがデータ入力として機能し、SDOがデータ出力として機能します。

Rev. 0 — 29/150 —

シリアル・ポート・オプション

シリアル・ポートは、MSB ファーストと LSB ファースト両方のフォーマットをサポートしています。この機能は、LSB ファースト・ビット (レジスタ 0x000 のビット 6 とビット 1) によって制御されます。デフォルトは MSB ファーストです(LSBFIRST ビット = 0)。

LSB ファースト・ビット = 0 (MSB ファースト) の場合は、命令データ・ビットを MSB から LSB に書き換える必要があります。R/Wの後には A [14:0] が命令ワードとして続きます。D [7:0] はデータ・ワードです。LSB ファースト・ビット = 1 (LSB ファースト) の場合は、この逆になります。A [0:14] の後にはR/Wが続き、更にその後には D [0:7] が続きます。

シリアル・ポートは 3 線式または 4 線式のインターフェースをサポートしています。SDO アクティブ・ビット = 1 (レジスタ 0x000、ビット 4 とビット 3) のときは、入力ピン (SDIO) と出力ピン (SDO) が別になっている 4 線式インターフェースが使われます。SDO アクティブ・ビット = 0 の場合は SDO ピンを使わず、SDIO ピンを入力と出力の両方に使用します。

命令サイクルに続く最初のデータ転送ワード後に、複数のデータ転送サイクル(8個の SCLK)用にCSピンをローに保つことによって、マルチバイト転送を行うこともできます。命令サイクルに続く最初の 8 個の SCLK は、命令サイクルで提供されたレジスタの読出しまたは書込みを行います。その後の 8 SCLK サイクルごとにアドレスはインクリメントまたはデクリメントされ、新しいレジスタの読出し/書込みが行われます。アドレスの方向は、ADDRINC または ADDRINC M (レジスタ 0x000 のビット 5 とビット 2)を使用して設定できます。ADDRINC またはADDRINC Mが 1 の場合、マルチサイクル・アドレスはインクリメントされます。ADDRINC またはADDRINC Mが 0 の場合、アドレスはデクリメントされます。新しい書込みサイクルは、CSを一度ハイにして再びローにすることによって、いつでも開始することができます。

混乱を避けるため、また、デバイス間の一貫性を確保するために、チップは、アドレス・フェーズ後の最初のニブルをテストして 2 番目のニブルを無視します。このテストは LSB ファースト・ビットとは関係なく行われ、ソフト・リセット・ビット (レジスタ 0x000 のビット 0 とビット 7) の後にクロック・サイクルが追加されていることを確認します。最初のニブルに対するこのテストは、レジスタ 0x000 への書込み時にのみ行われます。

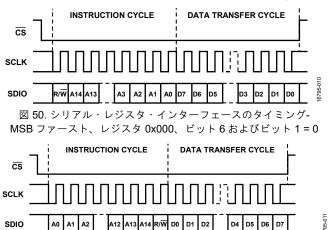
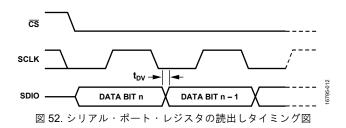
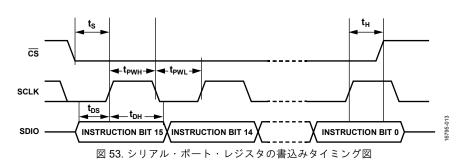




図 51. シリアル・レジスタ・インターフェースのタイミング-LSBファースト、レジスタ 0x000、ビット 6 およびビット 1 = 1

Rev. 0 — 30/150 —

JESD204B シリアル・データ・インターフェース

JESD204B の概要

AD9175には、入力サンプル・データをデバイスに受信する 8つの JESD204B SERDES データ・ポートがあります。 8 つの JESD204B ポートを組み合わせて、1つ(シングルリンク)または 2つ(デュアルリンク)の同一の JESD204B リンクを形成できます。各リンクは、専用のチャネライザのセットを持つ専用のデータパスを提供します。

シングルリンクとデュアルリンクの JESD204B モードはどちらも、それぞれの(ローカル)クロックを同じシステム・リファレンス(SYSREF±)信号とデバイス・クロック(CLKIN±)信号にアラインします。ただし、SYNCOUT0±信号とSYNCOUT1±信号はそれぞれの JESD204B リンクに固有のものであり、デュアルリンク・モードでは 2 つのリンクは相互に独立して動作可能です。

JESD204B シリアル・インターフェース・ハードウェアは、物理層、データ・リンク層、トランスポート層の3層に分けられています。AD9175のシリアル・データ・インターフェースに実装されている3つの通信層を図54に示します。ここでは、クロックを復元し、データのシリアル化解除、スクランブリング解除、およびフレーミング解除を行ってから、データをデバイスのそれぞれのデジタル信号チャネライザへ送ります。

通信層については以下のとおりです。

- 物理層は、トランスミッタとレシーバーとの間に信頼できるチャンネルを確立します。
- データ・リンク層はデータのパッキングを解除してオクテットに戻し、更にデータのスクランブリングを解除する役割を果たします。
- トランスポート層は、スクランブリングが解除された JESD204B フレームを受け取って、それを DAC サンプルに 変換します。

以下のセクションでは、各層の詳細について、インターフェースのあらゆる側面を構成するための情報を含めて説明します。

いくつかの JESD204B パラメータ(L、F、K、M、N、NP、S、HD)は、データのパック方法を定義し、シリアル・データをサンプルに変換する方法をデバイスに指示します。これらのパラメータの詳しい定義は、トランスポート層のセクションに示します。AD9175には、スクランブリング解除オプションもあります(詳細についてはスクランブリング解除のセクションを参照)。AD9175 は、SERDES インターフェースで実現可能な最大データ・レートを向上させるために、16 ビット・データを必要としないアプリケーション向けに、12 ビット・パッキング・モード(NP=12、N=11 または 12)を備えています。

AD9175は、シングルおよびデュアルリンク・モードを含む複数の JESD204B モードを備えており、チャンネル数、DAC コア数、リンク速度の各条件に応じてデバイスを設定できます。これら

のモードとそれぞれの JESD204B リンク・パラメータを、表 15 と表 16 に示します。モードに応じて、チャンネル・インターポレーションとメイン・データパス・インターポレーションの様々な組み合わせが可能です。使用可能なすべてのリンクとインターポレーションの組み合わせ、および各モードでサポートされている最大データ・レートは、表 13 に示しています。

AD9175 には 2 つの DAC コアがあり、それぞれに専用のアナログ出力があります。各 DAC コアには、最大 3 つの複素チャネライザからデータが供給されます。JESD204B リンクから見えるコンバータの有効数は、JESD204B 規格の M パラメータで表される、所与の動作モードにおける非複素チャンネルの数です。したがって、非複素のシングル・チャンネルは M=1 で表され、複素チャンネルは M=2 で表され、2 つの複素チャンネルのグループは M=4 で表され、以下同様となります。合計データパス・インターポレーションを 1×に設定している場合、複素チャンネルはバイパスされ、データ入力は非複素数(実数)であると見なされます。この場合のみ、M=2は DAC コアの実際の数を表し、複素データは不要です。

特定の JESD204B 動作モードでは、以下の関係が成り立ちます。

合計インターポレーション = チャンネル・インターポレー ション×

メイン・インターポレーション

データ・レート = DAC レート/合計インターポレーション レーン・レート = $(M/L) \times NP \times (10/8) \times データ・レート$

ここで、

レーン・レートは 3Gbps~15.4Gbps の範囲でなければなりません。

M、L、NPは、選択した JESD204B 動作モードに対する JESD204B リンク・パラメータです。

信頼性の高いリンクを維持するためには、JESD204Bトランスミ ッタと JESD204B レシーバー間の同期動作を実現し維持するこ とが重要です。リンクの確立後は、安定性と様々なシステム・ クロック間の位相関係が重要になります。特定のクロックが共 通のリファレンスに対してずれると、リンクが失われることが あるため、再確立する必要があります。同様に、特定のレーン がリンク内の他のレーンに対して非同期になると、このリンク も失われる可能性があります。リンクを確立または再確立する プロセスを簡素化するために、AD9175では各 JESD204B リンク に対して個別にマスタ同期信号を指定します。特定のリンク上 のすべてのレーンに対するマスタ・フラグ信号として、 SYNCOUT0±ピンとSYNCOUT1±ピンを使用します。様々なレー ンに到着するデータの同期が失われた場合、SYNCOUTx±がア サート解除されます。トランスミッタはデータの送信を停止し て、代わりにこのリンク内のすべてのレーンに対して同期文字 の送信を開始し、再同期が確立されるまでこの送信を続ける必 要があります。

Rev. 0 — 31/150 —

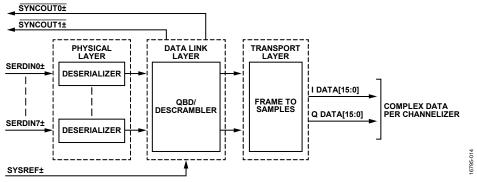


図 54. シリアル・リンク・レシーバーの機能ブロック図

表 15. シングルリンク JESD204B 動作モード

		Single-Link JESD204B Modes														
Parameter	0	1	2	3	4	5	6	7	8	9	13	14	15	16	17	23
L (Lane Count)	1	2	3	2	4	1	2	1	4	4	4	4	8	8	8	4
M (Converter Count)	2	4	6	2	4	2	4	4	2	2	2	2	2	2	2	2
F (Octets per Frame per Lane)	4	4	4	2	2	3	3	8	1	2	1	2	1	2	3	3
S (Samples per Converter per Frame)	1	1	1	1	1	1	1	1	1	2	1	2	2	4	8	4
NP (Total Number of Bits per Sample)	16	16	16	16	16	12	12	16	16	16	16	16	16	16	12	12
N (Converter Resolution)	16	16	16	16	16	12	12	16	16	16	11	11	11	11	11	11
K (Frames per Multiframe)	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
HD (High Density User Data Format)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

表 16. デュアルリンク JESD204B 動作モード

		Dual-Link JESD204B Modes											
Parameter	0	1	2	3	4	5	6	7	8	9	13	14	23
L (Lane Count)	1	2	3	2	4	1	2	1	4	4	4	4	4
M (Converter Count)	2	4	6	2	4	2	4	4	2	2	2	2	2
F (Octets per Frame per Lane)	4	4	4	2	2	3	3	8	1	2	1	2	3
S (Samples per Converter per Frame)	1	1	1	1	1	1	1	1	1	2	1	2	4
NP (Total Number of Bits per Sample)	16	16	16	16	16	12	12	16	16	16	16	16	12
N (Converter Resolution)	16	16	16	16	16	12	12	16	16	16	11	11	11
K (Frames per Multiframe)	32	32	32	32	32	32	32	32	32	32	32	32	32
HD (High Density User Data Format)	1	1	1	1	1	1	1	1	1	1	1	1	1

表 17. F = 1 の JESD204B 動作モードにおけるレーンごとのデータ構造 ¹

JESD204B Mode and Parameters	Link Logical Lane	Frame 0, Octet 0	Frame 1, Octet 0
Mode 8 (L = 4, M = 2, S = 1, NP = 16, N = 16)	Lane 0	M0S0[15:8]	M0S1[15:8]
	Lane 1	M0S0[7:0]	M0S1[7:0]
	Lane 2	M1S0[15:8]	M1S1[15:8]
	Lane 3	M1S0[7:0]	M1S1[7:0]
Mode 15 (L = 8, M = 2, S = 2, NP = 16, N = 11^2)	Lane 0	M0S0[15:8]	M0S2[15:8]
	Lane 1	M0S0[7:0]	M0S2[7:0]
	Lane 2	M0S1[15:8]	M0S3[15:8]
	Lane 3	M0S1[7:0]	M0S3[7:0]
	Lane 4	M1S0[15:8]	M1S2[15:8]
	Lane 5	M1S0[7:0]	M1S2[7:0]
	Lane 6	M1S1[15:8]	M1S3[15:8]
	Lane 7	M1S1[7:0]	M1S3[7:0]

¹ Mx はコンバータ番号、Sy はサンプル番号。例えば、MOSO はコンバータ O、サンプル O を意味します。

Rev. 0 — 32/150 —

² 完全な 12 ビット・データのパッキング (NP) を行うには、11 ビット分解能のデータを作成してビット 0 を 0 に設定します。

表 18. F = 2 の JESD204B 動作モードにおけるレーンごとのデータ構造 ¹

		Frame 0		Fran	ne 1
JESD204B Mode and Parameters	Link Logical Lane	Octet 0	Octet 1	Octet 0	Octet 2
Mode 3 (L = 2, M = 2, S = 1, NP = 16, N = 16)	Lane 0	M0S0[15:8]	M0S0[7:0]	M0S1[15:8]	M0S1[7:0]
	Lane 1	M1S0[15:8]	M1S0[7:0]	M1S1[15:8]	M1S1[7:0]
Mode 4 (L = 4, M = 4, S = 1, NP = 16, N = 16)	Lane 0	M0S0[15:8]	M0S0[7:0]	M0S1[15:8]	M0S1[7:0]
	Lane 1	M1S0[15:8]	M1S0[7:0]	M1S1[15:8]	M1S1[7:0]
	Lane 2	M2S0[15:8]	M2S0[7:0]	M2S1[15:8]	M2S1[7:0]
	Lane 3	M3S0[15:8]	M3S0[7:0]	M3S1[15:8]	M3S1[7:0]
Mode 9 (L = 4, M = 2, S = 2, NP = 16, N = 16)	Lane 0	M0S0[15:8]	M0S0[7:0]	M0S2[15:8]	M0S2[7:0]
	Lane 1	M0S1[15:8]	M0S1[7:0]	M0S3[15:8]	M0S3[7:0]
	Lane 2	M1S0[15:8]	M1S0[7:0]	M1S2[15:8]	M1S2[7:0]
	Lane 3	M1S1[15:8]	M1S1[7:0]	M1S3[15:8]	M1S3[7:0]
Mode 16 (L = 8, M = 2, S = 4, NP = 16, N = 11^2)	Lane 0	M0S0[15:8]	M0S0[7:0]	M0S4[15:8]	M0S4[7:0]
	Lane 1	M0S1[15:8]	M0S1[7:0]	M0S5[15:8]	M0S5[7:0]
	Lane 2	M0S2[15:8]	M0S2[7:0]	M0S6[15:8]	M0S6[7:0]
	Lane 3	M0S3[15:8]	M0S3[7:0]	M0S7[15:8]	M0S7[7:0]
	Lane 4	M1S0[15:8]	M1S0[7:0]	M1S4[15:8]	M1S4[7:0]
	Lane 5	M1S1[15:8]	M1S1[7:0]	M1S5[15:8]	M1S5[7:0]
	Lane 6	M1S2[15:8]	M1S2[7:0]	M1S6[15:8]	M1S6[7:0]
	Lane 7	M1S3[15:8]	M1S3[7:0]	M1S7[15:8]	M1S7[7:0]

 $^{^1}$ Mx はコンバータ番号、Sy はサンプル番号。例えば、M0S0 はコンバータ 0、サンプル 0 を意味します。

表 19. F = 3 の JESD204B 動作モードにおけるレーンごとのデータ構造 ¹

		Frame 0								
	Link Logical	Oct	et 0	Oc	tet 1	Oc	tet 2			
JESD204B Mode and Parameters	Lane	Nibble 0	Nibble1	Nibble 0	Nibble1	Nibble 0	Nibble1			
Mode 5 (L = 1, M = 2, S = 1, NP = 12, N = 12)	Lane 0	M0S0[11:8]	M0S0[7:4]	M0S0[3:0]	M1S0[11:8]	M1S0[7:4]	M1S0[3:0			
Mode 6 (L = 2, M = 4, S = 1, NP = 12,	Lane 0	M0S0[11:8]	M0S0[7:4]	M0S0[3:0]	M1S0[11:8]	M1S0[7:4]	M1S0[3:0			
N=12)	Lane 1	M2S0[11:8]	M2S0[7:4]	M2S0[3:0]	M3S0[11:8]	M3S0[7:4]	M3S0[3:0]			
Mode 23 (L = 4, M = 2, S = 4, NP = 12,	Lane 0	M0S0[11:8]	M0S0[7:4]	M0S0[3:0]	M0S1[11:8]	M0S1[7:4]	M0S1[3:0			
$N = 11^2)$	Lane 1	M0S2[11:8]	M0S2[7:4]	M0S2[3:0]	M0S3[11:8]	M0S3[7:4]	M0S3[3:0			
	Lane 2	M1S0[11:8]	M1S0[7:4]	M1S0[3:0]	M1S1[11:8]	M1S1[7:4]	M1S1[3:0			
	Lane 3	M1S2[11:8]	M1S2[7:4]	M1S2[3:0]	M1S3[11:8]	M1S3[7:4]	M1S3[3:0			
Mode 17 (L = 8 , M = 2 , S = 8 , NP = 12 ,	Lane 0	M0S0[11:8]	M0S0[7:4]	M0S0[3:0]	M0S1[11:8]	M0S1[7:4]	M0S1[3:0			
$N = 11^2$	Lane 1	M0S2[11:8]	M0S2[7:4]	M0S2[3:0]	M0S3[11:8]	M0S3[7:4]	M0S3[3:0			
	Lane 2	M0S4[11:8]	M0S4[7:4]	M0S4[3:0]	M0S5[11:8]	M0S5[7:4]	M0S5[3:0			
	Lane 3	M0S6[11:8]	M0S6[7:4]	M0S6[3:0]	M0S7[11:8]	M0S7[7:4]	M0S7[3:0			
	Lane 4	M1S0[11:8]	M1S0[7:4]	M1S0[3:0]	M1S1[11:8]	M1S1[7:4]	M1S1[3:0			
	Lane 5	M1S2[11:8]	M1S2[7:4]	M1S2[3:0]	M1S3[11:8]	M1S3[7:4]	M1S3[3:0			
	Lane 6	M1S4[11:8]	M1S4[7:4]	M1S4[3:0]	M1S5[11:8]	M1S5[7:4]	M1S5[3:0			
	Lane 7	M1S6[11:8]	M1S6[7:4]	M1S6[3:0]	M1S7[11:8]	M1S7[7:4]	M1S7[3:0			

¹Mx はコンバータ番号、Sy はサンプル番号。例えば、MOSO はコンバータ 0、サンプル 0を意味します。

² 完全な 12 ビット・データのパッキング (NP) を行うには、11 ビット分解能のデータを作成してビット 0 を 0 に設定します。

 $^{^2}$ 完全な 12 ビット・データのパッキング (NP) を行うには、11 ビット分解能のデータを作成してビット 0 を 0 に設定します。

表 20. F = 4 の JESD204B 動作モードにおけるレーンごとのデータ構造 ¹

	Link Logical		Frar	ne 0		Frame 1					
JESD204B Mode and Parameters	Lane	Octet 0	Octet 1	Octet 2	Octet 3	Octet 0	Octet 1	Octet 2	Octet 3		
Mode 0 (L = 1, M = 2, S = 1, NP = 16, N = 16)	Lane 0	M0S0 [15:8]	M0S0 [7:0]	M1S0 [15:8]	M1S0 [7:0]	M0S1 [15:8]	M0S1 [7:0]	M1S1 [15:8]	M1S1 [7:0]		
Mode 1 (L = 2, M = 4, S = 1, NP = 16, N = 16)	Lane 0	M0S0 [15:8]	M0S0 [7:0]	M1S0 [15:8]	M1S0 [7:0]	M0S1 [15:8]	M0S1 [7:0]	M1S1 [15:8]	M1S1 [7:0]		
	Lane 1	M2S0 [15:8]	M2S0 [7:0]	M3S0 [15:8]	M3S0 [7:0]	M2S1 [15:8]	M2S1 [7:0]	M3S1 [15:8]	M3S1 [7:0]		
Mode 2 (L = 3, M = 6, S = 1, NP = 16, N = 16)	Lane 0	M0S0 [15:8]	M0S0 [7:0]	M1S0 [15:8]	M1S0 [7:0]	M0S1 [15:8]	M0S1 [7:0]	M1S1 [15:8]	M1S1 [7:0]		
	Lane 1	M2S0 [15:8]	M2S0 [7:0]	M3S0 [15:8]	M3S0 [7:0]	M2S1 [15:8]	M2S1 [7:0]	M3S1 [15:8]	M3S1 [7:0]		
	Lane 2	M4S0 [15:8]	M4S0 [7:0]	M5S0 [15:8]	M5S0 [7:0]	M4S1 [15:8]	M4S1 [7:0]	M5S1 [15:8]	M5S1 [7:0]		

 $^{^1}$ Mx はコンバータ番号、Sy はサンプル番号。例えば、M0S0 はコンバータ 0、サンプル 0 を意味します。

表 21. F = 8 の JESD204B 動作モードにおけるレーンごとのデータ構造 1

JESD204B Mode and	Link Logical	Frame 0								
Parameters	Lane	Octet 0	Octet 1	Octet 2	Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	
Mode 7 ($L = 1$, $M = 4$, $S =$	Lane 0	M0S0[15:8]	M0S0[7:0]	M1S0[15:8]	M1S0[7:0]	M2S0[15:8]	M2S0[7:0]	M3S0[15:8]	M3S0[7:0]	
1, NP = 16, N = 16										

 $^{^1}$ Mx はコンバータ番号、Sy はサンプル番号。例えば、M0S0 はコンバータ 0、サンプル 0 を意味します。

物理層

JESD204Bインターフェースの物理層 (これ以降「デシリアライザ」と呼びます) には、8 個の同じチャンネルがあります。各チャンネルは、終端、イコライザ、クロック&データ再生 (CDR) 回路、および 1:40 のデマルチプレクス機能で構成されています(図 55 を参照)。

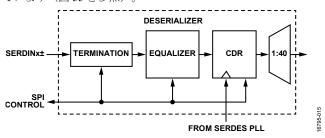
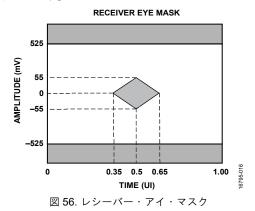


図 55. デシリアライザのブロック図

JESD204B データは SERDINx±差動入力ピンを介した AD9175 への入力で、JESD204B 仕様に準拠しています。


インターフェースの起動と入力の終端

JESD204B インターフェースを使用するには、レジスタ 0x200 の ビット 0 を 0 に設定することによって、まずインターフェース を起動する必要があります。更に、それぞれの各物理レーン (PHY) で使用していないものがあれば(SERDINx±)、それ を停止する必要があります。これを行うには、物理レーン x を 使用している場合はそのレーンに対応するレジスタ 0x201 のビット x を 0 に設定し、使用していない場合は 1 に設定します。

AD9175 は、入力終端を DC で 100Ω に自動キャリブレーション します。このキャリブレーション・ルーチンは、JESD204B インターフェース・ブロックを構成した時点で自動的に実行されます。追加的な SPI レジスタへの書込みは一切必要ありません。

レシーバー・アイ・マスク

AD9175 はレシーバー・アイ・マスクに関する JESD204B 仕様に 準拠しており、図 56 に示すマスクに適合するデータをキャプチャすることができます。データ・レート間隔に合わせて正規化したレシーバー・アイを図 56 に示します。また、イコライゼーションのセクションに示すように、AD9175 では挿入損失限度も拡大されています。

クロック間の関係

残りの JESD204B 部分では以下のクロック・レートが使われています。これらのクロック間の関係は、次式で求めることができます。

データ・レート = DAC レート/合計インターポレーション
レーン・レート =
$$(M/L) \times NP \times (10/8) \times データ・レート$$

バイト・レート = レーン・レート/10

この関係は8ビット/10ビット・エンコーディングから来たもので、各バイトは10ビットで表されます。

PCLK レート = バイト・レート/4 = レーン・レート/40 処理クロックは 4 バイト・デコーダに使われます。

フレーム・レート=バイト・レート/F

ここで、Fは1レーンにおけるフレームあたりのオクテット数として定義されます。

PCLK 係数 = フレーム・レート/PCLK レート = 4/F ここで、

Mはリンクあたりのコンバータ数を表すJESD204Bパラメータであり、JESD204Bインターフェースから見たコンバータの有効数です(必ずしもDACコアの数と同じではない)。 Lはリンクごとのレーン数を表すJESD204Bパラメータ、Fは1レーンのフレームあたりオクテット数を表すJESD204Bパラメータ、パラメータ、

NP は、サンプルあたりの合計ビット数を表す JESD204B パラメータです。

SERDES PLL SERDES PLL の機能概要

個々の SERDES PLL は、インテジャーN 法を使ってクロックを 合成します。SERDES PLL は、VCO とループ・フィルタを含め てその全体がチップに組み込まれています。ギャップのない広 範なデータ・レート(3Gbps~15.4Gbps)を実現するために、 SERDES PLL では直交クロックを提供することができます。こ れらのクロックは CDR ブロックへの入力です。CDR ブロック についての説明は、クロック&データ再生のセクションに示し ます。

JESD204B MODE (REGISTER 0x110, BITS[4:0]) DATAPATH INTERPOLATION (REGISTER 0x111, BITS[7:4]) CHANNEL INTERPOLATION (REGISTER 0x111, BITS[3:0])

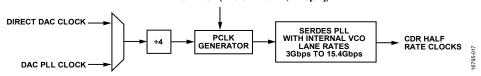


図 57. VCO 分周器ブロックを含む SERDES PLL シンセサイザのブロック図

SERDES PLLへのリファレンス・クロックは、常に周波数 freeで動作します。この周波数はレーン・レート(PCLK レート)の 1/40 です。SERDES 回路のセットアップと関係するレジスタの書込みの詳細については、スタートアップ・シーケンスのセクションを参照してください。SERDES PLL ブロックは、使用する SERDES のモードに合わせてレーン・レートに合った適切な分周範囲に自動的に調整します。このブロックは、図 57 に示すように、DAC PLL(使用している場合)または CLKIN±ピンからの直接クロックによって生成された DAC クロックを使い、DAC クロック周波数を 4 で割って、更にレジスタ 0x110 とレジスタ 0x111 で設定されたモードとインターポレーション値に対応する JESD204B パラメータを使用し、PCLK 周波数(レーン・レート÷40)の生成に適した分周器を決定します。

レジスタ 0x281 を読み出すことによって、SERDES PLL が機能していることを確認してください。レジスタ 0x281 のビット 0が 1 の場合、SERDES PLL はロック状態になります。

クロック&データ再生

デシリアライザにはCDR 回路が組み込まれています。CDR は、JESD204B シリアル・レーンからのクロックを再生するのではなく、SERDES PLL からのクロックを再生します。SERDES PLL は PCLK をリファレンスとして使用します。PCLK は DAC クロックから得られます。したがって、JESD204B のトランスミッタ・クロックを AD9175 のデバイス・クロックにロックすることが重要です。

CDR 回路は、各シリアル・レーン上のデータをサンプリングするために使用する位相を個別に同期します。このシリアル・インターフェースごとの個別位相調整によって正確なデータ・サンプリングが実行され、PCB上で複数のシリアル・インターフェースを容易に実装できるようになります。

未使用 PHY の停止

イネーブルされたまま使用していない物理レーンは、不要な電力を消費します。使用しないレーン(SERDINx±)は、PHY_PD(レジスタ 0x201)の対応ビットに1を書き込むことによって、パワー・オフする必要があります。

イコライゼーション

PCB のパターン長とインピーダンスによる各 PHY チャンネルの信号の完全性の歪みを補償するために、AD9175 では各 JESD204B チャンネルに、使いやすい低消費電力のイコライザを採用しています。15.4Gbps の最大レーン・レートで動作する AD9175 のイコライザは、最大 16dB の挿入損失を補償することができます。

AD9175 の最大ボーレートに近い 15.4Gbps におけるこのイコライザの性能を図 58 に示します。チャンネルも、JESD204B 仕様の挿入損失誤差 (スペクトル・リップルとしても知られている) に関する要求 (50MHz からボーレートの 0.75 倍までの範囲で 1.5dB 未満) を満たしている必要があります。

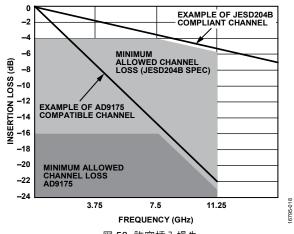


図 58. 許容挿入損失

AD9175 にシステム内の挿入損失量を補償させるには、イコライザ・ブロックを適切に設定する必要があります。システム内の挿入損失のレベルに応じたイコライザの昇圧、イコライザのゲイン、および帰還制御の設定を表 22 に示します。イコライザの昇圧設定は、使用する各 PHY レーン(それぞれ 2 ビット制御)に対してレジスタ 0x240 とレジスタ 0x241 で設定されます。同様に、イコライザのゲイン設定は、使用する各 PHY レーン(それぞれ 2 ビット制御)に対してレジスタ 0x242 とレジスタ 0x243で設定されます。帰還制御は、レジスタ 0x244~レジスタ 0x248で PHY レーン(それぞれ 5 ビット制御、レジスタごとに 1 つを制御)ごとに設定されます。

表 22. PHY 制御ごとのイコライザ・レジスタ制御設定

Insertion Loss	≤11 dB	>11 dB
Equalizer Boost	0x02	0x03
Equalizer Gain	0x01	0x03
Feedback	0x1F	0x1F

Rev. 0 — 36/150 —

図 59 と図 60 はハードウェア設計者の基準点として示したもので、それぞれ適切にレイアウトされた様々な長さのストリップラインとマイクロストリップ伝送ラインの挿入損失が示されています。JESD204Bの具体的な推奨レイアウトについては、ハードウェアに関する考慮事項のセクションを参照してください。

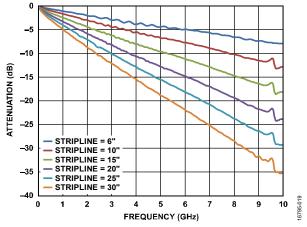
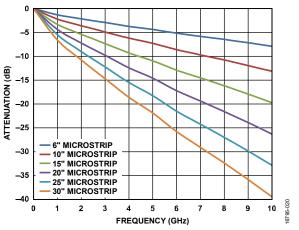
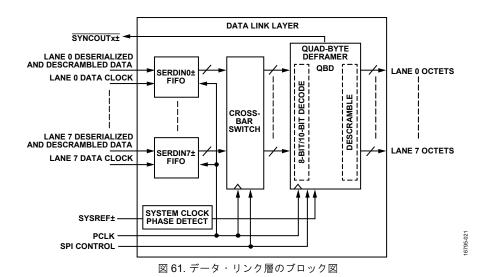


図 59. FR4 の 50Ω ストリップラインの挿入損失




図 60. FR4 の 50Ω マイクロストリップの挿入損失

データ・リンク層

AD9175 の JESD204B インターフェースのデータ・リンク層は、シリアル化が解除されたデータを PHY から受け入れてそれらのフレーミングとスクランブリングを解除し、トランスポート層にデータ・オクテットを提供して DAC コアの前に元のデータ・サンプルに再結合できるようにします。データ・リンク層のアーキテクチャを図 61 に示します。データ・リンク層は、各レーンの同期 FIFO、クロスバー・スイッチ、デフレーマ、デスクランブラで構成されています。

AD9175 は、シングルリンクまたはデュアルリンクの高速 JESD204B シリアル・データ・インターフェースからデータを受信するように設定できます。デュアルリンク・モードで動作している場合、データ・リンク層はインターフェースを 2 つの独立した JESD204B リンク(それぞれが最大 4 レーンを占有)としてユーザに見えるように抽象化します。いずれのモードでも、JESD204B インターフェースの 8 個のレーンは、すべてコード・グループ同期(CGS)、フレーム・アライメント、フレーム同期などのリンク層通信を扱います。

AD9175 は 8 ビット/10 ビットの制御文字をデコードして、フ レーム・エッジのマーキングや、シリアル・レーン間のアライ メントの維持を可能にします。それぞれの AD9175 シリアル・ インターフェースのリンクは、そのSYNCOUTx±信号をローに 設定することによって同期要求を送出することができます。同 期プロトコルは、JESD204B 規格のセクション 4.9 に従っていま す。4個の連続した/K/シンボルのストリームが受信されると、 AD9175 は、内部 LMFC の次の立上がりエッジでSYNCOUTx±信 号をハイに設定することによって、同期要求を無効にします。 次に、AD9175はトランスミッタが初期レーン・アライメント・ シーケンス(ILAS)を発行するのを待ちます。ILAS内では、 JESD204B シリアル・リンク確立のセクションに示すように、 /A/から/R/への文字遷移を使ってすべてのレーンがアラインされ ます。エラスティック・バッファは、早期に到着したレーン・ データを、最新レーンのアライメント文字が到着するまで保持 します。この時点ですべてのレーンのバッファが解放されて、 すべてのレーンがアラインされます(図62を参照)。

Rev. 0 — 37/150 —

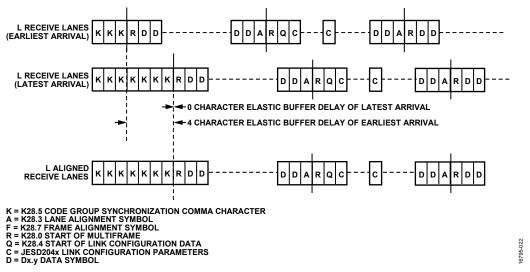


図 62. ILAS でのレーン・アライメント

JESD204B シリアル・リンクの確立

サブクラス 1 の高速シリアル・リンク確立プロセスの概要を示します。詳細については JESD204B 仕様文書のセクション 5.3.3 を参照してください。

ステップ1-コード・グループの同期

各レシーバーは、入力データ・ストリーム内にある/K/(K28.5) 文字を特定する必要があります。レシーバー・ブロックは、すべてのリンク・レーン上で 4 個の連続した/K/文字を検出すると、 レシーバーの LMFC エッジでトランスミッタ・ブロックへの SYNCOUTx±信号のアサートを解除します。

トランスミッタはSYNCOUTx±信号の変化をキャプチャして、 その後のLMFC立上がりエッジでILASを開始します。

ステップ2-初期レーン・アライメント・シーケンス

このフェーズの主な目的は、リンクのすべてのレーンをアラインすることと、リンクのパラメータを検証することです。

リンクが確立される前に、それぞれのリンク・パラメータをレシーバー・デバイスに書き込んで、データをレシーバー・ブロックに送る方法を指定します。

ILAS は4個以上のマルチフレームで構成されています。各マルチフレームの最後の文字は、マルチフレーム・アライメント文字/A/です。最初と3番目、および4番目のマルチフレームには、予め決められた値が挿入されます。JESD204B仕様文書のセクション8.2 には、ILAS の予想データ・ランプが示されています。デフレーマは各レーンの最後の/A/を使用して、レシーバー内のマルチフレームの最後をアラインします。2番目のマルチフレームには、/R/(K.28.0)、/Q/(K.28.4)、およびリンク・パラメータに対応するデータがこの順番で含まれています。レシーバーが必要とする場合、ILAS には更にマルチフレームを追加することができます。デフォルトでは、AD9175はILAS 内で4個のマルチフレームを使用します(これはレジスタ0x478で変更できます)。サブクラス1を使用する場合は、使用するマルチフレームの数を正確に4個とする必要があります。

最後の ILAS の最後の/A/文字の後に、マルチフレーム・データのストリーミングが開始されます。レシーバーは、この時点でレシーバーの内部 LMFC とアラインできるように、/A/文字の位置を調整します。

ステップ3-データ・ストリーミング

このフェーズで、トランスミッタ・ブロックからレシーバー・ ブロックへデータが送られます。

データは、オプションでスクランブリングすることができます。 スクランブリングは、ILAS に続く最初のオクテットまで開始されません。

レシーバー・ブロックは受信したデータを処理し、以下を含む エラーの有無をモニタします。

- ランニング・ディスパリティ異常(8ビット/10ビット・ エラー)
- テーブル上未定義 (8ビット/10ビット・エラー)
- 予期しない制御文字
- ILAS 異常
- レーン間スキュー・エラー(文字置換による)

これらのエラーが存在する場合は、以下のいずれかの方法でトランスミッタにレポートされます(JESD204Bのエラー・モニタリングのセクションを参照)。

- SYNCOUTx±信号のアサート:最後の2個のエラーのそれ ぞれにおいて再同期(SYNCOUTx±信号をローにする)が 要求されます。最初の3つのエラーについては、エラー・ カウンタが設定エラー関値に達した時点で、オプションの 再同期要求をアサートすることができます。
- 最初の3つのエラーについては、マルチフレーム内にエラーがある場合、そのマルチフレームごとにそれぞれの SYNCOUTx±ピンに小さいパルスが発生します。
- エラー発生時は、オプションで割込み要求(IRQ)イベントをトリガして、トランスミッタに送ることができます。

リンクの完全性を検証するための様々なテスト方法については、 JESD204Bテスト・モードのセクションを参照してください。

Rev. 0 — 38/150 —

レーン FIFO

クロスバー・スイッチとデフレーマの前にある FIFO は、受け取ったデータの位相を調整することによって、高速シリアル・データ・インターフェースで送るサンプルをデフレーマ・クロックと同期します。FIFO はデータ・ソースとデフレーマとの間のタイミング変動を吸収します。このため、トランスミッタからのドリフトを最大 2PCLK サイクルまで許容することができます。FIFO_STATUS_REG_1 レジスタ(それぞれレジスタ 0x30C とレジスタ 0x30D)をモニタすれば、FIFO がフルかエンプティかを識別できます。

レーン FIFO IRQ

総合レーン FIFO エラー・ビットも IRQ イベントとして使用できます。レジスタ 0x020 のビット 2 を使ってレーン FIFO エラー・ビットをイネーブルしてから、レジスタ 0x024 のビット 2 を使ってそのステータスをリードバックし、IRQ 信号をリセットします。詳細については、割込み要求動作のセクションを参照してください。

クロスパー・スイッチ

レジスタ 0x308~レジスタ 0x30B を使用すれば、物理レーン (SERDIN $x\pm$) から、SERDES デフレーマが使用する論理レーン へ任意にマッピングを行うことができます。

表 23. クロスバー・レジスタ

Address	Bits	Logical Lane
0x308	[2:0]	SRC_LANE0
0x308	[5:3]	SRC_LANE1
0x309	[2:0]	SRC_LANE2
0x309	[5:3]	SRC_LANE3
0x30A	[2:0]	SRC_LANE4
0x30A	[5:3]	SRC_LANE5
0x30B	[2:0]	SRC_LANE6
0x30B	[5:3]	SRC_LANE7

それぞれの SRC_LANEy に、データを取得する物理レーン (SERDINx±) の番号 (x) を書き込んでください。デフォルト では、すべての論理レーンが、同じ番号の物理レーンをそのデータ・ソースとして使用します。例えば、デフォルトでは SRC_LANE0 = 0 です。したがって、論理レーン 0 (SERDIN0±) からデータを取得します。デフォルトに代えて SERDIN4±を論理レーン 0 のソースとして使用するには、 SRC_LANE0 = 4 と書き込む必要があります。

レーンの反転

レジスタ 0x334 を使用すると希望の論理レーンを反転させることができ、これによって SERDINx±信号のルーティングを容易にすることができます。反転を行うには、それぞれの論理レーンxについて、レジスタ 0x334 のビットx を 1 に設定します。

デフレーマ

AD9175 は、レジスタ 0x300 ビット 2 の LINK_PAGE 制御によってページングされる 2 個の 4 バイト・デフレーマ(QBD)で構成されています。デフレーマは、(クロスバー・スイッチ経由で)デシリアライザから 8 ビット/10 ビット・エンコードされたデータを受け取ってデコードし、更にスクランブルを解除して JESD204B フレームにしてから、トランスポート層へ渡して DAC サンプルに変換します。デフレーマは、処理クロック (PCLK) 1 サイクルごとに 4 個のシンボル(またはオクテット)を処理します。

デフレーマは、レジスタ・マップ内に設定されたデータのパック方法を指定する JESD204B パラメータを使用して、そのパックを解除します。JESD204B パラメータの詳しい定義は、トランスポート層のセクションに示します。パラメータの多くは、JESD204B フレームをサンプルに変換するためにトランスポート層でも必要です。

デスクランブラ

AD9175には、以下の多項式による自己同期デスクランブラを使用するオプションのデスクランブラ・ブロックがあります。

$1 + x^{14} + x^{15}$

データ・スクランブリングを有効にすると、フレーム間で同じデータ・オクテットが繰り返されるときに発生するスペクトル・ピークが小さくなります。また、スペクトル・データが他の影響を受けなくなるので、電気的インターフェースへの周波数選択性の影響によるデータ依存エラーが発生しなくなります。データのスクランブリング解除は、SCR ビット(レジスタ0x453のビット7)を1に設定することによって有効になります。

LMFC 信号同期

AD9175 では、SERDES リンクをオンラインにする前に、LMFC とその他の内部クロックをアラインするために同期(sync)を行う必要があります。同期はワンショット同期で、レジスタ 0x03A ビット 1 での SYSREF_MODE_ONESHOT 制御のアサートに続くアライメント信号の次のエッジで、同期プロセスが開始されます。

サブクラス 1 では、SYSREF±の立上がりエッジがアライメント・エッジとして機能します。サブクラス 0 では、内部処理クロックがアライメント・エッジとして機能します。同期が完了すると SYNC_ROTATION_DONE(レジスタ 0x03A のビット 4)ビットがアサートされて、別の同期が要求されるまでアサートされたままになります。

同期後は JESD204B リンクを有効にできます。サブクラス 1 における JESD204B システムの遅延は確定的なものであり、必要な場合は複数のデバイスを同期することができます。

SYSREF±信号

SYSREF±信号は差動ソース同期入力であり、JESD204B サブクラス 1 システム内のトランスミッタとレシーバー両方の LMFC 信号を同期して、遅延を確定的なものにします。

SYSREF±信号は立上がりエッジ検出信号で、デバイス・クロックの立上がりエッジでサンプリングされます。最良の方法は、HMC7044 クロック・ジェネレータのような同一ソースからデバイス・クロックと SYSREF±信号を生成して、信号間の位相アライメントが固定されるようにすることです。最適な確定的遅延動作を設計するときは、マルチポイント・リンク・システム(マルチチップ)内での SYSREF±信号のタイミング分配スキューを考慮してください。

AD9175 は周期的 SYSREF±信号をサポートしています。周期は連続型、ストローブ型、またはギャップ型とすることができます。SYSREF±信号は、 $0.6V\sim2.2V$ のコモンモード電圧および $200mVp-p\sim1Vp-p$ の差動スイングと DC カップリングできます。DC カップリングすると、少量のコモンモード電流(最大0.3mA)が SYSREF±ピンから流れ出します。DC カップリング構成と AC カップリング構成の SYSREF±内部回路については、図 63 と図64 を参照してください。SYSREF±レシーバー・ピンの過負荷を防止するために、SYSREF_INPUTMODE ビット(レジスタ0x084のビット6)は1(DCカップリング)にしてください。

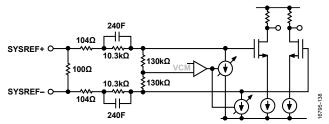


図 63. DC カップリングした SYSREF±レシーバー回路

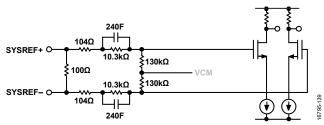


図 64. AC カップリングした SYSREF±レシーバー回路

コモンモード電流の流出を避けるために、SYSREF±レシーバーは、50%デューティ・サイクルの周期的 SYSREF±信号と AC カップリング・コンデンサを使って、AC カップリングすることができます。AC カップリングする場合は、図 64 に示す AC カップリング・コンデンサと抵抗の組み合わせが、RC 時定数 τ = RC のハイパス・フィルタを構成します。C は、 τ > (4/SYSREF±周波数) となるように選択してください。更にエッジ・レートは、SYSREF±サンプリング・クロックが次のサンプル・クロックの前に SYSREF±の立上がりエッジを正しくサンプリングできるように、十分に速い値でなければなりません。

SYSREF±入力を AC カップリングするときは、SYSREF_INPUTMODE ビット (レジスタ 0x084、ビット 6) を 0 (AC カップリング) に設定して、内部レシーバー・バイアス回路をイネーブルすると共に、SYSREF±レシーバー・ピンが過負荷にならないようにしてください。AC カップリングをすると、SYSREF±ピンに $200 \text{mV} \sim 1 \text{V}$ の差動電圧スイングを使用することができます。

SYSREF±サンプリング

SYSREF±信号は、4分周された DAC クロックによってサンプリングされます。したがって、正確なサンプリングを行うには、SYSREF±信号の最小パルス幅が DAC クロック 4周期分よりも広くなければなりません。SYSREF±と DAC クロック入力信号間のタイミングに関する制約は不要で、サブクラス 1 における確定的遅延の変動量は、温度または電源のレベルが変動しない限り、±1DAC クロック・サイクル以内です。

ただし、DAC クロック・パスには、温度と電源に依存する遅延があります。遅延の変動量は、電源と温度の両方がデバイスの全動作範囲にわたって変化している場合、前の同期サイクルから最大で 250ps になります。この変動により、12GHz で合計±4DAC クロック・サイクル、6GHz で±2.5DAC クロック・サイクルの変動が生じる可能性があります。温度または電源変動、あるいはその両方が検出された場合、この変動は、次のSYSREF エッジに再同期することによって補正でき、確定的遅延の変動量は±1DAC クロック・サイクル以内に戻ります。

デフォルトでは、SYSREF_MODE_ONESHOT ビット(レジスタ 0x03A のビット 1)をアサートした後に検出された SYSREF±入力の最初の SYSREF±立上がりエッジで、内部 LMFC 信号とサンプリングされた SYSREF±エッジの同期とアライメントが開始されます。

レジスタ 0x036 (SYSREF_COUNT) は、SYSREF_MODE_ONESHOT ビットがアサートされてから同期が開始されるまでの間に、何個の SYSREF \pm エッジがキャプチャされて無視されるかを示します。例えば SYSREF_COUNT を 3 に設定した場合、AD9175 は、SYSREF \pm MODE_ONESHOT ビットがアサートされてから 4 個めの SYSREF \pm エッジが受信されるまでの間、同期を行いません。

SYSREF±ジッタ IRQ

サブクラス 1 では、ワンショット同期が行われた後、その後の SYSREF±エッジと LMFC クロックとのずれが目標量を超えない ように SYSREF±信号をモニタします

レジスタ 0x039 (SYSREF_ERR_WINDOW) は、許容されるエラー・ウィンドウのサイズを DAC クロック単位で示します。 SYSREF± エッジと内部 LMFC クロックとのずれが SYSREF_ERR_WINDOWに設定された DAC クロック単位を超えると、IRQ_SYSREF_JITTER がアサートされます。

表 24. SYSREF±ジッタ・ウィンドウ許容値

SYSREF± Jitter Window Tolerance (DAC Clock Cycles)	SYSREF_ERR_WINDOW (Register 0x039, Bits[5:0]) ¹
±½	0x00
±4	0x04
±8	0x08
±12	0x0C
±16	0x10
±20	0x14
+24	0x18
±28	0x1C

¹ SYSREF±信号は DAC クロックを 4 分周した周波数でサンプリングされるので、下位 2 桁は無視されます。結果として、ジッタ・ウィンドウは、DAC クロックではなくこの 4 分周クロックによって設定されます。SYSREF±ジッタ・ウィンドウは、少なくとも DAC クロック 4 周期分とすることを推奨します。

IRQ_SYSREF_JITTER は割込み要求動作のセクションに示すように構成して、SYSREF±信号に変動が生じたことを示し、再同期を行うための SPI シーケンスを要求するようにできます。

Rev. 0 - 40/150 -

同期手順

同期を有効にする手順は次のとおりです。

- DAC と SERDES PLL をセットアップして CDR をイネーブルします (スタートアップ・シーケンスのセクションを参照)。
- 2. レジスタ 0x03Bを 0xF1 に設定して同期回路をイネーブル します。ソフト・オン/オフ機能を使用するときは、レジ スタ 0x03B~レジスタ 0xF3 をセットして、同期前後のデー タパス・データをランプさせます。
- 3. サブクラス 1 の場合、SYSREF±は以下のように設定します。
 - a. レジスタ 0x039 (SYSREF±ジッタ・ウィンドウ)を設定 します。設定については表 24 を参照してください。
 - b. レジスタ 0x036 = SYSREF_COUNT に設定します。バイパスするには、設定を 0 のままにします。
- 4. ワンショット同期を行います。
 - a. レジスタ 0x03A = 0x00 に設定します。ワンショット・ モードが既に有効になっている場合はクリアします。
 - b. レジスタ 0x03A = 0x02 に設定します。ワンショット・ モードを有効にします。
- 5. サブクラス1の場合はSYSREF±エッジを送信します。パルス数をカウントする場合は、複数のSYSREF±エッジが必要です。SYSREF±エッジを送信すると、同期がトリガされます。
- SYNC_ROTATION_DONE ビット (レジスタ 0x03A、ビット4)をリードバックして、ローテーションが発生していることを確認します。

LMFC 信号の再同期

必要な場合は、同期手順のセクションに示すステップ 2~ステップ 6 を繰り返すことによって再同期を行い、LMFC クロックをリファレンス信号にアラインし直すことができます。ワンショット同期が設定されると(レジスタ 0x03A に 0x02 を書込み)、SYNCOUTx±信号がアサートを解除して JESD204B リンクを停止し、ローテーションの完了後に再度アサートします。

確定的遅延

JESD204Bシステムには、様々なクロック領域が分散して組み込まれています。1つのクロック領域から別のクロック領域へデ

ータが渡されると、JESD204B リンクに複数の原因による遅延が生じる可能性があります。これらの不確実性は、電源を入れ直すごとに再現性のない不規則な遅延をリンクに発生させる元になります。JESD204B 仕様のセクション 6 は、サブクラス 1 およびサブクラス 2 として定義されているメカニズムに伴う確定的遅延の問題を扱っています。

AD9175 は、JESD204B サブクラス 0 とサブクラス 1 の動作をサポートしていますが、サブクラス 2 はサポートしていません。サブクラスは、レジスタ 0x458 のビット [7:5] に書き込んでください。

サブクラス 0

サブクラス 0 モードにおける複数 PCLK サイクル内の遅延は確定的遅延です。この場合 SYSREF±ピンに信号は不要で、未接続のままにすることができます。

しかし、サブクラス0ではすべてのレーンのデータが同じLMFC サイクル内に届くことが求められ、2つの DAC を互いに同期さ せる必要があります。

サブクラス 1

サブクラス 1 モードでは遅延は確定的となり、電源と温度の両方の安定が維持されている場合は、リンクを±1DAC クロック周期以内に同期させることが可能ですが、デバイスの全動作範囲で 250ps 変動します。この遅延のため、DAC クロックに正確に位相をアラインさせた低ジッタの外部 SYSREF±信号が必要です。

確定的遅延に関する条件

JESD204B サブクラス 1 システムで確定的遅延を実現するにあたっては、以下に示すようにいくつかの重要な要素が必要になります。

- システム内での SYSREF±信号の分配スキューは、求められる不確実性より小さくなければなりません。
- すべてのレーン、リンク、およびデバイスに関わる合計遅延変動は12PCLK周期以下でなければなりません。これには可変遅延と、システム内のレーンごと、リンクごと、およびデバイスごとの固定遅延の変動の両方を含みます。

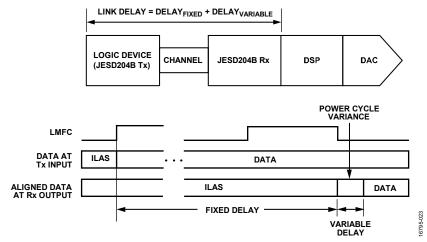


図 65. JESD204B のリンク遅延 = 固定遅延+可変遅延

Rev. 0 — 41/150 —

リンク遅延

JESD204B システムのリンク遅延は、図 65 に示すようにトランスミッタ、チャンネル、およびレシーバーの固定遅延と可変遅延の合計です。

正しく機能させるには、同じ LMFC 周期内にリンク上のすべてのレーンを正しく読み出す必要があります。JESD204B 仕様のセクション 6.1 には、LMFC 周期は最大リンク遅延より大きくなければならないと定められています。これは AD9175 には必ずしもあてはまりません。代わりに、AD9175 は各リンクにローカル LMFC (LMFC $_{Rx}$) を使用しており、これは SYSREF±によってアラインされた LMFC からの遅延が許容されます。LMFC は周期的なので、この遅延には任意の量の固定遅延を含めることができます。結果として、LMFC 周期に関して求められるのはリンク遅延の変動よりも大きくしなければならないということだけで、AD9175 は、より小さい合計遅延で必要な性能を実現することができます。リンク遅延が LMFC の周期より大きい場合の例を図 66 と図 67 に示します。このリンク遅延は、LMFC $_{Rx}$ を遅延させることによって対応できます。

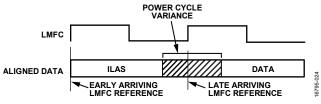


図 66. リンク遅延が LMFC 周期より大きい例

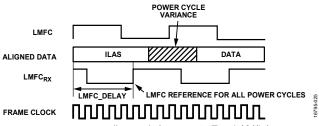


図 67. LMFC 周期より大きいリンク遅延を補償する LMFC_DELAY_x

LMFCDel 変数(レジスタ 0x304)と LMFCVar 変数(レジスタ 0x306)を選択する方法を、遅延情報が既知の場合のセットアップ例のセクションと遅延情報が未知の場合のセットアップ例のセクションに示します。LMFCDel の設定は、その時のモードにおける LMFC 1 周期あたりの PCLK サイクル数以上にならないようにする必要があります。同様に、LMFCVar は、その時のモードにおける LMFC 1 周期あたりの PCLK サイクルの数を超えないようにするか、12 未満に設定する必要があります(どちらか小さいほう)。

LMFCDel を適切に設定すれば、対応するすべてのデータ・サンプルが同じ LMFC 周期内に届くようにすることができます。その場合はLMFCVarが受信バッファ遅延 (RBD) に書き込まれて、リンク遅延の変動が吸収されます。これにより、読出し前にすべてのデータ・サンプルが到着するようにすることができます。実行やデバイスの違いによらずこれらを固定値に設定することによって、確定的遅延が実現されます。

JESD204B 仕様に規定される RBD は 1 フレーム・クロック・サイクルから/K/フレーム・クロック・サイクルまでの値をとり、

AD9175の RBD は OPCLK サイクルから 12PCLK サイクルまでの値をとります。結果として、最大 12PCLK サイクルの合計遅延変動を吸収することができます LMFCVar と LMFCDel の単位は共に PCLK サイクル数です。PCLK 係数、つまり PCLK サイクルあたりのフレーム・クロック・サイクル数は 4/f です。この関係の詳細については、クロック間の関係のセクションを参照してください。

以下に示す 2 つの例で、LMFCVar と LMFCDel を決定する方法を示します。これらの変数を計算した後は、システム内のすべてのデバイスについて、LMFCDel をレジスタ 0x304 へ、LMFCVar をレジスタ 0x306 へ書き込みます。

遅延情報が既知の場合のセットアップ例

システムの既知の遅延すべてを使って LMFCVar と LMFCDel を 計算することができます。

図 68に示す例を以下に説明します。この例は確定的遅延を実現するサブクラス 1 のもので、例は F=2 の場合です。したがって、1 マルチフレームあたりの PCLK サイクル数は 16 です。PCBFixed は PCLK 周期よりはるかに小さいので、この例では PCBFixed を無視することができます。したがって、この計算には含まれていません。

1. レシーバーの遅延値を表6から求めます。

RxFixed = 13PCLK サイクル RxVar = 2PCLK サイクル

- 2. トランスミッタの遅延を求めます。JESD204B コア (Virtex-6 FPGA 上の GTH または GTX ギガビット・トラ ンシーバー上に実装)の例における等価な表には、遅延は 56±2バイト・クロック・サイクルと規定されています。
- クロック間の関係のセクションに示したように PCLK レート = バイトレート/4 なので、PCLK サイクル数で表したトランスミッタの遅延は次のようになります。

TxFixed = 54/4 = 13.5PCLK サイクル TxVar = 4/4 = 1PCLK サイクル

4. MinDelayLane は以下のように計算します。

MinDelayLane = floor (RxFixed + TxFixed + PCBFixed)= floor (13 + 13.5 + 0)

= floor (26.5)

MinDelayLane = 26

5. MaxDelayLane は以下のように計算します。 *MaxDelayLane* = ceiling(*RxFixed* + *RxVar* + *TxFixed* + *TxVar* +

PCBFixed)) = ceiling (13 + 2 + 13.5 + 1 + 0)

= ceiling (29.5)MaxDelayLane = 30

6. LMFCVar は以下のように計算します。

LMFCVar = (MaxDelay + 1) - (MinDelay - 1)= (30 + 1) - (26 - 1) = 31 - 25

LMFCVar = 6PCLK サイクル

7. LMFCDel は以下のように計算します。

LMFCDel = (MinDelay - 1) % (PCLKsperMF)

= ((26 - 1)) % 16

= 25% 16

LMFCDel = 9PCLK サイクル

システム内のすべてのデバイスのレジスタ 0x304 に LMFCDel を書き込みます。システム内のすべてのデバイス

のレジスタ 0x306に LMFCVar を書き込みます。

Rev. 0 — 42/150 —

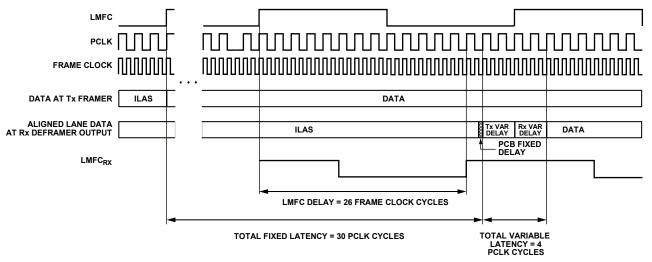


図 68. LMFC 遅延計算例

遅延情報が未知の場合のセットアップ例

システム遅延が未知の場合、AD9175 は、各リンクの LMFC_{RX} (LMFCDel 設定を引いた値) と、SYSREF にアラインした LMFC との間のリンク遅延をリードバックすることができます。この情報を使って LMFCVar と LMFCDel を計算します。

図 70 に、LMFCRX からその時点で SPI 内に設定されている LMFC_DELAY_x (固定遅延) 設定を引いた値と、ILAS から最初のデータ・サンプルへの遷移との間の遅延(PCLK サイクル数単位)を示すリードバック値を、DYN_LINK_LATENCY_0 (レジスタ 0x302) から得る方法を示します。電源サイクルを繰り返してこの測定を行うことにより、各電源サイクルで求められた最小遅延と最大遅延を求めて、LMFCVar と LMFCDel の計算に使用することができます。

図 70 では、リンク A、リンク B、およびリンク C について、AD9175を使用するシステム(トランスミッタを含む)の電源サイクルと設定を 20 回行っています。AD9175 の構成設定は、同期手順のセクションに示す内容に従って行います。この演習の目的は LMFCDel と LMFCVar を決定することにあるので、LMFCDelの値は 0 に設定し、DYN_LINK_LATENCY_0 の値はレジスタ 0x302 から読み出します。20 回の電源サイクルにおけるリンク遅延の変動を図 70 に示し、これについて以下に説明します。

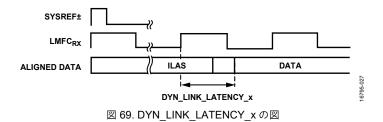
リンクAからは6、7、0、1のリードバック値が得られます。記録された遅延値のセットは、K/PCLK係数=8の境界でマルチフレームのエッジをロールオーバーします。リードバック値0と1はマルチフレームのエッジをロールオーバーしているので、このリードバック値には1マルチフ

レームあたりの PCLK サイクル数 (=8) を加算します。 遅延値の範囲は $6\sim9$ となります。

- リンク B から得られる遅延値は 5~7 です。
- リンク C から得られる遅延値は 4~7 です。

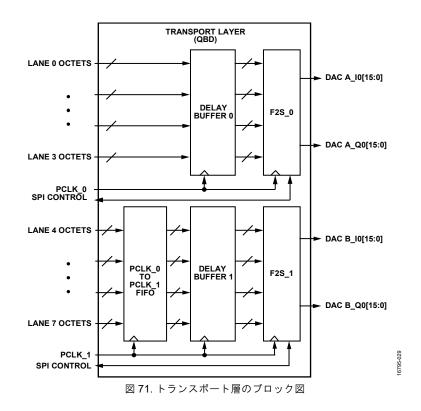
図 70 に示す例を以下に説明します。この例は確定的遅延を実現するサブクラス 1 のもので、例は F=1 の場合です。したがって、1 マルチフレームあたりの PCLK サイクル数は 8 です。

- 1. 次式に従い、すべての電源サイクル、リンク、およびデバイスで測定したすべての遅延値の最小値を計算します。 *MinDelay* = min (全*遅延*値) = 4
- 次式に従い、すべての電源サイクル、リンク、およびデバイスで測定したすべての遅延値の最大値を計算します。 MaxDelay=max(全遅延値)=9
- 3. LFMCVarを最大値(12PCLK サイクル)に設定します。対象アプリケーションの遅延を最小限に抑える必要がある場合は、次式により、すべての電源サイクル、リンク、およびデバイスの合計遅延変動(両端で2PCLK サイクルのガード・バンドを含む)を計算します。


LMFCVar = (MaxDelay + 2) - (MinDelay - 2)= (9+2) - (4-2) = 11 - 2 = 9PCLK サイクル

4. 次式により、すべての電源サイクル、リンク、およびデバイスにおける PCLK サイクル数単位の最小遅延(2PCLK サイクルのガード・バンドを含む)を計算します。

LMFCDel = (MinDelay - 2) % (PCLKsperMF)= (4 - 2) % 8 = 2% 8 = 2PCLK サイクル


 システム内のすべてのデバイスのレジスタ 0x304 に LMFCDel を書き込みます。システム内のすべてのデバイス のレジスタ 0x306 に LMFCVar を書き込みます。

Rev. 0 — 43/150 —

LMFC PCLK FRAME CLOCK DYN_LINK_LATENCY_x ALIGNED DATA (LINK A) DATA ILAS ALIGNED DATA (LINK B) ILAS DATA ALIGNED DATA (LINK C) ILAS DATA LMFCRX DETERMINISTICALLY DELAYED DATA ILAS DATA

LMFC_VAR = 7 (PCLK CYCLES) 図 70. マルチリンク同期設定、導出方法の例

Rev. 0 — 44/150 —

LMFC_DELAY = 6 ----(FRAME CLOCK CYCLES)

トランスポート層

トランスポート層はスクランブリングが解除された JESD204B フレームを受け取り、設定された JESD204B パラメータ (表 25 参照) に基づいてそれを DAC サンプルに変換します。デバイス・パラメータの定義を表 26に示します。

表 25. JESD204B トランスポート層パラメータ

パラメータ	説明
F	1レーンのフレームあたりのオクテット数:1、
	2、3、4、または8。
K	マルチフレームあたりのフレーム数:K=32。
L	(1 リンクの) コンバータ・デバイスあたりのレ
	ーン数:1、2、3、4、または8。
M	(1 リンクの) デバイスあたりのコンバータ数:
	実数データ・モードでは、Mは実際のデータ・コ
	ンバータ数(合計インターポレーションが 1×の場
	合)。複素データ・モードでは、M は複素デー
	タ・サブチャンネル、IまたはQの数。
S	1フレームのコンバータあたりのサンプル数:1、
	2、4、または8。

表 26. JESD204B デバイス・パラメータ

パラメー	
タ	説明
CF	1リンクのデバイス・クロックあたりの制御ワー
	ド数。サポートされていません。0にする必要が
	あります。
CS	変換サンプルあたりの制御ビット数。サポートさ
	れていません。0にする必要があります。
HD	高密度ユーザ・データ・フォーマット。このパラ
	メータは常に1に設定されます。
N	コンバータ分解能。
N (or NP)	サンプルあたりの合計ビット数。

AD9175は、これらのパラメータの一定の組み合わせをサポートしています。サポートされているシングルリンク・モードとデュアルリンク・モードについては、それぞれ表 28 と表 29 を参照してください。表 28 と表 29 に、それぞれのモードにおけるJESD204Bパラメータのリストを示します。表 27 には、固定値を持つJESD204Bパラメータを示します。

表 27. 固定値の JESD204B パラメータ

Parameter	Value
K	32
CF	0
HD	1
CS	0

表 28. シングルリンク JESD204B 動作モード

		Single-Link JESD204B Modes														
Parameter	0	1	2	3	4	5	6	7	8	9	13	14	15	16	17	23
L (Lane Count)	1	2	3	2	4	1	2	1	4	4	4	4	8	8	8	4
M (Converter Count)	2	4	6	2	4	2	4	4	2	2	2	2	2	2	2	2
F (Octets per Frame per Lane)	4	4	4	2	2	3	3	8	1	2	1	2	1	2	3	3
S (Samples per Converter per Frame)	1	1	1	1	1	1	1	1	1	2	1	2	2	4	8	4
NP (Total Number of Bits per Sample)	16	16	16	16	16	12	12	16	16	16	16	16	16	16	12	12
N (Converter Resolution)	16	16	16	16	16	12	12	16	16	16	11	11	11	11	11	11

表 29. デュアルリンク JESD204B 動作モード

	Dual-Link JESD204B Modes												
Parameter	0	1	2	3	4	5	6	7	8	9	13	14	23
L (Lane Count)	1	2	3	2	4	1	2	1	4	4	4	4	4
M (Converter Count)	2	4	6	2	4	2	4	4	2	2	2	2	2
F (Octets per Frame per Lane)	4	4	4	2	2	3	3	8	1	2	1	2	3
S (Samples per Converter per Frame)	1	1	1	1	1	1	1	1	1	2	1	2	4
NP (Total number of Bits per Sample)	16	16	16	16	16	12	12	16	16	16	16	16	12
N (Converter Resolution)	16	16	16	16	16	12	12	16	16	16	11	11	11

Rev. 0 — 45/150 —

設定パラメータ

AD9175 のモードは、L、K、M、N、NP、S、F に関わるリンク 設定パラメータによって決定されます。これらの設定の説明と アドレスを表 30 に示します。

表 30. 設定パラメータ

表 30. 設定/		
JESD204B の設定	説明	アドレス
L - 1	レーン数 - 1。	レジスタ 0x453、ビット
		[4:0]
F-1	1レーンのフレームあたりオ	レジスタ 0x454、ビット
	クテット数 - 1。	[7:0]
K – 1	マルチフレームあたりのレー	レジスタ 0x455、ビット
	ン数 - 1。	[4:0]
M-1	コンバータ数 - 1。	レジスタ 0x456、ビット
		[7:0]
N-1	コンバータ・ビット分解能 -	レジスタ 0x457、ビット
	1.	[4:0]
NP - 1	サンプルあたりのビット・パ	レジスタ 0x458、ビット
	ッキング数 - 1。	[4:0]
S-1	1フレームのコンバータあた	レジスタ 0x459、ビット
	りのサンプル数 - 1。	[4:0]
HD	高密度フォーマット。1に設	レジスタ 0x45A、Bit 7
	定。	
DID	デバイス ID。トランスミッタ	レジスタ 0x450、ビット
	から送信されるデバイス ID と	[7:0]
DID	一致。	
BID	バンク ID。トランスミッタか	レジスタ 0x451、ビット
	ら送信されるバンク ID と一 致。	[7:0]
LID0	レーン 0 のレーン ID。論理レ	1 . 3 7 7 0 450 18 . 1
LIDU	レーン 0のレーン ID。 iii 理レ ーン 0 のトランスミッタから	レジスタ 0x452、ビット [4:0]
	送信されるレーン ID と一致。	[4.0]
JESDV	JESD204x バージョン。トラン	レジスタ 0x459、ビット
1200 (スミッタから送信されるバー	[7:5]
	ジョンと一致 (0x0 =	F1:22
	JESD204A, $0x1 =$	
	JESD204B) 。	

AD9175 は、メイン・デジタル・データパスの出力を選択モードにおける N ビットの値に切り詰めて、それを DAC コアに送ります。下位 NP – N ビットに 0 をパディングした場合に相当する NP のビット数の値、または全 SERDES レーンの合計 NP ビット数データを送ることが可能です。どちらの場合も、DAC コアの前で下位 NP – N ビットが切り捨てられます。

JESD204B レシーバーを通過するデータフロー

リンク設定パラメータは、JESD204B レシーバー・インターフェース上のシリアル・ビットのフレーミングを解除し、データ・サンプルとして DAC へ渡す方法を指定します。

論理レーンのスキュー除去とイネーブル

適切な構成を行えば、論理レーンのスキューは自動的に除去されます。すべての論理レーンがイネーブルされるか否かは、レジスタ 0x110 のビット [4:0] で選択されるモード設定に対応するレーン数で決まります。すべての物理レーンがデフォルトで起動されます。使用しない物理レーンの電源をディスエーブルするには、レジスタ 0x201 のビットx を 1 に設定して物理レーンx をディスエーブルし、イネーブルするには 0 のままにします。論理レーンは、LINK_PAGE 制御(レジスタ 0x300、ビット 2)を使い、リンクごとにイネーブルとスキュー除去を行う必要があります。選択されたリンク・ページに対応するリンク論理レーンx のスキューを除去するには、レジスタ 0x46C のビットx を 1 に設定します。

JESD204B のテスト・モード

PRBS のテスト

AD9175 の JESD204B レシーバーは、その PHY 層のバックエン ドに PRBS パターン・チェッカーを内蔵しています。パター ン・チェッカーは、JESD204B 仕様で定義されているように、 PRBS7、PRBS15、PRBS31 のデータ・パターンをサポートして います。PRBSパターンは、フィールド・プログラマブル・ゲー ト・アレイ (FPGA) などの外部 JESD204B トランスミッタから 供給することも、内部 PRBS7 ジェネレータのセクションで説明 されているように内部 PRBS7 ジェネレータによって生成するこ ともできます。この機能により、AD9175の各物理レーンおよび JESD204B PHY 全体のビット・エラー・レート (BER) をテス トできます。PRBS テスト時の低 BER により、適切なクロッキ ングとクロック同期が確認され、JESD204Bトランスミッタとレ シーバー間の相互接続(トレース、コネクタ、およびケーブル 接続)が十分な品質であることが確認されます。PHY PRBS パ ターン・チェッカーでは JESD204B リンクが完全に確立されて いる必要はありませんが、物理レーンが正しくクロックされて PRBS データを受信できるように AD9175 で JESD204B モードを 設定しておく必要があります。PRBS データは 8 ビット/10 ビ ットでエンコードしてはいけません。PRBSパターンの検証は、 複数のレーン上で同時に行うことも、一度に 1 つのレーンで実 行することもできます。不具合のある各 JESD204B レーンのエ ラー数は個別に報告されます。

AD9175 で PRBS チェッカーをイネーブルする手順は以下のとおりです。

- JESD204BトランスミッタまたはAD9175の内部 PRBS7ジェネレータから、PRBS7、PRBS15、またはPRBS31ループ・パターンの送信を開始します。
- 2. 表 31 に示すように、レジスタ 0x316 のビット [3:2] への 書込みによって、受信する適切な PRBS パターンを選択し ます。
- 3. PHY_TEST_EN (レジスタ 0x315) への書込みによって、テストするすべてのレーンの PHY テストを有効にします。レジスタ 0x315 の各ビットは、対応するレーンの PRBS テストを有効にします。例えばビット 0 に 1 を書き込むと、物理レーン 0 の PRBS テストが有効になります。実行中のJESD204B リンクは、この時点で中断されます。
- 4. ステータス・レジスタをデフォルト値にリセットするには、PHY_TEST_RESET (レジスタ 0x316、ビット 0) を 0 から 1 に変更して、再度 0 に戻します。
- 必要に応じて PHY_PRBS_TEST_THRESHOLD_xBITS (レジスタ 0x319~レジスタ 0x317、ビット [23:0]) を設定します。
- 6. PHY_TEST_START (レジスタ 0x316、ビット1) に0を書き 込み、次に1を書き込みます。これで、PHY_TEST_START の立上がりエッジでテストが開始されます。
 - a. 場合によっては、この時点でステップ 4 を繰り返す必要があります。PHY_TEST_RESET (レジスタ 0x316、ビット 0) を 0 から 1 に変更して、再度 0 に戻します
- 8. PHY_TEST_START (レジスタ 0x316 のビット 1) に 0 を書き込んで、テストを停止します。

Rev. 0 — 46/150 —

- 9. PRBS ステータス・レジスタから PRBS テスト結果を読み 出します。
 - a. PHY_PRBS_PASS(レジスタ 0x31D)の各ビットは、1 つの SERDES レーンに対応しています(0 = 不合格、1 = 合格)。リセット後のデフォルト値は合格です。報告された結果が誤検出ではないことを確認するには、1 つまたはすべてのレーンで不合格状態を強制してから長時間の BER テストを実行します。テストを以前有効にしたレーンの一部または全部を一時的に無効にしてテスト不合格を確認するか、またはステップ 2 で誤ったタイプの PRBS パターンを選択してすべてのレーンで不合格になることを観察します。次に、テストを適切に再設定してテストを実行し、BER 結果を積算します。
 - b. 各不合格レーンに見られる PRBS エラーの数は、チェックするレーン番号 (0~7) を PHY_SRC_ERR_CNT (レジスタ 0x316、ビット [6:4]) に書き込み、PHY_PRBS_ERR_CNT_xBITS (レジスタ 0x31A~レジスタ 0x31C) を読み出すことによって得られます。最大エラー・カウント数は 2²⁴⁻¹です。レジスタ 0x31A ~レジスタ 0x31C の全ビットがハイの場合は、選択したレーンの最大エラー・カウント数を超えます。

表 31. PHY PRBS パターンの選択

PHY PRBS PAT SEL Setting (Register 0x316,	
Bits[3:2])	PRBS Pattern
0b00 (default)	PRBS7
0b01	PRBS15
0b10	PRBS31

内部 PRBS7 ジェネレータ

AD9175 は、JESD204Bトランスミッタからの外部 SERDES 信号 入力なしで JESD204B PHY のテストを可能にする PRBS7 ジェネレータを 1 個内蔵しています。この方法では、AD9175 の内部 PHY の部分が確認されるだけですが、PRBS チェッカーと内部クロック・ドメインの両方が動作していて、正しく設定されていることが確認されます。内部 PRBS テストの後に、理想的にはより徹底的な外部 PHY PRBS テストを続けます。この場合、パターンは JESD204Bトランスミッタ・デバイスから供給します。

AD9175 の内部 PRBS7 ジェネレータを設定する手順は次のとおりです。

- EQ_BOOST_PHYx ビット (レジスタ 0x240 のビット [7:0] とレジスタ 0x241 のビット [7:0]) を 0 にセット します。
- SEL_IF_PARDATAINV_DES_RC_CH ビット (レジスタ 0x234、ビット [7:0]) を 0 にセットして、レーンが反転しないようにします。
- 3. EN_LBT_DES_RC_CH (レジスタ 0x250) への書込みを行うことによって、テストするすべてのレーンのループバック・テストを有効にします。レジスタ 0x250 の各ビットは、対応するレーンのループバック・テストを有効にします。例えばビット 0 に 1 を書き込むと、物理レーン 0 のテストが有効になります。
- ハーフレートの場合は EN_LBT_HALFRATE_DES_RC (レジスタ 0x251、ビット 1) を 1 にセットします。それ以外の場合は 0 に設定します。
- INIT_LBT_SYNC_DES_RC (レジスタ 0x251、ビット 0) を 0から1に変更して、再度0に戻します。

6. PRBS7テスト用に PRBS チェッカーを構成する方法については、PRBS テストのセクションを参照してください。

トランスポート層のテスト

AD9175 の JESD204B レシーバーは、JESD204B 規格に定めるショート・トランスポート層 (STPL) テストをサポートしています。JESD204B のトランスミッタとレシーバー間のデータ・マッピングを検証するには、このテストを使用します。このテストを行うには、論理デバイス内にこの機能が実装され、有効になっている必要があります。また、レシーバー側でテストを実行する前に、リンクが確立され、エラーなく作動するようになっていなければなりません。

STPL テストは、各コンバータからの各サンプルが、コンバータ数 (M) とコンバータあたりのサンプル数 (S) に従い、適切にマッピングされることを確認します。JESD204B 規格に仕様が規定されているように、コンバータのメーカーは転送テスト・サンプルの仕様を定めています。各サンプルは、それぞれ固有の値になっている必要があります。例えば、M=2、S=2 の場合は、固有の値を持つ 4 個のサンプルがテスト終了まで繰り返し転送されます。デバイスには、予想サンプルを設定しておく必要があります。このサンプルが、受信したサンプルと 1 個ずつ比較され、すべてのサンプルがテストされるまでそれが繰り返されます。AD9175におけるこのテストの実行プロセスを以下に示します。

- トランスミッタと AD9175 の間に JESD204B リンクを同期 して確立します。
- 2. JESD204Bトランスミッタで STPL テストをイネーブルします。JESD204Bモードによっては、リンクあたり最大6つのデータ・ストリームを持ち、最大3つの複素サブチャンネル(M=6)を供給し、各フレームに最大8つのサンプル (S=8) を含めることができます。
- 単一フレーム内のサンプルの1つと一致するように、 SHORT_TPL_REF_SP_MSB ビット (レジスタ 0x32E) と SHORT_TPL_REF_SP_LSB ビット (レジスタ 0x32D) を設定します。N=12モードの場合、予測サンプルの整数値は 16倍されます (2進数、4ビット・シフト演算)。
- 4. デュアルリンク JESD204B をテストする場合は、 SHORT_TPL_LINK_SEL (レジスタ 0x32F、ビット7) を設 定して、リンク 0 (DAC0 データパス) またはリンク 1 (DAC1 データパス) のいずれをテストするかを選択しま す。
- チャンネルを選択するには、SHORT_TPL_CHAN_SEL(レ ジスタ 0x32C、ビット [3:2]) を設定します。
- 被試験チャンネルの I または Q ストリームを選択するには、SHORT_TPL_IQ_PATH_SEL(レジスタ 0x32F、ビット6)を設定します。
- ステップ3で示された値を持つと予想される各フレーム内のサンプルを選択するには、SHORT_TPL_SP_SEL(レジスタ0x32C、ビット[7:4])を設定します。
- 8. SHORT_TPL_TEST_EN (レジスタ 0x32C、ビット 0) を 1 に設定します。
- 9. SHORT_TPL_TEST_RESET (レジスタ 0x32C、ビット 1) を 1 に設定して、また 0 に戻します。
- 10. 必要な時間だけ待機します。この必要時間は 1/(サンプル・レート×BER) として計算できます。例えば、 $BER=1×10^{-10}$ で、サンプル・レートが 1GSPS の場合、必要時間は 10 秒です。
- 11. SHORT_TPL_FAIL (レジスタ 0x32F、ビット 0) のテスト 結果を読み出します。

Rev. 0 — 47/150 —

12. 同じ M または別の M に対して別のサンプルを選択し、1 つのフレーム内にある両方のコンバータ用のすべてのサン プルを検証できるまでテストを続けます。

CGS と ILAS の繰返しテスト

AD9175 は、JESD204B 仕様のセクション 5.3.3.8.2 に従い、/K28.5/文字の固定ストリーム受信、または CGS に続く ILAS の固定ストリーム受信をチェックすることができます。

繰返し CGS テストを実行するには、(K28.5/文字の固定ストリームを AD9175 の SERDES 入力へ送ります。次に、デバイスをセットアップしてリンクを有効にします。 $\overline{SYNCOUT}$ のアサートが解除されていることを確認して(K28.5/文字を受信中であることを確認し、レジスタ 0x470 を読み出すことによって、イネーブルされたすべてのリンク・レーンに CGS が受け入れられていることを確認します。

CGS の後に繰返し ILAS シーケンスが続いていることをテストするには、リンクをセットアップするための手順に従いますが、最後の書込みを実行(リンクを有効化)する前に、レジスタ0x477のビット7に1を書き込むことによって ILAS テスト・モードを有効にします。その後、リンクを有効にします。デバイスが各ライン上で4個の CGS 文字を確認すると、そのデバイスはSYNCOUTx±のアサートを解除します。この時点で、トランスミッタが繰返し ILAS シーケンスの送信を開始します。

レジスタ 0x473 を読み出し、イネーブルされたすべてのリンク・レーンについて、初期レーン同期が受け入れられていることを確認してください。

JESD204B のエラー・モニタリング ディスパリティ、テーブル不記載、予期しない制御 (K) 文字によるエラー

JESD204B 仕様のセクション 7.6 に従い、AD9175 はディスパリティ・エラー、テーブル不記載 (NIT) エラー、および予期しない制御文字によるエラーを検出することができます。また、エラー発生時にオプションで同期要求を行い、リンクを初期化し直すこともできます。

このセクションには、JESD204B 仕様に関するその他いくつかの解釈も示されています。1 つのレーンに 3 つの NIT エラーが送られ、なおかつ QUAL_RDERR(レジスタ 0x476、ビット 4) = 1 の場合、異常ディスパリティ・エラー(BDE)カウント・レジスタのリードバック値は 1 です。NIT エラーと同じ文字位置で発生するディスパリティ・エラーのレポートは、無効化されています。NIT エラー発生後における文字のディスパリティ・エラーについては、このような無効化設定は行われません。したがって、NIT エラー発生によって BDE エラーが発生するのは想定内の動作です。

エラー・カウントのチェック

ディスパリティ・エラー、NIT エラー、および予期しない制御文字によるエラーについては、エラー・カウントをチェックできます。エラーは、レーンごと、およびエラー・タイプごとにカウントされます。各エラー・タイプとレーンには専用のレジスタがあります。エラー・カウントをチェックするには、以下のステップを実行する必要があります。

1. レジスタ 0x480 のビット [5:3] からレジスタ 0x487 のビット [5:3] までを使い、どのエラーをモニタするかを選択します。予期しない K (UEK) 文字、BDE、および NIT エラー・モニタリングは、表 61 に示すように、該当するビットに 1 を書き込むことによってレーンごとに選択できます。これらのビットは、デフォルトでイネーブルされます。

- 2. 対応するエラー・カウンタ・リセット・ビットは、レジスタ 0x480 のビット [2:0] からレジスタ 0x487 のビット [2:0] までです。そのエラー・カウンタをリセットするには、対応するビットに1を書き込んでください。
- 3. レジスタ 0x488 のビット [2:0] からレジスタ 0x48F のビット [2:0] には、各エラー・カウンタ用の最終カウント値保持インジケータがあります。このフラグをイネーブルすると、最終エラー・カウント値 0xFF に達した時点でカウンタがカウントを中止し、リセットされるまでその値を保持します。それ以外の場合は値が 0x00 にラップされて、カウントを継続します。レーンごとに希望の動作を選択して、対応するレジスタ・ビットを設定してください。

閾値を超えるエラー・カウントのチェック

閾値を超えるエラー・カウントをチェックするには、以下の手順に従ってください。

- 1. エラー・カウンタ閾値を定義します。エラー・カウンタ閾値はレジスタ 0x47C にユーザ定義値として設定するか、デフォルト値の 0xFF のままとすることができます。エラー閾値に達すると、マスク・レジスタの設定に応じて IRQ が生成されるかSYNCOUTx±がアサートされるか、あるいは、その両方が実行されるかします。このエラー閾値は、3つのタイプのエラー(UEK、NIT、BDE) すべてに共通で使われます。
- 2. SYNC_ASSERT_MASK ビットをセットします。 SYNCOUTx±のアサート動作はレジスタ 0x47D のビット [2:0] で設定します。デフォルトでは、いずれかのレーン のいずれかのエラー・カウンタが閾値に達すると、 SYNCOUTx±がアサートされます(レジスタ 0x47D のビット [2:0] = 0b111)。SYNC_ASSERT_MASK ビットをセットするときは、LINK_PAGE(レジスタ 0x300 のビット 2)を1にセットする必要があります。
- 3. エラー・カウント到達インジケータを読み出します。各エラー・カウンタには、レーンごとに最終カウント値到達インジケータがあります。このインジケータは、特定レーンのエラー・カウンタが最終カウント値に達すると1にセットされます。これらのステータス・ビットは、レジスタ0x490のビット [2:0] からレジスタ0x497のビット [2:0]までの間に置かれています。ビット3は、特定レーンがアクティブになっているかどうかを示すためにリードバックできます。

エラー・カウンタと IRQ 制御

エラー・カウンタと IRQ 制御については、以下のステップに従ってください。

- 1. 割込みをイネーブルします。JESD204Bの割込みをイネーブルします。UEK、NIT、BDEエラー・カウンタの割込みは、レジスタ 0x4B8のビット [7:5] で設定します。他にも、レーンのスキュー除去、初期レーン同期、正常チェックサム、フレーム同期、コード・グループ同期(レジスタ 0x4B8のビット [4:0]) や、構成ミスマッチ(レジスタ 0x4B9のビット 0) など、リンクの確立時にモニタする割込みがあります。これらのビットはデフォルトではオフになっていますが、該当ビットに 0b1 を書き込むことによってイネーブルできます。
- 2. JESD204B 割込みステータスを読み出します。割込みステータス・ビットはレジスタ 0x4BA のビット [7:0] とレジスタ 0x4BB のビット 0 で、このステータス・ビット位置はイネーブル・ビット位置に対応しています。

3. 使用する予定のある割込みは、JESD204B リンクを確立する前にすべてイネーブルすることを推奨します。リンクを確立が確立されたら、割込みをリセットしてリンク・ステータスをモニタするために使用することができます。

SYNCOUTx±によるエラー・モニタリング

ディスパリティ、NIT、または予期しない制御文字によるエラーが 1 つ以上発生したときは、JESD204B 仕様のセクション 7.6 に従ってそのエラーがSYNCOUTx±ピンにレポートされます。 JESD204B 仕様は、エラー発生時、正確に 2 フレーム分の時間だけ SYNCOUTx±信号をアサートするように規定しています。 AD9175 では、SYNCOUTx±パルスの幅を½、1、または 2 PCLK サイクルに設定することができます。2 フレーム・クロック・サイクルのSYNCOUTx±パルスを実現する設定を表 32 に示します。

表 32. SYNCOUTx±エラー・パルス幅の設定

	PCLK Factor	SYNC_ERR_DUR (Register 0x312,
F	(Frames/PCLK)	Bits[7:4]) Setting ¹
1	4	0 (default)
2	2	1
3	1.5	2
4	1	2
8	0.5	4

¹これらのレジスタ設定は、2フレーム・クロック・サイクルのパルス幅でSYNCOUTx±信号をアサートします。

予期しない制御文字、テーブル不記載、 ディスパリティの IRQ

予期しない制御文字(UEK)、テーブル不記載(NIT)、およびディスパリティによるエラーについては、関値を超えるエラー・カウント・イベントを IRQ イベントとして使用できます。これらのイベントは、レジスタ 0x4B8 のビット [7:5] へ書込みを行うことによってイネーブルします。 IRQ イベント・ステータスは、IRQ をイネーブルした後に、レジスタ 0x4BA のビット [7:5] で読み出すことができます。

IRQ の設定については、エラー・カウンタと IRQ 制御のセクションを参照してください。IRQ の詳細については、割込み要求動作のセクションを参照してください。

再初期化が必要なエラー

JESD204B 仕様のセクション 7.1 に従い、4 個の無効なディスパリティ文字または 4 個の NIT 文字が受信されると、自動的にリンクの再初期化が行われます。リンクの再初期化が行われる場合、再同期要求の長さは少なくとも5フレーム、9オクテットになります。

ディスパリティ・エラー、NIT エラー、または UEK 文字エラーのエラー・カウントがユーザ設定によるエラー閾値に達したときは、オプションでリンクを再初期化することができます。特定のエラー・タイプに対して再初期化機能を有効にする手順は、以下のとおりです。

- 1. レジスタ 0x480 のビット [5:3] からレジスタ 0x487 のビット [5:3] までを使い、どのエラーをモニタするかを選択します。UEK、BDE、および NIT によるエラーのモニタリングは、表 33 に示すように、該当ビットに 1 を書き込むことによってレーンごとに選択できます。これらはデフォルトでイネーブルされます。
- レジスタ 0x480 のビット [2:0] からレジスタ 0x487 のビット [2:0] までの該当ビットに 0 を書き込んで、カウンタのリセットを解除します。

- 3. 表 33 に従って SYNC_ASSERT_MASK (レジスタ 0x47D の ビット [2:0]) に書込みを行うことにより、各タイプのエ ラー対して同期アサーション・マスクを有効にします。
- 4. 必要なエラー・カウンタ閾値を ERRORTHRES (レジスタ 0x47C) に設定します。
- 5. SYNC_ASSERT_MASK レジスタで有効化されたエラー・タイプごとに、いずれかのレーン上のカウンタが設定された 関値に達した場合は、SYNCOUTx±がローになり同期要求が送信されます。リンクが再初期化されるとすべてのエラー・カウントがリセットされます。IRQ はリセットされないので手動でリセットする必要があります。

表 33. 同期アサーション・マスク(SYNC_ASSERT_MASK)

アドレ ス	ビット番 号	ビット名	説明
0x47D	2	BDE	ディスパリティ・エラ <u>ー・カウント</u> が閾値に達した場合にSYNCOUTx± をアサートするには、1 を設定します。
	1	NIT	NIT エラー・カウントが閾値に達し た場合にSYNCOUTx±をアサートす るには、1を設定します。
	0	UEK	UEK エラー・カウントが閾値に達した場合にSYNCOUTx±をアサートするには、1を設定します。

CGS、フレーム同期、チェックサム、 ILAS のモニタリング

レジスタ 0x470 からレジスタ 0x473 をモニタリングすることで、 JESD204B リンク確立の各段階が実行されていることを検証できます。

リンク・レーン x が少なくとも 4 個の K28.5 文字を受信して、コード・ グループ 同 期 が 正 常 に 終 了 した 場 合 は、CODE_GRP_SYNC(レジスタ 0x470)のビット x がハイになります。

リンク・レーン x が初期フレーム同期を完了した場合は、FRAME SYNC (レジスタ 0x471) のビット x がハイになります。

リンク・レーン xの ILAS の間にレーン経由で送られたチェックサムが、そのレーン経由で送られた JESD204B パラメータの合計と一致した場合は、GOOD_CHECKSUM(レジスタ0x472)のビット x がハイになります。パラメータは、レジスタ内の個々のフィールドを合計するか、パックされたレジスタを加算することによって追加できます。計算したチェックサムは、以下に示すフィールドを合計したものの下位 x ビットです:DID、BID、LID、SCR、x 1、x 1、x 1、x 1、SUBCLASSV、x 1、JESDV、x 1、JESDV、x 1、HD。

リンク・レーン x の初期レーン・アライメント・シーケンスが正常に終了した場合は、INIT_LANE_SYNC(レジスタ 0x473)のビット x がハイになります。

CGS、フレーム同期、チェックサム、ILAS の IRQ

CGS、フレーム同期、チェックサム、ILAS のフェイル信号はIRQ イベントとして使用できます。これらは、レジスタ 0x4B8 のビット [3:0] に書込みを行うことによってイネーブルします。IRQ イベント・ステータスは、IRQ をイネーブルした後に、レジスタ 0x4BA のビット [3:0] で読み出すことができます。CGS IRQ をリセットするには、レジスタ 0x4BA のビット 0 に 1 を書き込みます。フレーム同期 IRQ をリセットするには、レジスタ 0x4BA のビット 1 に 1 を書き込みます。チェックサム IRQ をリセットするには、レジスタ 0x4BA のビット 2 に 1 を書き込みます。ILAS IRQ をリセットするには、レジスタ 0x4BA のビット 3 に 1 を書き込みます。

詳細については、割込み要求動作のセクションを参照してくだ さい。

構成ミスマッチ IRQ

AD9175 には構成ミスマッチ・フラグがあり、IRQ イベントとして使用することができます。レジスタ 0x4B9 のビット 0 を使ってミスマッチ・フラグをイネーブルしてから(デフォルトでイネーブル)、レジスタ 0x4BB のビット 0 を使ってそのステータスをリードバックし、IRQ 信号をリセットします。詳細については、割込み要求動作のセクションを参照してください。

リンク構成設定(レジスタ 0x450~レジスタ 0x45D)が、デバイスが受信した JESD204B 設定(レジスタ 0x400~レジスタ 0x40D)と一致しないときは、構成ミスマッチ・イベント・フラグがハイになります。

この機能は、レジスタ 0x472 の正常チェックサム・フラグとは 異なります。正常チェックサム・フラグは、送信された設定に 基づき、送信されたチェックサムと計算されたチェックサムが 一致するようにします。構成ミスマッチ・イベントは、送信さ れた設定が構成設定と一致するようにします。

Rev. 0 - 50/150 -

デジタル・データパス

AD9175 には 2 つの独立したデジタル・データパスがあり、通常はそれぞれの DACx コアにデータ・サンプルを供給します。ただし、サンプルを DAC0、DAC1、または両方の DAC にルーティングすることを可能にする変調器スイッチ構成があります。詳細については、変調器スイッチのセクションを参照してください。

各デジタル・データパスは、複数のチャンネル・データパス (チャネライザ)で構成され、これらは 1 つのデータパス (メイン・データパス) にまとめられて、デフォルトでそれぞれの DAC コアに接続されます (図 1 参照)。ユーザが選択する JESD204B モードに応じて、チャネライザとメイン・データパス は完全にバイパス可能です。チャネライザとメイン・データパス ス内には、様々なデジタル処理ブロックがあります。それらは、インターポレーション・フィルタ、サンプルのデジタル I/Q 変調またはスタンドアロン (DDS) 動作を可能にするバイパス可能な NCO、PA 保護ブロック (電力検出および保護 (PDP) ブロック)、サンプル・ゲインをランプまたは設定するデジタル・ゲイン・ブロックなどです。

合計データパス・インターポレーション

AD9175 は2段のインターポレーション・フィルタを内蔵しています。1 段は各チャンネルのデータパス内に配置され、全チャンネルにわたって単一の値に設定され、もう1 段は各メイン・データパス内に配置されています。完全なデジタル・データパスの合計インターポレーションは、チャンネル・インターポレーション係数を乗じることによって決定できます。DAC サンプル・レートと入力データ・レート間の関係を、次式に示します。

合計インターポレーション = チャンネル・インターポレーション×メイン・インターポレーション

 $f_{DATA} = f_{DAC}$ (チャンネル・インターポレーション×メイン・インターポレーション)

カスケード接続された様々なハーフバンド・インターポレーション・フィルタはそれぞれ、着信データが占有する全帯域幅 (BW) の80%をカバーします。したがって、インターポレーションを使用する場合(合計インターポレーション>1)、使用可能な信号 BW はデータ・レートの80%です。インターポレーション段をバイパスした場合(合計インターポレーション=1)、複素データは使用されないので、使用可能な信号帯BWはデータ・レートの50%になります。信号帯域幅は、次式で計算します。

信号 $BW = 0.8 \times f_{DATA}$ 、合計インターポレーション > 1 の場合

信号 $BW = 0.5 \times f_{DATA}$ 、合計インターポレーション = 1 の場合

インターポレーション値は表34に示すように設定します。

表 34. インターポレーション係数レジスタの設定

表 64: 「フグーバレーンコン 体気レンバグの設定							
Interpolation Factor	Main Datapath, Register 0x111, Bits[7:4]	Channel Datapath, Register 0x111, Bits[3:0]					
1×	0x1	0x1					
$2 \times$	0x2	0x2					
3×	Not applicable	0x3					
4×	0x4	0x4					
6×	0x6	0x6					
8×	0x8	0x8					
12×	0xC	Not applicable					

表 35. インターポレーション・モードと使用可能な帯域幅

Total Interpolation	Available Signal Bandwidth	f _{DATA}
1× (Bypass) 2×, 4×, 6×, 8×, 12×, 16×, 18×, 24×, 32×, 36×, 48×, 64×	$0.5 \times f_{DATA}$ $0.8 \times f_{DATA}$	f_{DAC} f_{DAC} /total interpolation

フィルタの性能

インターポレーション・フィルタは、インターポレーション・イメージの発生を抑制しながら、着信データの変化を最小限に抑えるような形で着信データのサンプル間を補間します。

表 35 に示す使用可能帯域幅は、フィルタが±0.001dB より小さい 通過帯域リップルと 85dB を超えるイメージ除去比を持つ周波数 帯域として定義されます。各フィルタの相対帯域幅を示す概念 図を図 72 と図 73 に示します。すべてのフィルタの最大通過帯域振幅は同じです。図 72 と図 73 では、理解を助けるために振幅が意図的に異なるように示しています。実際には、すべてのフィルタの振幅は、ユーザが選択したインターポレーション・レートに関係なく一定で均一です。

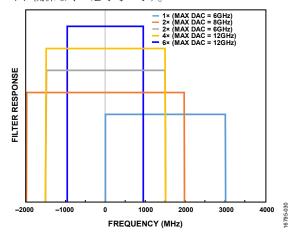


図 72. 実現可能なそれぞれの最大 DAC レートにおける 1×、2×、 4×、6×の合計インターポレーション・レートの帯域応答

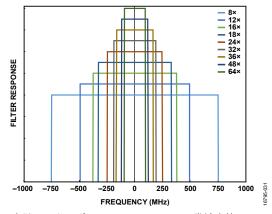


図 73. 合計インターポレーション・レートの帯域応答-12GHz DAC レートで 8×、12×、16×、18×、24×、32×、36×、48×、64×

チャンネル・デジタル・データパス

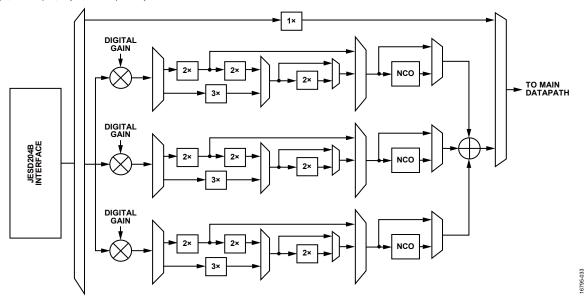


図 74. メイン DAC 出力ごとのチャンネル・デジタル・データパスのブロック図

各データパスにおいてイネーブルされるチャネライザが 1 つで あるか、すべてであるかは、選択される JESD204B モードによ って定義されます。各チャネライザは 1 つのデジタル・ゲイン 段、複素インターポレーション・ブロック、および 48 ビットの 複素モジュラス NCO で構成されています。チャネライザと加算 ノードは完全にバイパスできます(1×インターポレーションを 選択)。インターポレーション・レートの選択はすべてのチャ ネライザに適用され、個別に制御することはできません。ただ し、ゲイン段と複素 NCO の設定はすべて個別に制御できます。 これらのブロックの制御は、表 36 に示すように、 CHANNEL PAGE ビット (レジスタ 0x008 のビット [5:0]) 内 のチャンネル・ページング・マスクによってページングされま す。ページ・マスクの各ビットは 1 つのチャンネル・データパ スに対応しています。チャネライザは、特定のチャンネルに固 有の設定を適用するために個別にページングすることも、1 セ ットの SPI 書込みを使用して複数のチャネライザをグループ化 してページングすることもできます。

表 36. チャンネル・ページ・マスク

CHANNEL_PAGE (Register 0x008, Bits[5:0])	Channel Paged	Channel Datapath Updated
0x01 (Bit 0)	Channel 0	Channel 0 of DAC0
0x02 (Bit 1)	Channel 1	Channel 1 of DAC0
0x04 (Bit 2)	Channel 2	Channel 2 of DAC0
0x08 (Bit 3)	Channel 3	Channel 0 of DAC1
0x10 (Bit 4)	Channel 4	Channel 1 of DAC1
0x20 (Bit 5)	Channel 5	Channel 2 of DAC1

以下のセクションでは、チャンネル内の各デジタル・ブロック について詳しく説明します。

デジタル・ゲイン

各チャネライザは、独立したチャンネル・ゲイン制御を備えており、それぞれの複素データ・ストリームに対して固有のゲイン・スケーリングが可能です。各チャンネルのゲイン・コードは12ビット分解能で、レジスタ 0x146 とレジスタ 0x147 に置かれており、次式で計算することができます。

 $0 \le Gain \le (2^{12} - 1) / 2^{11}$

-∞ dB < dB ゲイン≤+6.018 dB

ゲイン=ゲイン・コード× (1/2048)

dB ゲイン= $20 \times \log_{10}$ (ゲイン)

ゲイン・コード= $2048 \times$ ゲイン= $2^{11} \times 10^{-(dB\ Gain/20)}$

ゲイン・コード制御(CHNL_GAIN)は、レジスタ 0x008、ビット [5:0] のチャンネル・ページ・マスク(CHANNEL_PAGE)によってページングされます。

3 つのチャンネルすべての出力はメイン・データパスの前で加算されるため、加算後の結合された振幅がフルスケールを超えた場合のサンプルのクリッピングを回避するように、ゲインを設定する際は細心の注意を払う必要があります。例えば、3 つのチャンネルすべてを使用する場合で、3 つのデータ・ストリームすべてがフルスケール振幅の1/3を超えるサンプルが含まれている場合、クリッピングが発生することがあります。言い換えれば、ある特定の時点で、イネーブルされているすべてのチャンネルの出力のサンプルの合計は、-215 から+(215 - 1)までの範囲でなければなりません。

デジタル・ゲイン機能はすべての JESD204B モードで使用できます。ただし、1×チャンネル・インターポレーションを使用する場合を除きます。このモードでは、図 75 に示すようにチャンネル・デジタル処理機能がバイパスされるためです。

Rev. 0 — 52/150 —

チャンネル・インターポレーション

使用可能なチャンネル・インターポレーション・オプションは、バイパス (1×)、2×、3×、4×、6×、8×です。インターポレーションに使用するそれぞれのハーフバンド・フィルタの帯域幅は最大 80%で、阻止帯域除去比は 85dB です。チャンネル・ハーフバンド・カスケード構成を図 75 に示します。また、各チャンネル・インターポレーション・フィルタの使用可能帯域幅を表 37 に示します。

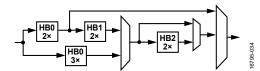


図 75. チャンネル・インターポレーション・ ハーフバンド・フィルタのブロック図

表 37. チャンネル・インターポレーションの使用可能帯域幅と 除去比

Half-Band Filter	Bandwidth (×f _{IN_FILTER})¹ (%)	Stop Band Rejection (dB)
HB0	80	85
HB1	40	85
HB2	27	85

¹f_{IN FILTER}はハーフバンド・フィルタの入力周波数です。

チャンネル・デジタル変調

各チャネライザは 48 ビットのデュアル・モジュラス NCO を内蔵しており、各チャンネル・データを個別のキャリア周波数に I/Q 変調することが可能で、それぞれ専用の位相オフセット制御を持ちます。48 ビット NCO は、整数モードまたはモジュラス (DDS) モードに設定できます。モジュラス・モードでは、NCO の整数 FTW に追加された A/B 比により、周波数をほぼ無限の精度で合成できます。詳細については、48 ビット整数/モジュラス NCO のセクションを参照してください。NCO モードは表 38 に示すように選択されます。これらの制御は、CHANNEL_PAGE ビット(レジスタ 0x008 のビット [5:0])内のチャンネル・ページ・マスクによってページングされます。

表 38. チャンネル変調モードの選択

	Modulat	ion Type
	Register 0x130,	Register 0x130,
Modulation Mode	Bit 6	Bit 2
None	0b0	0b0
48-Bit Integer NCO	0b1	0b0
48-Bit Dual Modulus NCO	0b1	0b1

チャンネル NCO ブロックには、サイドバンド選択制御機能と、FTW および位相オフセットの制御機能更新方法に関するオプションも含まれています。位相オフセット・ワード制御は次のように計算します。

-180°≤度数オフセット≤+180°

度数オフセット=180°× (DDSC_NCO_PHASE_OFFSET/2¹⁵)

ここで、*DDSC_NCO_PHASE_OFFSET* は、表 39 に示すレジスタに 設定された 16 ビットの 2 の補数値です。

表 39. チャンネル NCO の位相オフセット・レジスタ

アドレ		
ス	値	説明
0x138	DDSC_NCO_PHASE_OFFSET[7	位相オフセットの
	:0]	8LSB
0x139	DDSC_NCO_PHASE_OFFSET[1	位相オフセットの
	5:8]	8MSB

48 ビット整数/モジュラス NCO

48 ビット整数/モジュラス NCO は、図 76 に示すように、NCO ブロック、位相シフタ、複素変調器を組み合わせて、ユーザ定義のキャリア周波数に信号を変調します。この構成では、非常に高い周波数分解能で、±f_{NCO}/2 までの出力スペクトル内の任意の位置に出力信号をシフトすることができます。

NCO は直交キャリアを生成して、入力信号を新しい中心周波数に変換します。直交キャリアは、同じ周波数で互いに90°のオフセットを持つ正弦波のペアです。直交キャリアの周波数は FTWを使って設定します。図 76 に示すように、直交キャリアは I データおよび Q データとミックスされてから加算され、I データパスと Q データパスに出力されます。

各チャンネルの 48 ビット NCO は、整数モードで動作するように設定できます (つまり、FTW 値のみで NCO 出力周波数が定義される場合)。FTW の値は、ある程度 NCO ブロックが動作しているクロック速度 ($f_{NCO,CLK}$) に依存します。どのチャンネルの NCO でも、クロック・レートは加算ノードのレート(最大 1.575GSPS)に等しく、次式により計算できます。

 $f_{NCO,CLK} = f_{DATA} \times \mathcal{F} + \nu \dot{x} \nu \cdot (1 \nu \beta - \pi^2 \nu - \nu \beta)$ または

f_{NCO,CLK} = f_{DAC}/メイン・インターポレーション = f_{SUMMING_NODE}

個々の NCO の FTW は個別に設定可能で、次式で計算できます

 $-f_{NCO,CLK}/2 \le f_{CARRIER} < +f_{NCO,CLK}/2$

DDSC FTW = $(f_{CARRIER}/f_{NCO,CLK}) \times 2^{48}$

ここで、

DDSC_FTW は 48 ビットの 2 の補数。

fcarrier は NCO の出力周波数。

fnco,clkは NCO のサンプリング・クロック周波数。

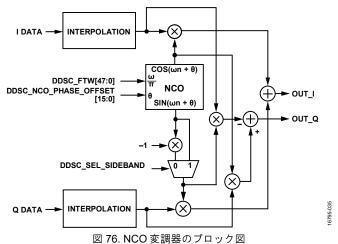

周波数チューニング・ワードは表 40 に示すように設定されます。

表 40. チャンネル NCO FTW レジスタ

アドレス	値	説明
0x132	DDSC_FTW[7:0]	FTW Ø 8LSB
0x133	DDSC_FTW[15:8]	FTW の次の 8 ビット
0x134	DDSC_FTW[23:16]	FTW の次の 8 ビット
0x135	DDSC_FTW[31:24]	FTW の次の 8 ビット
0x136	DDSC_FTW[39:32]	FTW の次の 8 ビット
0x137	DDSC_FTW[47:40]	FTW Ø 8MSB

他の NCO 制御レジスタとは異なり、FTW レジスタは、制御レジスタへの書込み直後には NCO ブロックに適用されません。FTW レジスタの適用は DDSC_FTW_LOAD_REQ (レジスタ 0x131、ビット 0) の立上がりエッジで行われます。 更新要求後は、DDSC_FTW_LOAD_ACK (レジスタ 0x131、ビット 1) をステータス・ハイにして、FTW が更新されたことをアクノレッジする必要があります。

DDSC_SEL_SIDEBAND ビット(レジスタ 0x130 のビット 1=0b1)は便利なビットで、変調データの下側と上側のどちらのサイドバンドを使用するかを制御できます。これは、FTW の符号を反転することと同じです。

チャンネル・モジュラス NCO モード (ダイレクト・デジタル合成(DDS)モード)

各 48 ビット・チャンネル NCO をデュアル・モジュラス・モードで使用すると、整数モードが提供する 48 ビット精度を超えるフラクショナル周波数を生成することもできます。これは、NCO がリセットされずに長時間実行されるアプリケーションでは重要です。この場合、48 ビット整数 NCO の初期周波数誤差が小さい場合でも、システム内の他のクロックと比べて顕著な位相ドリフトが生じる可能性があるからです。モジュラス・モード は、DDSC_DATAPATH_CFG レジスタ内の DDSC_MODULUS_EN ビットを 1 に設定することによってイネーブルします(レジスタ 0x130、ビット 2 = 0b1)。

プログラマブル・モジュラス DDS の周波数比は、標準的なアキュムレータ・ベース DDS の周波数比に極めて近い値です。唯一の違いは、プログラマブル・モジュラスとするために N を 2 のべき乗とする必要がなく(整数 NCO の場合と同様)、任意の整数にできる点です。実際には、N の値の範囲はハードウェア的な制約によって制限されます。結果としてモジュラスは、正確に有理数型の周波数合成を必要とするアプリケーションにまでNCO の使用範囲を拡大します。プログラマブル・モジュラス技術の基礎となる機能は、加算器のモジュラスを変更することです。

AD9175 内のプログラマブル・モジュラス機能の実装は、分数 M/N を下に示す式で表せるようになっています。この式の形は、X が整数部分を表し A/B が分数部分を表す複合周波数チューニング・ワードであることを示唆しています。

$$\frac{f_{CARRIER}}{f_{NCO,CLK}} = \frac{M}{N} = \frac{X + \frac{A}{B}}{2^{48}}$$

-- 7

XはFTWで、レジスタ 0x132~0x137、 Aはレジスタ 0x140~0x145、 Bはレジスタ 0x13A~0x13Fで設定します。

X、A、B は 48 ビット・ワードであるため、モジュラス・モードでは NCO 出力周波数(fcarrier)を (fnco,clk) /2 (2 × 48) の精度で設定できます。

プログラマブル・モジュラスの例

 $f_{NCO,CLK} = 1500 MHz$ で、必要とされる $f_{CARRIER}$ の値が 150 MHz の 場合を考えます。このシナリオは、除数がサンプル・レートの 2 のべき乗ではない出力周波数を合成します。具体的には $f_{CARRIER} = (1/10) f_{NCO,CLK}$ で、これは標準的な加算器ベースの DDS では合成できません。周波数比 $f_{CARRIER}/f_{NCO,CLK}$ は直接 M と N につながる値で、分数(150,000,000,1500,000,000)を最後まで約分することによって決定されます。つまり、

M/N = 150,000,000/1,500,000,000 = 1/10

したがって、M=1、N=10です。

計算すると、X = 28,147,497,671,065、A = 3、B = 5 となります。これらの値を X、A、B のレジスタに設定すると(X は DDSC_FTWx のレジスタ $0x132\sim$ レジスタ 0x137 で設定し、B は DDSC_ACC_MODULUSx のレジスタ $0x13A\sim$ レジスタ 0x13F で、A は DDSC_ACC_DELTAx のレジスタ $0x140\sim$ レジスタ 0x145 で設定)、1500MHz のサンプリング・クロックを使用した場合、NCO は正確に 150MHz の出力周波数を生成します。詳細についてはアプリケーション・ノート 2x15AN-953を参照してください。

NCO リセット

NCO のリセットは、特定の NCO の開始時間と位相を決定する際に役立ちます。各チャンネル NCO は、いくつかのイベント、すなわち、SPI を介した直接要求(レジスタ 0x131、ビット 0)、FTW レジスタ値の1つの変更、または次の SYSREF±立上がりエッジ、のいずれかに応答してリセットするように設定できます。リセット方法は、レジスタ 0x131 で制御します。詳細については、レジスタ 0x131 の詳細説明を参照してください。

チャンネル加算ノード

チャネライザの出力は、それぞれのメイン・データパスへ進む前に、加算ノード・ジャンクションで結合されます。メイン・データパスに加算される 16 ビット・データ・サンプルのクリッピング(バイナリ・オーバーフロー)を回避するために、使用するチャンネル数の合計は±2¹⁵の範囲を超えないようにする必要があります。チャンネル・インターポレーションが 1×より大きい場合の各チャンネルの最大データ・レートは、加算ノード・ジャンクションの最大速度(1.575 GSPS)によって制限されます。チャンネル・データパスをバイパスする場合は(チャンネル・インターポレーション=1×)、図 74に示すように加算ノード・ブロックもバイパスされます。チャネライザをバイパスすると、より高いデータ・レートでメイン・デジタル・データパスにデータを渡すことができます。JESD204Bのモードと対応する最大データ・レートについては、表 13 を参照してください。

Rev. 0 — 54/150 —

メイン・デジタル・データパス

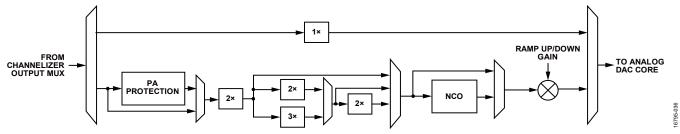


図 77. メイン DAC 出力ごとのメイン・デジタル・データパスのブロック図

各メイン・デジタル・データパスは、パワー・アンプ(PA)保護ブロック、一連の複素インターポレーション・フィルタ、48 ビット複素メイン・データパス NCO、およびランプアップ/ランプダウン・ゲイン段で構成されています。メイン・データパスはバイパス可能(1×インターポレーションを選択)で、メイン・データパスに含まれるすべてのデジタル処理ブロックがバイパスされます。インターポレーションの選択は、すべてのメイン・データパスに対して同じ値に設定され、個別に制御することはできません。ただし、PA 保護ブロック、複素 NCO 設定、およびゲイン・ランプはすべて個別に設定できます。

これらのブロックの制御は、表 41 に示すように、メイン DAC データパス・ページング・マスク MAINDAC_PAGE (レジスタ 0x008 のビット [7:6]) によってページングされます。ページ・マスクの各ビットは、1 つのメイン DAC データパスに対応しています。データパスは、特定のメイン・データパスに固有の設定を適用するために個別にページングすることも、1 セットの SPI 書込みを使用して両方のデータパスをアドレス指定するためにグループ化してページングすることもできます。

表 41. メイン DAC データパスのページ・マスク

2000		
MAINDAC_PAGE (Register 0x008, Bits[7:6])	DAC Paged	DAC Datapath Updated
Dits[7.0])	rayeu	Opuateu
0x40 (Bit 6)	DAC0	DAC0
0x80 (Bit 7)	DAC1	DAC1

以下のセクションでは、メイン・データパス内の各デジタル・ ブロックについて詳しく説明します。

ダウンストリーム保護(PA 保護)

AD9175 は、いずれかの DAC コアに到達するサンプルの振幅を素早く低減(またはスケルチ)するように設計された回路を複数内蔵しているため、AD9175 出力のダウンストリームにあるPA やその他の外部システム部品が保護されます。図 78 に示すように、DACx 出力は徐々にランプアップまたはランプダウンさせるか、または以下のトリガ信号に応答してオン/オフできます。

- PDP_PROTECT:この信号はデジタル・サンプル振幅の計算値がユーザの設定した閾値を超えたときにアサートされます。
- INTERFACE_PROTECT: この信号は特定の JESD204B エラーが発生したときにアサートされます。
- SPI_PROTECT: この信号はユーザが SPI レジスタ制御を直接書き込んだときにアサートされます。
- BSM_PROTECT: この信号は、ブランキング・ステート・マシン (BSM) モジュールをトリガします。これにより、TXEN0またはTXEN1信号の立上がりエッジでデータパスがフラッシュされます。この信号は、SPI書込みもしくは外部のTXEN0またはTXEN1ピンから入力されます。

トリガ・イベントに応答して多数のフラグが発生します。これらはまた、 $IRQx\ I/O$ ピン(IRQ0およびIRQ1)にルーティングして、他の外部ダウンストリーム部品をシャットダウンしたり、単にインジケータとして機能させたりすることもできます。

DAC 出力のオン/オフ機能は、メイン・デジタル・データパスの最後にある、アナログ DAC コアの前に置かれたランプアップ / ランプダウン・デジタル・ゲイン・ブロックへのフィードフォワード・トリガ信号を通じて同様に行われます。これにより、徐々に(または、素早く)DAC をオン/オフすることができます。

Rev. 0 — 55/150 —

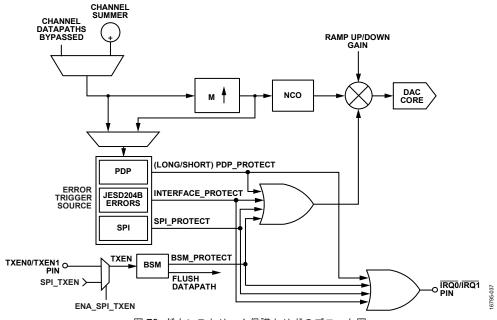


図 78. ダウンストリーム保護トリガのブロック図

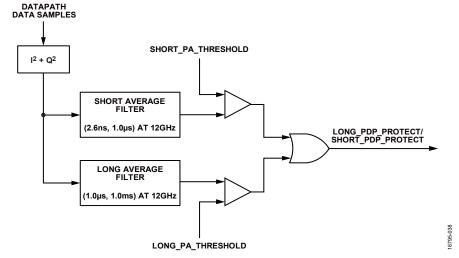


図 79. PDP のブロック図

電力検出および保護(PDP)ブロック

PDP ブロックは、DACx コア出力で予想される平均電力を計算し、AD9175 からオーバーレンジ信号が出力されるのを防ぎ、PA のような電力に敏感なデバイスの破壊を回避します。保護ブロックは PDP_PROTECT 信号を提供し、DAC 出力をランプダウンしたり、I/O ピンにルーティングさせて外部コンポーネントにシャットダウンを通知したりすることができます。

PDP ブロックは、オーバーレンジ信号がアナログ DAC コアに届く前に PDP_PROTECT がトリガされるように、データパスよりも遅延の小さい別のパスを使用します(合計インターポレーションが 1×0 場合を除く)。入力信号電力を表す値として、 1^2 と 0^2 の合計が計算されます(応答時間を改善するために、データ・サンプルの上位 0^2 ビットを使用)。計算されたサンプルの電力値は移動平均フィルタを使って積算されます。この移動平均フィルタは、一定数のサンプルの入力信号電力の平均値を出力します。平均フィルタには長さの異なる 0^2 つのタイプがあります。ショート・フィルタは電圧低下を引き起こし得る大電力パルスを検出し、ロング・フィルタは 0^2 PA やその他のデバイスの熱定数よりも長く持続し得る大電力信号を検出します。

平均フィルタの出力が閾値より大きい場合は、内部信号 PDP_PROTECT がハイになります。この信号は、オプションで IRQ フラグをトリガし、ランプアップ/ランプダウンを通じて DAC 出力をオフにするように設定できます。

PDP ブロック機能を図 79 に示します。

平均時間の長短は、LONG_PA_AVG_TIME (レジスタ 0x585、ビット [3:0]) と SHORT_PA_AVG_TIME (レジスタ 0x58A、ビット [1:0]) によって設定します。平均ウィンドウのサイズ (時間) は次式を使って決定します。

長平均ウィンドウの長さ $=2^{LONG_PP_AVG_TIME+9}$

Rev. 0 — 56/150 —

短平均ウィンドウの長さ = 2^{SHORT_PA_AVG_TIME}

平均電力計算値が指定された閾値を超えると、トリガ信号が発行されます。長平均フィルタと短平均フィルタの閾値を設定するためのレジスタと、それぞれの検出電力計算リードバックを表42に示します。

表 42 PDP 閾値と雷力計算制御

27	X :=:: =:		
Register	Bits	Control	
0x583	[7:0]	LONG_PA_THRESHOLD[7:0]	
0x584	[4:0]	LONG_PA_THRESHOLD[12:8]	
0x586	[7:0]	LONG_PA_POWER[7:0]	
0x587	[4:0]	LONG_PA_POWER[12:8]	
0x588	[7:0]	SHORT_PA_THRESHOLD[7:0]	
0x589	[4:0]	SHORT_PA_THRESHOLD[12:8]	
0x58B	[7:0]	SHORT_PA_POWER[7:0]	
0x58C	[4:0]	SHORT PA POWER[12:8]	

メイン・データパス・インターポレーション

メイン・データパス内で使用可能なインターポレーション・オプションは、バイパス (1x)、2x、4x、6x、8x、12xです。インターポレーションに使用するそれぞれのハーフバンド・フィルタの帯域幅は最大 80%で、阻止帯域除去比は 85dB です。チャンネル・ハーフバンド・カスケード構成を図 80 に示します。また、各インターポレーション・フィルタの使用可能帯域幅を表 43 に示します。

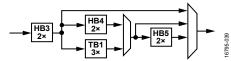


図 80. メイン・データパス・インターポレーション・ ハーフバンド・フィルタのブロック図

表 43. メイン・データパス・インターポレーションの 使用可能帯域幅と除去比

Half-Band Filter	Bandwidth (×f _{IN_FILTER})	Stop Band Rejection (dB)
HB3	80%	85
HB4	40%	85
TB1	40%	85
HB5	20%	85

メイン・データパスのデジタル変調

メイン・データパスの 48 ビット NCO アーキテクチャは、前のセクションで説明したチャネライザ NCO とほぼ同じです。それらの動作も同じです。ただし、チャネライザ NCO とは異なり、メイン・データパス NCO はアナログ DAC コア(fbac)と同じ高いクロック・レートで動作するため、より広範囲の周波数を生成できます。詳細については、48 ビット整数/モジュラスNCOのセクションを参照してください。

NCO モードは表 44 に示すように選択されます。これらの制御は、メイン DAC ページ・マスク MAINDAC_PAGE (レジスタ 0x008 のビット [7:6]) によってページングされます。

表 44. メイン変調モードの選択

	Modulation Type	
Modulation Mode	Register 0x112, Bit 3	Register 0x112, Bit 2
None	0b0	0b0
48-Bit Integer NCO	0b1	0b0
48-Bit Dual Modulus NCO	0b1	0b1

メイン NCO ブロックには、サイドバンド選択制御機能と、FTW および位相オフセットの制御機能更新方法に関するオプションも含まれています。

位相オフセット・ワード制御は次のように計算します。

-180° ≤ *度数オフセット* ≤+180°

度数オフセット= 180° ×(DDSM_NCO_PHASE_OFFSET/ 2^{15}) ここで、DDSM_NCO_PHASE_OFFSETは、表 45 に示すレジスタに 設定された 16 ビットの 2 の補数値です。

表 45. メイン・データパス NCO の位相オフセット・レジスタ

アドレ		
ス	値	説明
0x11C	DDSM_NCO_PHASE_OFFSET[位相オフセットの
	7:0]	8LSB
0x11D	DDSM_NCO_PHASE_OFFSET	位相オフセットの
	[15:8]	8MSB

48 ビット整数/モジュラス NCO

図 76 に示すように、メイン・データパス NCO は、チャネライザ NCO と同様のアーキテクチャを使用しています。メイン・データパス NCO は fbac と同じレートでクロックされるため、この構成では、非常に優れた周波数分解能で、最大±fbac/2 の出力スペクトラム内の任意の位置に出力信号を配置できます。

この NCO は、チャネライザ NCO と同様に、直交キャリアを生成して、入力信号を新しい中心周波数に変換します。詳細については対応するチャネライザ NCO のセクションを参照してください。

メイン・データパス NCOの FTW は、チャネライザ NCOの FTW と同じ方法で計算されます。重要な違いは、メイン・データパスのクロック・レート NCO $(f_{NCO,CLK})$ が DAC のサンプル・レート $(f_{DAC}$ 、最大 12.6GSPS) に等しいことです。次式を使用して $f_{NCO,CLK}$ を計算します。

 $f_{NCO,CLK} = f_{DATA} \times f + \nu \dot{x} \nu \cdot (1 \vee g - \pi^{\prime} \nu - \nu) = \nu x$ $\times (1 \vee g - \pi^{\prime} \nu - \nu) = \nu$

個々の NCO の FTW は個別に設定可能で、次式を使って計算できます。

 $-f_{NCO,CLK}/2 \le f_{CARRIER} < + f_{NCO,CLK}/2$

DDSM FTW = $(f_{CARRIER}/f_{NCO,CLK}) \times 2^{48}$

ここで、

fcarrier は NCO の出力周波数。

fnco,clk は NCO のサンプリング・クロック周波数。

DDSC FTW は 48 ビットの 2 の補数。

周波数チューニング・ワードは表 46 に示すように設定されます。

表 46. メイン・データパス NCO FTW レジスタ

アドレス	値	説明
0x114	DDSM_FTW[7:0]	FTW Ø 8LSB
0x115	DDSM_FTW[15:8]	FTW の次の 8 ビット
0x116	DDSM_FTW[23:16]	FTW の次の 8 ビット
0x117	DDSM_FTW[31:24]	FTW の次の 8 ビット
0x118	DDSM_FTW[39:32]	FTW の次の 8 ビット
0x119	DDSM_FTW[47:40]	FTW Ø 8MSB

他の NCO 制御レジスタとは異なり、FTW レジスタは、制御レジスタへの書込み直後には NCO ブロックに適用されません。FTW レジスタの適用 (リセット) は DDSM_FTW_LOAD_REQ (レジスタ 0x113、ビット 0) の立上がりエッジで行われます。 更新要求後は、DDSM_FTW_LOAD_ACK (レジスタ 0x113、ビット 1) をハイにして、FTW が更新されたことをアクノレッジする必要があります。

DDSC_SEL_SIDEBAND ビット(レジスタ 0x112 のビット 1=0b1)は便利なビットで、変調データの下側と上側のどちらのサイドバンドを使用するかを制御できます。これは、FTW の符号を反転することと同じです。

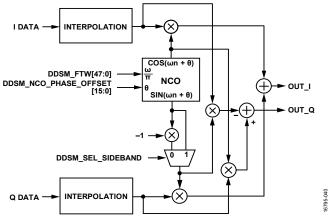


図 81. NCO 変調器ブロック図、メイン・データパス・ モジュラス NCO モード(DDS)

それぞれのメイン・データパス 48 ビット NCO は、48 ビット精度を超えるフラクショナル周波数を生成するために、デュアル・モジュラス・モードで使用することもできます。モジュラス・モードは、DDSM_DATAPATH_CFG レジスタ内の DDSM_MODULUS_EN ビットを 1 に設定することによって有効にします(レジスタ 0x112、ビット 2=0b1)。

メイン・データパス・モジュラス NCO はチャンネル・モジュラス NCO と同様のアーキテクチャで、X(FTW)、A、および Bの値も同様に計算されます。

$$\frac{f_{CARRIER}}{f_{NCO,CLK}} = \frac{M}{N} = \frac{X + \frac{A}{B}}{2^{48}}$$

ここで、

XはFTWで、レジスタ 0x114~0x119、 Aはレジスタ 0x12A~0x12F、 Bはレジスタ 0x124~0x129で設定します。 詳細と例については、チャンネル・モジュラス NCO モード(ダイレクト・デジタル・シンセサイザ(DDS)モード)のセクションを参照してください。メイン・データパス NCO は、チャンネル NCO よりも高いクロック・レート(fnco, clk)で動作し、異なる SPI レジスタ・セットからアドレス指定されます。

NCO リセット

メイン・データパス NCO のリセットは、NCO の開始時間と位相を決定する際に有用な場合があります。各 NCO は、いくつかのイベント、すなわち、SPI を介した直接要求(レジスタ 0x113、ビット 0)、FTW レジスタ値の 1 つの変更、または次のSYSREF±立上がりエッジ、のいずれかに応答してリセットするように設定できます。リセット方法は、レジスタ 0x113 を使用して制御します。詳細については、表 61 にあるレジスタ 0x113 の詳細説明を参照してください。

キャリブレーション NCO

48 ビット NCO および 31、32 ビット NCO に加えて、32 ビット のキャリブレーション NCO があります。これも、図 76 に示す メイン・データパス NCO ブロックの一部です。この NCO は 48 ビット NCO とは別のもので、メイン・データパスの設定を変更 することなく、キャリブレーション・トーンを生成できます。 他のすべての NCO と同様に、この NCO は NCO オンリ・モード で使用することも、着信データを新しいキャリア周波数に変換 するのに使用することもできます。レジスタ 0x1E6 のビット 0 は、32 ビット・キャリブレーション NCO をメイン・データパ スに接続するか、通常の 48 ビット・メイン NCO を接続するか を制御します。32 ビット・キャリブレーション NCO を使用す るには、まずレジスタ 0x1E6 のビット 2=1 を設定してキャリブ レーション NCO のアキュムレータをイネーブルします。次に、 レジスタ 0x1E2~レジスタ 0x1E5 でキャリブレーション NCO の FTW を設定して FTW を更新し、レジスタ 0x113 のビット 0を 0 から 1 に変えてこれを有効にします。レジスタ 0x1E6 のビット 0=1を設定して、メイン NCO の代わりに使用するキャリブレ ーション NCO を選択します。他の NCO と同様に、キャリブレ ーション NCO は NCO オンリ・モードで動作するように設定で きます。これはレジスタ 0x1E6 のビット1=1を設定することに よってイネーブルされます。

トーンの振幅はレジスタ 0x148 とレジスタ 0x149 で設定できます。詳細については NCO オンリ・モードのセクションを参照してください。

NCO オンリ・モード

AD9175 の NCO はスタンドアロン・モードで動作できます。この場合、JESD204B リンクが切断(または無効化)され、1 つまたは複数の NCO トーンが DAC0 または DAC1(あるいはその両方)から出力されます。正しい JESD204B モードを選択して、対応するチャネライザまたはメイン・データパスのクロック・ドメインを設定する必要があります。NCO オンリ・モードでは、内部で生成された DC サンプルで NCO 出力を変調することによって、各 NCO によってシングルトーンのサイン波が生成されます。DC サンプルの振幅は、DAC コアが出力する NCO トーンの振幅に直接対応します。図 82 に示すように、すべての NCO は同じDC サンプル・セットで変調されるため、振幅を個別に制御することはできません。個別の振幅制御が必要な場合は、JESD204B リンクを確立して、外部データ・ソースから DC サンプルを提供することを検討してください。

NCO オンリ・モードでのデジタル・データパスのデータ・ソースは DC データ・ワードです。つまり、JESD204B リンクが最初に起動されるかどうかに関係なく、リンクからのデータはデータパスに渡されません。ただし、データパスへの入力は、データパスに応じてレジスタ 0x130 またはレジスタ 0x1E6 のいずれかによって、DC データ入力と SERDES ブロック入力の間で簡単に切り替えることができます。JESD204B リンクを事前に構成し、適切なデータ・サンプルを供給すれば、接続は随時行うことができます。遷移中、センシティブな外部部品は、前述のように PA 保護ブロックを使用して保護できます。

NCO オンリ・モードで NCO のいずれかを使用するには、必要なチャンネル NCO の数に応じて、AD9175 を JESD204B のモード 0、モード 1、またはモード 2 で動作するように選択できます。NCO をバイパスしない限り(インターポレーション = 1)、他の任意の JESD204B モードを代わりに選択できます。DAC1 に接続する NCO をイネーブルするには、デュアルリンク JESD204B モードを設定します。FPGA などの外部ソースとの間でJESD204B リンクを確立する必要ことは不要で、代わりに数回のSPI レジスタ書込みを実行するだけで、必要な JESD204B モードを有効にし、各 NCO に対応するクロック・ドメインを設定することができます。

一般に、NCO オンリ・モードは、最初にデジタル・データ・ソースを必要とせずにトランスミッタの無線シグナル・チェーンを起動する場合や、LO やレーダー・アプリケーションのようにサイン波出力だけが必要なアプリケーション(DDS モードとも呼ばれる)において有用です。

追加的なキャリブレーション NCO ブロックが用意されていて (オプション)、初期システム・キャリブレーションの一部として使用することができるので、デジタル・データパスを設定し直す必要がありません。

変調器スイッチ

柔軟性を高めるために、最終の NCO ブロック(NCO0 と NCO1、構成 0 においてデフォルトで接続する DAC コアに対応)には、希望する I または Q (あるいはその両方)のサンプルを 1 つまたはすべての DAC コアに送ることのできる変調器スイッチが組み込まれています。 NCOx は、それぞれの主要デジタル・データパスの出力の近くに配置されています。 図 83~図 86 に示すように、スイッチには 4 つの構成があります。

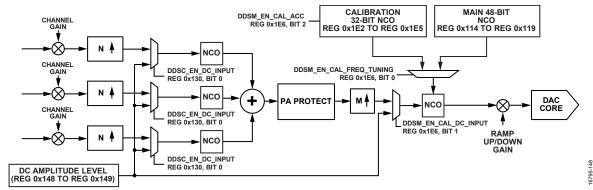
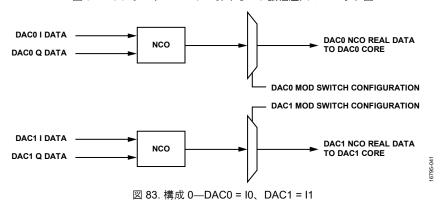



図 82. NCO オンリ・モードにおける DC 振幅注入のブロック図

Rev. 0 — 59/150 —

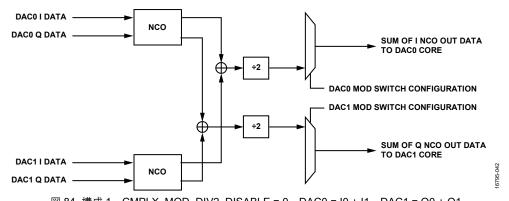
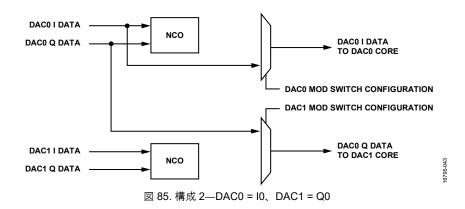



図 84. 構成 1、CMPLX_MOD_DIV2_DISABLE = 0—DAC0 = I0 + I1、DAC1 = Q0 + Q1

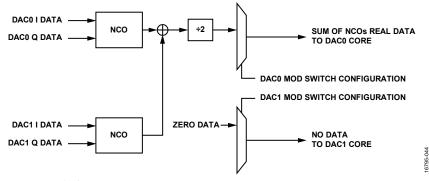


図 86. 構成 3、CMPLX_MOD_DIV2_DISABLE = 0—DAC0 = I0 + I1、DAC1 = 0

構成の中には NCO を完全にバイパスするものや、各データパスから複素 I サンプルと複素 Q サンプルを DAC コアに送るものがありますが、一方で NCO の出力を配線するものもあります。このうち特に興味深いのは構成 2 であり、図 85 に示すように、I サンプルを DAC0 に送り、Q サンプルを DAC1 に送り、AD9175

を従来の IF DAC のように動作させます。構成 3 の配線は、NCO1 または DAC1、あるいはその両方がイネーブルされているかによっても異なります。これらの構成はレジスタ 0x112 のビット [5:4] で設定され、MAINDAC_PAGE レジスタ制御によってページングされます。

Rev. 0 — 60/150 —

複素変調器スイッチの構成

前述のスイッチ構成は、NCO をバイパスした複素サンプルのみをサポートします。NCO を使用する複素サンプルをサポートするために、構成 3 は、NCO の出力で複素サンプルを処理するように 更に 再設 定することが 可能です。これは、 EN_CMPLX_MOD ビット(レジスタ 0x112 のビット 6)によって制御します。また、図 87 および図 88 に示すように、具体的な構成は NCO1 がイネーブルかどうかによって異なります。

構成 3A をセットアップするには、 EN_CMPLX_MOD ビットを 1 にセットして、スイッチを構成 3 に設定し、NCO0 と NCO1 の両方をイネーブルします。各メイン・データパスからの NCO の直交出力は DAC1 にも配線します(図 86 のデフォルトの構成 3 に示すような、DAC1 からのゼロ・データは送信されなくなります)。NCO1 がディスエーブルで EN CMPLX MOD=1 の場

合、NCOOの実数出力はDACOに送信され、NCOOの直交出力はDAC1 に送信されます。このセットアップは構成 2 と似ていますが、NCOOの出力でサンプルが捕捉されます(図87と図88を参照)。

マルチプレクサ・スイッチの入力にある 2 による除算ブロックは、レジスタ 0x0FF の $CMPLX_MOD_DIV2_DISABLE$ ビットを使ってディスエーブルできます。それ以外の場合、2 による除算ブロックはデフォルトでイネーブルされるため、DAC0 とDAC1 の出力は予想より 3dB 低くなります。

各構成を有効にするのに必要な SPI 書込みの全リストを表 47 に示します。

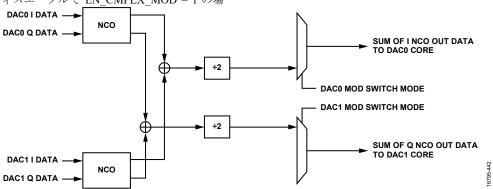


図 87. 構成 3A、EN_CMPLX_MOD = 1、CMPLX_MOD_DIV2_DISABLE = 0、両方のメイン NCO をイネーブル - DAC0 = I0_NCO + I1_NCO、DAC1 = Q0_NCO + Q1_NCO

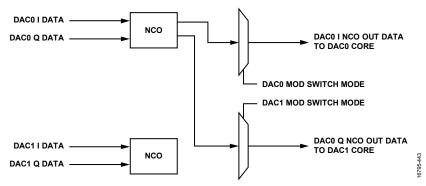


図 88. 構成 3B、EN_CMPLX_MOD = 1、CMPLX_MOD_DIV2_DISABLE = 1、DAC1 のメイン NCO をディスエーブル - DAC0 = I0 NCO、DAC1 = Q0 NCO

表 47. 各変調器スイッチ構成に必要な SPI 書込み

		Register 0x112,	Register 0x (Pag		Register 0x0FF.
Configuration	Register 0x112, Bit 6 (EN_COMPLEX_MOD)	Bits[5:4] (DDSM_ MODE)	NCO0 Enable	NCO1 Enable	Bit 1 (CMPLX_MOD_ DIV2_DISABLE)
Configuration 0	0	0	1	1	0
Configuration 1	0	1	0	0	0
Configuration 2	0	2	0	0	0
Configuration 3	0	3	1	1	0
Complex Configuration 3A	1	3	1	1	0
Complex Configuration 3B	1	3	1	0	1

Rev. 0 — 61/150 —

ランプアップ/ランプダウン・ゲイン・ブロック

ランプアップ/ランプダウン・ゲイン・ブロックは、各メイン・データパスの出力にあり、デコードのためにサンプルがアナログ DAC コアに転送される前に配置されています。このブロックは PDP ブロックを拡張したもので、これらのブロックを組み合わせて、ユーザ定義の閾値を超える大きな信号ピークや持続的な平均電力からダウンストリームの部品を保護します。

図 78 に示すように、PA 保護ブロックで様々なトリガ手段を設定して、AD9175から転送されるデータをミュートするためにゲインのランプダウンをトリガできます。ランプアップおよびランプダウン・ステップは、SPI を介してレジスタ 0x580 のビット [2:0] に設定できます。ランプアップとランプダウンの式は、2 (CODE+8) DAC クロック周期内に 32 ステップで実行されます。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御を介し、それぞれの DAC ランプ・ブロックについて個別に設定できます。

トリガ・イベントによってデータがランプダウンした後、トリ ガイベント (エラー) がクリアされたと仮定すると、2 つの異 なる方法でデータを再度ランプアップさせることができます。 SPI保護制御ビットがランプダウンの割込みをトリガした場合は、 レジスタ 0x582 のビット 7 を 0 から 1 に切り替え、再度 0 に戻 すことによって、SPIを使用してデータをランプアップさせるこ とができます。または、ROTATE SOFT OFF EN 制御レジスタ 0x581のビット2を1に設定している場合、デジタル・クロック のローテーション時にデジタル・データをミュートするための オプションがあります。このビットをセットすると、同期ロジ ック・ローテーションが DAC ランプダウン・ブロックをトリガ して出力をランプダウンさせ、デジタル・クロックをローテー ションさせて、再度ランプアップを行います。これらの動作は、 レジスタ 0x03B 内にある ROTATION MODE 制御のビット 1 を 1 に設定して、同期ロジックのローテーション時にデータパ ス・クロック・ローテーションが有効になっている場合にのみ 実行されます。

Rev. 0 — 62/150 —

割込み要求動作

AD9175は、割込み要求信号(\overline{IRQ})をピンD9($\overline{IRQ0}$)とピンE9($\overline{IRQ1}$)に出力でき、重要なデバイス・イベントが発生したことを外部ホスト・プロセッサに知らせるためにこれらを使用できます。 \overline{IRQ} 出力は、レジスタ 0x028、レジスタ 0x029、レジスタ 0x024、およびレジスタ 0x028 の \overline{IRQ} 信号対応ビットを設定することによって、 $\overline{IRQ0}$ ピンまたは $\overline{IRQ1}$ ピンのどちらかに切り替えることができます。割込みがアサートされた時点で、発生したイベントの詳しい内容をデバイスに問い合わせます。 \overline{IRQx} ピンはオープン・ドレインのアクティブ・ロー出力なので、 \overline{IRQx} ピンがハイ・レベルにプルアップされると、外部と無関係になります。これらのピンは、オープン・ドレイン出力を持つ他のデバイスの割込みピンに接続できます。これらのピンは OR 接続します。

図 89 に、 \overline{IRQx} ブロックがどのように機能するかを示す簡略ブロック図を示します。 \overline{IRQ} ENがローの場合は、 \overline{IRQ} ENがローの場合は、 \overline{IRQ} ENがローの場合は、 \overline{IRQ} ENがハイの場合は、 \overline{EVENT} の立上がりエッジで $\overline{INTERRUPT}$ SOURCE信号がハイに設定されます。いずれかの $\overline{INTERRUPT}$ SOURCE信号がハイの場合は、 \overline{IRQx} ピンがローにプルダウンされます。 \overline{IRQ} ENTERRUPT」SOURCE は、 \overline{IRQ} RESET信号または \overline{IRQ} DEVICE RESET信号によって \overline{IRQ} CEUセットできます。

STATUS_MODE 信号に応じて、EVENT_STATUS はイベント信号または INTERRUPT_SOURCE 信号をリードバックします。AD9175 には複数のIRQレジスタ・ブロックがあり、これにより、デバイスの構成に応じ最大で 86 個のイベントをモニタすることができます。表 48 に示すように、一部の詳細はIRQレジスタ・ブロックによって異なります。図 89 の IRQ_EN、IRQ_RESET、および STATUS_MODE 信号のソース・レジスタと、EVENT_STATUS がリードバックされるアドレスを表 49 に示します。

表 48. IRQレジスタ・ブロックの詳細

レジスタ・ ブロック	報告される イベント	EVENT_STATUS
0x020 to 0x27	チップごと	IRQ がイネーブルの場合は INTERRUPT_SOURCE。そ うでない場合、イベント
0x4B8 to 0x4BB; 0x470 to 0x473	リンクおよ びレーンご と	IRQ がイネーブルの場合は INTERRUPT_SOURCE。そ うでない場合、0

割込みサービス・ルーチン

割込み要求管理は、ホストの介入またはモニタリングを必要とするイベント・フラグのセットを選択することから始まります。ホストによる対応が必要なイベントを有効にして、そのイベントが発生した場合はホストに通知されるようにします。IRQ発生時にホストの介入が必要なイベントについては、以下のルーチンを実行して割込み要求をクリアします。

- 1. モニタするイベント・フラグ・ビットのステータスを読み出します。
- 2. IRQ_EN に 0 を書き込むことによって割込みをディスエーブルします。
- 3. イベント・ソースを読み出します。
- 4. イベントの原因を解消するために必要なアクションを実行 します。多くの場合、特別な対応は必要ありません。
- イベント・ソースが正常に機能していることを確認します。
- IRQ_RESET に 1 を書き込むことによって割込みをクリア します。
- 7. **IRQ_EN**に1を書き込むことによって割込みをイネーブルします。

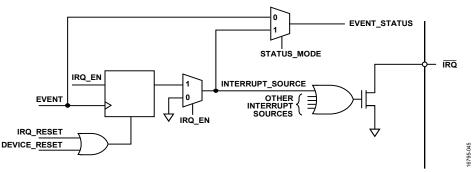


図 89. IRQx回路の簡略図

表 49. IRQ信号のレジスタ・ブロック・アドレスの詳細

Register	Address of IRQ Signals ¹							
Block	IRQ_EN	IRQ_RESET	STATUS_MODE	EVENT_STATUS				
0x020 to 0x023	0x020 to 0x023; R/W per chip	0x024 to 0x027; per chip	STATUS_MODE= IRQ_EN	0x024 to 0x027; R per chip				
0x4B8 to 0x4BB	0x4B8, 0x4B9; W per error type	0x4BA, 0x4BB; W per error type	Not applicable, STATUS_MODE = 1	0x4BA, 0x4BB; W per chip				
0x470 to 0x473	0x470 to 0x473; W per error type	0x470 to 0x473; W per link	Not applicable, STATUS_MODE = 1	0x470 to 0x473; W per link				

 $^{^{1}}R$ は読出し、W は書込み、R/W は読出し/書込みを表します。

Rev. 0 — 63/150 —

アナログ・インターフェース DAC 入力クロック設定

AD9175 DAC のサンプル・クロックまたはデバイス・クロック (DACCLK) は、CLKIN± (ピン H12 とピン J12) を介して直接 受け取るか、または同じ CLKIN±差動入力ピンを介してリファレンス・クロックを供給し、内蔵の整数 PLL/VCO を使用して生成することができます。DACCLK は、AD9175 内のすべてのクロック・ドメインのリファレンスとして機能します。

AD9175 は、差動クロック・ソースやシングルエンド・クロッ ク・ソースと直接インターフェースを取ることのできる、低ジ ッタの差動クロック・レシーバーを使用しています。入力は 100 オームの公称インピーダンスで自己バイアスされているの で、クロック・ソースを CLKIN±入力ピンに AC カップリングす ることを推奨します。位相ノイズ性能は、推奨の最大上限値ま でクロック入力レベルを高くすることによって改善できます (振幅が大きくなる結果、高い実効スルー・レートが得られ る)。DACCLK はアナログ・コア (DACx) 内のデータのサン プリング・クロックであるため、AD9175のクロック入力ピンの クロック信号の品質は極めて重要であり、DAC のアナログ AC 性能に直接影響します。ターゲット・アプリケーションの条件 を満たす位相ノイズとスプリアス特性を備えたクロック源を選 択してください。一般に、DAC の内部または外部に PLL/VCO または他のクロック逓倍器を使用すると、位相ノイズ (ジッタ) も増加します。最良の位相ノイズ性能は通常、PLL/VCO をバイ パスし、希望の DAC クロック・レートで動作する外部クロック を使用して実現されます。

低相ノイズが重要な条件ではない場合、PLL/VCO により、複雑な数ギガヘルツ・オーダーのクロッキング・ソリューションを必要とせずに、12.4GHz という高い DAC クロック速度でAD9175 を容易に動作させることができます。CLKIN±での PLLリファレンス周波数は通常、DACCLK の動作レートより数桁低くすることができます。その後、PLL はダウンストリーム VCO用の制御電圧を生成します。これは、リファレンス・クロックを目的の DACCLK 周波数まで逓倍する働きをします。

AD9175 を直接クロッキングし入力クロックのデューティ・サイクル補正をオン(デフォルトで有効)にした場合の標準的位相ノイズ性能と、オンチップ PLL/VCO による位相ノイズと比較したものを図 90 に示します。

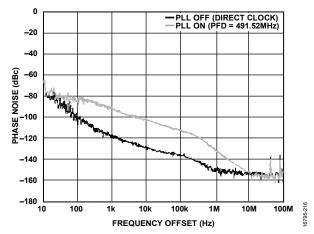


図 90. 位相ノイズと周波数オフセット-直接クロックと PLL の位相ノイズ、12GHz DAC サンプル・レート、 1.65GHz 出力周波数

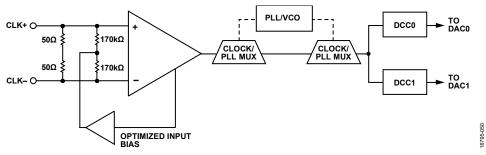


図 91. クロック・レシーバー入力の簡略等価回路

Rev. 0 — 64/150 —

DAC オンチップ PLL

AD9175 は PLL/VCO ブロックを内蔵しており、25MHz \sim 3080MHz の外部リファレンス周波数(f_{REF})を CLKIN±ピンに印加して、DAC クロック(f_{DAC})を生成できます(図 92 を参照)。オンチップ PLL を使用する場合は、レジスタ 0x793 のビット [1:0] で前置分周器(M)を選択して、位相周波数検出器(PFD)回路ブロックの入力に合わせて 25MHz \sim 770MHz の範囲に入るような前置分周器設定を選択します。レジスタ 0x095のビット 0 を 0 に設定することにより、DAC PLL シンセサイザをイネーブルします。

内部 VCO は $8.74 \mathrm{GHz} \sim 12.4 \mathrm{GHz}$ の周波数範囲で動作しますが、アプリケーションで更に低い DACCLK が必要な場合は分周器を追加設定します。DAC クロック・レートは、レジスタ 0x094 のビット [1:0] を設定することによって、VCO 周波数 $(8.74 \mathrm{GHz} \sim 12.4 \mathrm{GHz})$ 、VCO 周波数の 1/2 $(4.37 \mathrm{GHz} \sim 6.2 \mathrm{GHz})$ 、または VCO 周波数の 1/3 $(2.92 \mathrm{GHz} \sim 4.1 \mathrm{GHz})$ となるようにユーザが設定できます。PLL の設定方法については、スタートアップ・シーケンスのセクションを参照してください。

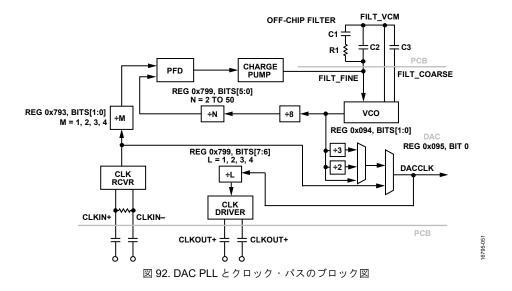
チャージ・ポンプ(CP)出力から必要な VCO 制御電圧を生成するには、AD9175 の DAC PLL に外部ループ・フィルタが必要です。推奨フィルタは、図 92 に示すような回路のパッシブ・ローパス・フィルタです。一般に、フィルタのパス・バンド幅(帯域幅)を一定に保つためには、初期周波数ロック発生後のループ安定性と周波数変化時のループ応答時間はトレードオフの関係になります。ほとんどのアプリケーションで最適な性能が得られる適切なフィルタのレイアウトと部品の選択については、AD9175-FMC-EBZ 評価用ボードの関連文書を参照してください。ただし、フィルタは、PFD 周波数、リファレンス・クロックの位相ノイズ、DAC 出力位相ノイズなどの条件に従って、特定のアプリケーションに合うようにカスタマイズできます。例えば、PLL の使用時に DACCLK ジッタを低減するには、PFD

周波数を高くすると、PLL からの帯域内ノイズの影響を最小限に抑えることができます。PLL フィルタの帯域幅は、PLL のインバンド・ノイズが VCO のオープン・ループ・ノイズと交差するように設定して、これらのノイズが全体的ノイズに及ぼす影響を最小限に抑えるようにします。

9.96GHz~10.87GHzの VCO 周波数で作動させるときは、温度変化に対する安定性を確保するために、PFD 周波数を 225MHz 未満に設定してください。

最良のジッタ性能は通常、外部の高性能クロック源を使用した 場合に実現されます。

DAC PLL は、整数タイプのシンセサイザを使用して DAC0 用と DAC1 用の両方の DACCLK を生成します。つまり、生成される DACCLK は入力リファレンス・クロックの整数倍でなければなりません。DAC クロックとリファレンス・クロックの関係は次式で表されます。


fDAC は目的の DAC クロック・レート、

Nは VCO の帰還分周比 (2~50)、

frefはリファレンス・クロックの周波数、

Mはリファレンス・クロック分周比。リファレンス・クロック分周器(前置分周器)における有効な値は 1、2、3、または 4 で、レジスタ 0x793 のビット [1:0] で設定します。

VCO 自動キャリブレーションは、レジスタ 0x792 のビット 1 のロジック・ハイからロジック・ローへの立下がりエッジによってトリガされます。ロック検出ビット(レジスタ 0x7B5 のビット 0)は、DAC PLL がロックを完了したことを示すために使用します。レジスタ 0x7B5 のビット 0=1 の場合、PLL はロック状態になります。

Rev. 0

クロック出力ドライバ

AD9175 は、DACCLK を高品位に分周して生成することが可能で、併用する ADC などの重要なシステム部品のクロックに使用できます。整数クロック分周器は1、2、3、4いずれかの分周比を選択して、レジスタ 0x799 のビット [7:6] によって希望の出力周波数に設定できます。クロック・ドライバの 3dB 帯域幅は727.5MHz~3GHz です。この範囲外でも周波数を生成できますが、クロック出力での電力とスプリアス性能がいずれも多少劣化します。

クロック・ドライバは DACx アナログ出力の性能には影響しません。

アナログ出力

AD9175 は、2 つの完全に独立した DAC コアである DAC0 と DAC1を内蔵し、それぞれ差動出力を備えています。1つのDAC コアの等価出力回路を図 93 に示します。各出力は内部で 100Ω 抵抗 $(R_{\rm INT})$ で終端されているため、PCB 上で DAC 出力を外部で抵抗終端する必要がありません。出力段を適切に DC バイアスするには、各出力ブランチに1つずつ、合計2つの RF チョークを配置して、各 DACx 出力の定常電流用の DC 電流経路を設けることが必要です。チョークのインダクタンス値は、必要とされる出力周波数範囲によって異なります。一般にチョークの値が大きければ、カットオフ出力周波数は小さくなります。

出力には寄生容量と寄生インダクタンスがあるため、AD9175の動作周波数範囲全体(アプリケーションに応じて、DCから6GHzを超える周波数まで)にわたって 100Ω という一定の終端インピーダンスを維持することは容易ではありません。各 DACの出力インピーダンスは測定によって決定できます。一般に、DAC出力を代表的なシングルエンドの 50Ω 負荷に整合させて、約 2GHz 以下で動作させる場合は、2:1 のバランを推奨します。約 2GHz を超える周波数で動作させる場合は、1:1 のバランを推奨します。これにより、適切な 1CB レイアウト手法を用いて、出力の 1CB ロールオフを 1CB はないます。こともできます。

DAC フルスケール電力

 I_{OUTFS} は DACx 出力の正および負のブランチにおけるフルスケール電流出力であり、図 93~図 95 では I_P および I_N として示されています。デフォルトのフルスケール電流は 19.531mA に設定されていますが、適切な値をレジスタ 0x05A に設定することによって、 $15.625mA\sim25.977mA$ の範囲で調整可能です。

 $I_{OUTFS} = 15.625 \text{mA} + FSC \ CTRL \times (25/256) \ (\text{mA})$

図 93~図 95 に示すように、外部負荷に供給される電力量は、Ioutes の設定、DAC の内部インピーダンス、PCB や出力に存在する他の部品が持つ外部負荷や寄生インダクタンスおよび寄生容量など、複数の要因によって異なります。負荷に供給できる真の電力は測定値によって決定されます。

寄生容量と寄生インダクタンスが無視できると仮定して(特に約2GHzを超える出力周波数では必ずしもそうとは限らない)、負荷に与えられる出力電流は次式で計算できます。

$$I_P = (DACCODE + 2^{N-1}) \times I_{LSB}$$

 $I_N = ((2^{N-1} - 1) - DACCODE) \times I_{LSB}$

および

 $I_{LOAD} = (I_P - I_N) \times R_{INT} / (R_{INT} + R_{LOAD})$ $\subset \subset \mathcal{C}$

 $I_{LSB} = I_{OUTFS}/2^N$

DACCODE は、 -2^{N-1} から $2^{N-1} - 1$ までの間のサンプル値(2の補数データの符号付き 10 進表現)。

シングルトーン出力(純粋なサイン波)の場合、負荷に供給される実効電力は次式で計算できます。

 $I_{LOAD (RMS)} = I_{LOAD MAX} / \sqrt{2}$

ここで、 I_{LOAD_MAX} は、前に計算した最大 DACCODE で供給される最大負荷電流です。また、以下も成り立ちます。

$$P_{LOAD}$$
 (W) = $(I_{LOAD (RMS)})^{-2} \times R_{LOAD}$
 P_{LOAD} (dBm) = $10 \times \log (P_{LOAD}$ (W)

MSB シャッフル

アナログ信号レベルに応じて、DAC からの MSB 電流源の一部または全部が静的(未使用)になることがあります。特に低い信号レベルで、ほとんどの MSB が静的である場合、少数の動的な MSB に固有のミスマッチ誤差が、アナログ出力でのスプリアス性能が低下として現れます。DACx アナログ出力でのサンプリング前に、アクティブな MSB を連続的にリマップ(またはシャッフル)し、使用可能な MSB の総数からランダムに選択すれば、平均してスプリアス性能は向上します。 MSB シャッフルは、誤差平均化の一種です。積算誤差は疑似乱数であるため、SFDRは NSD を犠牲にして改善されます。

シャッフリングは、静的で予備の MSB が使用可能な場合にのみ可能で、その結果、MSB をランダムに入れ替え可能となります。したがって、DAC のフルスケール電流付近でピークが頻繁に発生する信号の場合など、動的 MSB の数が増えると、シャッフリングによるメリットが減少します。例えば、フルスケールのサイン波出力では、従来の(サーモメータ)エンコーディングの性能と比較して MSB シャッフリングの利点はほとんどありません。

前述のとおり、MSB シャッフリングは誤差平均化の一種です。 特定の AD9175 デバイスは、固有の自動キャリブレーション係 数を持ち、製造プロセスにもばらつきがあるため、MSB シャッ フルを無効にすると、いくつかの信号レベルでスプリアス性能 が改善されることがあります。ただし、統計的に意味のある数 量のデバイスを考慮した場合、平均化すると、全体的なスプリ アス性能が向上することがわかります。

MSB シャッフルは、MSB_SHUFFLE_EN ビット (レジスタ 0x151のビット4) で有効にできます。

DC カップリング動作

特定のアプリケーションでは、アナログ出力を変調器や差動アンプなどの外部デバイスに DC カップリングすることが望まれます。コモンモード電圧(特定のアナログ出力の正側と負側の両方のブランチに共通の DC 電圧)が 100mV 未満に保たれる限り、AD9175 のアナログ出力は性能を低下させることなく DC カップリングが可能です。AC カップリング動作では、出力は通常、RF チョークまたは特定のバラン構成を介して GND または 0V にDC 短絡されます。

コモンモード電圧が 100mV~300mV まで上昇すると、性能が低下します。コモンモード電圧を 300mV を超えて増加させると、アナログ出力に長期にわたる不可逆的な損傷を与える可能性があります。

理想的には、アナログ出力のコモンモード電圧は 0V または GND 付近に保ち、アナログ出力から見た負荷インピーダンスを内部インピーダンスと一致させます。AC カップリング動作で使用される RF チョークの代わりに、 50Ω の抵抗を GND に接続することは、250mV 付近で過大なコモンモード電圧が発生するため推奨されません。代わりに、 50Ω 抵抗を-0.6V のリファレンス電源に接続すると、各 DAC 出力の内部にあるアナログ出力デバイスで適切な DC バイアスを維持することができます。

AD9175 の 0V コモンモード出力電圧を、一部の変調器で一般的な 0.5V の入力コモンモード電圧など、ダウンストリーム・デバイスのゼロ以外のコモンモード入力電圧に抵抗でマッチさせることができます。電力の一部は抵抗性のマッチング回路で消費されるため、このマッチングは必然的にダウンストリーム・デバイスに供給できる最大電力の損失につながります。

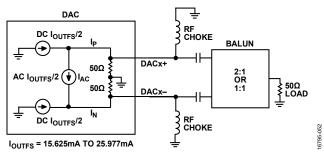


図 93. 等価 DAC 出力回路と推奨 DAC 出力回路

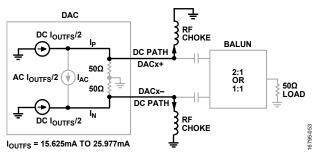


図 94. DACx 出力、DC パス (AC カップリング動作)

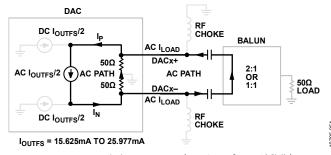


図 95. DACx 出力、AC パス(AC カップリング動作)

Rev. 0 — 67/150 —

アプリケーション情報

ハードウェアに関する考慮事項

電源の推奨事項

AD9175 を最適な状態で作動させるには、すべての電源領域をできるだけノイズのない状態にする必要があります。電源ノイズには性能に影響を与える周波数成分が含まれており、これは V rms で仕様が規定されます。

ノイズを減衰させるには、電源出力に LC フィルタを使用することを推奨します。フィルタは、できるだけ AD9175 に近付けて配置する必要があります。クロック・レシーバーと DAC アナログ・コア回路に電力を供給する AVDD1.0 電源、および DAC 出力ブロックと DAC PLL ブロックに電力を供給する AVDD1.8 電源は、このデバイス上で最もノイズに敏感な電源です。AVDD1.0 と AVDD1.8 への電源供給は、可能な限り良好な位相ノイズ性能を実現するために、ADP1763 や ADM7154、あるいはこれら以上の性能の超低ノイズ・レギュレータを使って、個別に行うことを強く推奨します。ノイズの多いレギュレータを使用すると、DAC 出力に位相ノイズが発生します。

DVDD1.0 電源はデジタル・データパス・ブロックに電力を供給し、SVDD1.0 電源はチップ上の SERDES 回路に電力を供給します。DVDD1.8 電源は、SPI、SYNCOUTx±トランスミッタ、SYSREF レシーバー、IRQx、RESET、および TXENx 回路に関係する回路ブロックに電力を供給します。

温度と IC プロセスに関わる大きな変動を許容できるような電源 設計とするために、表 4 に示す最大消費電力値に注意してください。電流の量は選択した使用条件によって異なるので、仕様は複数の使用条件に基づいて規定され、個々のブロックの例と 関与の度合いを示し、1 電源あたりの最大必要電流の計算の手助けとなるようになっています。

電源設計に関するもう 1 つの考慮事項は、ピーク電流の処理能力です。変調信号などのように振幅変動が大きい信号をAD9175で合成する際には、アイドル・モードや DC 信号合成の場合に比べて、より多くの電流がメイン・デジタル電源に流れます。したがって、GSM や TDMA などのバースト信号、あるいはオンまたはオフ時間軸応答性を持つその他の信号に対応するには、電源が迅速に電流を供給できる必要があります。電流変動の大きさは使用する信号に依存するので、最初に実験室でテストを行って、その範囲を明らかにするのが最も望ましい方法です。この変動は代表値で数百ミリアンペア程度になることがあります。

電源プレーンとグランド・プレーン

グラウンド・ループを回避し、制御されたインピーダンスを必要とする高速伝送ラインに対して安定した切れ目のないグラウンド・リファレンス(基準電位)を提供するために、全面がグラウンドとなるプレーンを採用することを推奨します。また、高周波フィルタリングのために、電源プレーンはグラウンド層とグラウンド層の間に配置することを推奨します。これにより、デカップリング・コンデンサに加えて、複数の電源領域間に追加的なフィルタリング効果と絶縁効果が得られます。

電源プレーンが複数のセグメントに分割されている場合、制御インピーダンス・パターンの全長において、そのパターンの横切るセグメントが 1 つだけの場合を除き、電源プレーンを制御インピーダンスのリファレンスとして使用することはしないでください。高速伝送ラインに関するこれらのガイドラインおよびその他のガイドラインは、JESD204Bのシリアル・インターフェース入力(SERDIN0±~SERDIN7±)のセクションに示されています。

最大限の性能と、より高い出力周波数が必要とされる一部のアプリケーションでは、PCB 材料の選択が結果に大きく影響します。例えば、ポリイミドや Rogers Corporation の材料を使用すれば、高温耐性を向上させて性能を改善することができます。いくつかの評価用ボード設計の最上部 3 層、つまり最上層の信号層とその下のグラウンド層の間には、Rogers 4350 という材料が使われています。

JESD204B シリアル・インターフェース入力 (SERDIN0±~SERDIN7±)

JESD204B シリアル・インターフェース伝送ラインのレイアウトを考える場合は、最大限のリンク性能を維持するために考慮すべき事項が数多くあります。これらの例としては、挿入損失、リターン損失、信号スキュー、差動パターンのトポロジなどが挙げられます。

挿入損失

JESD204B 仕様は、伝送チャンネルにおいて許容される挿入損失の量を制限しています(図 58 参照)。AD9175 のイコライザ回路では、JESD204B 仕様で要求されるチャンネル内損失よりも、かなり大きい損失が許容されます。しかしそれでも、PCBの設計者が次のガイドラインに従い、挿入損失量を小さくすることが重要です。

- AD9175 をできるだけ送信ロジック・デバイスの近くに配置すると共に、デバイス間のパターンができるだけ最短距離となるようにして、差動パターン長を短くします。
- ソリッド・グランド・プレーンをリファレンスとして使い、1つのプレーン上に差動ペアを配置します。SERDES レーンは、SERDES レーン内のビアが使われるのを避けるために AD9175 と同じ層上に配置することを推奨します。
- 可能な場合は、低誘電率(4未満)のPCB材料を使って損失を最小限に抑えます。

ストリップライン技術とマイクロストリップ技術のどちらかを選択する場合は、次の点に留意してください。すなわち、損失と EMI 放出はストリップライン構成のほうが抑えられますが (図 59 と図 60 参照)、ビアを使用する必要があり、インピーダンスの制御が複雑になる可能性があります。マイクロストリップ構成は実装が容易で(最上層での配線が可能な部品の配置と密度の場合)、インピーダンスの制御も容易です。

Rev. 0 — 68/150 —

PCB 最上層の使用に問題がある場合、あるいはストリップラインの利点を生かしたい場合は、以下の推奨事項に従ってください。

- ビア数を最小限に抑えます。
- 可能であればブラインド・ビアを使ってビアのスタブ効果をなくし、マイクロ・ビアを使ってビアのインダクタンスを最小限に抑えてください。
- 標準ビアを使う場合は、ビアの最大長を使ってスタブ・サイズを小さくします。例えば、8層ボードの場合は7層目をストリップライン・ペア用に使います(図96参照)。
- 各ビア・ペアには、インピーダンスの不連続性を最小限に 抑えるために、その隣にグラウンド・ビアのペアを配置し ます(図 96参照)。



図 96. スタブ効果を最小限に抑え、差動ストリップライン・パターンにグラウンド・ビアを追加

リターン損失

JESD204B 仕様はコンバータ・デバイスとロジック・デバイスの許容リターン損失量を制限していますが、チャンネルのリターン損失は規定していません。それでも、送信ロジック・デバイスと AD9175 との間の伝送ラインのインピーダンスの連続性を維持するために、あらゆる努力を払う必要があります。ビアの使用を最小限に止めるか、まったくなくしてしまうことで、伝送ラインのインピーダンス・ミスマッチの主要原因の 1 つを緩和することができます(挿入損失のセクションを参照)。差動パターンの真下(マイクロストリップの場合)または上下(ストリップラインの場合)にソリッド・リファレンス・プレーンを維持して、伝送ラインのインピーダンスの連続性を維持します。ストリップライン技術を使用する場合は、挿入損失のセクションに示すガイドラインに従って、インピーダンス・ミスマッチとスタブ効果を最小限に抑えてください。

インピーダンス・ミスマッチのもう 1 つの主要原因は伝送ラインの両端にあり、ここでは、終端のインピーダンスと伝送ラインのインピーダンスを一致させるよう注意する必要があります。AD9175 は、ラインの受信端に対してキャリブレーション終端方式を使ってこのマッチングを内部で処理します。この回路とキャリブレーション・ルーチンの詳細については、インターフェースの起動と入力終端のセクションを参照してください。

信号スキュー

信号スキューには多くの原因がありますが、PCB のレイアウト時に考慮すべき 2 つの原因は、1 本の JESD204B リンク内のインターコネクト・スキューと、複数の JESD204B リンク間のスキューです。どちらの場合も、最大 15.4Gbps の速度で JESD204B リンクを作動させるには、チャンネル長を 10mm 以内の差に揃えることで十分です(12.5mm ×(12.5Gbps/15.4Gbps)で計算)。このチャンネル長マッチングの量は、AD9175-FMC-EBZ 評価用ボード上では約 85%の UI に相当します。1 つのリンク内のインターコネクト・スキューを管理することは比較的容易で、複数デバイス間の複数のリンクを管理することはもう少し複雑ですが、長さのマッチングについては 10mm のガイドラインに従ってください。AD9175 は、JESD204B レシーバー内の 6PCLK バッファにより 85% UI より大きなスキューに対応することができ

ますが、チャンネル長はできるだけ近い値に揃えることを推奨 します。

トポロジ

差動 SERDINx±ペアは、それぞれのインピーダンスがグラウンドに対して 50Ω となるように構成します。ストリップラインとマイクロストリップのトレードオフについては、挿入損失のセクションに示されています。いずれの場合も、これらの伝送線をノイズ源(高速デジタル信号やノイズの多い電源など)から離すことが重要です。ストリップラインの差動パターンを使用する場合はコプラナ法で配線を行い、両方のパターンを同一層内に配置します。この方法は、ブロードサイド配線法(パターンを隣接層に配置)よりノイズ耐性を向上させるわけではありませんが、インピーダンスの連続性を維持するように配線し製造することが、より容易になります。ブロードサイド法とコプラナー法による差動トランスミッタ(Tx)ラインの配置を図 97に示します。

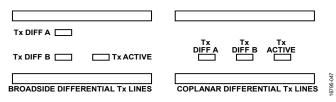


図 97. ブロードサイド法とコプラナ法による 差動ストリップライン配線

パターン幅と銅の重量および厚さの関係を検討する場合は、インターフェース速度を考える必要があります。マルチギガビット・レベルの速度では、導体の表皮効果によって電流が導体表面に集中します。損失を小さくするためパターン幅を広くして、導体の表面積をできるだけ大きくしてください。更に、広いパターン幅に対応するために差動パターン同士の間隔を広くします。部品、ビア、コネクタ、またはその他の配線部品を配置するためにパターンを分離させる必要がある場合、このような配置は、クロストークを減らしインピーダンス・ミスマッチを小さくする働きをします。狭い間隔で配置した差動パターンと広い間隔で配置した差動パターンを図98に示します。

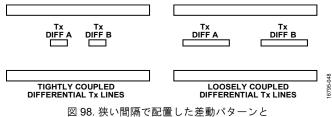
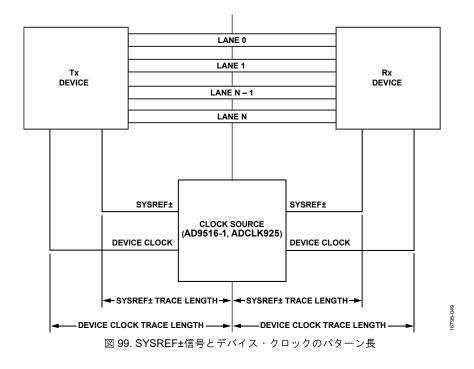


図 98. 狭い間隔で配置した差動パターンと 広い間隔で配置した差動パターン


AC カップリング・コンデンサ

AD9175 では、JESD204B 入力信号を信号ソースに AC カップリングする必要があります。これらのコンデンサは 100 nF とし、できるだけ送信ロジック・デバイスの近くに配置する必要があります。パッドでのインピーダンス・ミスマッチをできるだけ小さくするために、コンデンサのパッケージ・サイズは、PCB上のパッド・サイズができるだけパターン幅に近くなるようなものを選択してください。

SYNCOUT±、SYSREF±、および CLK±信号

AD9175 の SYSREF±信号は、低速の LVDS 差動信号です。 SYNCOUTx±信号は LVDS または CMOS のどちらかを選択できます。LVDS モードを選択した場合、これらの信号の経路を配置するときは、 100Ω 差動インピーダンスおよびグラウンドに対し 50Ω として配置された制御インピーダンス・パターンを使用します。SERDIN0± \sim SERDIN7±データ・ $^{\circ}$ プ 同様、これらの伝送線は、高速デジタル信号やノイズの多い電源のようなノイズ

源から離すことが重要です。SYNCOUTx±信号上のノイズは/K/文字の要求として解釈されてしまうおそれがあるので、SYNCOUTx±信号はノイズの多い他の信号から離してください。CLK±信号と SYSREF±信号については、クロック・ソースからJESD204B リンクの両端にある各デバイスまでのパターン長を同じ長さに保つことが重要です(図 99 参照)。CLK±とSYSREF±の位相を厳密に制御できるクロック・チップを使う場合、パターン長を揃えるというこの要求は大幅に緩和されます。

Rev. 0 - 70/150 -

スタートアップ・シーケンス

起動後に AD9175 を適切な動作状態に設定するには、複数のステップが必要です。このシーケンスはいくつかのステップに分割されますが、その内容と各ステップの目的を表 50 から表 59 に示します。プライベート・レジスタは予約されていますが、

デバイスを正しく動作させるには書込みが必要です。表 50~表 59 の空白セル、もしくは変数名またはビット・フィールド名 (すべて大文字) が表示されたセルは、説明列に記述された結果によって値が異なることを示します。

表 50. 起動と必要なレジスタ書込み

R/W	レジスタ	ビット	値	説明
W	0x000	[7:0]	0x81	ソフト・リセット。
W	0x000	[7:0]	0x3C	リセットを解除して4線式SPIに設定します(あるいは、デフォルトの3線式SPIのままにすることもできます)。
W	0x091	[7:0]	0x00	クロック・レシーバーを起動。
W	0x206	[7:0]	0x01	PHY のリセット解除。
W	0x705	[7:0]	0x01	ブート・ローダをイネーブル。
W	0x090	[7:0]	0x00	DAC とバイアス回路をパワー・オン。

表 51. DAC PLL の設定

R/W	レジスタ	ビット	値	説明
W	0x095	[7:0]	0x00 or 0x01	PLL をバイパス。内蔵 DAC PLL を使用するには 0x00 に設定します。DAC クロックを直接供給する場合はこのレジスタを 0x01 に設定して、以下の 2 つのレジスタ書込みを実行します。更に、この表の残りの書込みをスキップします。
W	0x790	[7:0]	0xFF or 0x00	PLL をバイパスする場合 (レジスタ $0x095 = 0x01$) は、このレジスタに $0xFF$ を書き込みます。PLL を使用する場合は、このレジスタに $0x00$ を書き込みます。
W	0x791	[7:0]	0x1F or 0x00	PLL をバイパスする場合 (レジスタ 0x095 = 0x01) はこのレジスタに 0xFF を書き込み、この表の残りのレジスタ書込みをスキップして表 52 へ進みます。PLL を使用する場合はこのレジスタに 0x00 を書き込み、更にこの表の残りのレジスタ書込みを行います。
W	0x796	[7:0]	0xE5	DAC PLL に必要な書込み。
W	0x7A0	[7:0]	0xBC	DAC PLL に必要な書込み。
W	0x794	[5:0]	DACPLL _CP	DAC PLL のチャージ・ポンプ電流を設定。推奨設定は $0x08$ ですが、位相ノイズ性能目標に応じて $0x04 \sim 0x10$ の範囲とすることができます。
W	0x797	[7:0]	0x10	DAC PLL に必要な書込み。
W	0x797	[7:0]	0x20	DAC PLL に必要な書込み。
W	0x798	[7:0]	0x10	DAC PLL に必要な書込み。
W	0x7A2	[7:0]	0x7F	DAC PLL に必要な書込み。
	Pause			100ms 待機します。
W	0x799	[7:6]	ADC_CL K_DIVI DER	DAC PLL 分周器設定。 ADC ドライバ/クロック出力の分周比。
		[5:0]	N_DIVI DER	0b00 = ÷1. 0b01 = ÷2. 0b10 = ÷3. 0b11 = ÷4. 設定可能な N 分周器。N_DIVIDER = (f _{DAC} × M_DIVIDER) / (8 × リファレンス・クロック)。
W	0x793	[7.2]	006	DAC PLL 分周器設定。
		[1:0]	0x06 M_DIVI DER_1	これらのビットはデフォルト値のままにしてください。 プログラマブル前置分周器 M_DIVIDER_1 (n-1表記)。関連計算式は以下のとおりです。
				PFD 周波数 = リファレンス・クロック/M_DIVIDER(ここで 25MHz ≥ PFD 周波数 ≥ 770MHz)。 9.96GHz ≥ PLL VCO 周波数 ≥ 10.87GHz の場合は、25MHz ≥ PFD 周波数 ≥ 225 MHz を維持する必要があります。 0b00 = ÷1. 0b01 = ÷2. 0b10 = ÷3. 0b11 = ÷4.

Rev. 0 - 71/150 -

R/W	レジスタ	ビット	値	説明
W	0x094	[7:2]	0x00	これらのビットはデフォルト値のままにしてください。
		1	PLL_VC O_DIV3 _EN	PLL 出力クロック 3 分周にしてイネーブル。このビットを 1 に設定した場合は、DAC クロック = PLL VCO 周波数/3。
		0	PLL_VC O_DIV2 _EN	PLL 出力クロック 2 分周にしてイネーブル。このレジスタのこのビットまたはビット 1 は 1 に設定できますが、両方のビットを同時に設定することはできません(6 分周オプションはありません)。
				0b0: DAC クロック = PLL VCO 周波数。
				0b1: DAC クロック = PLL VCO 周波数/2。
W	0x792	[7:0]	0x02	VCO をリセット。
W	0x792	[7:0]	0x00	
	Pause			PLL がロックされるまで 100ms 待機。
R	0x7B5	0	0b1	このレジスタのビット0の値1をリードバックすることによって、PLLがロックされたことを確認。

表 52. 遅延ロック・ループ (DLL) の設定

R/W	レジスタ	ビット	値	説明
W	0x0C0	[7:0]	0x00	遅延ラインを起動。
W	0x0DB	[7:0]	0x00	
W	0x0DB	[7:0]	0x01	回路に対する DLL 設定を更新。
W	0x0DB	[7:0]	0x00	
W	0x0C1	[7:0]	0x68 or 0x48	DLL 検索モードを設定。 f_{DAC} が 4.5 GHz 未満の場合は、このレジスタを $0x48$ に設定します。それ以外の場合は $0x68$ に設定してください。
W	0x0C1	[7:0]	0x69 or 0x49	DLL 検索モードを設定。 f_{DAC} が 4.5 GHz 未満の場合は、このレジスタを $0x49$ に設定します。それ以外の場合は $0x69$ に設定してください。
W	0x0C7	[7:0]	0x01	DLL 読出しステータスを有効化。
R	0x0C3	0	0b1	このレジスタのビット 0 の値 1 をリードバックすることによって、DLL がロックされたことを確認。

表 53. キャリブレーション

R/W	レジスタ	ビット	値	説明
W	0x050	[7:0]	0x2A	最適化キャリブレーション設定のレジスタ書込み。
W	0x061	[7:0]	0x68	必要キャリブレーション制御のレジスタ書込み。
W	0x051	[7:0]	0x82	最適化キャリブレーション設定のレジスタ書込み。
W	0x051	[7:0]	0x83	必要キャリブレーション制御のレジスタ書込み。
W	0x081	[7:0]	0x03	必要キャリブレーション制御のレジスタ書込み。

表 54. JESD204B モードのセットアップ

R/W	レジスタ	ビット	値	説明
W	0x100	[7:0]	0x00	内部クロックが安定した時点でデジタル・データパス・クロックを起動。
W	0x110	[5:0]	JESD_M ODE	JESD_MODE ビット・フィールドのビット 5 は、デバイスをシングルリンク・モードで作動させる かデュアルリンク・モードで作動させるかを決定します。 0 =シングルリンク・モード、 1 =デュアルリンク・モードです。ビット $[4:0]$ は、表 15 または表 16 から該当するシングルリンク・モードまたはデュアルリンク・モードを選択して、SERDES JESD204B 動作モードを決定します。
W	0x111	[7:4]	DP_INT ERP_M ODE	メイン・データパス・インターポレーション・モード。この制御に有効なインターポレーション・オプションは、レジスタ 0x110 で選択する JESD_MODE に基づいて決定されます。JESD_MODE、DP_INTERP_MODE、および CH_INTERP_MODE の設定が有効な組み合わせでない場合は、レジスタ 0x110 のビット 7 が 1 になります。
		[3:0]	CH_INT ERP_M ODE	チャンネル・データパス・インターポレーション・モード。この制御に有効なインターポレーション・オプションは、レジスタ 0x110 で選択する JESD_MODE に基づいて決定されます。 JESD_MODE、DP_INTERP_MODE、および CH_INTERP_MODEの設定が有効な組み合わせでない場合は、レジスタ 0x110 のビット 7が 1 になります。
W	0x084	6	SYSREF _INPUT MODE	SYSREF±信号の入力モード選択。 0b0 = AC カップリング。 0b1 = DC カップリング。
		0	SYSREF _PD	サブクラス 0 を使用する場合は、このビットを 1 に設定して SYSREF±レシーバーを停止すること ができます。サブクラス 1 を使用する場合はデフォルトの 0 のままにしてください。
W	0x312	[7:4]		選択したモードに応じてSYNCOUTx±エラー時間を設定。

Rev. 0 - 72/150 -

R/W	レジスタ	ビット	値	説明
W	0x300	3	LINK_M ODE	レジスタ 0x110 で行ったモード選択に対応。
				060 = シングルリンク・モード。
				0b1 = デュアルリンク・モード。
		2	0b0	セットアップのためにリンク 0 を選択。このビットは、ページングするリンク QBD を選択します。
				0b0 = リンク 0 (QBD0)
				0b1 = リンク 1 (QBD1)
		[1:0]	LINK_E N	リンクを有効化。
				0601 = シングルリンク・モード。
				0b11=デュアルリンク・モード。
W	0x475	[7:0]	0x09	JESD204B 4 バイト・デフレーマをソフト・リセット。
W	0x453	7	SCR	SERDES データのスクランブリング・オプションを設定。
				0=スクランブリングを無効化。
				1=スクランブリングを有効化。
		[4:0]	L-1	選択した JESD_MODE の L 値を書き込み(n - 1 表記)。
W	0x458	[7:5]	SUBCL ASSV	サブクラス0の場合はこのビットを0に設定。サブクラス1の場合はこのビットを1に設定。
		[4:0]	NP_1	選択した JESD_MODE の NP 値を書き込み(n - 1 表記)。
W	0x475	[7:0]	0x01	JESD204B 4 バイト・デフレーマのリセットを解除。
W	0x300			デュアルリンク・モードで実行中の場合は、以下の要領でリンク1の書込みを繰り返します。シングルリンク・モードで実行中の場合は、この表の残りのステップをスキップしてください。
		3	LINK_M ODE	レジスタ 0x110 で行ったモード選択に対応。
				060 = シングルリンク・モード。
				0b1 = デュアルリンク・モード。
		2	0b1	セットアップのためにリンク 1 を選択。このビットは、どのリンク QBD をページングするかを選択します。
				0b0 = リンク 0 (QBD0)
				0b1 = リンク 1 (QBD1)
		[1:0]	0b00	ルーチンの終了までリンクを無効のままにします。
W	0x475	[7:0]	0x09	JESD204B 4 バイト・デフレーマをソフト・リセット。
W	0x453	7	SCR	SERDES データのスクランブリング・オプションを設定。
				0=スクランブリングを無効化。
				1=スクランブリングを有効化。
W	0x458	[4:0]	L_1	選択した JESD_MODE の L 値を書き込み(n - 1 表記)。
		[7:5]	SUBCL ASSV	サブクラス0の場合はこのビットを0に設定。サブクラス1の場合はこのビットを1に設定。
		[4:0]	NP_1	選択した JESD_MODE の NP 値を書き込み(n - 1 表記)。
W	0x475	[7:0]	0x01	JESD204B 4 バイト・デフレーマのリセットを解除。

Rev. 0 - 73/150 -

チャンネル・データパスを特定のアプリケーションに合わせて設定する場合に、それらのデータパスを設定するためのオプション・レジスタを表 55 に示します。チャンネル・データパスをバイパスする場合(1×チャンネル・インターポレーションでは CH_INTERP_MODE = 1)、スタートアップ・シーケンスでは表 55 をスキップできます。

表 55. チャンネル・データパスのセットアップ:デジタル・ゲインとチャンネル NCO

R/W	レジスタ	ビット	値	説明
W	0x008	[5:0]		CHANNEL_PAGE。同時に設定するチャンネルを選択します(あるいは、チャンネルごとにこのブロ
				ックを繰り返して個別に値を設定します)。この制御のビットxは、チャンネルxのデータパスに対
W	0x146	[7:0]		応します。 CHNL GAIN [7:0] 。チャンネル・デジタル・ゲインの最下位ビットを書き込みます。選択したチャ
**	0.1140	[7.0]		CHNL_GAIN [7.0]。
				Gain/20)。ここで dB Gain は、必要なチャンネル・ゲインを dB で表した値です。
W	0x147	[7:0]		CHNL_GAIN [11:8]。チャンネル・デジタル・ゲインの最上位ビットを書き込みます。計算式はレジスタ 0x146 の項に示します。
W	0x130	6		選択したチャンネルの NCO をレジスタ 0x008 でイネーブルします。
				0b0 = NCO をディスエーブル。
				0b1 = NCO をイネーブル。
		2		選択したチャンネルの NCO モジュラスをページング・レジスタ 0x008 でイネーブルします。
				0b0 = NCO モジュラスをディスエーブル。
				0b1 = NCO モジュラスをイネーブル。
		1		変調結果からサイドバンドを選択します。
				060 = 上側サイドバンド
				061 = 下側サイドバンド (スペクトル反転)。
		0		DC テスト・モードまたは NCO テスト・モードが必要な場合は、このビットを 1 に設定してテスト・トーンの生成を有効にします。それ以外の場合は、デフォルト値の 0 に設定してください。
				インテジャーNCOモードの計算: DDSC_FTW = $(f_{CARRIER}/f_{NCO}) \times 248$ 。ここで、 f_{NCO} =
				f _{DATA} /CH INTERP MODE ₀
W	0x132	[7:0]		DDSC FTW [7:0] の書込み。
W	0x133	[7:0]		
W	0x134	[7:0]		DDSC_FTW [23:16] の書込み。
W	0x135	[7:0]		DDSC_FTW [31:24] の書込み。
W	0x136	[7:0]		DDSC_FTW [39:32] の書込み。
W	0x137	[7:0]		DDSC_FTW [47:40] の書込み。
W	0x138	[7:0]		DDSC_NCO_PHASE_OFFSET [7:0] の書込み。計算: DDSC_NCO_PHASE_OFFSET = (度数オフセット /180) × 215。
W	0x139	[7:0]		DDSC_NCO_PHASE_OFFSET [15:8] の書込み。
				NCO モジュラス・モードを使用する場合は、モジュラス・パラメータも設定します。使用しない場
				合、このセクションはスキップしてください。モジュラス NCO モードの場合: $(f_{CARRIER}/f_{NCO}) = (X + (X - X))$ / 248 ここで、PDCC ACC PELTA A PDCC ACC MODULUS P. PDCC ETW Y
W	0x13A	[7:0]		(A/B)) /248。ここで、DDSC_ACC_DELTA = A、DDSC_ACC_MODULUS = B、DDSC_FTW = X。 DDSC_ACC_MODULUS [7:0] の書込み。
W	0x13A 0x13B	[7:0]		DDSC_ACC_MODULUS [15:8] の書込み。 DDSC ACC MODULUS [15:8] の書込み。
W	0x13C	[7:0]		DDSC_ACC_MODULUS [13.8] の書込み。 DDSC ACC MODULUS [23:16] の書込み。
W	0x13D	[7:0]		DDSC_ACC_MODULUS [31:24] の書込み。
W	0x13E	[7:0]		DDSC_ACC_MODULUS [39:32] の書込み。
W	0x13F	[7:0]		DDSC ACC MODULUS [47:40] の書込み。
W	0x140	[7:0]		DDSC ACC DELTA [7:0] の書込み。
W	0x141	[7:0]		DDSC ACC DELTA [15:8] の書込み。
W	0x142	[7:0]		DDSC ACC DELTA [23:16] の書込み。
W	0x143	[7:0]		DDSC ACC DELTA [31:24] の書込み。
W	0x144	[7:0]		DDSC_ACC_DELTA [39:32] の書込み。
W	0x145	[7:0]		DDSC_ACC_DELTA [47:40] の書込み。
W	0x131	0	0b1	すべての NCO 位相と FTW ワードを更新。

Rev. 0 - 74/150 -

メイン DAC データパスを特定のアプリケーションに合わせて設定する場合に使用する、設定用のオプション・レジスタを表 56 に示します。メイン DAC データパスをバイパスする場合(1xチャンネル・インターポレーションでは $DP_INTERP_MODE = 1$)、スタートアップ・シーケンスでは表 56 をスキップできます。

表 56. メイン DAC データパスのセットアップ:PA 保護とメイン NCO

R/W	レジスタ	ビット	値	説明
W	0x008	[7:6]		MAINDAC_PAGE。同時に設定するメイン DAC データパスを選択します(あるいは、このブロックを DAC データパスごとに繰り返して個別に値を設定します)。この制御のビットxは、DAC x のデータパ
				スに対応します。
W	0x112	3		選択したチャンネルの NCO をレジスタ 0x008 でイネーブルします。
				0b0 = NCO をディスエーブル。
				0b1 = NCO をイネーブル。
		2		選択したチャンネルの NCO モジュラスをページング・レジスタ 0x008 でイネーブルします。
				0b0 = NCO モジュラスをディスエーブル。
				0b1 = NCO モジュラスをイネーブル。
		1		変調結果からサイドバンドを選択します。
				060 = 上側サイドバンド
				061 = 下側サイドバンド (スペクトル反転)。
		0		0に設定します。
				インテジャーNCO モードの計算: DDSM_FTW = (f _{CARRIER} /f _{DAC}) 248
W	0x114	[7:0]		DDSM_FTW [7:0] の書込み。
W	0x115	[7:0]		DDSM_FTW [15:8] の書込み。
W	0x116	[7:0]		DDSM_FTW [23:16] の書込み。
W	0x117	[7:0]		DDSM_FTW [31:24] の書込み。
W	0x118	[7:0]		DDSM_FTW [39:32] の書込み。
W	0x119	[7:0]		DDSM_FTW [47:40] の書込み。
W	0x11C	[7:0]		DDSM_NCO_PHASE_OFFSET [7:0] の書込み。計算: DDSM_NCO_PHASE_OFFSET = (度数オフセット /180) × 215。
W	0x11D	[7:0]		DDSM NCO PHASE OFFSET [15:8] の書込み。
		[]		NCOモジュラス・モードを使用する場合は、モジュラス・パラメータも設定します。使用しない場合、
				このセクションはスキップしてください。モジュラス NCO モードの場合: $(f_{CARRIER}/f_{DAC}) = (X +$
				(A/B)) /248。ここで、DDSM_ACC_DELTA = A、DDSM_ACC_MODULUS = B、DDSM_FTW = X。
W	0x124	[7:0]		DDSM_ACC_MODULUS [7:0] の書込み。
W	0x125	[7:0]		DDSM_ACC_MODULUS [15:8] の書込み。
W	0x126	[7:0]		DDSM_ACC_MODULUS [23:16] の書込み。
W	0x127	[7:0]		DDSM_ACC_MODULUS [31:24] の書込み。
W	0x128	[7:0]		DDSM_ACC_MODULUS [39:32] の書込み。
W	0x129	[7:0]		DDSM_ACC_MODULUS [47:40] の書込み。
W	0x12A	[7:0]		DDSM_ACC_DELTA [7:0] の書込み。
W	0x12B	[7:0]		DDSM_ACC_DELTA [15:8] の書込み。
W	0x12C	[7:0]		DDSM_ACC_DELTA [23:16] の書込み。
W	0x12D	[7:0]		DDSM_ACC_DELTA [31:24] の書込み。
W	0x12E	[7:0]		DDSM_ACC_DELTA [39:32] の書込み。
W	0x12F	[7:0]		DDSM_ACC_DELTA [47:40] の書込み。
W	0x113	0	0b1	すべての NCO 位相と FTW ワードを更新。

Rev. 0 - 75/150 -

表 57. JESD204B SERDES に必要なインターフェース・セットアップ

R/W	レジスタ	ビット	値	説明
W	0x240	[7:0]	0xAA or 0xFF	表 22 に従い挿入損失量によって決定される EQ 設定。挿入損失が 11dB 以下の場合は 0xAA に設定し、それ以外の場合は 0xFF に設定します。
W	0x241	[7:0]	0xAA or 0xFF	表 22 に従い挿入損失量によって決定される EQ 設定。挿入損失が 11dB 以下の場合は 0xAA に設定し、それ以外の場合は 0xFF に設定します。
W	0x242	[7:0]	0x55 or 0xFF	表 22 に従い挿入損失量によって決定される EQ 設定。挿入損失が 11dB 以下の場合は 0x55 に設定し、それ以外の場合は 0xFF に設定します。
W	0x243	[7:0]	0x55 or 0xFF	表 22 に従い挿入損失量によって決定される EQ 設定。挿入損失が 11dB 以下の場合は 0x55 に設定し、それ以外の場合は 0xFF に設定します。
W	0x244	[7:0]	0x1F	EQ 設定。
W	0x245	[7:0]	0x1F	EQ 設定。
W	0x246	[7:0]	0x1F	EQ 設定。
W	0x247	[7:0]	0x1F	EQ設定。
W	0x248	[7:0]	0x1F	EQ 設定。
W	0x249	[7:0]	0x1F	EQ 設定。
W	0x24A	[7:0]	0x1F	EQ 設定。
W	0x24B	[7:0]	0x1F	EQ設定。
W	0x201	[7:0]		未使用 PHY を停止。ビット x は SERDINx±ピンの停止に対応しています。
W	0x203			シングルリンク・モードでは 0x01 に設定します。デュアルリンク・モードで両方のSYNCOUTx±信号を使用する場合は 0x00 に設定します。
		1	0b0	このビットを 0 に設定することによってSYNCOUT0±ドライバを起動。
		0		デュアルリンク・モードで両方のSYNCOUTx±信号を使用する場合は、このビットを 0 に設定するこ
				とによってSYNCOUT1±ドライバを起動。
W	0x253	[7:0]	0x01	SYNCOUT0±をLVDS出力に設定。SYNCOUT0+をCMOS出力にするには、ビット0を0に設定。
W	0x254	[7:0]	0x01	SYNCOUTI±を LVDS 出力に設定。 SYNCOUTI+を CMOS 出力にするには、ビット 0 を 0 に設定。
W	0x210	[7:0]	0x16	SERDES に必要なレジスタ書込み。
W	0x216	[7:0]	0x05	SERDES に必要なレジスタ書込み。
W	0x212	[7:0]	0xFF	SERDES に必要なレジスタ書込み。
W	0x212	[7:0]	0x00	SERDES に必要なレジスタ書込み。
W	0x210	[7:0]	0x87	SERDES に必要なレジスタ書込み。
W	0x216	[7:0]	0x11	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x01	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x00	SERDES に必要なレジスタ書込み。
W	0x200	[7:0]	0x00	SERDES 回路ブロックを起動。
	Pause			100ms 待機します。
W	0x210	[7:0]	0x86	SERDES に必要なレジスタ書込み。
W	0x216	[7:0]	0x40	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x01	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x00	SERDES に必要なレジスタ書込み。
W	0x210	[7:0]	0x86	SERDES に必要なレジスタ書込み。
W	0x216	[7:0]	0x00	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x01	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x00	SERDES に必要なレジスタ書込み。
W	0x210	[7:0]	0x87	SERDES に必要なレジスタ書込み。
W	0x216	[7:0]	0x01	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x01	SERDES に必要なレジスタ書込み。
W	0x213	[7:0]	0x00	SERDES に必要なレジスタ書込み。
W	0x280	[7:0]	0x05	SERDES に必要なレジスタ書込み。
W	0x280	[7:0]	0x01	SERDES PLL 回路ブロックをスタートアップして、SERDES PLL キャリブレーションを開始。
R	0x281	0	0b1	SERDSES PLL がロックされていることを示すには、このレジスタのビット 0 が 1 をリードバックするようにします。

Rev. 0 - 76/150 -

クロスバー・マッピングを行うと、これらのレジスタ内の使用する各論理レーンのソースである SERDINx 入力ピンに書込みが行われます。x の値は、SERDINx±ピンから制御ビット・フィールドの論理レーンへのマッピング・データに対応します。表 58 に示すこの値は、PCB レイアウトのルーティングによって変化します。

表 58. トランスポート層のセットアップ、同期、およびリンクのイネーブル

R/W	レジスタ	ビット	値	説明
W	0x308	[7:0]		クロスバー・セットアップ。各論理レーンのデータ (ソース) を提供する物理レーンの値を設定します。 [5:3] = 論理レーン1のソース、 [2:0] = 論理レーン0のソース
W	0x309	[7:0]		[5:3] = 論理レーン3のソース、[2:0] = 論理レーン2のソース
W	0x30A	[7:0]		[5:3] = 論理レーン5のソース、[2:0] = 論理レーン4のソース
W	0x30B	[7:0]		[5:3] = 論理レーン7のソース、 [2:0] = 論理レーン6のソース
W	0x306	[7:0]	0x0C	サブクラス0での動作の場合、このレジスタ書込みは不要です。
W	0x307	[7:0]	0x0C	サブクラス0での動作の場合、このレジスタ書込みは不要です。
W	0x304	[7:0]		サブクラス 0 での動作の場合、このレジスタ書込みは不要です。サブクラス 1 では、リンク遅延のセクションに示すように、確定的遅延法の 1 つに従うことによって(遅延が既知の場合と未知の場合)これらの値を決定する必要があります。
W	0x305	[7:0]		サブクラス 0 での動作の場合、このレジスタ書込みは不要です。サブクラス 1 では、リンク遅延のセクションに示すように、確定的遅延法の 1 つに従うことによって(遅延が既知の場合と未知の場合)これらの値を決定する必要があります。
W	0x03B	[7:0]	0xF1	同期ロジックをイネーブルし、ローテーション・モードを設定して同期リセットのトリガ時に同期ロジックをリセットします。
W	0x03A	[7:0]	0x02	ワンショット同期モード用に同期をセットアップ。
	SYSREF±			サブクラス1での動作時は、同期アライメントのために SYSREF±パルス・エッジをデバイスに 送ります。
W	0x300	3	LINK_MO DE	レジスタ $0x110$ で行ったモード選択に対応。 $0b0 = シングルリンク・モード。 \\ 0b1 = デュアルリンク・モード。$
		2	060	セットアップのためにリンク 0 を選択。このビットは、どのリンク QBD をページングするかを 選択します。 0b0 = リンク 0 (QBD0) 0b1 = リンク 1 (QBD1)
		[1:0]	LINK_EN	リンクを有効化。 0b01 = シングルリンク・モード。 0b11 = デュアルリンク・モード。

表 59. レジスタのクリーンアップ

R/W	レジスタ	ビット	値	説明
W	0x085	[7:0]	0x13	デフォルトのレジスタ値に設定。
W	0x1DE	[7:0]	0x00	アナログ SPI を無効化。デバッグを行ってリードバック機能を継続するには、0x03 を書き込みます。
W	0x008	[7:0]	0xC0	TXEN 制御更新のためにすべてのメイン DAC をページング。
W	0x596	[7:0]	0x0C	SPI で TXENx 機能をオン。

Rev. 0 - 77/150 -

レジスタの一覧

表 60.	レジスタの一覧	ŧ									
Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x000	SPI_ INTFCONFA	SOFTRESET_M	LSBFIRST_M	ADDRINC_ M	SDOACTIVE_ M	SDOACTIVE	ADDRINC	LSBFIRST	SOFTRESET	0x00	R/W
0x001	SPI_ INTFCONFB	SINGLEINS	CS _{STALL}			F	RESERVED			0x00	R/W
0x003	SPI_ CHIPTYPE				CI	HIP_TYPE				0x04	R
0x004	SPI_ PRODIDL				PR	OD_ID[7:0]				0x75	R
0x005	SPI_ PRODIDH				PRO	DD_ID[15:8]				0x91	R
0x006	SPI_ CHIPGRADE		PROD	GRADE			DE	EV_REVISION		0x02	R
0x008	SPI_ PAGEINDX	MAINDA	C_PAGE			CHA	ANNEL_PAGE			0xFF	R/W
0x00A	SPI_ SCRATCHPAD			•	SCF	RATCHPAD				0x00	R/W
0x010	CHIP_ ID L				CF		0x00	R			
0x011	CHIP_ ID M1				СН	IP_ID[15:8]				0x00	R
0x012	CHIP_ ID M2				CHIP_ID[23:16]						R
0x013	CHIP_ ID H				CHI	P_ID[31:24]				0x00	R
0x020	IRQ_ ENABLE		RESERVED		EN_ SYSREF_ JITTER	EN_ DATA_ READY	EN_LANE_ FIFO	EN_ PRBSQ	EN_ PRBSI	0x00	R/W
0x021	IRQ_ ENABLE0		RESE	ERVED		EN_ DAC0_ CAL_ DONE	RI	ESERVED	EN_ PAERR0	0x00	R/W
0x022	IRQ_ ENABLE1		RESE	ERVED		EN_ DAC1_ CAL_ DONE	RI	ESERVED	EN_ PAERR1	0x00	R/W
0x023	IRQ_ ENABLE2	RESER	RVED	EN_ DLL_ LOST	EN_ DLL_ LOCK		ERVED	EN_ PLL_ LOST	EN_ PLL_ LOCK	0x00	R/W
0x024	IRQ_ STATUS		RESERVED		IRQ_ SYSREF_ JITTER	IRQ_ DATA_ READY	IRQ_LANE_ FIFO	IRQ_ PRBSQ	IRQ_ PRBSI	0x00	R/W
0x025	IRQ_ STATUS0		RESE	ERVED		IRQ_ DAC0_ CAL_ DONE	RI	ESERVED	IRQ_ PAERR0	0x00	R/W
0x026	IRQ_ STATUS1		RESE	ERVED		IRQ_ DAC1_ CAL_ DONE	RI	ESERVED	IRQ_ PAERR1	0x00	R/W
0x027	IRQ_ STATUS2	RESER	RVED	IRQ_ DLL_ LOST	IRQ_ DLL_ LOCK	RES	ERVED	IRQ_ PLL_ LOST	IRQ_ PLL_ LOCK	0x00	R/W
0x028	IRQ_ OUTPUT_ MUX	RESERVED			MUX_ SYSREF_ JITTER	MUX_ DATA_ READY	MUX_LANE_ FIFO	MUX_ PRBSQ	MUX_ PRBSI	0x00	R/W
0x029	IRQ_ OUTPUT_ MUX0		RESE	ERVED		MUX_ DAC0_ CAL_ DONE	RI	ESERVED	MUX_ PAERR0	0x00	R/W
0x02A	IRQ_ OUTPUT_ MUX1		RESE	ERVED		MUX_ DAC1_ CAL_ DONE	MUX_ RESERVED MUX_ PAERRI CAL_			0x00	R/W
0x02B	IRQ_ OUTPUT_ MUX2	RESEF	RVED	MUX_ DLL_ LOST	MUX_ DLL_ LOCK	RES	ERVED	MUX_ PLL_ LOST	MUX_ PLL_ LOCK	0x00	R/W

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x02C	IRO	DIL /	ысо	ысэ	RESERVED	DIL 3	Bit 2	DIL I	IRQ	0x00	R/W
0.020	STATUS_ALL				RESERVED				STATUS_ ALL	0.000	10 11
0x036	SYSREF_ COUNT				SYSR	EF_COUNT				0x00	R/W
0x039	SYSREF_ ERR_WINDOW	RESERVED			5	SYSREF_ERR_W	INDOW			0x00	R/W
0x03A	SYSREF_ MODE		RESERVED		SYNC_ ROTATION_ DONE	RES	SERVED	SYSREF_ MODE_ ONESHOT	RESERVED	0x10	R/W
0x03B	ROTATION_ MODE	SYNCLOGIC_ EN	RESERVED	PERIODIC_ RST_ EN	NCORST_ AFTER_ ROT_ EN	RES	SERVED	ROTATIO	ON_MODE	0xB0	R/W
0x03F	TX_ ENABLE	RESE	RVED	TXEN_ DATAPATH_ DAC1	TXEN_ DATAPATH_ DAC0		R	ESERVED		0x00	R/W
0x050	CAL_ CLK_DIV		RES	SERVED			CA	L_CLK_DIV		0x28	R/W
0x051	CAL_ CTRL	CAL_ CTRL0		RESER	RVED	•	CAL	_CTRL1	CAL_ START	0x82	R/W
0x052	CAL_ STAT		RESERVED CAL_ CAL_ CAL_ FAIL_ FINISH SEARCH							0x00	R/W
0x05A	FSC1		FSC_CTRL[7:0]								R/W
0x061	CAL_ DEBUG0	RESERVED								0x60	R/W
0x081	CLK_ CTRL	RESERVED CAL_ CAL_CLK_CLK_PD1 PD0								0x00	R/W
0x083	NVM_ CTRL0	NVM_ CTRL0A	NVM RESERVED NVM CTRL0B							0x02	R/W
0x084	SYSREF_ CTRL	RESERVED SYSREF_ RESERVED INPUTMODE							SYSREF_ PD	0x00	R/W
0x085	NVM_ CTRL1	RESERVED		NVM_CTRL1A		RES	SERVED	NVM_ CTRL1B	NVM_ CTRL1C	0x13	R/W
0x08D	ADC_ CLK_CTRL0		RESERVED			•	CLKOUT_SW	ING	•	0x00	R/W
0x08F	ADC_ CLK_CTRL2				RESERVED				PD_ CLKOUT_ DRIVER	0x00	R/W
0x090	DAC_ POWERDOWN			RESE	RVED			DAC_ PD1	DAC_ PD0	0x03	R/W
0x091	ACLK_ CTRL				RESERVED				ACLK_ POWER-DOWN	0x01	R/W
0x094	PLL_ CLK_DIV			RESE	RVED			PLL_ VCO_ DIV3_EN	PLL_ VCO_ DIV2_EN	0x00	R/W
0x095	PLL_ BYPASS				RESERVED				PLL_BYPASS	0x00	R/W
0x09A	NVM_ CTRL	PD_BGR				RESERVE	D			0x00	R/W
0x0C0	DELAY_ LINE_PD	RESE	RVED	DLL_ CTRL0B	DLL_ CTRL0A		RESERVED		DLL_ PD	0x31	R/W
0x0C1	DLL_ CTRL0	DLL_C	TRL1C	DLL_ CTRL1B	DLL_CT	RL1A	RES	ERVED	DLL_ ENABLE	0x70	R/W
0x0C3	DLL_ STATUS			•	RESERVED				DLL_ LOCK	0x00	R/W
0x0C7	DLL_ READ	RESERVED DLL_ READ_ EN							0x00	R/W	
0x0CC	DLL_ FINE_DELAY0	RESERVED DLL_FINE_DELAY0								0x00	R/W
0x0CD	DLL_ FINE_DELAY1	RESERVED DLL_FINE_DELAYI							0x00	R/W	
0x0DB	DLL_ UPDATE			•	RESERVED				DLL_ DELAY_ UPDATE	0x00	R/W
0x0FF	MOD_ SWITCH_ DEBUG			RESE	RVED			CMPLX_ MOD_ DIV2_DISABLE	RESERVED	0x00	R/W

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x100	DIG_ RESET			•	RESERVED	l		1	DIG_ DATAPATH_ PD	0x01	R/W
0x110	JESD_ MODE	MODE_ NOT_IN_ TABLE	COM_ SYNC			JE	ESD_MODE			0x20	R/W
0x111	INTRP_ MODE		DP_INT	ERP_MODE			CH_I	NTERP_MODE		0x84	R/W
0x112	DDSM_ DATAPATH_ CFG	RESERVED	EN_ CMPLX_ MOD	DDSM	I_MODE	DDSM_ NCO_ EN	DDSM_ MODULUS_ EN	DDSM_SEL_ SIDEBAND	EN_SYNC_ ALL_CHNL_ NCO_RESETS	0x01	R/W
0x113	DDSM_ FTW_ UPDATE	RESERVED	D	DDSM_FTW_REQ_M	ODE	RESERVED	DDSM_FTW_ LOAD_SYSREF	DDSM_FTW_ LOAD_ACK	DDSM_FTW_ LOAD_REQ	0x00	R/W
0x114	DDSM_ FTW0		DDSM_FTW[7:0]								R/W
0x115	DDSM_ FTW1		DDSM_FTW[15:8]								
0x116	DDSM_ FTW2		DDSM_FTW[23:16]								
0x117	DDSM_ FTW3		DDSM_FTW[31:24]								R/W
0x118	DDSM_ FTW4		DDSM_FTW[39:32]								R/W
0x119	DDSM_ FTW5		DDSM_FTW[47:40]								R/W
0x11C	DDSM_ PHASE_ OFFSET0		DDSM_NCO_PHASE_OFFSET[7:0]								R/W
0x11D	DDSM_ PHASE_ OFFSET1				DDSM_NCO_P	HASE_OFFSET[15:8]			0x00	R/W
0x124	DDSM_ ACC_				DDSM_ACC	C_MODULUS[7:0)]			0x00	R/W
0x125	MODULUS0 DDSM_ ACC_				DDSM_ACC	_MODULUS[15:	8]			0x00	R/W
0x126	MODULUS1 DDSM_ ACC_				DDSM_ACC_	MODULUS[23:1	6]			0x00	R/W
0x127	MODULUS2 DDSM_ ACC_				DDSM_ACC_	MODULUS[31:2	[4]			0x00	R/W
0x128	MODULUS3 DDSM_ ACC_				DDSM_ACC_	MODULUS[39:3	[2]			0x00	R/W
0x129	MODULUS4 DDSM_ ACC_				DDSM_ACC_	MODULUS[47:4	90]			0x00	R/W
0x12A	MODULUS5 DDSM_ ACC_				DDSM_AG	CC_DELTA[7:0]				0x00	R/W
0x12B	DELTA0 DDSM_ ACC_				DDSM_AC	C_DELTA[15:8]				0x00	R/W
0x12C	DELTA1 DDSM_ ACC_				DDSM_AC	C_DELTA[23:16]]			0x00	R/W
0x12D	DELTA2 DDSM_ ACC_	DDSM_ACC_DELTA[31:24]									
0x12E	DELTA3 DDSM_ ACC_ DELTA4	DDSM_ACC_DELTA[39:32]									R/W
0x12F	DDSM_ ACC				DDSM_AC	C_DELTA[47:40]				0x00	R/W
0x130	DELTA5 DDSC_ DATAPATH_	RESERVED	DDSC_ NCO_		RESERVED		DDSC_ MODULUS_	DDSC_SEL_ SIDEBAND	DDSC_EN_ DC_INPUT	0x00	R/W
	CFG		EN				EN				

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW		
0x131	DDSC_	Dit 7	Bit 0	RESERVED	DR 4	БКО	DDSC FTW	DDSC FTW	DDSC FTW	0x00	R/W		
	FTW_ UPDATE						LOAD_SYSREF	LOAD_ACK	LOAD_REQ				
0x132	DDSC_ FTW0				DDS	SC_FTW[7:0]				0x00	R/W		
0x133	DDSC_ FTW1				DDS	C_FTW[15:8]				0x00	R/W		
0x134	DDSC_ FTW2				DDS	C_FTW[23:16]				0x00	R/W		
0x135	DDSC_ FTW3				DDS	C_FTW[31:24]				0x00	R/W		
0x136	DDSC_ FTW4				DDS	C_FTW[39:32]				0x00	R/W		
0x137	DDSC_ FTW5				DDS	C_FTW[47:40]				0x00	R/W		
0x138	DDSC_ PHASE_ OFFSET0				DDSC_NCO_	PHASE_OFFSET	[7:0]			0x00	R/W		
0x139	DDSC_ PHASE_ OFFSET1				DDSC_NCO_	PHASE_OFFSET[15:8]			0x00	R/W		
0x13A	DDSC_ ACC_ MODULUS0				DDSC_AC	C_MODULUS[7:)]			0x00	R/W		
0x13B	DDSC_ ACC_ MODULUS1		DDSC_ACC_MODULUS[15:8]										
0x13C	DDSC_ ACC_ MODULUS2		DDSC_ACC_MODULUS[23:16]										
0x13D	DDSC_ ACC_ MODULUS3		DDSC_ACC_MODULUS[31:24]										
0x13E	DDSC_ ACC_ MODULUS4				DDSC_ACC	C_MODULUS[39:	32]			0x00	R/W		
0x13F	DDSC_ ACC_				DDSC_ACC	C_MODULUS[47:	40]			0x00	R/W		
0x140	MODULUS5 DDSC_ ACC_				DDSC_A	ACC_DELTA[7:0]				0x00	R/W		
0x141	DELTA0 DDSC_ ACC_				DDSC_A	CC_DELTA[15:8]				0x00	R/W		
0x142	DDSC_ ACC_				DDSC_A	CC_DELTA[23:16]			0x00	R/W		
0x143	DELTA2 DDSC_ ACC_				DDSC_A	CC_DELTA[31:24]			0x00	R/W		
0x144	DELTA3 DDSC_ ACC_				DDSC_A	CC_DELTA[39:32]			0x00	R/W		
0x145	DELTA4 DDSC_ ACC_ DELTA5				DDSC_A	CC_DELTA[47:40]			0x00	R/W		
0x146	DELTA5 CHNL_ GAIN0				CHN	IL_GAIN[7:0]				0x00	R/W		
0x147	CHNL_ GAIN1		RE	ESERVED			CHN	IL_GAIN[11:8]		0x08	R/W		
0x148	DC_CAL_ TONE0	DC_TEST_INPUT_AMPLITUDE[7:0]											
0x149	DC_CAL_ TONE1	DC_TEST_INPUT_AMPLITUDE[15:8]									R/W		
0x14B	PRBS	PRBS_ GOOD Q	PRBS_ GOOD I	RESERVED	PRBS_INV_Q	PRBS_ INV I	PRBS_ MODE	PRBS_ RESET	PRBS_ EN	0x10	R/W		
0x14C	PRBS_ ERROR I	200D_Q	G00D_1		PRE	S_COUNT_I	MODE	ALDE1	EA1	0x00	R		
0x14D	PRBS_ ERROR_Q				PRB	S_COUNT_Q				0x00	R		

			_	_								
Reg.	Name	Bit 7	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x14E	PRBS_ CHANSEL			RESERVEI					PRBS_CHANSEL		0x07	R/W
0x151	DECODE_ MODE		RESERVED		MSB_ SHUF EN	FLE_		1	RESERVED		0x00	R/W
0x1DE	SPI_ ENABLE			R	RESER	VED	•		SPI_ EN1	SPI_ EN0	0x03	R/W
0x1E2	DDSM_ CAL_					DDSM_0	CAL_FTW[7:0]		II.	1	0x00	R/W
0x1E3	FTW0 DDSM_ CAL FTW1					DDSM_C	CAL_FTW[15:8]				0x00	R/W
0x1E4	DDSM_ CAL FTW2					DDSM_CAL_FTW[23:16]						R/W
0x1E5	DDSM_ CAL_FTW3					DDSM_C	AL_FTW[31:24]				0x00	R/W
0x1E6	DDSM_ CAL_MODE_ DEF			RESERVED)			DDSM_EN_ CAL_ACC	DDSM_EN_ CAL_DC_ INPUT	DDSM_EN_ CAL_ FREQ TUNE	0x00	R/W
0x1E7	DATAPATH_ NCO_SYNC_ CFG			RESERVE)	LO_MODE_ ENABLE			ALL_NCO_ SYNC_ACK	START_ NCO_ SYNC	0x00	R/W
0x200	MASTER_ PD					RESERVED			1	SERDES_ MASTER PD	0x01	R/W
0x201	PHY_ PD					P	HY_PD			_	0xEE	R/W
0x203	GENERIC_ PD			R	RESER	VED			PD SYNCOUT0	PD SYNCOUT1	0x01	R/W
0x206	CDR_ RESET					RESERVED				CDR_ PHY_RESET	0x00	R/W
0x210	CBUS_ ADDR					SERDES_CBUS_ADDR						R/W
0x212	CBUS_ WRSTROBE_ PHY					SERDES_CBUS_WR0						R/W
0x213	CBUS_ WRSTROBE_ OTHER					RESERVED				SERDES_ CBUS_ WR1	0x00	R/W
0x216	CBUS_ WDATA					SERDES_CBUS_DATA						R/W
0x234	CDR_ BITINVERSE					SEL_IF_PARDA	ATAINV_DES_RC	CH	0x66	R/W		
0x240	EQ_BOOST_ PHY_3_0	EQ_BOO	ST_PHY3	EQ_	BOOS	Г_РНҮ2	EQ_BC	OST_PHY1	EQ_BOO	OST_PHY0	0xFF	R/W
0x241	EQ_BOOST_ PHY_7_4	EQ_BOO	ST_PHY7	EQ_	BOOS	Г_РНҮ6	EQ_BC	OST_PHY5	EQ_BOO	OST_PHY4	0xFF	R/W
0x242	EQ_GAIN_ PHY_3_0	_	N_PHY3			_PHY2		AIN_PHY1	_	IN_PHY0	0xFF	R/W
0x243	EQ_GAIN_ PHY_7_4	EQ_GAI	N_PHY7	EQ	_GAIN	_PHY6	EQ_G.	AIN_PHY5	EQ_GAI	IN_PHY4	0xFF	R/W
0x244	EQ_FB_ PHY_0		RESERVED					EQ_PHY_			0x19	R/W
0x245	EQ_FB_ PHY_1		RESERVED					EQ_PHY1			0x19	R/W
0x246	EQ_FB_ PHY_2		RESERVED					EQ_PHY2			0x19	R/W
0x247	EQ_FB_ PHY_3		RESERVED					EQ_PHY:			0x19	R/W
0x248	EQ_FB_ PHY_4		RESERVED					EQ_PHY4			0x19	R/W
0x249	EQ_FB_ PHY_5		RESERVED					EQ_PHY:			0x19	R/W
0x24A	EQ_FB_ PHY_6		RESERVED					EQ_PHY(0x19 0x19	R/W
0x24B	EQ_FB_ PHY_7		RESERVED			EQ_PHY7						R/W
0x250	LBT_REG_ CNTRL_0						_DES_RC_CH	T	T	0x00	R/W	
0x251	LBT_REG_ CNTRL_1			R	RESER	VED			EN_LBT_ HALFRATE_ DES_RC	INIT_LBT_ SYNC_ DES_RC	0x02	R/W

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x253	SYNCOUT0	Dit 1	Bit o	Dit 3	RESERVED	Dit 3	Dit Z	Dit 1	SEL SYNCOUTO	0x00	R/W
0-254	CTRL				DECEDVED				_MODE	000	D/W
0x254	SYNCOUT1_ CTRL				RESERVED				SEL_SYNCOUT1 _MODE	0x00	R/W
0x280	PLL_ENABLE_ CTRL			RESERVED			LOLSTICKY- CLEAR_ LCPLL_RC	LDSYNTH_ LCPLL_RC	SERDES_PLL_ STARTUP	0x01	R/W
0x281	PLL_ STATUS				RESERVED		_	•	SERDES_PLL_ LOCK	0x00	R
0x300	GENERAL_ JRX CTRL 0		F	RESERVED		LINK_ MODE	LINK_ PAGE		INK_ EN	0x00	R/W
0x302	DYN_LINK_ LATENCY 0	RESE	RVED			DYN_I	INK_LATENCY_0	•		0x00	R
0x303	DYN_LINK_ LATENCY 1	RESE	RVED			DYN_I	INK_LATENCY_1			0x00	R
0x304	LMFC_ DELAY 0	RESE	RVED			LM	IFC_DELAY_0			0x00	R/W
0x305	LMFC_ DELAY 1	RESE	RVED			LM	IFC_DELAY_1			0x00	R/W
0x306	LMFC_ VAR 0	RESE	RESERVED LMFC_VAR_0								R/W
0x307	LMFC_ VAR 1	RESE	RESERVED LMFC_VAR_1								
0x308	XBAR_ LN 0 1	RESE	RESERVED LOGICAL_LANE1_SRC LOGICAL_LANE0_SRC							0x08	R/W
0x309	XBAR_ LN 2 3	RESE	RESERVED LOGICAL_LANE3_SRC LOGICAL_LANE2_SRC							0x1A	R/W
0x30A	XBAR_ LN 4 5	RESE	RESERVED LOGICAL_LANE5_SRC LOGICAL_LANE4_SRC								R/W
0x30B	XBAR_ LN 6 7	RESE	RVED	LC	OGICAL_LANE7_SRO	2		LOGICAL_LANE6_S	SRC	0x3E	R/W
0x30C	FIFO_ STATUS_ REG 0			l	LANE	FIFO_FULL				0x00	R
0x30D	FIFO_STATUS_ REG 1				LANE_l	FIFO_EMPTY				0x00	R
0x311	SYNCOUT_ GEN 0		I	RESERVED		EOMF_ MASK 1	EOMF_ MASK 0	EOF_ MASK 1	EOF_ MASK 0	0x00	R/W
0x312	SYNCOUT_ GEN 1		SYN	NC_ERR_DUR]	RESERVED		0x00	R/W
0x315	PHY_ PRBS_ TEST_EN				PHY	_TEST_EN				0x00	R/W
0x316	PHY_ PRBS_ TEST_CTRL	RESERVED		PHY_SRC_ERR_C	CNT	PHY_PI	RBS_PAT_SEL	PHY_ TEST_ START	PHY_ TEST_ RESET	0x00	R/W
0x317	PHY_ PRBS_TEST_ THRESHOLD_ LOBITS		ı		PHY_PRBS_TF	IRESHOLD_LO	BITS	1		0x00	R/W
0x318	PHY_ PRBS_TEST_ THRESHOLD_ MIDBITS				PHY_PRBS_TH	RESHOLD_MII	DBITS			0x00	R/W
0x319	PHY_ PRBS_TEST_ THRESHOLD_ HIBITS		PHY_PRBS_THRESHOLD_HIBITS								R/W
0x31A	PHY_ PRBS_TEST_ ERRCNT_ LOBITS		PHY_PRBS_ERR_CNT_LOBITS								R
0x31B	PHY_ PRBS_TEST_ ERRCNT_ MIDBITS		PHY_PRBS_ERR_CNT_MIDBITS								R
0x31C	PHY_ PRBS_TEST_ ERRCNT_ HIBITS				PHY_PRBS_	ERR_CNT_HIBI	TS			0x00	R

Reg.	Name	Bit 7	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x31D	PHY_		•			PHY_	PRBS_PASS	•	•	-	0xFF	R
	PRBS_ TEST_STATUS											
0x31E	PHY_DATA_ SNAPSHOT_				RESE	RVED			PHY_GRAB_ MODE	PHY_GRAB_	0x00	R/W
	CTRL								WODE	Bitti		
0x31F	PHY_ SNAPSHOT_		PHY_PRBS_PASS PHY_GRAB_ PHY_GRAB_ DATA							0x00	R	
	DATA_BYTE0										<u> </u>	<u> </u>
0x320	PHY_ SNAPSHOT_					PHY_SNAPSI	HOT_DATA_B	YTEI			0x00	R
0x321	DATA_BYTE1 PHY					DHV SNADSI	HOT DATA B	VTE2			0x00	R
0X321	SNAPSHOT					TIII_SINAFSI	IOI_DAIA_B	TTEZ			0.000	K
0x322	DATA_BYTE2 PHY					PHY SNAPSI	HOT DATA B	YTE3			0x00	R
	SNAPSHOT_ DATA_BYTE3					_						
0x323	PHY_					PHY_SNAPSI	HOT_DATA_B	YTE4			0x00	R
	SNAPSHOT_ DATA BYTE4											
0x32C	SHORT_		SHORT_	TPL_SP	SEL		SHORT_	TPL_CHAN_SEL			0x00	R/W
	TPL_ TEST_0											
0x32D	SHORT_ TPL					SHORT_T	PL_REF_SP_LS	SB			0x00	R/W
	TEST_1											
0x32E	SHORT_ TPL					SHORT_TI	PL_REF_SP_M	SB			0x00	R/W
	TEST_2		T							T		
0x32F	SHORT_ TPL_	SHORT_TPL_ LINK_SEL	TPL_IQ_				RESEI	RVED		SHORT_ TPL_FAIL	0x00	R/W
0x334	TEST_3 JESD BIT		SAMPLE_SEL			IECD I	DIT INIVEDCE				0x00	R/W
02334	INVERSE_					JESD_I	JII_IIVVERSE				0.000	10 **
0x400	CTRL DID					I	DID RD				0x00	R
0x401	REG BID					т	OID BD				0x00	R
0.401	REG						SID_KD				0.000	
0x402	LID0_ REG	RESERVED			DJ_			LL_LID()		0x00	R
0x403	SCR_L_ REG	SCR_ RD	RES	ERVED				L_RD_1			0x00	R
0x404	F_	KD				I	F_RD_1				0x00	R
0x405	REG K		RESERVED					K PD 1			0x00	R
	REG		RESERVED					K_KD_I				
0x406	M_ REG					N	1_RD_1				0x00	R
0x407	CS_N_ REG	CS	_RD	RESE	RVED			N_RD_1			0x00	R
0x408	NP_		SUBCLASSV_RI	D				NP_RD_	1		0x00	R
0x409	REG S_		IESDV RD 1					S PD 1			0x00	R
	REG											
0x40A	HD_CF_ REG	HD_ RD	RES	ERVED				CF_RD			0x00	R
0x40B	RES1_ REG		•			R	ES1_RD				0x00	R
0x40C	RES2_					R	ES2_RD				0x00	R
0x40D	REG CHECKSUM0										0x00	R
	REG		M_RD_1									
0x40E	COMPSUM0_ REG					LI	_FCMP0				0x00	R
0x412	LID1_		RESERVED					LL_LID1			0x00	R
0x415	REG CHECKSUM1_		TPL_TEST TPL_TEST EN							0x00	R	
	REG COMPSUM1_REG											
0x416	COMPSOMI_REG	ļ				LL	_rcmp1				0x00	R

AD9175

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x41A	LID2_ REG		RESERVED						II.	0x00	R
0x41D	CHECKSUM2_ REG				1	LL_FCHK2				0x00	R
0x41E	COMPSUM2_REG]	LL_FCMP2				0x00	R
0x422	LID3_ REG		RESERVED	F_1 K_1 M_1 RESERVED N_1 NP_1 S_1					0x00	R	
0x425	CHECKSUM3_ REG				1	LL_FCHK3				0x00	R
0x426	COMPSUM3_ REG				1	LL_FCMP3				0x00	R
0x42A	LID4_ REG		RESERVED				LL_LII	04		0x00	R
0x42D	CHECKSUM4_ REG]	LL_FCHK4				0x00	R
0x42E	COMPSUM4_REG					LL_FCMP4				0x00	R
0x432	LID5_ REG		RESERVED				LL_LII	05		0x00	R
0x435	CHECKSUM5_ REG				LL_FCHK3					0x00	R
0x436	COMPSUM5_ REG				1	LL_FCMP5				0x00	R
0x43A	LID6_ REG		RESERVED				LL_LII	D6		0x00	R
0x43D	CHECKSUM6_ REG				1	LL_FCHK6				0x00	R
0x43E	COMPSUM6_ REG				1	LL_FCMP6				0x00	R
0x442	LID7_ REG		RESERVED				LL_LI	07		0x00	R
0x445	CHECKSUM7_ REG				1	LL_FCHK7				0x00	R
0x446	COMPSUM7_ REG				1	LL_FCMP7				0x00	R
0x450	ILS_ DID					DID				0x00	R/W
0x451	ILS_ BID					BID				0x00	R/W
0x452	ILS_ LID0	RESERVED	ADJDIR	PHADJ			LIDO	1		0x00	R/W
0x453	ILS_ SCR_L	SCR	RE	SERVED			L_1			0x87	R/W
0x454	ILS_ F		•			F_1				0x00	R/W
0x455	ILS_ K		RESERVED				K_1			0x1F	R/W
0x456	ILS_ M				·	M_1				0x01	R/W
0x457	ILS_ CS_N		CS	RESERVED			N_1			0x0F	R/W
0x458	ILS_ NP		SUBCLASSV				NP_1			0x0F	R/W
0x459	ILS_ S		JESDV				S_1			0x01	R/W
0x45A	ILS_ HD_CF	HD	RE	SERVED			CF			0x80	R
0x45B	ILS_ RES1				•	RES1				0x00	R/W
0x45C	ILS_ RES2					RES2				0x00	R/W
0x45D	ILS_ CHECKSUM					FCHK0				0x00	R/W
0x46C	LANE_ DESKEW	ILD7	ILD6	ILD5	ILD4	ILD3	ILD2	ILD1	ILD0	0x00	R
0x46D	BAD_ DISPARITY	BDE7	BDE6	BDE5	BDE4	BDE3	BDE2	BDE1	BDE0	0x00	R
0x46E	NOT_ IN TABLE	NIT7	NIT6	NIT5	NIT4	NIT3	NIT2	NIT1	NIT0	0x00	R
0x46F	UNEXPECTED_ KCHAR	UEK7	UEK6	UEK5	UEK4	UEK3	UEK2	UEK1	UEK0	0x00	R
	KCHAK	<u> </u>			1						<u> </u>

0x470	Name CODE_ GRP_SYNC FRAME_ SYNC GOOD_ CHECKSUM INIT LANE_SYNC CTRLREG0 CTRLREG1 CTRLREG2 KVAL ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRLI CTRLI ECNT_ CTRLI ECNT_ CTRLI CTRLI ECNT_ CTRLI CTRLI ECNT_ CTRLI CTRLI CTRLI ECNT_ CTRLI CTRLI	RESE	Bit 6 CGS6 FS6 CKS6 ILS6 RESERVED RESERVED	Bit 5 CGSS FSS CKSS ILSS ERVED REPDATATEST		Bit 3 CGS3 FS3 CKS3 ILS3 SOFTRST AR_ECNTR SSYNC ETH	FS2 CKS2 ILS2 FORCE- SYNCREQ RESERVED	Bit 1 CGS1 FS1 CKS1 ILS1 RESERVED SYNC_ASSERT_MAS	Bit 0 CGS0 FS0 CKS0 ILS0 REPL_FRM_ENA FCHK_N	Reset 0x00 0x00 0x00 0x00 0x00 0x01 0x14 0x00 0x01 0x1F 0x07	RW R R R R R R R/W R/W R/W R/W R/W
0x471 F S 0x472 C C 0x473 II 0x475 C 0x476 C 0x477 C 0x477 C 0x478 K 0x47C E 0x47D S A M 0x480 E C 0x481 E C 0x483 E C	GRP_SYNC FRAME_ SYNC GOOD_ CHECKSUM INIT_ LANE_SYNC CTRLREG0 CTRLREG1 CTRLREG2 KVAL ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRLI ECNT_	FS7 CKS7 ILS7 ILS_MODE RESE	FS6 CKS6 ILS6 RESERVED RESERVED	FS5 CKS5 ILS5 ERVED REPDATATEST	FS4 CKS4 ILS4 QUAL_RDERR QUETESTERR K	FS3 CKS3 ILS3 SOFTRST AR_ECNTR SSYNC	FS2 CKS2 ILS2 FORCE- SYNCREQ	FS1 CKS1 ILS1 RESERVED RESERVED	FS0 CKS0 ILS0 REPL_FRM_ENA FCHK_N	0x00 0x00 0x00 0x01 0x14 0x00 0x01 0xFF	R R R R/W R/W R/W R/W
0x472 C 0x473 II L 0x475 C 0x476 C 0x477 C 0x477 C 0x478 K 0x47C E 0x47D S A A D 0x480 E C 0x481 E C 0x482 E C 0x483 E C	SYNC GOOD CHECKSUM INIT LANE_SYNC CTRLREG0 CTRLREG1 CTRLREG2 KVAL ERRORTHRES SYNC ASSERT MASK ECNT CTRLO ECNT	ILS_MODE RESE	CKS6 ILS6 RESERVED RESERVED	CKSS ILS5 ERVED REPDATATEST	CKS4 ILS4 QUAL_RDERR QUETESTERR	CKS3 ILS3 SOFTRST AR_ECNTR SSYNC	CKS2 ILS2 FORCE- SYNCREQ	CKS1 ILS1 RESERVED RESERVED	CKS0 ILS0 REPL_FRM_ENA FCHK_N	0x00 0x00 0x01 0x14 0x00 0x01 0x17	R R R/W R/W R/W R/W
0x473 II 0x475 C 0x476 C 0x477 C 0x477 C 0x478 K 0x47C E 0x47D S A M 0x480 E C 0x481 E C 0x482 E C	CHECKSUM INIT_ LANE_SYNC CTRLREG0 CTRLREG1 CTRLREG2 KVAL EERORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRLD ECNT_ CTRLI ECNT_	ILS7 ILS_MODE RESE	RESERVED RESERVED	ILS5 EERVED REPDATATEST	ILS4 QUAL_RDERR QUETESTERR K	ILS3 SOFTRST AR_ ECNTR SSYNC	ILS2 FORCE- SYNCREQ	RESERVED RESERVED	ILSO REPL_FRM_ENA FCHK_N	0x00 0x01 0x14 0x00 0x01 0xFF	R R/W R/W R/W R/W
0x475 C 0x476 C 0x477 C 0x478 K 0x47C E 0x47D S 0x480 E 0x481 E 0x482 E 0x483 E	LANĒ_SYNC CTRLREG0 CTRLREG1 CTRLREG2 KVAL ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRL0 ECNT_ CTRL1 ECNT_ CTRL1 ECNT_ CTRL1 ECNT_ CTRL2 ECNT_	ILS_MODE RESE	RESERVED RESERVED	REPDATATEST	QUAL_RDERR QUETESTERR K	SOFTRST AR_ ECNTR SYNC	FORCE- SYNCREQ	RESERVED RESERVED	REPL_FRM_ENA FCHK_N	0x01 0x14 0x00 0x01 0xFF	R/W R/W R/W R/W
0x476 C 0x477 C 0x478 K 0x47C E 0x47D S A M 0x480 E C 0x481 E 0x482 E 0x483 E	CTRLREGI CTRLREG2 KVAL ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRL0 ECNT_ CTRL1 ECTRL1 ECTRL2 ECNT_ ECTRL2 ECNT_	RESE	RESERVED RESERVED	REPDATATEST	QUETESTERR K	AR_ ECNTR	SYNCREQ	RESERVED	FCHK_N	0x14 0x00 0x01 0xFF	R/W R/W R/W
0x477 C 0x478 K 0x47C E 0x47D S A 0x480 E C 0x481 E C 0x482 E C 0x483 E C C	CTRLREG2 KVAL ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRL0 ECNT_ CTRL1 ECNT_ CTRL1 ECNT_ CTRL2 ECNT_ CTRL2 ECNT_ CTRL2	RESE	RESERVED		QUETESTERR K	ECNTR SYNC	RESERVED	RESERVED		0x00 0x01 0xFF	R/W R/W R/W
0x478 K 0x47C E 0x47D S A 0x480 E C 0x481 E 0x482 E C 0x483 E C C	KVAL ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRL0 ECNT_ CTRL1 ECNT_ CTRL1 ECNT_ CTRL2 ECNT_	RESE	ERVED		K	ECNTR SYNC			SK	0x01 0xFF	R/W R/W
0x47C E 0x47D S A A N 0x480 E C 0x481 E 0x482 E 0x483 E C 0x483 E	ERRORTHRES SYNC_ ASSERT_ MASK ECNT_ CTRL0 ECNT_ CTRL1 ECNT_ CTRL1 ECNT_ CTRL2 ECNT_	RESE		RESERVED				SYNC_ASSERT_MA	SK	0xFF	R/W
0x47D S A A N N Ox480 E C C C C C C C C C C C C C C C C C C	SYNC_ ASSERT_ MASK	RESE		RESERVED		ETH		SYNC_ASSERT_MA	SK		
0x47D S A A N N C C C C C C C C C C C C C C C C	SYNC_ ASSERT_ MASK	RESE		RESERVED				SYNC_ASSERT_MA	SK		
0x481 E C C C C C C C C C C C C C C C C C C	CTRLO ECNT_ CTRL1 ECNT_ CTRL2 ECNT_	RESE			ECNT ENA0		İ			,	
0x482 E C C 0x483 E C C	CTRLĪ ECNT_ CTRL2 ECNT_		ERVED					ECNT_RST0		0x3F	R/W
0x483 E	CTRL2 ECNT_	RESE	RESERVED		ECNT_ENA1			ECNT_RST1		0x3F	R/W
C		RESERVED RESERVED			ECNT_ENA2	ECNT_RST				0x3F	R/W
0x484 E		RESE	ERVED		ECNT_ENA3			ECNT_RST3		0x3F	R/W
C	ECNT_ CTRL4	RESE	ERVED	ECNT_ENA4			ECNT_RST4			0x3F	R/W
0x485 E	ECNT_ CTRL5	RESE	ERVED		ECNT_ENA5			ECNT_RST5		0x3F	R/W
0x486 E	ECNT_ CTRL6	RESE	ERVED		ECNT_ENA6			ECNT_RST6		0x3F	R/W
0x487 E	ECNT_ CTRL7	RESERVED			ECNT_ENA7			ECNT_RST7		0x3F	R/W
0x488 E	ECNT_ TCH0			RESERVED			ECNT_TCH0			0x07	R/W
	ECNT_ TCH1			RESERVED				ECNT_TCH1		0x07	R/W
0x48A E	ECNT_ TCH2			RESERVED				ECNT_TCH2		0x07	R/W
	ECNT_ TCH3			RESERVED				ECNT_TCH3		0x07	R/W
	ECNT_ TCH4			RESERVED				ECNT_TCH4		0x07	R/W
	ECNT_ TCH5			RESERVED				ECNT_TCH5		0x07	R/W
0x48E E	ECNT_ TCH6			RESERVED				ECNT_TCH6		0x07	R/W
	ECNT_ TCH7			RESERVED				ECNT_TCH7		0x07	R/W
	ECNT_ STAT0		RES	SERVED		LANE_ ENA0		ECNT_TCR0		0x00	R
	ECNT_ STAT1		RES	ERVED		LANE_ ENA1		ECNT_TCR1		0x00	R
	ECNT_ STAT2		RES	SERVED		LANE_ ENA2		ECNT_TCR2		0x00	R
0x493 E	ECNT_ STAT3		RES	ERVED		LANE_ ENA3		ECNT_TCR3		0x00	R
0x494 E	ECNT_ STAT4		RES	ERVED		LANE_ ENA4		ECNT_TCR4		0x00	R
0x495 E	ECNT_ STAT5		RES	SERVED		LANE_ ENA5		ECNT_TCR5		0x00	R
0x496 E	ECNT_ STAT6		RES	ERVED		LANE_ ENA6		ECNT_TCR6		0x00	R
0x497 E	ECNT_ STAT7		RES	ERVED		LANE_ ENA7		ECNT_TCR7		0x00	R
0x4B0 L	LINK_ STATUS0	BDE0	NIT0	UEK0	ILD0	ILS0	CKS0	FS0	CGS0	0x00	R
0x4B1 L	LINK_ STATUS1	BDE1	NIT1	UEK1	ILD1	ILS1	CKS1	FS1	CGS1	0x00	R

		1		I	I		T =		T =		1
Reg.	Name	Bit 7								Reset	RW
0x4B2	LINK_ STATUS2	BDE2								0x00	R
0x4B3	LINK_ STATUS3	BDE3	NIT3	UEK3	ILD3			FS3	CGS3	0x00	R
0x4B4	LINK_ STATUS4	BDE4	NIT4	UEK4	ILD4	ILS4	CKS4	FS4	CGS4	0x00	R
0x4B5	LINK_ STATUS5	BDE5	NIT5	UEK5	ILD5	ILS5	CKS5	FS5	CGS5	0x00	R
0x4B6	LINK_ STATUS6	BDE6	NIT6	UEK6	ILD6	ILS6	CKS6	FS6	CGS6	0x00	R
0x4B7	LINK_ STATUS7	BDE7	NIT7	UEK7	ILD7	ILS7	CKS7	FS7	CGS7	0x00	R
0x4B8	JESD_ IRQ_ ENABLEA	EN_ BDE	EN_ NIT	EN_ UEK	EN_ ILD	EN_ ILS	EN_ CKS	EN_ FS	EN_ CGS	0x00	R/W
0x4B9	JESD_ IRQ_ ENABLEB				RESERVED				EN_ ILAS	0x00	R/W
0x4BA	JESD_ IRQ_ STATUSA	IRQ_BDE	IRQ_NIT	IRQ_UEK	IRQ_ILD	IRQ_ILS	IRQ_CKS	IRQ_FS	IRQ_ CGS	0x00	R/W
0x4BB	JESD_ IRQ_ STATUSB		NIT2					0x00	R/W		
0x4BC	IRQ_ OUTPUT_ MUX JESD				RESERVED	1				0x00	R/W
0x580	BE_ SOFT_OFF_ GAIN_CTRL	BE_SOFT_ OFF_ GAIN EN		RESE	RVED			BE_GAIN_RAMP_RA	ATE	0x00	R/W
0x581	BE_ SOFT_OFF_ ENABLE	ENA_SHORT_ PAERR_ SOFTOFF	LONG_ PAERR_	RESE	RVED	JESD_ ERR_	SOFT_		SOFT_	0xC6	R/W
0x582	BE_ SOFT_ON_ ENABLE	SPI_SOFT_ ON_EN	LONG_ LEVEL_ SOFTON_				RESERVED	-1		0x40	R/W
0x583	LONG_PA_ THRES_LSB		1		LONG_PA	A_THRESHOLD[7:0	0]			0x00	R/W
0x584	LONG_PA_ THRES MSB		RESERVED				LONG_PA_THRES	SHOLD[12:8]		0x00	R/W
0x585	LONG_PA_ CONTROL	LONG_PA_ ENABLE		RESERVED			LON	G_PA_AVG_TIME		0x00	R/W
0x586	LONG_PA_ POWER_LSB				LONG	PA_POWER[7:0]				0x00	R
0x587	LONG_PA_ POWER_MSB		RESERVED				LONG_PA_POV	VER[12:8]		0x00	R
0x588	SHORT_PA_ THRES_LSB				SHORT_PA	A_THRESHOLD[7:	0]			0x00	R/W
0x589	SHORT_PA_ THRES MSB		RESERVED			5	SHORT_PA_THRE	SHOLD[12:8]		0x00	R/W
0x58A	SHORT_PA_ CONTROL	SHORT_ PA ENABLE			RESERVED			SHORT_PA	A_AVG_TIME	0x00	R/W
0x58B	SHORT_PA_ POWER_LSB	_			SHORT	PA_POWER[7:0]		<u> </u>		0x00	R
0x58C	SHORT_PA_ POWER_MSB		RESERVED				SHORT_PA_POV	WER[12:8]		0x00	R
0x58D	TXEN_ SM 0				RESERVED	ı			ENA_ TXENSM	0x50	R/W
0x596	BLANKING_ CTRL		RES	ERVED		SPI_TXEN		RESI		0x00	R/W
0x597	JESD_ PA_INT0				JESD_PA	A_INT_CNTRL[7:0]	_	•		0x00	R/W
0x598	JESD_ PA_INT1				RESERVED	ı			PA INT	0x00	R/W
0x599	TXEN_ FLUSH_ CTRL0				RESERVED	ı				0x01	R/W
0x705	NVM_ LOADER EN				RESERVED	ı			NVM_ BLR EN	0x00	R/W

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x790	DACPLL_ PDCTRL0	PLL_PD5	Bit 0	PLL_PD4	Dit 4	PLL_PD3	PLL_PD2	PLL_PD1	PLL_ PD0	0x02	R/W
0x791	DACPLL_ PDCTRL1		RESERVED		PLL_PD10	PLL_PD9	PLL_PD8	PLL_PD7	PLL_ PD6	0x00	R/W
0x792	DACPLL_ CTRL0			RESE	RVED			D_CAL_ RESET	D_ RESET_ VCO_DIV	0x02	R/W
0x793	DACPLL_ CTRL1			RESE	RVED			M_l	DIVIDER-1	0x18	R/W
0x794	DACPLL_ CTRL2	RESE	RVED			Ε	DACPLL_CP			0x04	R/W
0x795	DACPLL_ CTRL3		RES	SERVED			D_0	CP_CALBITS		0x08	R/W
0x796	DACPLL_ CTRL4		PLL	_CTRL0			F	RESERVED		0xD2	R/W
0x797	DACPLL_ CTRL5	RESE	RVED			F	PLL_CTRL1			0x20	R/W
0x798	DACPLL_ CTRL6	RESERVED	PLL_ CTRL3			F	PLL_CTRL2			0x1C	R/W
0x799	DACPLL_ CTRL7	ADC_CLK	_DIVIDER			1	N_DIVIDER			0x08	R/W
0x7A0	DACPLL_ CTRL9	RESE	RVED	D_EN_VAR_ FINE_PRE	RESER	RVED	D_EN_ VAR_ COARSE_ PRE	RE	ESERVED	0x90	R/W
0x7A2	DACPLL_ CTRL10	RESERVED		LATOR_CAL_ VAIT	D_VCO_C	AL_WAIT	D_VCO_0	CAL_CYCLES	RESERVED	0x35	R/W
0x7B5	PLL_ STATUS				RESERVED				PLL_LOCK	0x00	R

レジスタの詳細

表 61. レジスタの詳細

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x000	SPI_INTFCONFA	7	SOFTRESET_M		ソフト・リセット (ミラー)。ビット0をミラー するにはこのビットをセットします。	0x0	R
		6	LSBFIRST_M		LSB ファースト (ミラー) 。 ビット1をミラーするにはこのビットをセットします。	0x0	R
		5	ADDRINC_M		アドレスをインクリメント(ミラー)。ビット2 をミラーするにはこのビットをセットします。	0x0	R
		4	SDOACTIVE_M		SDOアクティブ(ミラー)。ビット3をミラーするにはこのビットをセットします。	0x0	R
		3	SDOACTIVE		SDOアクティブ。4線式 SPIバス・モードを有効 にします。	0x0	R/W
		2	ADDRINC	1	アドレスをインクリメント。このビットをセット するとストリーミング・アドレスがインクリメン トされます。セットしないと、降順(デクリメン ト)でアドレスが生成されます。 ストリーミング・アドレスをインクリメント。	0x0	R/W
		1	LSBFIRST	1 0	ストリーミング・アドレスをデクリメント。 LSBファースト。このビットをセットすると、 SPI 入力データと SPI 出力データが LSBファーストで処理されます。このビットをクリアすると、データは MSB ファーストで処理されます。 LSB を最初にシフト。 MSB を最初にシフト。	0x0	R/W
		0	SOFTRESET	1	ソフト・リセット。リセット動作を実行すると、このビットが自動的に 0 にクリアされます。このビットをセットするとリセットが開始されます。このビットは、ソフト・リセットが完了すると自動的にクリアされます。 ソフト・リセット・ラインにパルスを出力します。	0x0	R/W
				0	ソフト・リセット・ラインをリセットします。		1
0x001	SPI_INTFCONFB	7	SINGLEINS	1 0	単一命令。 単一の転送を実行。 複数の転送を実行。	0x0	R/W
		6	CSSTALL	0	CS ストーリング。 CS ストーリングを無効化。 CSストーリングを有効化。	0x0	R/W
		[5:0]	RESERVED	1	予備	0x0	R/W
0x003	SPI CHIPTYPE	[7:0]	CHIP TYPE		チップ・タイプ。	0x4	R
0x004	SPI_PRODIDL	[7:0]	PROD_ID[7:0]		製品ID。ブートローダが完了すると更新されます	0x75	R
0x005	SPI_PRODIDH	[7:0]	PROD_ID[15:8]		製品 ID。ブートローダが完了すると更新されます	0x91	R
0x006	SPI_CHIPGRADE	[7:4]	PROD_GRADE		製品グレード。	0x0	R
		[3:0]	DEV_REVISION		デバイスのリビジョン。	0x2	R
0x008	SPI_PAGEINDX	[7:6]	MAINDAC_PAGE		メイン DAC ページングを設定。このフィールド の各ハイ・ビットは、LSB から開始して DAC を ページングします。必要な場合は、両方のメイン DAC を同時にページングして設定できます。	0x3	R/W
		[5:0]	CHANNEL_PAGE		チャンネル・ページングを設定。このフィールドの各ハイ・ビットは、LSBから開始して複素チャンネルをページングします。必要な場合は、複数のチャンネルを同時にページングして設定することができます。	0x3F	R/W
0x00A	SPI_SCRATCHPAD	[7:0]	SCRATCHPAD		スクラッチ・パッド読出し/書込みレジスタ。	0x0	R/W
0x010	CHIP_ID_L	[7:0]	CHIP_ID[7:0]		チップ ID シリアル番号。	0x0	R
0x011	CHIP_ID_M1	[7:0]	CHIP_ID[15:8]		チップ ID シリアル番号。	0x0	R
0x012	CHIP_ID_M2	[7:0]	CHIP_ID[23:16]		チップ ID シリアル番号。	0x0	R
0x013	CHIP_ID_H	[7:0]	CHIP_ID[31:24]		チップ ID シリアル番号。	0x0	R

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x020	IRQ_ENABLE	[7:5]	RESERVED		予備	0x0	R
		4	EN_SYSREF_JITTER		SYSREF±ジッタ割込みをイネーブル。	0x0	R/W
		3	EN_DATA_READY		JESD204B レシーバー・レディ (JRX_DATA_READY)ロー割込みをイネーブ ル。	0x0	R/W
		2	EN_LANE_FIFO		レーン FIFO オーバーフロー/アンダーフロー割 込みをイネーブル。	0x0	R/W
		1	EN_PRBSQ		PRBS虚数エラー割込みをイネーブル。	0x0	R/W
		0	EN_PRBSI		PRBS 実数エラー割込みをイネーブル。	0x0	R/W
0x021	IRQ_ENABLE0	[7:4]	RESERVED		予備	0x0	R
		3	EN_DAC0_CAL_ DONE		DAC0 キャリブレーション完了割込みをイネーブル。	0x0	R/W
		[2:1]	RESERVED		予備	0x0	R/W
		0	EN_PAERR0		DAC0のPA保護エラー割込みをイネーブル。	0x0	R/W
0x022	IRQ_ENABLE1	[7:4]	RESERVED		予備	0x0	R
		3	EN_DAC1_CAL_ DONE		DACI キャリブレーション完了割込みをイネーブル。	0x0	R/W
		[2:1]	RESERVED		予備	0x0	R/W
		0	EN_PAERR1		DAC1 の PA 保護エラー割込みをイネーブル。	0x0	R/W
0x023	IRQ_ENABLE2	[7:6]	RESERVED		予備	0x0	R
		5	EN_DLL_LOST		DLL ロック喪失割込みをイネーブル。	0x0	R/W
		4	EN_DLL_LOCK		DLL ロック割込みをイネーブル。	0x0	R/W
		[3:2]	RESERVED		予備	0x0	R/W
		1	EN_PLL_LOST		PLLロック喪失割込みをイネーブル。	0x0	R/W
		0	EN_PLL_LOCK		PLLロック割込みをイネーブル。	0x0	R/W
0x024	IRQ_STATUS	[7:5]	RESERVED		予備	0x0	R
		4	IRQ_SYSREF_ JITTER		SYSREF±ジッタ過大。EN_SYSREF_JITTER がローの場合、IRQ_SYSREF_JITTER は現在のステータスを示します。EN_SYSREF_JITTER がハイの場合は、IRQ_SYSREF_JITTER がラッチしてIRQxピンをローにプルダウンします(x=MUX_SYSREF_JITTER 設定)。ラッチした状態でIRQ_SYSREF_JITTER に1を書き込むと、ビットがクリアされます。	0x0	R/W
		3	IRQ_DATA_READY		JESD204x レシーバー・データ・レディがロー。 EN_DATA_READY がローの場合、 IRQ_DATA_READY は現在のステータスを示します。EN_DATA_READY がハイの場合は、 IRQ_DATA_READY がラッチしてIRQxピンをローにプルダウンします(x=MUX_DATA_READY 設定)。ラッチした状態でIRQ_DATA_READY に1を書き込むと、ビットがクリアされます。	0x0	R/W
		2	IRQ_LANE_FIFO		レーン FIFO オーバーフロー/アンダーフロー。 EN_LANE_FIFO がローの場合、IRQ_LANE_FIFO は現在のステータスを示します。 EN_LANE_FIFO がハイの場合は、 IRQ_LANE_FIFO がラッチしてIRQxピンをローに プルダウンします(x = MUX_LANE_FIFO 設定)。ラッチした状態で IRQ_LANE_FIFO に 1を書き込むと、ビットがクリアされます。	0x0	R/W
		1	IRQ_PRBSQ		DACI PRBS エラー。EN_PRBSQ がローの場合、IRQ_PRBSQ は現在のステータスを示します。 EN_PRBSQ がハイの場合は、IRQ_PRBSQ がラッチしてIRQxピンをローにプルダウンします(x = MUX_PRBSQ 設定)。ラッチした状態でIRQ_PRBSQ に 1 を書き込むと、ビットがクリアされます。	0x0	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		0	IRQ_PRBSI		DACO PRBS エラー。EN_PRBSI がローの場合、IRQ_PRBSI は現在のステータスを示します。 EN_PRBSI がハイの場合は、IRQ_PRBSI がラッチしてIRQxピンをローにプルダウンします(x = MUX_PRBSI 設定)。ラッチした状態でIRQ_PRBSI に 1 を書き込むと、ビットがクリアされます。	0x0	R/W
0x025	IRQ STATUS0	[7:4]	RESERVED		予備	0x0	R
		3	IRQ_DAC0_CAL_ DONE		DAC0 キャリブレーション完了。 EN_DAC0_CAL_DONE がローの場合、 IRQ_DAC0_CAL_DONE は現在のステータスを 示します。EN_DAC0_CAL_DONE がハイの場合 は、IRQ_DAC0_CAL_DONE がラッチしてIRQxピンをローにプルダウンします(x = MUX_DAC0_CAL_DONE 設定)。ラッチした状態でIRQ_DAC0_CAL_DONE に 1 を書き込むと、 ビットがクリアされます。	0x0	R/W
		[2:1]	RESERVED		予備	0x0	R/W
		0	IRQ_PAERR0		DACO PA エラー。EN_PAERRO がローの場合、IRQ_PAERRO は現在のステータスを示します。EN_PAERRO がハイの場合は、IRQ_PAERRO がラッチしてIRQxピンをローにプルダウンします(x = MUX_PAERRO 設定)。ラッチした状態でIRQ_PAERRO に 1 を書き込むと、ビットがクリアされます。	0x0	R/W
0x026	IRQ_STATUS1	[7:4]	RESERVED		予備	0x0	R
		3	IRQ_DAC1_CAL_ DONE		DAC1 キャリブレーション完了。 EN_DAC1_CAL_DONE がローの場合、 IRQ_DAC1_CAL_DONE は現在のステータスを示します。EN_DAC1_CAL_DONE がハイの場合 は、IRQ_DAC1_CAL_DONE がラッチしてIRQxピンをローにプルダウンします(x = MUX_DAC1_CAL_DONE 設定)。ラッチした状態でIRQ_DAC1_CAL_DONE に 1 を書き込むと、ビットがクリアされます。	0x0	R/W
		[2:1]	RESERVED		予備	0x0	R/W
		0	IRQ_PAERR1		DACI PAエラー。EN_PAERRI がローの場合、IRQ_PAERRI は現在のステータスを示します。EN_PAERRI がハイの場合は、IRQ_PAERRI がラッチしてIRQxピンをローにプルダウンします(x = MUX_PAERRI 設定)。ラッチした状態でIRQ_PAERRI に 1 を書き込むと、ビットがクリアされます。	0x0	R/W
0x027	IRQ_STATUS2	[7:6]	RESERVED		予備	0x0	R
		5	IRQ_DLL_LOST		DLL 喪失。EN_DLL_LOST がローの場合、 IRQ_DLL_LOST は現在のステータスを示します。EN_DLL_LOST がハイの場合は、 IRQ_DLL_LOST がラッチしてIRQxピンをローにプルダウンします(x = MUX_DLL_LOST 設定)。ラッチした状態でIRQ_DLL_LOST に 1 を書き込むと、ビットがクリアされます。	0x0	R/W
		4	IRQ_DLL_LOCK		DLL ロック。EN_DLL_LOCK がローの場合、IRQ_DLL_LOCK は現在のステータスを示します。EN_DLL_LOCK がハイの場合は、IRQ_DLL_LOCK がラッチしてIRQx ピンをローにプルダウンします(x = MUX_DLL_LOCK 設定)。ラッチした状態でIRQ_DLL_LOCK に 1を書き込むと、ビットがクリアされます。	0x0	R/W
		[3:2]	RESERVED		予備	0x0	R/W
		1	IRQ_PLL_LOST		DAC PLL ロック喪失。EN_PLL_LOST がローの 場合、IRQ_PLL_LOST は現在のステータスを示 します。EN_PLL_LOST がハ <u>イの</u> 場合は、 IRQ_PLL_LOST がラッチしてIRQxピンをローに プルダウンします(x = MUX_PLL_LOST 設 定)。ラッチした状態で IRQ_PLL_LOST に 1 を 書き込むと、ビットがクリアされます。	0x0	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		0	IRQ_PLL_LOCK		DAC PLL ロック。EN_PLL_LOCK がローの場合、IRQ_PLL_LOCK は現在のステータスを示します。EN_PLL_LOCK がハイの場合は、IRQ_PLL_LOCK がラッチしてIRQx ピンをローにプルダウンします(x = MUX_PLL_LOCK 設定)。ラッチした状態で IRQ_PLL_LOCK に 1を	0x0	R/W
					書き込むと、ビットがクリアされます。		
0x028	IRQ_OUTPUT_MUX	[7:5]	RESERVED		予備	0x0	R
		4	MUX_SYSREF_ JITTER		EN_SYSREF_JITTER を設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQトリガ信号をIRQIピンに送ります。		
		3	MUX_DATA_ READY		EN_DATA_READYを設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		2	MUX_LANE_FIFO		EN_LANE_FIFOを設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		1	MUX_PRBSQ		EN_PRBSQ を設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		0	MUX_PRBSI		EN_PRBSIを設定すると、イベントをトリガする IRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
0x029	IRQ_OUTPUT_MUX 0	[7:4]	RESERVED		予備	0x0	R
		3	MUX_DAC0_CAL_DO NE		EN_DACO_CAL_DONE を設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		[2:1]	RESERVED		予備	0x0	R/W
		0	MUX_PAERR0		EN_PAERROを設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
0x02A	IRQ_OUTPUT_MUX 1	[7:4]	RESERVED		予備	0x0	R
		3	MUX_DAC1_CAL_DO NE		EN_DAC1_CAL_DONEを設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		[2:1]	RESERVED		予備	0x0	R/W
		0	MUX_PAERR1		EN_PAERR1を設定すると、イベントをトリガするIRQx出力ピンが選択されます。	0x0	R/W

Rev. 0 — 92/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
0x02B	IRQ_OUTPUT_MUX 2	[7:6]	RESERVED		予備	0x0	R
		5	MUX_DLL_LOST		EN_DLL_LOSTを設定すると、イベントをトリガ するIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		4	MUX_DLL_LOCK		EN_DLL_LOCK を設定すると、イベントをトリ ガするIRQx出力ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
		[3:2]	RESERVED		予備	0x0	R/W
		1	MUX_PLL_LOST		EN_PLL_LOST を設定すると、イベントをトリガ する \overline{IRQx} ピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQIピンに送ります。		
		0	MUX_PLL_LOCK		EN_PLL_LOCKを設定すると、イベントをトリガするIRQxピンが選択されます。	0x0	R/W
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQトリガ信号をIRQIピンに送ります。		
0x02C	IRQ_STATUS_ALL	[7:1]	RESERVED		予備	0x0	R
		0	IRQ_STATUS_ALL		このビットは、レジスタ $0x24\sim$ レジスタ $0x27$ の すべてのビットの OR です。このビットに 1 を書き込むと、レジスタ $0x24\sim$ レジスタ $0x27$ 内にあるラッチされた \overline{IRQx} 信号がすべてクリアされま	0x0	R/W
0x036	CVCDEE COLDIT	[7,0]	CVCDEE COLINT		す。	0x0	R/W
UXU30	SYSREF_COUNT	[7:0]	SYSREF_COUNT		同期前に無視する SYSREF±の立上がりエッジ数 (パルス・カウント・モード)。	UXU	R/W
0x039	SYSREF_ERR_	7	RESERVED		予備	0x0	R
	WINDOW	[6:0]	SYSREF_ERR_ WINDOW		SYSREF±入力に許容されるジッタの量。 SYSREF±ジッタの変動がこれより大きいと、割 込みがトリガされます。単位はDACクロック数 です。	0x0	R/W
0x03A	SYSREF_MODE	[7:5]	RESERVED		予備	0x0	R
		4	SYNC_ROTATION_ DONE		同期ロジック・ローテーション完了フラグ。	0x1	R
		[3:2]	RESERVED		予備	0x0	R
		1	SYSREF_MODE_ ONESHOT		ワンショット同期ローテーション・モードを有効 にします。	0x0	R/W
				00	モニタ・モード。SYSREF±エッジがエラー・ウィンドウの外にある場合、IRQ_SYSREF_ITTERのステータス/エラー・フラグは1です(レジスタ 0x039、ビット [6:0])。		
				01	次の SYSREF±で同期を1回行ってから、モニタ・モードに切り替えます。		
		0	RESERVED		予備	0x0	R/W
0x03B	ROTATION_MODE	7	SYNCLOGIC_EN		このビットは、サブクラス0とサブクラス1の両方で、常に1 (デフォルト) に設定する必要があります。	0x1	R/W
		6	RESERVED		予備デバイスを正しく動作させるには、このビットに1を書き込みます。	0x0	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		5	PERIODIC_RST_EN		同期要求設定。このビットは、サブクラス0とサブクラス1の両方で常に1に設定します。	0x1	R/W
		4	NCORST_AFTER_ ROT_EN		デジタル・リセットまたは同期ローテーションの 後ですべてのNCOをリセットするには、このビットを1に設定します。この制御または START_NCO_SYNCビット (レジスタ 0x1E7のビット 0) は、すべてのNCO (メイン・データパスとチャンネル・データパス) をリセットするのに使用できます。	0x1	R/W
		[3:2]	RESERVED		予備	0x0	R
		[1:0]	ROTATION_MODE	0 1 10	同期ローテーション発生時にリセットする回路を 選択。どのビットが1に設定されるかで、同期ローテーションが実行されたときの動作が決まります。ビット0は、SERDESクロックのリセットとリアライメントに対応しています。ビット1はデータパスのソフト・オフ/オン・ゲインに対応しますが、使用できるのはPA保護が使われているい場合に限られます。PA保護が使われていない場合は、ビット1を0に設定します。同期ローテーションが発生しても、SERDESクロックまたはデータパスに関しては何の動作も行われません。リンクが解除されてSERDESクロックがリセットされます。同期ローテーション実行時にSERDESクロックが正しく再アラインされるように、このビットはハイに設定することを推奨します。データパスは、自動的にソフト・オン/オフ機能を使用して同期ローテーション時にデータパス・ストリームをオン/オフし、破損したデータが伝送されるのを防ぎます。この機能は、PA保護ブロックが使われている場合のみ使用してください。	0x0	R/W
0.025	TV FNADIE	F7. (1	DECEDIFED		ト・オン/オフ機能だけが有効になります。	0.0	D/W/
0x03F	TX_ENABLE	[7:6]	RESERVED TXEN DATAPATH D		予備 TXENI ピンをローにしたときに、データパス	0x0 0x0	R/W R/W
		3	AC1	0	DACI をミュートするかどうかを選択します。 データパス出力はノーマル。 TXENI = 0 の場合、データパス出力は直ちにゼロになります。TXENI = 1 の場合、データパス出力は はノーマル動作します。	OXO .	IV W
		4	TXEN_DATAPATH_D AC0	0	TXEN0 ピンをローにしたときに、データパス DAC0 をミュートするかどうかを選択します。 データパス出力はノーマル。 TXEN0 = 0 の場合、データパス出力は直ちにゼロになります。 TXEN0 = 1 の場合、データパス出力はノーマル動作します。	0x0	R/W
		[3:0]	RESERVED		予備	0x0	R/W
0x050	CAL_CLK_DIV	[7:4]	RESERVED		予備。	0x2	R/W
		[3:0]	CAL_CLK_DIV		キャリブレーション・レジスタの制御。最適キャリブレーション設定とするには、これらのビットを 0xA に設定します。	0x8	R/W
0x051	CAL_CTRL	7	CAL_CTRL0	0	キャリブレーション設定。1に設定します。 キャリブレーション・エンジンをリセット。 キャリブレーション・ルーチンを有効化。	0x1	R/W
	I	[6:3]	RESERVED	1	予備	0x0	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[2:1]	CAL_CTRL1		キャリブレーション・モードの選択最適キャリブレーション・モードとするには、このビット・フィールドを1に設定します。レジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x1	R/W
				1	キャリブレーション制御を設定。		
		0	CAL_START		キャリプレーションを開始。キャリプレーションの開始後は、レジスタ 0x052 のビット 2 がローになる (キャリプレーションがアクティブでなくなったことを示す) までレジスタ 0x051~レジスタ 0x061 への書込みを行わないでください。レジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x052	CAL_STAT	[7:3]	RESERVED		予備	0x0	R/W
		2	CAL_ACTIVE		キャリブレーション・アクティブ・ステータス・フラグ。リードバック値が1の場合は、キャリブレーション・ルーチンがまだ進行中であることを示します。この制御はレジスタ0x008のMAINDAC_PAGEビットによってページングされます。	0x0	R
		1	CAL_FAIL_SEARCH		キャリブレーション失敗フラグ。リードバック値が1の場合は、キャリブレーション・ルーチンが失敗したこと、および有効でない可能性があることを示します。この制御はレジスタ 0x008のMAINDAC_PAGE ビットによってページングされます。	0x0	R
		0	CAL_FINISH		キャリプレーション完了フラグ。リードバック値が1の場合は、キャリプレーションが完了したことを示します。この制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R
0x05A	FSC1	[7:0]	FSC_CTRL[7:0]		DACx アナログ出力から利用可能なフルスケール (最大) 電流を設定します。この制御は、レジス タ 0x008 の MAINDAC_PAGE ビットによってペ ージングされます。フルスケール電流 = 15.625 mA + FSC CTRL× (25/256) (mA)。	0x28	R/W
0x061	CAL DEBUG0	7	RESERVED		予備	0x0	R/W
	_	6	CAL_CTRL2		キャリブレーション制御。最適キャリブレーション設定とするには、このビットを1に設定します。	0x1	R/W
		5	CAL_CTRL3		キャリブレーション制御。最適キャリブレーション設定とするには、このビットを1に設定します。	0x1	R/W
		4	RESERVED		予備	0x0	R/W
		3	CAL_CTRL4		キャリプレーション制御。最適キャリプレーション設定とするには、このビットを1に設定します。	0x0	R/W
		[2:0]	RESERVED		予備	0x0	R/W
0x081	CLK_CTRL	[7:2]	RESERVED		予備	0x0	R/W
		1	CAL_CLK_PD1		DAC1 のキャリブレーション完了後(レジスタ 0x052 のビット 0 = 1)に、このビットをハイに設 定してキャリブレーション・クロックを停止しま す。	0x0	R/W
		0	CAL_CLK_PD0		DAC0 のキャリブレーション完了後 (レジスタ 0x052 のビット 0 = 1) に、このビットをハイに設定してキャリブレーション・クロックを停止します。	0x0	R/W
0x083	NVM_CTRL0	7	NVM_CTRL0A		リング・オシレータの NVM レジスタ制御。	0x0	R/W
		[6:2]	RESERVED		予備	0x0	R
		[1:0]	NVM_CTRL0B	00 01 10 11	リング・オシレータの NVM レジスタ制御。 8 分周 16 分周 32 分周 64 分周	0x2	R/W
0.004	SYSREF CTRL	7	RESERVED		予備	0x0	R/W
0x084		1 '	1	j	- VIM	1	

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				0	SYSREF±を AC カップリング.		
				1	SYSREF±を DC カップリング.		
		[5:1]	RESERVED		予備	0x0	R/W
		0	SYSREF_PD	0	SYSREF±レシーバーと同期回路を停止。サブクラス0の場合はSYSREF±ピンを使用しないので、このビットは1に設定します。 SYSREF±レシーバーをパワー・オン。 SYSREF±レシーバーを停止。	0x0	R/W
0x085	NVM_CTRL1	7	RESERVED	1	SISKEFェレンーバーを停止。 予備	0x0	R
0.0003	NVM_CIRCI	[6:4]	NVM_CTRL1A		NVM 制御。この制御は、設定シーケンス開始時に1に設定し (スタートアップ・シーケンスのセクションを参照)、スタートアップ・ルーチン終了時(それ以上デバイス設定を行わない場合)に0に設定します。	0x1	R/W
		[3:2]	RESERVED		予備	0x0	R
		1	NVM_CTRL1B		NVM制御。この制御は、設定シーケンス開始時に1に設定し(スタートアップ・シーケンスのセクションを参照)、スタートアップ・ルーチン終了時(それ以上デバイス設定を行わない場合)に0に設定します。	0x1	R/W
		0	NVM_CTRL1C		NVM制御。この制御は、設定シーケンス開始時に0に設定し(スタートアップ・シーケンスのセクションを参照)、スタートアップ・ルーチン終了時(それ以上デバイス設定を行わない場合)に1に設定します。	0x1	R/W
0x08D	ADC_CLK_CTRL0	[7:5]	RESERVED		予備	0x0	R
		[4:0]	CLKOUT_SWING		ADC クロック・ドライバのスイング・レベルを 制御します。スイングは負になる場合もあります (反転クロック)。 コード 0~コード 9の計算は以下のとおりです。 ADC ドライバ・スイング = 993mV - CLKOUT_SWING × 77mV。 コード 10~コード 19 の計算は以下のとおりで す。 ADC ドライバ・スイング = (20 - CLKOUT_SWING × 77mV) - 1V。	0x0	R/W
0x08F	ADC_CLK_CTRL2	[7:1]	RESERVED		予備	0x0	R
		0	PD_CLKOUT_ DRIVER		CLKOUT±出力ドライバを停止します。	0x0	R/W
0x090	DAC_POWERDOWN	[7:2]	RESERVED		予備	0x0	R
		1	DAC_PD1	0	DAC1 の停止。 DAC1 を起動。 DAC1 を停止。	0x1	R/W
		0	DAC_PD0	0	DACO の停止。 DACO を起動。 DACO を停止。	0x1	R/W
0x091	ACLK_CTRL	[7:1]	RESERVED		予備	0x0	R/W
		0	ACLK_ POWERDOWN		アナログ・クロック・レシーバーの停止。	0x1	R/W
0x094	PLL_CLK_DIV	[7:2]	RESERVED		予備	0x0	R
		1	PLL_VCO_DIV3_EN		PLL クロック 3 分周を有効化。	0x0	R/W
		0	PLL_VCO_DIV2_EN		PLL クロック 2 分周を有効化。	0x0	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				1	DAC クロック = PLL VCO クロック周波数÷2。		
0x095	PLL_BYPASS	[7:1]	RESERVED		予備	0x0	R
		0	PLL_BYPASS		直接クロッキングをイネーブル(PLL クロックを バイパス)。	0x0	R/W
				0	内部 PLL を使用して DAC クロックを生成。		
				1	PLL をバイパスして DAC クロック周波数で直接		
					クロック供給。		
0x09A	NVM_CTRL	7	PD_BGR		バイアスを停止。内部バイアスを停止するには、 このビットを1に設定します。	0x0	R/W
		[6:0]	RESERVED		予備	0x0	R/W
0x0C0	DELAY_LINE_PD	[7:6]	RESERVED		予備	0x0	R
		5	DLL_CTRL0B		DLL 制御。デバイス設定シーケンス時に遅延ラインを起動するには、このビットを 0 に設定します。	0x1	R/W
		4	DLL_CTRL0A		DLL 制御。デバイス設定シーケンス時に遅延ラインを起動するには、このビットを 0 に設定します。	0x1	R/W
		[3:1]	RESERVED		予備	0x0	R
		0	DLL_PD		遅延ラインを停止。デバイス設定シーケンス時に 遅延ラインを起動するには、このビットを 0 に設 定します。	0x1	R/W
				0	遅延ラインを起動してイネーブル。		
				1	遅延ラインを停止してバイパス。		
0x0C1	DLL_CTRL0	[7:6]	DLL_CTRL1C		DAC制御設定。最大限の性能を引き出すには、この制御を1に設定します。	0x1	R/W
		5	DLL_CTRL1B		DLL 制御検索モード。DAC 周波数が 4.5GHz 未 満の場合はこのビットを 0 に設定し、それ以外の 場合は 1 に設定します。	0x1	R/W
		[4:3]	DLL_CTRL1A		DLL制御検索の指示。最大限の性能を引き出す には、この制御を1に設定します。	0x2	R/W
		[2:1]	RESERVED		予備	0x0	R
		0	DLL_ENABLE		DLL コントローラをイネーブル。	0x0	R/W
				0	DLL をディスエーブル。		
				1	DLL をイネーブル。		
0x0C3	DLL_STATUS	[7:1]	RESERVED		予備	0x0	R
		0	DLL_LOCK		DLL ロック・インジケータ。DLL がロックされ ている場合、この制御は1をリードバックしま す。	0x0	R
0x0C7	DLL READ	[7:1]	RESERVED		予備	0x0	R
		0	DLL_READ_EN		DLL リードバック・ステータスを有効化。0 から 1 へ遷移すると、レジスタ 0x0C3 のロック・ステ ータス・ビットのリードバックが更新されます	0x0	R/W
0x0CC	DLL_FINE_DELAY0	[7:6]	RESERVED		予備	0x0	R
		[5:0]	DLL_FINE_DELAY0		DLL 遅延制御。	0x0	R/W
0x0CD	DLL FINE DELAY1	[7:6]	RESERVED		予備	0x0	R
		[5:0]	DLL FINE DELAY1		DLL 遅延制御。	0x0	R/W
0x0DB	DLL UPDATE	[7:1]	RESERVED		予備	0x0	R
	_	0	DLL_DELAY_ UPDATE		DLL 更新制御。0から1へ遷移すると、DLL 回路 が最新のレジスタ制御設定に更新されます。	0x0	R/W
0x0FF	MOD_SWITCH_ DEBUG	[7:2]	RESERVED		予備	0x0	R
		1	CMPLX_MOD_ DIV2_DISABLE		変調器スイッチ・パスの2ブロックによる除算を 無効にします。2での除算をバイパスするには、 1に設定します。この制御はレジスタ0x008の MAINDAC_PAGEビットによってページングされ ます。	0x0	R/W

Rev. 0 - 97/150 -

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		0	RESERVED		予備	0x0	R
0x100	DIG_RESET	[7:1]	RESERVED		予備	0x0	R
		0	DIG_DATAPATH_PD	0	クロック・ツリーが安定するまで、すべてのデジタル・クロック (SERDES デジタル、デジタル・ クロック生成、およびデジタル・データパス)を リセット状態に保ちます。 通常動作モード。 デジタル・ロジックをリセット状態に保ちます。 チップへのクロックが安定したら (PLL ブロック と DLL ブロックがロックされたら)、デジタ ル・データパスを使用するために解除 (0 に設定) する必要があります。	0x1	R/W
0x110	JESD_MODE	7	MODE_NOT_IN_ TABLE		設定された JESD204B モードとインターポレーション・モードの組み合わせが有効ではありません。別の組み合わせを選んでください。	0x0	R
		6	COM_SYNC		デュアルリンクの場合にSYNCOUTx±信号を結合します。	0x0	R/W
		[5:0]	JESD_MODE		JESD204B モードの構成を設定します。JESD204B がサポートする動作モードと使用可能なインター ポレーション・レートについては表13を参照し てください。この制御のビット5は、シングルリ ンク (0に設定) かデュアルリンク (1に設定) かを決定します。ビット [4:0] は、表13に従い 目的の JESD204B モードを設定します。	0x20	R/W
0x111 IN	INTRP_MODE	[7:4]	DP_INTERP_MODE	0x1 0x2 0x4 0x6 0x8 0xC	メイン・データパスのインターポレーション・レートを設定します。JESD204B がサポートする動作モードと、使用可能なJESD204B モードおよびインターポレーション・レートについては、表13を参照してください。 1× 2× 4× 6× 8× 12×	0x8	R/W
		[3:0]	CH_INTERP_MODE	0x1 0x2 0x3 0x4 0x6 0x8	チャンネル・インターポレーション・レートを設定します。JESD204B がサポートする動作モードと、使用可能な JESD204B モードおよびメイン・データパス・インターポレーション・レートについては、表 13 を参照してください。 1× 2× 3× 4× 6× 8×	0x4	R/W
0x112	DDSM_DATAPATH_ CFG	7	RESERVED		予備	0x0	R
		6	EN_CMPLX_MOD	0	変調器スイッチ・モードの選択。この制御により、変調器スイッチの構成3を変更して、各NCOからの複素(I/Q)データをDACxに渡すことができます。この機能は、このレジスタ(レジスタ0x112)のビット [5:4] に適用される設定によって異なります。このビットをハイにセットすると、このレジスタのビット [5:4]が0b11に設定されます(変調器スイッチ構成3)。この制御は、レジスタ0x008のMAINDAC_PAGEビットによってページングされます。スイッチ構成は、ビット [5:4]の定義に従います。		

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				1	ビット [5:4] = 0b11 で DAC1 のメイン NCO がイネーブルの場合、DAC0 = I0_NCO + I1_NCO、DAC1 = Q0_NCO + Q1_NCO です。ビット [5:4] = 0b11 で DAC1 のメイン NCO がディスエーブル		
					の場合、DAC0 = I0_NCO、DAC1 = Q0_NCOで		
		[5:4]	DDSM_MODE		す。 変調器スイッチ・モードの選択。この制御は、設 定するメイン・データパス NCO の動作モードを 選択します。この制御は、レジスタ 0x008 の MAINDAC_PAGE ビットによってページングされ	0x0	R/W
				00	ます。 DAC0 = I0、DAC1 = I1		
				01	DAC0 = I0 + I1 , DAC1 = Q0 + Q1		
				10	DAC0 = I0、DAC1 = Q0		
				11	DAC0 = I0 + I1 DAC1 = 0		
		3	DDSM_NCO_EN		メイン・データパス変調を有効化。選択した JESD204B モードが複素モードの場合(メイン・ データパス・インターポレーション>1×)、この ビットは、使用するメイン・データパスごとに 1 に設定する必要があります。変調が不要な場合 は、FTW を 0 に設定します。この制御はレジス タ 0x008 の MAINDAC_PAGE ビットによってペ ージングされます。	0x0	R/W
				0	メイン・データパス NCO をディスエーブル。		
		2	DDGM	1	メイン・データパス NCO をイネーブル。	0.0	D/W/
		2	DDSM_ MODULUS_EN	0	メイン・データバス・モジュラス DDS をイネー ブルします。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされ ます。	0x0	R/W
				1	モジュラス DDS をディスエーブル。 モジュラス DDS をイネーブル。		
		1	DDSM_SEL_ SIDEBAND		変調結果から上側または下側サイドバンドを選択します。この制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R/W
				0	上側サイドバンドを使用。		
				1	下側サイドバンドを使用(スペクトル反転)。		
		0	EN_SYNC_ALL_ CHNL_NCO_RESETS		リセットと FTW 更新に使用する信号チャンネル NCO を選択します。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページング されます。	0x1	R/W
				0	チャンネル NCO が、チャンネル NCO 更新要求 に基づいて、その FTW をリセットまたは更新し ます。 チャンネル NCO が、メイン・データパス NCO		
				1	更新要求に基づいて、その FTW をリセットまた は更新します。		
0x113	DDSM_FTW_ UPDATE	7	RESERVED		予備	0x0	R
	OPDATE	[6:4]	DDSM_FTW_REQ_M ODE		周波数チューニング・ワード自動更新モード。この制御はレジスタ 0x008の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
				000	FTW レジスタへの書込み時に自動要求を生成しません。		
				001	DDSM_FTW ビット [7:0] の書込み後に自動的に DDSM_FTW_LOAD_REQ を生成します。		
				010	DDSM_FTWビット [15:8] の書込み後に自動的 に DDSM_FTW_LOAD_REQ を生成します。		
				011	DDSM_FTW ビット [23:16] の書込み後に自動的 に DDSM_FTW_LOAD_REQ を生成します。		

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				100	DDSM_FTW ビット [31:24] の書込み後に自動的 に DDSM_FTW_LOAD_REQ を生成します。		
				101	DDSM_FTW ビット [39:32] の書込み後に自動的 に DDSM_FTW_LOAD_REQ を生成します。		
				110	DDSM_FTW ビット [47:40] の書込み後に自動的 に DDSM_FTW_LOAD_REQ を生成します。		
		3	RESERVED		予備	0x0	R
		2	DDSM_FTW_ LOAD_SYSREF		SYSREF±の次の立上がりエッジを使用して FTW のロードとリセットをトリガします。このピットは、立上がりエッジ検出時点でキャリブレーション・トーン FTW とメイン NCO FTW もロードします。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
		1	DDSM_FTW_ LOAD_ACK	0	周波数チューニング・ワードの更新アクノレッジ。FTWと位相オフセット・ワードが正しくロードされた場合、このビットは1をリードバックします。この制御はレジスタ0x008のMAINDAC_PAGEビットによってページングされます。	0x0	R
				1	FTW がロードされます。		
		0	DDSM_FTW_ LOAD_REQ	0	SPI からの周波数チューニング・ワード更新要求。このビットは、立上がりエッジ検出時点でキャリブレーション・トーン FTW とメイン NCO FTW もロードします。この制御はレジスタ 0x008の MAINDAC_PAGE ビットによってページングされます。 DDSM_FTW_LOAD_ACK をクリアします。 0 から 1 への遷移時に FTW をロードします。	0x0	R/W
0x114	DDSM_FTW0	[7:0]	DDSM_FTW[7:0]		メイン・データパス NCO FTW.を設定。 DDSM_MODULUS_EN がローの場合、メイン・ データパス NCO 周波数 = f _{DAC} × (DDSM_FTW/248)。DDSM_MODULUS_EN が ハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなけれ ばなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなり ません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされ ます。	0x0	R/W
0x115	DDSM_FTW1	[7:0]	DDSM_FTW[15:8]		メイン・データパス NCO FTW.を設定。 DDSM_MODULUS_EN がローの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW/248)。DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W

Rev. 0 — 100/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x116	DDSM_FTW2	[7:0]	DDSM_FTW[23:16]		メイン・データパス NCO FTW.を設定。 DDSM_MODULUS_EN がローの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW/248) 。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) / 248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x117	DDSM_FTW3	[7:0]	DDSM_FTW[31:24]		メイン・データパス NCO FTW.を設定。 DDSM_MODULUS_EN がローの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW/248) 。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_DELTA は DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x118	DDSM_FTW4	[7:0]	DDSM_FTW[39:32]		メイン・データパス NCO FTW.を設定。 DDSM_MODULUS_EN がローの場合、メイン・ データパス NCO 周波数 = f _{DAC} × (DDSM_FTW/248)。 DDSM_MODULUS_EN が ハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。 DDSM_ACC_DELTA は 0 より大きくなければなりません。 DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x119	DDSM_FTW5	[7:0]	DDSM_FTW[47:40]		メイン・データパス NCO FTW.を設定。 DDSM_MODULUS_EN がローの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW/248) 。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x11C	DDSM_PHASE_ OFFSET0	[7:0]	DDSM_NCO_ PHASE_OFFSET[7:0]		メイン・データパス NCO 位相オフセットを設定。 コードは 16 ビットの 2 の補数フォーマットで す。度数オフセット = 180 ×コード/215。この制御 はレジスタ 0x008 の MAINDAC_PAGE ビットに よってページングされます。	0x0	R/W
0x11D	DDSM_PHASE_ OFFSET1	[7:0]	DDSM_NCO_ PHASE_ OFFSET[15:8]		メイン・データパス NCO 位相オフセットを設定。 コードは 16 ビットの 2 の補数フォーマットで す。度数オフセット = 180 ×コード/215。この制御 はレジスタ 0x008 の MAINDAC_PAGE ビットに よってページングされます。	0x0	R/W

Rev. 0 — 101/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x124	DDSM_ACC_ MODULUS0	[7:0]	DDSM_ACC_ MODULUS[7:0]		DDSM_ACC_MODULUS を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x125	DDSM_ACC_ MODULUS1	[7:0]	DDSM_ACC_ MODULUS[15:8]		DDSM_ACC_MODULUS を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x126	DDSM_ACC_ MODULUS2	[7:0]	DDSM_ACC_ MODULUS[23:16]		DDSM_ACC_MODULUS を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) / 248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x127	DDSM_ACC_ MODULUS3	[7:0]	DDSM_ACC_ MODULUS[31:24]		DDSM_ACC_MODULUS を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) / 248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS よければなりません。で制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x128	DDSM_ACC_ MODULUS4	[7:0]	DDSM_ACC_ MODULUS[39:32]		DDSM_ACC_MODULUS を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW+DDSM_ACC_DELTA/DDSM_ACC_MODULUS) // 248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS よりません。立の制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x129	DDSM_ACC_ MODULUS5	[7:0]	DDSM_ACC_ MODULUS[47:40]		DDSM_ACC_MODULUS を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x12A	DDSM_ACC_ DELTA0	[7:0]	DDSM_ACC_ DELTA[7:0]		DDSM_ACC_DELTA を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。Cの制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W

Rev. 0 — 102/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x12B	DDSM_ACC_ DELTA1	[7:0]	DDSM_ACC_ DELTA[15:8]		DDSM_ACC_DELTA を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS とかければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ピットによってページングされます。	0x0	R/W
0x12C	DDSM_ACC_ DELTA2	[7:0]	DDSM_ACC_ DELTA[23:16]		DDSM_ACC_DELTA を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = fDAC × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUSより大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x12D	DDSM_ACC_ DELTA3	[7:0]	DDSM_ACC_ DELTA[31:24]		DDSM_ACC_DELTA を設定。 DDSM_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x12E	DDSM_ACC_ DELTA4	[7:0]	DDSM_ACC_ DELTA[39:32]		DDSM_ACC_DELTA を設定。 DDSM_MODULUS_EN がハイの場合、メイン・ データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x12F	DDSM_ACC_ DELTA5	[7:0]	DDSM_ACC_ DELTA[47:40]		DDSM_ACC_DELTA を設定。 DDSM_MODULUS_EN がハイの場合、メイン・ データパス NCO 周波数 = f _{DAC} × (DDSM_FTW + DDSM_ACC_DELTA/DDSM_ACC_MODULUS) /248。DDSM_ACC_DELTA は 0 より大きくなければなりません。DDSM_ACC_DELTA は DDSM_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x130	DDSC_DATAPATH_	7	RESERVED		予備	0x0	R
	CFG	6	DDSC_NCO_EN	0 1	チャンネル・データパス変調を有効化。選択した JESD204B モードが複素モードの場合(チャンネル・インターポレーション>1×)、このビットは、使用するチャンネル・データパスごとに1に設定する必要があります。変調が不要な場合は、FTWを0に設定します。この制御はレジスタ0x008の CHANNEL_PAGE ビットによってページングされます。チャンネル NCO をディスエーブル。チャンネル NCO をイネーブル。	0x0	R/W
		[5:3]	RESERVED		予備	0x0	R/W
		2	DDSC_MODULUS_EN	0	チャンネル・モジュラス DDS をイネーブル。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。 モジュラス DDS をディスエーブル。 モジュラス DDS をイネーブル。	0x0	R/W
		1	DDSC_SEL_ SIDEBAND	1	変調結果から上側または下側サイドバンドを選択します。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W

Rev. 0 - 103/150 -

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				0	上側サイドバンドを使用。		
		0	PROGENIAC	1	下側サイドバンドを使用(スペクトル反転)。	0.0	D/III
		0	DDSC_EN_DC_ INPUT		DC をチャンネル DDS の入力レベルに送ることに よるテスト・トーン生成をイネーブル。振幅は、	0x0	R/W
					DC_TEST_INPUT_AMPLITUDE 制御(レジスタ		
					0x148 とレジスタ 0x149) で設定します。この制		
					御はレジスタ 0x008 の CHANNEL_PAGE ビット によってページングされます。		
				0	テスト・トーン生成を無効化。		
				1	テスト・トーン生成を有効化。		
0x131	DDSC FTW UPDATE	[7:3]	RESERVED	1	予備	0x0	R
******		2	DDSC FTW		SYSREF±の次の立上がりエッジを使用してFTWの	0x0	R/W
			LOAD_SYSREF		ロードとリセットをトリガ。この制御はレジスタ		
					0x008のCHANNEL_PAGE ビットによってページ		
			DDGG FTW		ングされます。	0.0	
		1	DDSC_FTW_ LOAD_ACK		周波数チューニング・ワードの更新アクノレッジ・ビット。FTW と位相オフセット・ワードが	0x0	R
					正しくロードされた場合、このビットは1をリー		
					ドバックします。この制御はレジスタ 0x008 の		
					CHANNEL_PAGE ビットによってページングされ		
				0	ます。 FTW はロードされません。		
				1	FTW がロードされます。		
		0	DDSC_FTW_	1	SPIからの周波数チューニング・ワード更新要	0x0	R/W
			LOAD_REQ		求。この制御はレジスタ 0x008 の		
					CHANNEL_PAGE ビットによってページングされ		
					ます。		
				0	FTW は更新されません。		
0x132	DDSC FTW0	[7:0]	DDSC FTW[7:0]	1	0から1への遷移時にFTWをロードします。 チャンネル・データパス NCO FTW を設定。	0x0	R/W
0X132	DDSC_F1W0	[7:0]	DDSC_F1W[7:0]		DDSC MODULUS ENがローの場合、メイン・	UXU	IC/ W
					データパス NCO 周波数 = f _{DAC} ×		
					(DDSC_FTW/248) 。 DDSC_MODULUS_EN ⊅5		
					ハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC FTW +		
					DDSC ACC DELTA/DDSC ACC MODULUS)		
					/248。DDSC_ACC_DELTA は 0 より大きくなけれ		
					ばなりません。DDSC_ACC_DELTA は DDSC ACC MODULUS より大きくなければなり		
					ません。この制御はレジスタ 0x008 の		
					CHANNEL_PAGE ビットによってページングされ		
					ます。		
0x133	DDSC_FTW1	[7:0]	DDSC_FTW[15:8]		チャンネル・データパス NCO FTW を設定。	0x0	R/W
					DDSC_MODULUS_EN がローの場合、メイン・ データパス NCO 周波数 = f _{DAC} ×		
					(DDSC_FTW/248) 。 DDSC_MODULUS_EN が		
					ハイの場合、メイン・データパス NCO 周波数 =		
					f _{DAC} × (DDSC_FTW +		
					DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC ACC DELTA は 0 より大きくなけれ		
					ばなりません。DDSC_ACC_DELTAは		
					DDSC_ACC_MODULUS より大きくなければなり		
					ません。この制御はレジスタ 0x008 の CHANNEL PAGE ビットによってページングされ		
					st.		
0x134	DDSC_FTW2	[7:0]	DDSC_FTW[23:16]		チャンネル・データパス NCO FTW を設定。	0x0	R/W
					DDSC_MODULUS_EN がローの場合、メイン・		
					データパス NCO 周波数 = f _{DAC} × (DDSC FTW/248)。 DDSC MODULUS EN が		
					ハイの場合、メイン・データパス NCO 周波数 =		
					$f_{DAC} \times (DDSC_FTW +$		
					DDSC_ACC_DELTA/DDSC_ACC_MODULUS)		
					/248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC ACC DELTA は		
					DDSC_ACC_MODULUS より大きくなければなり		
					ません。この制御はレジスタ 0x008 の		
					CHANNEL_PAGE ビットによってページングされます。		
-	<u> </u>	1	<u> </u>		♣ ७ 0	<u> </u>	<u> </u>

Rev. 0 - 104/150 -

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x135	DDSC_FTW3	[7:0]	DDSC_FTW[31:24]		チャンネル・データパス NCO FTW を設定。 DDSC_MODULUS_EN がローの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW/248)。DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS)/248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x136	DDSC_FTW4	[7:0]	DDSC_FTW[39:32]		チャンネル・データパス NCO FTW を設定。 DDSC_MODULUS_EN がローの場合、メイン・ データパス NCO 周波数 = fbac × (DDSC_FTW/248)。 DDSC_MODULUS_EN が ハイの場合、メイン・データパス NCO 周波数 = fbac × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなけれ ばなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなり ません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされ ます。	0x0	R/W
0x137	DDSC_FTW5	[7:0]	DDSC_FTW[47:40]		チャンネル・データパス NCO FTW.を設定。 DDSC_MODULUS_EN がローの場合、メイン・データパス NCO 周波数 = fbac × (DDSC_FTW/248)。DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = fbac × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS)/248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x138	DDSC_PHASE_ OFFSET0	[7:0]	DDSC_NCO_ PHASE_OFFSET[7:0]		チャンネル NCO 位相オフセットを設定。コードは 16 ビットの 2 の補数フォーマットです。 度数オフセット = 180× (コード/215)。この制御はレジスタ 0x008の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x139	DDSC_PHASE_ OFFSET1	[7:0]	DDSC_NCO_ PHASE_ OFFSET[15:8]		チャンネル NCO 位相オフセットを設定。コードは 16 ビットの 2 の補数フォーマットです。 度数オフセット = 180× (コード/215)。この制御はレジスタ 0x008の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x13A	DDSC_ACC_ MODULUS0	[7:0]	DDSC_ACC_ MODULUS[7:0]		DDSC_ACC_MODULUS を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x13B	DDSC_ACC_ MODULUSI	[7:0]	DDSC_ACC_ MODULUS[15:8]		DDSC_ACC_MODULUS を設定。 DDSC_MODULUS_ENがハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。Cの制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W

Rev. 0 — 105/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x13C	DDSC_ACC_ MODULUS2	[7:0]	DDSC_ACC_ MODULUS[23:16]		DDSC_ACC_MODULUS を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x13D	DDSC_ACC_ MODULUS3	[7:0]	DDSC_ACC_ MODULUS[31:24]		DDSC_ACC_MODULUS を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} ×(DDSC_FTW + DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。CMDULUS より大きくなければなりません。CMDULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x13E	DDSC_ACC_ MODULUS4	[7:0]	DDSC_ACC_ MODULUS[39:32]		DDSC_ACC_MODULUS を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x13F	DDSC_ACC_ MODULUS5	[7:0]	DDSC_ACC MODULUS[47:40]		DDSC_ACC_MODULUS を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x140	DDSC_ACC_DELTA 0	[7:0]	DDSC_ACC_ DELTA[7:0]		DDSC_ACC_DELTA を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。 DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x141	DDSC_ACC_ DELTA1	[7:0]	DDSC_ACC_ DELTA[15:8]		DDSC_ACC_DELTA を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W

Rev. 0 — 106/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x142	DDSC_ACC_DELTA 2	[7:0]	DDSC_ACC_ DELTA[23:16]		DDSC_ACC_DELTA を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} ×(DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。Cの制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x143	DDSC_ACC_DELTA 3	[7:0]	DDSC_ACC_ DELTA[31:24]		DDSC_ACC_DELTA を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。CC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x144	DDSC_ACC_DELTA 4	[7:0]	DDSC_ACC_ DELTA[39:32]		DDSC_ACC_DELTA を設定。 DDSC_MODULUS_EN がハイの場合、メイン・データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。 DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x145	DDSC_ACC_DELTA 5	[7:0]	DDSC_ACC_ DELTA[47:40]		DDSC_ACC_DELTA を設定。 DDSC_MODULUS_EN がハイの場合、メイン・ データパス NCO 周波数 = f _{DAC} × (DDSC_FTW + DDSC_ACC_DELTA/DDSC_ACC_MODULUS) /248。DDSC_ACC_DELTA は 0 より大きくなければなりません。DDSC_ACC_DELTA は DDSC_ACC_MODULUS より大きくなければなりません。この制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W
0x146	CHNL_GAIN0	[7:0]	CHNL_GAIN[7:0]		スカラ・チャンネルのゲイン値を設定。この制御 はレジスタ 0x008 の CHANNEL_PAGE ビットに よってページングされます。チャンネル・ゲイン = CHNL GAIN/211。	0x0	R/W
0x147	CHNL GAIN1	[7:4]	RESERVED	†	- CHNL_GARV211。 予備	0x0	R
		[3:0]	CHNL_GAIN[11:8]		スカラ・チャンネルのゲイン値を設定。この制御 はレジスタ 0x008の CHANNEL_PAGE ビットに よってページングされます。チャンネル・ゲイン = CHNL_GAIN/211。	0x8	R/W
0x148	DC_CAL_TONE0	[7:0]	DC_TEST_INPUT_ AMPLITUDE[7:0]		DC テスト・トーン振幅。この値は、IパスとQパスの振幅を個別に設定します。フルスケール・トーンの場合はこれらのビットを 0x50FF に設定して、レジスタ 0x130 ビット 0のDDSC_EN_DC_INPUT が 1 に設定されていることを確認します。この制御は、レジスタ 0x008 のCHANNEL_PAGE 制御によってページングされます。	0x0	R/W
0x149	DC_CAL_TONE1	[7:0]	DC_TEST_INPUT_ AMPLITUDE[15:8]		DCテスト・トーン振幅。この値は、Iパスと Q パスの振幅を個別に設定します。フルスケール・ トーンの場合は 0x50FF に設定して、 DDSC_EN_DC_INPUT (レジスタ 0x130、ビット 0) が I に設定されていることを確認します。こ の制御はレジスタ 0x008 の CHANNEL_PAGE ビットによってページングされます。	0x0	R/W

Rev. 0 - 107/150 -

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x14B	PRBS	7	PRBS_GOOD_Q		DAC1 正常データ・インジケータ。	0x0	R
				1	正しい PRBS シーケンスが検出されました。		
				0	正しくないシーケンスが検出されました。スティ		
					ッキー: PRBS_RESET により 1 にリセットして		
			PPDG GGGP 7		ください。		_
		6	PRBS_GOOD_I		DAC0 正常データ・インジケータ。	0x0	R
				0	正しくないシーケンスが検出されました。スティ		
					ッキー: PRBS_RESET により 1 にリセットしてください。		
				1	正しい PRBS シーケンスが検出されました。		
		5	RESERVED		予備	0x0	R
		4	PRBS INV Q		DAC1 データ反転。	0x1	R/W
				0	通常データが使われます。		
				1	反転データが使われます。		
		3	PRBS INV I		DAC0 データ反転。	0x0	R/W
				0	通常データが使われます。		
				1	反転データが使われます。		
		2	PRBS MODE		データパス PRBS テストにどの PRBS 多項式を使	0x0	R/W
					用するかを選択。		
				0	7 ビット: x ⁷ + x ⁶ + 1。		
				1	15 ビット: x ¹⁵ + x ¹⁴ + 1。		
		1	PRBS RESET		エラー・カウンタをリセット。	0x0	R/W
			_	0	通常動作。		
				1	カウンタをリセット。		
		0	PRBS EN		PRBS チェッカーをイネーブル。	0x0	R/W
			_	0	ディスエーブル。		
				1	イネーブル。		
0x14C	PRBS ERROR I	[7:0]	PRBS_COUNT_I		DACO PRBS エラー・カウント。	0x0	R
0x14D	PRBS ERROR Q	[7:0]	PRBS COUNT Q		DAC1 PRBS エラー・カウント。	0x0	R
0x14E	PRBS CHANSEL	[7:3]	RESERVED		予備	0x0	R
		[2:0]	PRBS CHANSEL		PRBS GOOD xおよび PRBS COUNT x ビット・	0x7	R/W
		,	_		フィールドのリードバックに対応するチャンネル		
					を選択。		
				0	PRBS_COUNT_x と PRBS_GOOD_x にチャンネル 0 を選択します(チャンネル 0、DAC0)。		
				1	PRBS_COUNT_x と PRBS_GOOD_x にチャンネル 1を選択します (チャンネル 1、DAC0)。		
				2	PRBS_COUNT_x と PRBS_GOOD_x にチャンネル 2 を選択します (チャンネル 2、DAC0)。		
				3	PRBS_COUNT_x と PRBS_GOOD_x にチャンネル 3 を選択します(チャンネル 0、DAC1)。		
				4	PRBS_COUNT_x と PRBS_GOOD_x にチャンネル		
				5	4を選択します(チャンネル 1、DAC1)。 PRBS_COUNT_x と PRBS_GOOD_x にチャンネル		
				6	5 を選択します (チャンネル 2、DAC1)。 PRBS GOOD x のすべてのチャンネルの OR を取		
				V	り、PRBS_COUNT_x のすべてのチャンネルの総 和を取ります。		
0x151	DECODE MODE	[7:5]	RESERVED		予備	0x0	R
		4	MSB_SHUFFLE_EN		MSB シャッフリング制御。MSB シャッフリング を有効にするには 1、MSB シャッフリングを無効	0x0	R/W
					にして代わりにデフォルトの (静的) サーモメータ・エンコーディングを使用するには、0を設定		
		F2 63	DECEDIED		します。	00	D
0x1DE	CDI ENADIE	[3:0]	RESERVED		予備	0x0	R
	SPI_ENABLE	[7:2]	RESERVED		予備 CDT (11/07 + - + + + 1/1)	0x0	R
		1	SPI_EN1		SPI制御を有効化。	0x1	R/W
	1	0	SPI_EN0		SPI制御を有効化。	0x1	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x1E2	DDSM_CAL_FTW0	[7:0]	DDSM_CAL_ FTW[7:0]		キャリブレーション・アキュムレータの FTW。 この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x1E3	DDSM_CAL_FTW1	[7:0]	DDSM_CAL_ FTW[15:8]		キャリブレーション・アキュムレータの FTW。 この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x1E4	DDSM_CAL_FTW2	[7:0]	DDSM_CAL_ FTW[23:16]		キャリブレーション・アキュムレータの FTW。 この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x1E5	DDSM_CAL_FTW3	[7:0]	DDSM_CAL_ FTW[31:24]		キャリブレーション・アキュムレータの FTW。 この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x1E6	DDSM_CAL_MODE_	[7:3]	RESERVED		予備	0x0	R
	DEF	2	DDSM_EN_CAL_ ACC	0	クロック・キャリブレーション・アキュムレータをイネーブル。このビットは、最初にハイに設定する必要があり、更にレジスタ 0x1E2~レジスタ 0x1E5にキャリブレーション FTW をロードして有効にする必要があります。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。 ディスエーブル(キャリブレーション周波数アキュムレータにクロックを供給しません)。 イネーブル(キャリブレーション周波数アキュムレータへのクロックをオンにします)	0x0	R/W
		DDSM_EN_CAL_ DC_INPUT	0	キャリブレーション DDS への DC 入力をイネーブルします。この制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。 最終 DDS の入力に、データパス信号を多重化して送信します。 最終 DDS の入力に、DC を多重化して送信します。	0x0	R/W	
		0	DDSM_EN_CAL_ FREQ_TUNE	0	DAC 0 のみ、キャリブレーション周波数への信号 チューニングを有効化。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページ ングされます。 キャリブレーション周波数チューニングを無効に します。 キャリブレーション周波数チューニングを有効に します。	0x0	R/W
0x1E7	DATAPATH NCO	[7:3]	RESERVED		予備	0x0	R
	SYNC_CFG	2	LO_MODE_ENABLE		LOモードでメイン NCO の機能を有効にするには、このビットを1に設定します。	0x0	R/W
		1	ALL_NCO_SYNC_ ACK		すべてのアクティブ NCO へのロードが完了したことのアクノレッジ信号。このビットは、START_NCO_SYNC ビット(このレジスタのビット 0)と NCORST_AFTER_ROT_EN ビット(レジスタ 0x03B、ビット 4)両方による NCOリセット方法のアクノレッジ・インジケータです。この制御はレジスタ 0x008 のMAINDAC_PAGE ビットによってページングされます。	0x0	R
		0	START_NCO_SYNC		選択した更新トリガに応じて、SPI ビットまたは SYSREF±信号の立上がりエッジで NCO の同期を 開始するために使用します。トリガを受信すると 最初に FTW がロードされ、それから同期が行われます。この制御はレジスタ 0x008 の MAINDAC_PAGE ビットによってページングされます。	0x0	R/W
0x200	MASTER_PD	[7:1]	RESERVED		予備	0x0	R
		0	SERDES_MASTER_ PD		JESD204B のレシーバー・アナログ全体を停止 (8 個のチャンネルすべてとバイアス)。	0x1	R/W

Rev. 0 — 109/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x201	PHY_PD	[7:0]	PHY_PD		個々の PHY を停止するための SPI オーバーライ	0xEE	R/W
					ド。ビット 0 は SERDIN0± PHY を制御。		
					ビット 1 は SERDIN1± PHY を制御。		
					ビット 2 は SERDIN2± PHY を制御。		
					ビット 3 は SERDIN3± PHY を制御。		
					ビット 4 は SERDIN4± PHY を制御。		
					ビット 5 は SERDIN5± PHY を制御。		
					ビット 6 は SERDIN6± PHY を制御。		
					ビット7は SERDIN7± PHY を制御。		
0x203	GENERIC_PD	[7:2]	RESERVED		予備	0x0	R
		1	PD_SYNCOUT0		SYNCOUT0±ドライバを停止。	0x0	R/W
				0	SYNCOUT0±出力ピンをイネーブル。		
				1	SYNCOUT0±出力ピンを停止。		
		0	PD SYNCOUT1		SYNCOUT1±ドライバを停止。	0x1	R/W
				0	SYNCOUT1±出力ピンをイネーブル。		
				1	SYNCOUT1±出力ピンを停止。		
0x206	CDR_RESET	[7:1]	RESERVED		予備	0x0	R
		0	CDR PHY RESET		PHY リセット制御ビット。デバイス動作中に	0x0	R/W
					PHY のリセットを解除するには、このビットを1		
					に設定します。		
0x210	CBUS_ADDR	[7:0]	SERDES_CBUS_ ADDR		SERDES 設定アドレス制御を設定するための SERDES 設定制御レジスタ。	0x0	R/W
0x212	CBUS_WRSTROBE_ PHY	[7:0]	SERDES_CBUS_ WR0		書き込まれた SERDES 設定制御をコミットする ための SERDES 設定制御レジスタ。	0x0	R/W
0x213	CBUS WRSTROBE	[7:1]	RESERVED		予備	0x0	R
0.4215	OTHER	0	SERDES_CBUS_		書き込まれた SERDES 設定制御をコミットする	0x0	R/W
			WR1		ための SERDES 設定制御レジスタ。	0.00	IV W
0x216	CBUS_WDATA	[7:0]	SERDES_CBUS_ DATA		SERDES 設定制御データを設定するための SERDES 設定制御レジスタ。	0x0	R/W
0x240	EQ_BOOST_PHY_ 3 0	[7:6]	EQ_BOOST_PHY3		システムの挿入損失に基づく PHY3 のイコライザ 設定。	0x3	R/W
	_			10	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[5:4]	EQ BOOST PHY2	11	システムの挿入損失に基づく PHY2 のイコライザ	0x3	R/W
		[3.4]	ЕО_ВООЗІ_ПП2		設定。	UAS	IV W
				10	挿入損失 ≤ 11dB。		
				11	挿入損失 > 11dB。		
		[3:2]	EQ BOOST PHY1		システムの挿入損失に基づく PHY1 のイコライザ	0x3	R/W
		[5.2]	24_20001_11111		設定。	0.12	10 11
				10	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[1:0]	EQ BOOST PHY0		システムの挿入損失に基づく PHY0 のイコライザ	0x3	R/W
		,			設定。		
				10	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
0x234	CDR_BITINVERSE	[7:0]	SEL_IF_ PARDATAINV_DES_R		出力データ反転ビットの制御。PHYxに対応する ビットxを設定して、ビット極性を反転。	0x66	R/W
			C_CH		# h		
				0	非反転。		
				1	反転。		
0x241	EQ_BOOST_PHY_ 7_4	[7:6]	EQ_BOOST_PHY7		システムの挿入損失に基づく PHY7 のイコライザ 設定。	0x3	R/W

Rev. 0 — 110/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				10	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[5:4]	EQ_BOOST_PHY6		システムの挿入損失に基づく PHY6 のイコライザ 設定。	0x3	R/W
				10	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[3:2]	EQ_BOOST_PHY5		システムの挿入損失に基づく PHY5 のイコライザ 設定。	0x3	R/W
				10	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[1:0]	EQ_BOOST_PHY4		システムの挿入損失に基づく PHY4 のイコライザ 設定。	0x3	R/W
				10	挿入損失 ≤ 11dB。		
0.242	EQ CARL NUM 2.0	FE 63	EO CARL NINA	11	挿入損失>11dB。	0.2	D /III
0x242	EQ_GAIN_PHY_3_0	[7:6]	EQ_GAIN_PHY3	01	システムの挿入損失に基づく PHY3 のイコライザ・ゲイン。	0x3	R/W
				-	挿入損失≥11dB。 挿入損失>11dB。		
		[5:4]	EQ_GAIN_PHY2	11	1押入損犬 > 11dB。 システムの挿入損失に基づく PHY2 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[3:2]	EQ_GAIN_PHY1		システムの挿入損失に基づく PHY1 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[1:0]	EQ_GAIN_PHY0		システムの挿入損失に基づく PHY0 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
0x243	EQ_GAIN_PHY_7_4	[7:6]	EQ_GAIN_PHY7		システムの挿入損失に基づく PHY7 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[5:4]	EQ_GAIN_PHY6		システムの挿入損失に基づく PHY6 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
		[3:2]	EQ_GAIN_PHY5	11	挿入損失>11dB。 システムの挿入損失に基づく PHY5 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
		[1:0]	EQ_GAIN_PHY4		システムの挿入損失に基づく PHY4 のイコライ ザ・ゲイン。	0x3	R/W
				01	挿入損失≤11dB。		
				11	挿入損失 > 11dB。		
0x244	EQ_FB_PHY_0	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY_0		PHY0の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0xIF に設定しま	0x19	R/W
0x245	EQ FB PHY 1	[7:5]	RESERVED		す。 予備	0x0	R
UAL IU	24.12.111.1	[4:0]	EQ PHY1		PHY1の SERDES イコライザ設定。最大限の性能	0x19	R/W
		[4.0]	20,11111		を引き出すには、この制御を OxIF に設定します。	VAI	10 W
0x246	EQ_FB_PHY_2	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY2		PHY2の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0x1F に設定しま	0x19	R/W

Rev. 0 — 111/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x247	EQ_FB_PHY_3	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY3		PHY3の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0xIF に設定します。	0x19	R/W
0x248	EQ FB PHY 4	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY4		PHY4の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0x1F に設定します。	0x19	R/W
0x249	EQ_FB_PHY_5	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY5		PHY5の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0x1F に設定します。	0x19	R/W
0x24A	EQ_FB_PHY_6	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY6		PHY6の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0xIF に設定します。	0x19	R/W
0x24B	EQ_FB_PHY_7	[7:5]	RESERVED		予備	0x0	R
		[4:0]	EQ_PHY7		PHY7の SERDES イコライザ設定。最大限の性能を引き出すには、この制御を 0xIF に設定します。	0x19	R/W
0x250	LBT_REG_CNTRL_0	[7:0]	EN_LBT_DES_ RC_CH		必要な物理レーンのループバック・テストを PHYごとに有効化。ビットxがPHYxに対応。	0x0	R/W
0x251	LBT_REG_CNTRL_1	[7:2]	RESERVED		予備	0x0	R
		1	EN_LBT_ HALFRATE_DES_ RC		ループバック・テストのハーフ・レート・モードを有効化。このビットを1に設定すると、出力データ・レートは入力クロック周波数の2倍になります。このビットを0に設定すると、出力データ・レートは入力クロック周波数と同じになります。	0x1	R/W
		0	INIT_LBT_SYNC_ DES_RC		このビットを0から1に変更し、再度0へ戻すことによってループバック・テストを開始。	0x0	R/W
0x253	SYNCOUT0_CTRL	[7:1]	RESERVED		予備	0x0	R/W
		0	SEL_SYNCOUT0_ MODE	0	この制御は、SYNCOUT0±ピン動作の出力ドライバ・モードを決定。SYNCOUT0±とSYNCOUT1±は、共に同じ動作モードに設定する必要があります。 SYNCOUT0±をCMOS出力に設定。 SYNCOUT0±をLVDS出力に設定。	0x0	R/W
0x254	SYNCOUT1_CTRL	[7:1]	RESERVED		予備	0x0	R/W
		0	SEL_SYNCOUTI_ MODE	0 1	この制御は、SYNCOUT1±ピン動作の出力ドライバ・モードを決定。SYNCOUT0±とSYNCOUT1±は、共に同じ動作モードに設定する必要があります。 SYNCOUT1±をCMOS出力に設定。 SYNCOUT1±をLVDS出力に設定。	0x0	R/W
0x280	PLL_ENABLE_CTRL	[7:3]	RESERVED		予備	0x0	R
		2	LOLSTICKYCLEAR_ LCPLL_RC		ロック喪失ビットをクリア。	0x0	R/W
		1	LDSYNTH_LCPLL_ RC		パルス・ハイで VCO キャリブレーションを開始 (レギュレータの再起動や温度の再測定は行わない)。	0x0	R/W
		0	SERDES_PLL_ STARTUP		このビットを 0 に設定すると SERDES 回路プロックがパワー・オフ。 SERDES 設定書込み終了時には、このビットを 1 に設定します。このビットを 1 に設定すると、SERDES PLL ブロックが起動されて LDO およびキャリブレーション・ルーチンが起動し、そのデバイスに設定されている JESD204B モードとインターポレーション・オプションに基づいて、PLL が自動的に適切なレーン・レートにロックされます。PLL がロックを完了すると、SERDES_PLL_LOCK ビット(レジスタ 0x281、ビット 0)が 1 になります。	0x1	R/W

Rev. 0 — 112/150 —

PLL STATUS						
_	[7:1]	RESERVED		予備	0x0	R
	0	SERDES_PLL_LOCK		このビットがハイのときは PLL がロックされて います。	0x0	R
GENERAL_JRX_	[7:4]	RESERVED		予備	0x0	R
CTRL_0	3	LINK_MODE		シングルリンク・モードのときは0をリードバックし、デュアルリンク・モードのときは1をリードバックします。	0x0	R/W
	2	LINK_PAGE	0	リンクのページング。このビットは、どのリンク・レジスタ・マップを使用するかを選択します。このページングはレジスタ 0x400~レジスタ 0x4BB に影響します。 リンク 0の QBD0 をページングします。	0x0	R/W
	[1:0]	LINK_EN		すべてのリンク・パラメータが設定されて、すべてのクロックが使用可能な状態になっているときは、これらのビットがJESD204Bデジタル・レシーバーを起動します。ビット0はリンク0に、ビット1はリンク1に対応しています。リンク1を使用できるのはデュアルリンク・モードに限られ	0x0	R/W
DYN_LINK_	[7:6]	RESERVED		予備	0x0	R
LATENCY_0	[5:0]	DYN_LINK_ LATENCY_0		リンク 0 のダイナミック・リンク遅延。リンク 0 の LMFC レシーバーと最後に到着した LMFC 境界の間の遅延を、PCLK サイクル数で表した値です。	0x0	R
DYN_LINK_	[7:6]	RESERVED		予備	0x0	R
LATENCY_1	[5:0]	DYN_LINK_ LATENCY_1		リンク1のダイナミック・リンク遅延。リンク1 のLMFC レシーバーと最後に到着したLMFC境 界の間の遅延を、PCLK サイクル数で表した値で す。	0x0	R
LMFC DELAY 0	[7:6]	RESERVED			0x0	R
	[5:0]	LMFC_DELAY_0		リンク 0の LMFC 遅延。リンク 0の LMFC から LMFC レシーバーまでの遅延を PCLK サイクル数	0x0	R/W
LMFC DELAY 1	[7:6]	RESERVED			0x0	R
	[5:0]	LMFC_DELAY_1		リンク1のLMFC遅延。リンク1のLMFCから LMFCレシーバーまでの遅延をPCLKサイクル数 で表した値です。	0x0	R/W
LMFC_VAR_0	[7:6]	RESERVED		予備	0x0	R
	[5:0]	LMFC_VAR_0		リンク 0の可変遅延バッファ。これらのビットは、リンクが違ったり電源サイクルを行ったりした場合でも一貫性を保てるように、パッファからいつデータを読み出すかを設定します(PCLKサイクル単位)。最大値は 0xC です。	0x3F	R/W
LMFC_VAR_1	[7:6]	RESERVED		予備	0x0	R
	[5:0]	LMFC_VAR_1		リンク1の可変遅延バッファ。これらのビットは、リンクが違ったり電源サイクルを行ったりした場合でも一貫性を保てるように、バッファからいつデータを読み出すかを設定します(PCLKサイクル単位)。最大値は 0xC です。	0x3F	R/W
XBAR_LN_0_1	[7:6]	RESERVED		予備	0x0	R
	[5:3]	LOGICAL_LANE1_ SRC	000 001 010 011 100 101	論理レーン1のソース。これらのビットは、論理レーン1にマップする物理レーンを選択します。 データを SERDIN0±から取得。 データを SERDIN1±から取得。 データを SERDIN2±から取得。 データを SERDIN3±から取得。 データを SERDIN4±から取得。 データを SERDIN5±から取得。 データを SERDIN5±から取得。	0x1	R/W
	DYN_LINK_ LATENCY_0 DYN_LINK_ LATENCY_1 LMFC_DELAY_0 LMFC_DELAY_1 LMFC_VAR_0	CTRL_0	CTRL_0	CTRL_0	GENERAL_RX [7.4] RESERVED	GENERAL_JRX T.4 RESERVED 子催 シングルリンク・モードのときはもをラードバックし、デスタします。 1.DNC_MODE シングルリンク・モードのときはもをラードバックし、ディックします。 リンタのページング、このピットは、どのリンタ・レンスタ・マックを使用するかを聴発します。 0

Rev. 0 — 113/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				111	データを SERDIN7±から取得。		
		[2:0]	LOGICAL_LANE0_ SRC		論理レーン 0 のソース。これらのビットは、論理 レーン 0 にマップする物理レーンを選択します。	0x0	R/W
				000	データを SERDIN0±から取得。		
				001	データを SERDIN1±から取得。		
				010	データを SERDIN2±から取得。		
				011	データを SERDIN3±から取得。		
				100	データを SERDIN4±から取得。		
				101	データを SERDIN5±から取得。		
				110	データを SERDIN6±から取得。		
				111	データを SERDIN7±から取得。		
0x309	XBAR LN 2 3	[7:6]	RESERVED		予備	0x0	R
		[5:3]	LOGICAL_LANE3_ SRC		論理レーン3のソース。これらのビットは、論理 レーン3にマップする物理レーンを選択します。	0x3	R/W
				000	データを SERDIN0±から取得。		
				001	データを SERDIN1±から取得。		
				010	データを SERDIN2±から取得。		
				010	データを SERDIN3±から取得。		
				100	データを SERDIN4±から取得。		
				101	データを SERDIN5±から取得。		
				110	データを SERDING±から取得。		
				111	データを SERDIN7±から取得。		
		[2:0]	LOGICAL_LANE2_ SRC	111	論理レーン2のソース。これらのビットは、論理レーン2にマップする物理レーンを選択します。	0x2	R/W
			Sicc	000	データを SERDINO±から取得。		
				000	ブークを SERDINUEから取得。 データを SERDINI±から取得。		
				010	データを SERDINIEから取得。		
				010	データを SERDIN3±から取得。 データを SERDIN3±から取得。		
				100	ブータを SERDIN4±から取得。 データを SERDIN4±から取得。		
				100	ブータを SERDIN4±から取得。 データを SERDIN5±から取得。		
				110	データを SERDING±から取得。 データを SERDIN6±から取得。		
				111	データを SERDIN7±から取得。		
0x30A	XBAR LN 4 5	[7,6]	RESERVED	111	テ備	0x0	R
0X30A	ABAK_LN_4_3	[7:6] [5:3]	LOGICAL_LANE5_ SRC		論理レーン5のソース。これらのビットは、論理	0x5	R/W
			Sicc	000	レーン 5 にマップする物理レーンを選択します。		
					データを SERDINO±から取得。		
				001	データを SERDINI±から取得。		
				010	データを SERDIN2±から取得。		
				011	データを SERDIN3±から取得。		
				100	データを SERDIN4±から取得。		
				101	データを SERDIN5±から取得。		
				110	データを SERDIN6±から取得。		
		[2:0]	LOGICAL_LANE4_	111	データを SERDIN7±から取得。 論理レーン4のソース。これらのビットは、論理	0x4	R/W
			SRC		レーン4にマップする物理レーンを選択します。		
				000	データを SERDIN0±から取得。		
				001	データを SERDIN1±から取得。		
				010	データを SERDIN2±から取得。		
				011	データを SERDIN3±から取得。		
		1		100	データを SERDIN4±から取得。		

Rev. 0 — 114/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				101	データを SERDIN5±から取得。		
				110	データを SERDIN6±から取得。		
				111	データを SERDIN7±から取得。		
0x30B	XBAR_LN_6_7	[7:6]	RESERVED		予備	0x0	R
		[5:3]	LOGICAL_LANE7_ SRC		論理レーン 7 のソース。これらのビットは、論理	0x7	R/W
			SKC	000	レーン7にマップする物理レーンを選択します。		
				000	データを SERDIN0±から取得。		
				001	データを SERDIN1±から取得。		
				010	データを SERDIN2±から取得。 データを SERDIN3±から取得。		
				011 100			
				100	データを SERDIN4±から取得。 データを SERDIN5±から取得。		
				110	データを SERDING±から取得。 データを SERDING±から取得。		
				111	データを SERDINO±から取得。 データを SERDIN7±から取得。		
		[2:0]	LOGICAL LANE6	111	論理レーン6のソース。これらのビットは、論理	0x6	R/W
		[2.0]	SRC		ー レーン 6 にマップする物理レーンを選択します。	UXU	IV W
				000	データを SERDIN0±から取得。		
				001	データを SERDIN1±から取得。		
				010	データを SERDIN2±から取得。		
				011	データを SERDIN3±から取得。		
				100	データを SERDIN4±から取得。		
				101	データを SERDIN5±から取得。		
				110	データを SERDIN6±から取得。		
				111	データを SERDIN7±から取得。		
0x30C	FIFO_STATUS_REG_ 0	[7:0]	LANE_FIFO_FULL		ビットxは、SERDINx±からのデータのFIFOフル・フラグに対応します。	0x0	R
0x30D	FIFO_STATUS_REG_ 1	[7:0]	LANE_FIFO_EMPTY		ビットxは、SERDINx±からのデータのFIFOエ ンプティ・フラグに対応します。	0x0	R
0x311	SYNCOUT_GEN_0	[7:4]	RESERVED		予備	0x0	R
		3	EOMF_MASK_1		QBD1 からのマルチフレーム (EOMF) の最後を	0x0	R/W
					マスク。マルチフレーム同期喪失に基づいて		
					SYNCOUT1±をアサートします。		
				0	マルチフレーム喪失時にSYNCOUT1±をアサート しません。		
				1	マルチフレーム喪失時にSYNCOUT1±をアサート		
				•	します。		
		2	EOMF_MASK_0		QBD0 からの EOMF をマスク。マルチフレーム同	0x0	R/W
					期喪失に基づいてSYNCOUTO±をアサートしま		
					す。		
				0	マルチフレーム喪失時にSYNCOUT0±をアサート		
				1	しません。 マルチフレーム喪失時にSYNCOUT0±をアサート		
				1	します。		
		1	EOF MASK 1		QBD1 からの EOF をマスクします。フレーム同	0x0	R/W
					期喪失に基づいてSYNCOUT1±をアサートしま		
					す。 		
				0	フレーム喪失時にSYNCOUT1±をアサートしませ		
				1	ん。 フレーム喪失時に SYNCOUTI± をアサートしま		
				1	プレーム喪失時にSYNCOUTI±をアサートしま す。		
		0	EOF MASK 0		QBD0 からの EOF をマスクします。フレーム同	0x0	R/W
					期喪失に基づいてSYNCOUT0±をアサートしま		15
					す。 		
				0	フレーム喪失時にSYNCOUT0±をアサートしませ		
					h.		
				1	フレーム喪失時にSYNCOUT0±をアサートしま		
]		す。	1	1

Rev. 0 — 115/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x312	SYNCOUT_GEN_1	[7:4]	SYNC_ERR_DUR		同期エラー・レポートのためのSYNCOUTx±ローの継続時間。継続時間 = (0.5 +コード) PCLK サイクル数。指定値にできるだけ近づけるために、これらのビットは f/2PCLK サイクルにできるだけ近い値に設定します。これらのビットは SYNCOUT0±とSYNCOUT1±の間で共有されます。	0x0	R/W
		[3:0]	RESERVED		予備	0x0	R/W
0x315	PHY_PRBS_TEST_E N	[7:0]	PHY_TEST_EN	0	クロックのゲーティングを解除することによって PHY BER を有効化。 PHY テストを無効化。 PHY テストを有効化。	0x0	R/W
0x316	PHY PRBS TEST	7	RESERVED		予備	0x0	R
	CTRL	[6:4]	PHY_SRC_ERR_CNT	000 001 010 011 100 101 110	レーン 0 のエラー・カウントをレポート。 レーン 1 のエラー・カウントをレポート。 レーン 2 のエラー・カウントをレポート。 レーン 3 のエラー・カウントをレポート。 レーン 4 のエラー・カウントをレポート。 レーン 5 のエラー・カウントをレポート。 レーン 6 のエラー・カウントをレポート。	0x0	R/W
		[3:2]	PHY_PRBS_PAT_SEL	00 01 10	PHY BER テスト用の PRBS パターンを選択。 PRBS7 を選択。 PRBS15 を選択。 PRBS31 を選択。 未使用	0x0	R/W
		1	PHY_TEST_START	0	PHY PRBS テストの開始と停止。 テストを開始しない。 テストを開始する。	0x0	R/W
		0	PHY_TEST_RESET	0	PHY PRBS テスト・ステート・マシンとエラー・カウンタをリセット。 リセットしない。 リセット。	0x0	R/W
0x317	PHY_PRBS_TEST_ THRESHOLD_ LOBITS	[7:0]	PHY_PRBS_ THRESHOLD_ LOBITS		PHY PRBS テストのエラー・フラグをセットする ための 24 ビット閾値のビット [7:0]。	0x0	R/W
0x318	PHY_PRBS_TEST_ THRESHOLD_ MIDBITS	[7:0]	PHY_PRBS_ THRESHOLD_ MIDBITS		PHY PRBS テストのエラー・フラグをセットする ための 24 ビット閾値のビット [15:8]。	0x0	R/W
0x319	PHY_PRBS_TEST_ THRESHOLD_HIBIT S	[7:0]	PHY_PRBS_ THRESHOLD_ HIBITS		PHY PRBS テストのエラー・フラグをセットする ための 24 ビット閾値のビット [23:16] 。	0x0	R/W
0x31A	PHY_PRBS_TEST_ ERRCNT_LOBITS	[7:0]	PHY_PRBS_ERR_ CNT_LOBITS		選択したレーンからレポートされた 24 ビット PHY BER エラー・カウントのビット [7:0]。	0x0	R
0x31B	PHY_PRBS_TEST_ ERRCNT_MIDBITS	[7:0]	PHY_PRBS_ERR_ CNT_MIDBITS		選択したレーンからレポートされた 24 ビット PHY BER エラー・カウントのビット [15:8]。	0x0	R
0x31C	PHY_PRBS_TEST_ ERRCNT_HIBITS	[7:0]	PHY_PRBS_ERR_ CNT_HIBITS		選択したレーンからレポートされた 24 ビット PHY BER エラー・カウントのビット [23:16]。	0x0	R
0x31D	PHY_PRBS_TEST_ STATUS	[7:0]	PHY_PRBS_PASS		各レーンの PHY BER の合否をレポート。レーン x が合格のときはビット x がハイ。	0xFF	R
0x31E	PHY_DATA_	[7:2]	RESERVED		予備	0x0	R
	SNAPSHOT_CTRL	1	PHY_GRAB_MODE	0	このビットは、トリガを使用してデータを取得するかどうかを決定。 PHY_GRAB_DATAがセットされたときにデータを取得します。 ビット・エラー時にデータを取得します。	0x0	R/W

Rev. 0 — 116/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		0	PHY_GRAB_DATA		このビットを0から1に遷移させると、ロジックが1つのレーンから現在受信しているデータを保存します。	0x0	R/W
0x31F	PHY_SNAPSHOT_ DATA_BYTE0	[7:0]	PHY_SNAPSHOT_ DATA_BYTE0		現在の受信データ。PHY_SNAPSHOT_DATA [7:0] を表します。	0x0	R
0x320	PHY_SNAPSHOT_ DATA_BYTE1	[7:0]	PHY_SNAPSHOT_ DATA_BYTE1		現在の受信データ。PHY_SNAPSHOT_DATA [15:8] を表します。	0x0	R
0x321	PHY_SNAPSHOT_ DATA_BYTE2	[7:0]	PHY_SNAPSHOT_ DATA_BYTE2		現在の受信データ。PHY_SNAPSHOT_DATA [23:16] を表します。	0x0	R
0x322	PHY_SNAPSHOT_ DATA_BYTE3	[7:0]	PHY_SNAPSHOT_ DATA_BYTE3		現在の受信データ。PHY_SNAPSHOT_DATA [31:24] を表します。	0x0	R
0x323	PHY_SNAPSHOT_ DATA_BYTE4	[7:0]	PHY_SNAPSHOT_ DATA_BYTE4		現在の受信データ。PHY_SNAPSHOT_DATA [39:32] を表します。	0x0	R
0x32C	SHORT_TPL_TEST_ 0	[7:4]	SHORT_TPL_SP_ SEL	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110	ショート・トランスポート層サンプルの選択。特定の DAC のどのサンプルをチェックするかを選択します。 サンプル 0。 サンプル 1。 サンプル 3。 サンプル 4。 サンプル 5。 サンプル 6。 サンプル 7。 サンプル 8。 サンプル 10。 サンプル 11。 サンプル 12。 サンプル 13。 サンプル 13。 サンプル 14。 サンプル 15。	0x0	R/W
		[3:2]	SHORT_TPL_CHAN_SE L	00 01 10	ショート・トランスポート層テスト・チャンネル の選択。テストする DACx チャネライザのサブチ ャンネルを選択します。 チャンネル 0。 チャンネル 1。 チャンネル 2。	0x0	R/W
		1	SHORT_TPL_TEST_R ESET	0	ショート・トランスポート層テストのリセット。 ショート・トランスポート層テストの結果をリセットします。 リセットしない。 リセット。	0x0	R/W
		0	SHORT_TPL_TEST_E N	0	ショート・トランスポート層テストの有効化。ショート・トランスポート層テストを有効にします。 無効化。 有効化。	0x0	R/W
0x32D	SHORT_TPL_TEST_ 1	[7:0]	SHORT_TPL_REF_ SP_LSB		ショート・トランスポート層リファレンス・サンプル (LSB)。このビット・フィールドは、ショート・トランスポート層テスト時に予想されるDACサンプルの下位8ビットで、JESD204Bレシーバー出力における受信サンプルとの比較に使われます。	0x0	R/W

Rev. 0 — 117/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x32E	SHORT_TPL_TEST_ 2	[7:0]	SHORT_TPL_REF_ SP_MSB		ショート・トランスポート層テスト・リファレンス・サンプル(MSB)。このビット・フィールドは、ショート・トランスポート層テスト時に予想される DAC サンプルの上位 8 ビットで、JESD204B レシーバー出力における受信サンプルとの比較に使われます。	0x0	R/W
0x32F	SHORT_TPL_TEST_ 3	7	SHORT_TPL_LINK_S EL	0	デュアルリンク JESD204B モードで実行する STPL 用です。STPL テストを、DAC0 チャネライザ/データパス (リンク 0) または DAC1 チャネライザ/データパス (リンク 1) のどちらのサンプルに対して実行するを選択します リンク 0 のサンプルをテスト。	0x0	R/W
		6	SHORT_TPL_IQ_ SAMPLE_SEL	0	リンク1のサンプルをテスト。 チャネライザの複素サブチャンネル (Iまたは Q) をテストするデータ・ストリーム (パス) を 選択します。 IQ 以外の JESD204B モードの場合 は、Iパスを選択します。 Iデータ・ストリームをテストすることを選択。 Qデータ・ストリームをテストすることを選択。	0x0	R/W
		[5:1]	RESERVED	-	予備	0x0	R/W
		0	SHORT_TPL_FAIL	0	ショート・トランスポート層テスト不合格。この ビットは、選択した DAC サンプルがショート・ トランスポート層テストの予想サンブルと一致す るかどうかを示します。一致すれば、テストは合 格です。一致しなければ、テストは不合格です。 テスト合格。	0x0	R
0x334	JESD_BIT_INVERSE _CTRL	[7:0]	JESD_BIT_INVERSE		論理レーンの反転。この制御の各ビットは、1つの特定 JESD204B レシーバーPHY からの JESD204B シリアル化解除データを反転させます。論理レーン x の JESD204B シリアル化解除データを反転させるには、ビット x をハイに設定します。	0x0	R/W
0x400	DID_REG	[7:0]	DID_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x401	BID_REG	[7:0]	BID_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x402	LID0_REG	7	RESERVED		予備	0x0	R
		6	ADJDIR_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
		5	PHADJ_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
		[4:0]	LL_LID0		レーン 0 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x403	SCR_L_REG	7	SCR_RD	0	レーン 0 で受信した ILAS 設定。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。 スクランブリングを無効化。 スクランブリングを有効化。	0x0	R
		[6:5]	RESERVED		予備	0x0	R
		[4:0]	L_RD_1		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R

Rev. 0 — 118/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				00000	コンバータ・デバイスあたり1レーン。		
				00001	コンバータ・デバイスあたり 2 レーン。		
				00010	コンバータ・デバイスあたり3レーン。		
				00011	コンバータ・デバイスあたり 4 レーン。		
0x404	F_REG	[7:0]	F_RD_1		レーン 0で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
				0	フレームあたり 1 オクテット。		
				1	フレームあたり2オクテット。		
				10	フレームあたり3オクテット。		
				11	フレームあたり 4 オクテット。		
0x405	K REG	[7:5]	RESERVED		予備	0x0	R
OA 105	N_KEG	[4:0]	K RD 1		レーン 0 で受信した ILAS 設定。この制御は、レ	0x0	R
		[4.0]	K_RD_1		ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	UAU	K
				00000	デフォルト値。		
				11111	マルチフレームあたり 32 フレーム。		
0x406	M_REG	[7:0]	M_RD_1		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x407	CS_N_REG	[7:6]	CS_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
		5	RESERVED		予備	0x0	R
		[4:0]	N_RD_1		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x408	NP_REG	[7:5]	SUBCLASSV_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
		[4:0]	NP_RD_1		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x409	S_REG	[7:5]	JESDV_RD_1		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
				000	JESD204A を選択。		
				001	JESD204B を選択。		
		[4:0]	S_RD_1		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x40A	HD_CF_REG	7	HD_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
				0	低密度モード。		
				1	高密度モード。		
		[6:5]	RESERVED		予備	0x0	R
		[4:0]	CF_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x40B	RES1_REG	[7:0]	RES1_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R
0x40C	RES2_REG	[7:0]	RES2_RD		レーン 0 で受信した ILAS 設定。この制御は、レ ジスタ 0x300 の LINK_PAGE 制御によってページ ングされます。	0x0	R

Rev. 0 — 119/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x40D	CHECKSUM0_REG	[7:0]	LL_FCHK0		レーン 0 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x40E	COMPSUM0_REG	[7:0]	LL_FCMP0		レーン 0 の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x412	LID1_REG	[7:5]	RESERVED		予備	0x0	R
		[4:0]	LL_LID1		レーン 1 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x415	CHECKSUM1_REG	[7:0]	LL_FCHK1		レーン 1 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x416	COMPSUM1_REG	[7:0]	LL_FCMP1		レーン1の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x41A	LID2_REG	[7:5]	RESERVED		予備	0x0	R
		[4:0]	LL_LID2		レーン 2 で受信した ILAS LID 設定。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
0x41D	CHECKSUM2_REG	[7:0]	LL_FCHK2		レーン 2 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x41E	COMPSUM2_REG	[7:0]	LL_FCMP2		レーン 2 の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x422	LID3_REG	[7:5]	RESERVED		予備	0x0	R
		[4:0]	LL_LID3		レーン 3 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x425	CHECKSUM3_REG	[7:0]	LL_FCHK3		レーン 3 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x426	COMPSUM3_REG	[7:0]	LL_FCMP3		レーン 3 の計算チェックサム。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
0x42A	LID4_REG	[7:5]	RESERVED		予備	0x0	R
		[4:0]	LL_LID4		レーン 4 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x42D	CHECKSUM4_REG	[7:0]	LL_FCHK4		レーン 4 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x42E	COMPSUM4_REG	[7:0]	LL_FCMP4		レーン4の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x432	LID5_REG	[7:5]	RESERVED		予備	0x0	R
		[4:0]	LL_LID5		レーン 5 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x435	CHECKSUM5_REG	[7:0]	LL_FCHK5		レーン 5 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x436	COMPSUM5_REG	[7:0]	LL_FCMP5		レーン 5 の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x43A	LID6_REG	[7:5]	RESERVED		予備	0x0	R

Rev. 0 — 120/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[4:0]	LL_LID6		レーン 6 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x43D	CHECKSUM6_REG	[7:0]	LL_FCHK6		レーン 6 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x43E	COMPSUM6_REG	[7:0]	LL_FCMP6		レーン 6 の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x442	LID7_REG	[7:5]	RESERVED		予備	0x0	R
		[4:0]	LL_LID7		レーン 7 で受信した ILAS LID 設定。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
0x445	CHECKSUM7_REG	[7:0]	LL_FCHK7		レーン 7 における ILAS 時の受信チェックサム。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
0x446	COMPSUM7_REG	[7:0]	LL_FCMP7		レーン 7 の計算チェックサム。この制御は、レジ スタ 0x300 の LINK_PAGE 制御によってページン グされます。	0x0	R
0x450	ILS_DID	[7:0]	DID		デバイス (リンク) 識別番号。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R/W
0x451	ILS_BID	[7:0]	BID		バンク ID、DID の拡張子。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセットにQBD が保持されている(レジスタ 0x475、ビット3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x0	R/W
0x452	ILS_LID0	7	RESERVED		予備	0x0	R
		6	ADJDIR		DAC LMFC の調整指示。リンク情報は、 JESD204B のセクション 8.3 の規定に従いレーン 0 で受信されます。リンク 0 のみサポートされて います。この制御は、レジスタ 0x300 の LINK PAGE 制御によってページングされます。	0x0	R/W
		5	PHADJ		DACへの位相調整要求。リンク 0 のみサポート されています。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R/W
		[4:0]	LID0		レーン識別番号 (リンク内) 。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセットにQBD が保持されている (レジスタ 0x475、ビット3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x0	R/W
0x453	ILS_SCR_L	7	SCR	0	リンクのスクランブリングの有効化。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。 スクランブリング解除を無効化。 スクランブリング解除を有効化。	0x1	R/W
		[6:5]	RESERVED		予備	0x0	R
		[4:0]	L_1		コンバータあたりのレーン数(マイナス 1)。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x7	R/W
0x454	ILS_F	[7:0]	F_1		1レーンのフレームあたりオクテット数: (マイナス1)。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R/W
0x455	ILS_K	[7:5]	RESERVED		予備	0x0	R

Rev. 0 — 121/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[4:0]	K_1		マルチフレームあたりのレーン数 (マイナス 1)。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x1F	R/W
0.456	T 2 16	5= 03	3.6.4	11111	マルチフレームあたり32フレーム。	0.4	7.77
0x456	ILS_M	[7:0]	M_1		リンクあたりのサブチャンネル数(マイナス 1)。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x1	R/W
0x457	ILS_CS_N	[7:6]	CS		サンプルあたりの制御ビット数。リンク 0 のみサポートされています。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
		5	RESERVED		予備	0x0	R
		[4:0]	N_1		コンバータ分解能(マイナス 1)。この制御は、 レジスタ 0x300 の LINK_PAGE 制御によってペー ジングされます。	0xF	R/W
0x458	ILS_NP	[7:5]	SUBCLASSV	000	デバイスのサブクラス・バージョン。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。 サブクラス 0。 サブクラス 1。	の LINK_PAGE 制御によって	R/W
		[4:0]	NP_1		サンプルあたりの合計ビット数 (マイナス 1)。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0xF	R/W
0x459	ILS_S	[7:5]	JESDV	000	JESD204 バージョン。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングさ れます。 JESD204A を選択。	0x0	R/W
				001	JESD204B を選択。		
		[4:0]	S_1		1フレーム・サイクルのコンバータあたりサンプル数: (マイナス 1)。この制御は、レジスタ0x300の LINK_PAGE 制御によってページングされます。	0x1	R/W
0x45A	ILS_HD_CF	7	HD	0	高密度フォーマット。常に1に設定します。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。 低密度モード。	0x1	R
				1	高密度モード。		
		[6:5]	RESERVED	1	予備	0x0	R
		[4:0]	CF CF		サンプルあたりの制御ビット数。リンク 0 のみサポートされています。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
0x45B	ILS_RES1	[7:0]	RES1		予備フィールド1.この制御は、レジスタ0x300の LINK_PAGE制御によってページングされます。	0x0	R/W
0x45C	ILS_RES2	[7:0]	RES2		予備フィールド2.この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R/W
0x45D	ILS_CHECKSUM	[7:0]	FCHK0		計算リンク設定チェックサム。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセット内(レジスタ 0x475、ビット3) に QBD が保持されている間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x0	R/W
0x46C	LANE_DESKEW	7	ILD7	0	レーン 7 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。 スキュー除去に失敗しました。 スキューが除去されました。	0x0	R

Rev. 0 — 122/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		6	ILD6		レーン 6 のレーン間スキュー除去ステータス。こ の制御は、レジスタ 0x300 の LINK_PAGE 制御に よってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
		_	H.D.C	1	スキューが除去されました。	0.0	R
		5	ILD5		レーン 5のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	K
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		4	ILD4		レーン 4のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		3	ILD3		レーン 3 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		2	ILD2		レーン 2 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		1	ILD1		レーン 1 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		_
		0	ILD0		レーン 0 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
0x46D	BAD_DISPARITY	7	BDE7		レーン 7の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< 誤差閾値 (ETH) [7:0] の 値。 エラー・カウント ≥ ETH [7:0] の値。		
		6	BDE6	1	レーン 6の異常ディスパリティ・エラー・ステー	0x0	R
		U	BBEO		タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	UAU	K
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント ≥ ETH [7:0] の値。		_
		5	BDE5		レーン 5 の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
			DDE4	1	エラー・カウント ≥ ETH [7:0] の値。	0.0	P
		4	BDE4		レーン4の異常ディスパリティ・エラー・ステータス。この制御は、レジスタ0x300の LINK_PAGE制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		

Rev. 0 – 123/150 –

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		3	BDE3		レーン3の異常ディスパリティ・エラー・ステー	0x0	R
					タス。この制御は、レジスタ 0x300 の LINK PAGE 制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		2	BDE2		レーン2の異常ディスパリティ・エラー・ステー	0x0	R
					タス。この制御は、レジスタ 0x300 の		
					LINK_PAGE 制御によってページングされます。		
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
		1	BDE1	1	エラー・カウント≥ETH [7:0] の値。 レーン1の異常ディスパリティ・エラー・ステー	0x0	R
		1	BDEI		タス。この制御は、レジスタ 0x300 の	UXU	K
					LINK_PAGE 制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		0	BDE0		レーン0の異常ディスパリティ・エラー・ステー	0x0	R
					タス。この制御は、レジスタ 0x300 の LINK PAGE 制御によってページングされます。		
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
0x46E	NOT_IN_TABLE	7	NIT7		レーン7のテーブル不記載エラー・ステータス。	0x0	R
					この制御は、レジスタ 0x300 の LINK_PAGE 制御		
					によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
		6	NIT6	1	エラー・カウント≥ETH [7:0] の値。 レーン6のテーブル不記載エラー・ステータス。	0x0	R
		0	NIIO		この制御は、レジスタ 0x300 の LINK_PAGE 制御	UXU	K
					によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ ETH [7:0] の値。		
		5	NIT5		レーン5のテーブル不記載エラー・ステータス。	0x0	R
					この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。		
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		4	NIT4		レーン4のテーブル不記載エラー・ステータス。	0x0	R
					この制御は、レジスタ 0x300 の LINK_PAGE 制御		
					によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
		3	NIT3	1	エラー・カウント≥ETH [7:0] の値。 レーン3のテーブル不記載エラー・ステータス。	0x0	R
		3	NIIS		この制御は、レジスタ 0x300 の LINK_PAGE 制御	UXU	K
					によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		2	NIT2		レーン2のテーブル不記載エラー・ステータス。	0x0	R
					この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。		
				0	エラー・カウント <eth「7:0」の値。< td=""><td></td><td></td></eth「7:0」の値。<>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		1	NIT1		レーン1のテーブル不記載エラー・ステータス。	0x0	R
					この制御は、レジスタ 0x300 の LINK_PAGE 制御		
					によってページングされます。		
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント≥ETH[7:0]の値。	1	1

Rev. 0 — 124/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		0	NIT0		レーン 0 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御	0x0	R
					によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
		<u> </u>		1	エラー・カウント ≥ ETH [7:0] の値。		_
0x46F	UNEXPECTED_ KCHAR	7	UEK7		レーン 7 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK PAGE	0x0	R
	Remark				制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		6	UEK6		レーン6の予期しないK文字エラー・ステータ	0x0	R
					ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		5	UEK5		レーン 5 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		4	UEK4	1	レーン4の予期しない K 文字エラー・ステータ	0x0	R
		1	UER4		ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	OXO	K
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		3	UEK3		レーン3の予期しないK文字エラー・ステータス。この制御は、レジスタ0x300のLINK_PAGE制御によってページングされます。	0x0	R
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		2	UEK2	-	レーン2の予期しないK文字エラー・ステータ	0x0	R
		2	CLKZ		ス。この制御は、レジスタ 0x300 の LINK PAGE	OAO	K
					制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		1	UEK1		レーン1の予期しないK文字エラー・ステータ	0x0	R
					ス。この制御は、レジスタ 0x300 の LINK_PAGE		
				_	制御によってページングされます。		
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント≥ETH [7:0] の値。		
		0	UEK0		レーン 0 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント <eth「7:0」の値。< td=""><td></td><td></td></eth「7:0」の値。<>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
0x470	CODE GRP SYNC	7	CGS7	1	レーン 7 のコード・グループ同期ステータス。こ	0x0	R
0.470	CODE_GRF_STNC	'	Cds/		の制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	OXO	K
				0	同期が失われました。		
				1	同期が確立されました。		
		6	CGS6		レーン 6 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
				1	円別が帷払されました。		<u> </u>

Rev. 0 — 125/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		5	CGS5		レーン5のコード・グループ同期ステータス。この制御は、レジスタ0x300のLINK_PAGE制御に	0x0	R
					よってページングされます。		
				0	同期が失われました。		
			0004	1	同期が確立されました。	0.0	P
		4	CGS4		レーン 4 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK PAGE 制御に	0x0	R
					よってページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		3	CGS3		レーン3のコード・グループ同期ステータス。こ	0x0	R
					の制御は、レジスタ 0x300 の LINK_PAGE 制御に よってページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CGS2		レーン2のコード・グループ同期ステータス。こ	0x0	R
					の制御は、レジスタ 0x300 の LINK_PAGE 制御に よってページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		1	CGS1		レーン1のコード・グループ同期ステータス。こ	0x0	R
					の制御は、レジスタ 0x300 の LINK_PAGE 制御に よってページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS0		レーン 0 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御に	0x0	R
					よってページングされます。		
				0	同期が失われました。 同期が確立されました。		
0x471	FRAME SYNC	7	FS7	1	レーン7のフレーム同期ステータス。この制御	0x0	R
0.471	TRUME_STIVE		15/		は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	OAO	K
				0	同期が失われました。		
				1	同期が確立されました。		
		6	FS6		レーン6のフレーム同期ステータス。この制御	0x0	R
					は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		5	FS5		レーン5のフレーム同期ステータス。この制御	0x0	R
					は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		4	FS4		レーン4のフレーム同期ステータス。この制御	0x0	R
					は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		
		3	FS3		レーン3のフレーム同期ステータス。この制御	0x0	R
					は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。		
				0	同期が失われました。		
				1	同期が確立されました。		

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		2	FS2		レーン 2 のフレーム同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		1	FS1		レーン 1 のフレーム同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によって	0x0	R
				0	ページングされます。		
				0	同期が失われました。 同期が確立されました。		
		0	FS0	1	レーン 0 のフレーム同期ステータス。この制御	0x0	R
			150		は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	UAU	K
				0	同期が失われました。		
				1	同期が確立されました。		
0x472	GOOD_CHECKSUM	7	CKS7		レーン 7 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		6	CKS6		レーン 6 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		5	CKS5		レーン 5 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		4	CKS4		レーン 4 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		3	CKS3		レーン 3 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		2	CKS2		レーン 2 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		<u> </u>
		1	CKS1		レーン 1 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		<u> </u>
		0	CKS0		レーン 0 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
	1		i				

Rev. 0 – 127/150 –

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x473	INIT_LANE_SYNC	7	ILS7	0	レーン 7 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。 同期が失われました。	0x0	R
				1	同期が確立されました。		
		6	ILS6		レーン 6の初期レーン同期ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。 同期が確立されました。		
		5	ILS5		レーン 5 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。 同期が確立されました。		
		4	ILS4		レーン 4の初期レーン同期ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
		3	ILS3	1	同期が確立されました。	0x0	R
		3	ILS3		レーン 3 の初期レーン同期ステータス。この制御は、レジスタ $0x300$ の LINK_PAGE 制御によってページングされます。	OXO	K
				0	同期が失われました。		
				1	同期が確立されました。		
		2	ILS2		レーン 2 の初期レーン同期ステータス。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		1	ILS1		レーン 1 の初期レーン同期ステータス。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		0	ILS0		レーン 0 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x475	CTRLREG0	[7:4]	RESERVED		予備	0x0	R/W
		3	SOFTRST		QBD ソフト・リセット。アクティブ・ハイ同期 リセット。すべてのハードウェアをパワー・オン 状態にリセットします。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングさ れます。	0x0	R/W
		2	FORCESYNCREQ		同期要求をアサートするためのアプリケーション からのコマンド。アクティブ・ハイ。この制御 は、レジスタ 0x300の LINK_PAGE 制御によって ページングされます。	0x0	R/W
		1	RESERVED		予備	0x0	R
		0	REPL_FRM_ENA		このレベル入力を設定すると、エラー時に受信されるフレームの置換が有効になります。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x1	R/W

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x476	CTRLREG1	[7:5]	RESERVED		予備	0x0	R
		4	QUAL_RDERR	0	テーブル不記載 (NIT) エラーとランニング・ディスパリティ (RD) エラーが同時に発生したときのエラー・レポート動作。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。1 に設定します。この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット 3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。 NIT は RD エラーに影響しません。 NIT エラーは RD エラーと同時にマスクします。	0x1	R/W
		[3:1]	RESERVED		予備	0x0	R/W
		0	FCHK_N	0	チェックサム計算方法。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット 3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。 JESD204B 規格セクション 8.3 の表 20 の規定に従い、リンク設定テーブル内の個々のフィールドを合計することによってチェックサムが計算されます。 パックされたリンク設定フィールドを含むレジスタを合計することによって、チェックサムが計算されます (レジスタ 0x450 からレジスタ 0x45A の	0x0	R/W
					合計、モジュロ 256)。		
0x477	CTRLREG2	7	ILS_MODE	0 1	このビットを1に設定すると、データ・リンク層 テスト・モードがイネーブルされます。CGSパタ ーンの後にはILASシーケンスが続きます。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・ リセットにQBDが保持されている(レジスタ 0x475、ビット3)間にのみ設定し、なおかつ通 常動作中は変更しないようにする必要があります。 ノーマル・モード。 CGSパターンの後にはILASシーケンスが続きます。	0x0	R/W
		6	RESERVED		予備	0x0	R/W
		5	REPDATATEST		JTSPAT パターンを使用して繰返しデータ・テストを有効化。テストを有効にするには、このレジスタのビット7を0にする必要があります。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセット内に QBD が保持されている (レジスタ 0x475、ビット 3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x0	R/W
		4	QUETESTERR	0	キュー・テストのエラー・モード。この制御は、 レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセット に QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。 このビットが 0 のときは、複数レーン上での同時エラーが 1 つのエラーとしてレポートされます。 このビットが 1 で REPDATATEST = 1 の時に選択されます。すべてのレーンから検出されたエラーがカウンタにトラップされ、SYNCOUTx±上に順番に信号.出力されます。	0x0	R/W

Rev. 0 — 129/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		3	AR_ECNTR		エラー・カウンタの自動リセット。AR_ECNTR = 1の場合、SYNCOUTx±をアサートするエラー・カウンタは自動的に 0 にリセットされます。他のカウンタはいずれも影響を受けません。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセットに QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x0	R/W
		[2:0]	RESERVED		予備	0x0	R
0x478	KVAL	[7:0]	KSYNC		ILAS 時の 4×Kマルチフレーム数。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x1	R/W
0x47C	ERRORTHRES	[7:0]	ЕТН		エラー・カウンタ閾値。これらのビットは、BD、NIT、またはUEKエラーによるSYNCOUTx±エラーまたはIRQx割込みが送信されたときにセットされます。この制御は、レジスタのx300のLINK_PAGE制御によってページングされます。この信号は、ソフト・リセット内にQBDが保持されている(レジスタ0x475、ビット3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0xFF	R/W
0x47D	SYNC_ASSERT_	[7:3]	RESERVED		予備	0x0	R
	MASK	[2:0]	SYNC_ASSERT_ MASK		SYNCOUTx± BD、NIT、および UEK エラー状態のアサーション・イネーブル・マスク。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。BD、NIT、および UEK エラー状態のSYNCOUTx±アサーション・イネーブル・マスク(アクティブ・ハイ)。任意のレーンのエラー・カウンタがエラー関値数 ETH [7:0]に達して、なおかつ対応する SYNC_ASSERT MASK ビットがセットされている場合は、SYNCOUTx±がアサートされます。マスク・ビットは以下のとおりです(他のエラー・カウント制御とエラー・カウンタに関しては、ビット・シーケンスが反転されます)。ビット 2 = 異常ディスパリティ・エラー(BDE)。 ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 予期しない K 文字エラー(UEK)。	0x7	R/W
0x480	ECNT_CTRL0	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA0		レーン 0 のエラー・カウンタがイネーブルになります。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット 5 = 予期しない K 文字エラー(UEK)。 ビット 4 = テーブル不記載エラー(NIT)。 ビット 3 = 異常ディスパリティ・エラー (BDE)。	0x7	R/W
		[2:0]	ECNT_RST0		レーン 0 のエラー・カウンタをリセット。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 異常ディスパリティ・エラー (BDE)。 ビット 1 = テーブル不記載エラー (NIT)。 ビット 0 = 予期しない K 文字エラー (UEK)。	0x7	R/W

Rev. 0 — 130/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x481	ECNT_CTRL1	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA1		レーン1のエラー・カウンタがイネーブルになります。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット5=予期しない K 文字エラー (UEK)。	0x7	R/W
					ビット4=テーブル不記載エラー(NIT)。 ビット3=異常ディスパリティ・エラー(BDE)。		
		[2:0]	ECNT_RST1		レーン 1 のエラー・カウンタをリセット。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。 ビット 1 = テーブル不記載エラー(NIT)。	0x7	R/W
					ビット0=異常ディスパリティ・エラー (BDE)。		
0x482	ECNT_CTRL2	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA2		レーン 2 のエラー・カウンタがイネーブルになります。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット 5 = 予期しない K 文字エラー(UEK)。 ビット 4 = テーブル不記載エラー(NIT)。 ビット 3 = 異常ディスパリティ・エラー(BDE)。	0x7	R/W
		[2:0]	ECNT_RST2		レーン 2 のエラー・カウンタをリセット。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー (UEK)。 ビット 1 = テーブル不記載エラー (NIT)。 ビット 0 = 異常ディスパリティ・エラー (BDE)。	0x7	R/W
0x483	ECNT_CTRL3	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA3		レーン3のエラー・カウンタがイネーブルになります。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット5=予期しない K 文字エラー (UEK) 。 ビット4=テーブル不記載エラー (NIT) 。 ビット3=異常ディスパリティ・エラー (BDE) 。	0x7	R/W
		[2:0]	ECNT_RST3		レーン 3 のエラー・カウンタをリセット。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。 ビット 1 = テーブル不記載エラー(NIT)。 ビット 0 = 異常ディスパリティ・エラー(BDE)。	0x7	R/W
0x484	ECNT_CTRL4	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA4		レーン4のエラー・カウンタがイネーブルになります。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。 ビット5=予期しない K 文字エラー (UEK)。 ビット4=テーブル不記載エラー (NIT)。 ビット3=異常ディスパリティ・エラー (BDE)。	0x7	R/W
		[2:0]	ECNT_RST4		レーン 4 のエラー・カウンタをリセット。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのアドレスは以下のとおりです。	0x7	R/W

Rev. 0 — 131/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
					ビット2=予期しない K 文字エラー (UEK)。		
					ビット1=テーブル不記載エラー(NIT)。		
					ビット 0 = 異常ディスパリティ・エラー		
0.405	DOME CORN 5	F7. (1	DEGEDI/ED		(BDE) 。	0.0	P
0x485	ECNT_CTRL5	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA5		レーン5のエラー・カウンタがイネーブルになり	0x7	R/W
					ます。この制御は、レジスタ 0x300 の LINK PAGE 制御によってページングされます。		
					各レーンのカウンタのアドレスは以下のとおりで		
					す。		
					ビット5=予期しないK文字エラー(UEK)。		
					ビット4=テーブル不記載エラー(NIT)。		
					ビット3=異常ディスパリティ・エラー		
					(BDE) 。		
		[2:0]	ECNT_RST5		レーン5のエラー・カウンタをリセット。この制	0x7	R/W
					御は、レジスタ 0x300 の LINK_PAGE 制御によっ		
					てページングされます。各レーンのカウンタのア		
					ドレスは以下のとおりです。		
					ビット2=予期しない K 文字エラー (UEK)。		
					ビット1=テーブル不記載エラー(NIT)。		
					ビット0=異常ディスパリティ・エラー (BDE)。		
0x486	ECNT CTRL6	[7:6]	RESERVED		予備	0x0	R
0.400	Lett_c1kL0	[5:3]	ECNT ENA6		レーン6のエラー・カウンタがイネーブルになり	0x7	R/W
		[3.3]	ECNI_ENA0		ます。この制御は、レジスタ 0x300 の	UX /	IV W
					LINK PAGE制御によってページングされます。		
					各レーンのカウンタのアドレスは以下のとおりで		
					す。		
					ビット 5 = 予期しない K 文字エラー (UEK)。		
					ビット4=テーブル不記載エラー(NIT)。		
					ビット3=異常ディスパリティ・エラー		
					(BDE) 。		
		[2:0]	ECNT_RST6		レーン6のエラー・カウンタをリセット。この制	0x7	R/W
					御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。各レーンのカウンタのア		
					ドレスは以下のとおりです。		
					ビット2=予期しない K 文字エラー (UEK)。		
					ビット1=テーブル不記載エラー (NIT)。		
					ビット0=異常ディスパリティ・エラー		
					(BDE) 。		
0x487	ECNT_CTRL7	[7:6]	RESERVED		予備	0x0	R
		[5:3]	ECNT_ENA7		レーン 7 のエラー・カウンタがイネーブルになり	0x7	R/W
					ます。この制御は、レジスタ 0x300 の		
					LINK_PAGE 制御によってページングされます。		
					各レーンのカウンタのアドレスは以下のとおりで		
					す。 ビット5=予期しないK文字エラー (UEK)。		
					ビット5=ア朔しないK 文子エノー (UEK)。 ビット4=テーブル不記載エラー (NIT)。		
					ビット3=異常ディスパリティ・エラー		
					(BDE)。		
		[2:0]	ECNT RST7		レーン 7 のエラー・カウンタをリセット。この制	0x7	R/W
		[]			御は、レジスタ 0x300 の LINK_PAGE 制御によっ		
					てページングされます。各レーンのカウンタのア		
					ドレスは以下のとおりです。		
					ビット2=予期しないK文字エラー(UEK)。		
					ビット1=テーブル不記載エラー (NIT)。		
					ビット0=異常ディスパリティ・エラー		
					(BDE) 。		
	ECNT TCH0				予備	0x0	

Rev. 0 — 132/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[2:0]	ECNT_TCH0		レーン 0 のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値 0xFF を保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。 この信号は、ソフト・リセットに QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
0x489	ECNT TCH1	[7:3]	RESERVED		予備	0x0	R
	Ze.N_Te.m	[2:0]	ECNT_TCH1		レーン1のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値 0xFF を保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。この信号は、ソフト・リセットに QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
0x48A	ECNT_TCH2	[7:3]	RESERVED		予備	0x0	R
		[2:0]	ECNT_TCH2		レーン 2 のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値 0xFFを保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。 この信号は、ソフト・リセットに QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
0x48B	ECNT_TCH3	[7:3]	RESERVED		予備	0x0	R
		[2:0]	ECNT_TCH3		レーン3のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ0x300の LINK_PAGE制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値0xFFを保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。	0x7	R/W

Rev. 0 — 133/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
					ビット2=予期しない K 文字エラー (UEK)。 ビット1=テーブル不記載エラー (NIT)。 ビット0=異常ディスパリティ・エラー (BDE)。 この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット 3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。		
0x48C	ECNT_TCH4	[7:3]	RESERVED		予備	0x0	R
		[2:0]	ECNT_TCH4		レーン 4 のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値 0xFF を保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。この信号は、ソフト・リセットに QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
0x48D	ECNT TCH5	[7:3]	RESERVED		予備	0x0	R
		[2:0]	ECNT_TCH5		レーン 5 のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値 0xFF を保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー (UEK)。ビット 1 = テーブル不記載エラー (NIT)。ビット 0 = 異常ディスパリティ・エラー (BDE)。 この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット 3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
0x48E	ECNT_TCH6	[7:3]	RESERVED		予備	0x0	R
0x48F		[2:0]	ECNT_TCH6		レーン 6 のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはロールボカウンタをリセットするまで最終値 0xFF を保持します。セットしない場合、指定カウンタはロールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー (UEK)。ビット 1 = テーブル不記載エラー (NIT)。ビット 0 = 異常ディスパリティ・エラー (BDE)。 この信号は、ソフト・リセットに QBD が保持されている (レジスタ 0x475、ビット 3) 間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
	ECNT_TCH7	[7:3]	RESERVED		予備	0x0	R

Rev. 0 — 134/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[2:0]	ECNT_TCH7		レーン 7のエラー・カウンタの最終カウント数保持を有効化。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。セットすると、指定カウンタが最終カウント値に達すると、そのカウンタはユーザがカウンタをリセットするまで最終値 0xFF を保持します。セットしない場合、指定カウンタはユールオーバーします。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。 この信号は、ソフト・リセットに QBD が保持されている(レジスタ 0x475、ビット 3)間にのみ設定し、なおかつ通常動作中は変更しないようにする必要があります。	0x7	R/W
0x490	ECNT STAT0	[7:4]	RESERVED			0x0	R
0x490	Leni_SIAIV	3	LANE_ENA0		予備 この出力は、レーン 0 がイネーブルされているかどうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
		[2:0]	ECNT_TCR0		レーン 0 のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを 1 に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。	0x0	R
0x491	ECNT STAT1	[7,4]	RESERVED		(BDE) 。	0x0	R
0.491	ECNI_STATI	3	LANE_ENA1		予備 この出力は、レーン 1 がイネーブルされているかどうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
		[2:0]	ECNT_TCR1		レーン1のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを1に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット2=予期しない K 文字エラー(UEK)。ビット1=テーブル不記載エラー(NIT)。	0x0	R
0x492	ECNT_STAT2	[7:4]	RESERVED		予備	0x0	R
		3	LANE_ENA2		この出力は、レーン 2 がイネーブルされているか どうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされま す。	0x0	R

Rev. 0 — 135/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[2:0]	ECNT_TCR2		レーン 2 のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを 1 に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。	0x0	R
0x493	ECNT STAT3	[7:4]	RESERVED		予備	0x0	R
	_	3	LANE_ENA3		この出力は、レーン 3 がイネーブルされているか どうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされま す。	0x0	R
		[2:0]	ECNT_TCR3		レーン3のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。 対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを1に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。 ビット 1 = テーブル不記載エラー(NIT)。 ビット 0 = 異常ディスパリティ・エラー (BDE)。	0x0	R
0x494	ECNT STAT4	[7:4]	RESERVED		予備	0x0	R
		3	LANE_ENA4		この出力は、レーン 4 がイネーブルされているか どうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされま す。	0x0	R
		[2:0]	ECNT_TCR4		レーン 4 のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。 対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを 1 に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。 ビット 1 = テーブル不記載エラー(NIT)。 ビット 0 = 異常ディスパリティ・エラー(BDE)。	0x0	R
0x495	ECNT_STAT5	[7:4]	RESERVED		予備	0x0	R
		3	LANE_ENA5		この出力は、レーン 5 がイネーブルされているかどうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R

Rev. 0 — 136/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[2:0]	ECNT_TCR5		レーン 5 のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを 1 に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。	0x0	R
0x496	ECNT_STAT6	[7:4]	RESERVED		予備	0x0	R
		3	LANE_ENA6		この出力は、レーン6がイネーブルされているか どうかを示します。この制御は、レジスタ0x300 の LINK_PAGE 制御によってページングされま す。	0x0	R
		[2:0]	ECNT_TCR6		レーン 6 のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを 1 に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。ビット 1 = テーブル不記載エラー(NIT)。ビット 0 = 異常ディスパリティ・エラー(BDE)。	0x0	R
0x497	ECNT STAT7	[7:4]	RESERVED		予備	0x0	R
		3	LANE_ENA7		この出力は、レーン 7 がイネーブルされているか どうかを示します。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされま す。	0x0	R
		[2:0]	ECNT_TCR7		レーン 7のエラー・カウンタの最終カウント値到達インジケータ。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。対応するカウンタが最終カウント値 0xFF に達したら、これらのビットを 1 に設定します。 ECNT_TCHx がセットされている場合、対応カウンタの最終カウント値はユーザによってリセットされるまで保持されます。セットされていない場合は、カウンタがロールオーバーしてカウントを継続します。各レーンのカウンタのアドレスは以下のとおりです。 ビット 2 = 予期しない K 文字エラー(UEK)。 ビット 1 = テーブル不記載エラー(NIT)。 ビット 0 = 異常ディスパリティ・エラー(BDE)。	0x0	R
0x4B0	LINK_STATUS0	7	BDE0	0	レーン 0 の異常ディスパリティ・エラー・ステータス。この制御は、レジスタ $0x300$ の LINK_PAGE 制御によってページングされます。エラー・カウント $<$ ETH $[7:0]$ の値。エラー・カウント $>$ ETH $[7:0]$ の値。	0x0	R

Rev. 0 — 137/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		6	NIT0		レーン 0 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		5	UEK0		レーン 0 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE	0x0	R
					制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント ≥ ETH [7:0] の値。		_
		4	ILD0		レーン 0 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		3	ILS0		レーン 0 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS0		レーン 0 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS0		レーン 0 のフレーム同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS0		レーン 0 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B1	LINK_STATUS1	7	BDE1		レーン 1 の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		6	NIT1		レーン 1 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		5	UEK1		レーン 1 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		4	ILD1		レーン 1 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		

Rev. 0 — 138/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		3	ILS1		レーン1の初期レーン同期ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS1		レーン 1 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS1		レーン 1 のフレーム同期ステータス。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS1		レーン 1 のコード・グループ同期ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B2	LINK_STATUS2	7	BDE2		レーン 2 の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		6	NIT2		レーン 2 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		5	UEK2		レーン 2 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		4	ILD2		レーン 2 のレーン間スキュー除去ステータス。この制御は、レジスタ $0x300$ の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
			***	1	スキューが除去されました。		
		3	ILS2		レーン 2 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS2		レーン 2 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS2		レーン 2 のフレーム同期ステータス。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		

Rev. 0 — 139/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		0	CGS2		レーン 2 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B3	LINK_STATUS3	7	BDE3		レーン3の異常ディスパリティ・エラー・ステータス。この制御は、レジスタ 0x300 の	0x0	R
					LINK_PAGE制御によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。 エラー・カウント ≥ ETH [7:0] の値。		
		6	NIT3	1	レーン3のテーブル不記載エラー・ステータス。	0x0	R
			WII		この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	UAU	K
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		5	UEK3		レーン3の予期しないK文字エラー・ステータス。この制御は、レジスタ0x300のLINK_PAGE制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		4	ILD3		レーン3のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		3	ILS3		レーン 3 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS3		レーン3の計算チェックサム・ステータス。この 制御は、レジスタ 0x300の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS3		レーン3のフレーム同期ステータス。この制御は、レジスタ0x300のLINK_PAGE制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS3		レーン3のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B4	LINK_STATUS4	7	BDE4		レーン 4の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		6	NIT4		レーン 4 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
	1			1	エラー・カウント≥ ETH [7:0] の値。		

Rev. 0 — 140/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		5	UEK4		レーン 4 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント <eth「7:0」の値。< td=""><td></td><td></td></eth「7:0」の値。<>		
				1	エラー・カウント \geq ETH [7:0] の値。		
		4	ILD4		レーン 4 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK PAGE 制御に	0x0	R
					よってページングされます。		
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		3	ILS4		レーン 4 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS4		レーン 4 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ	0x0	R
				0	ってページングされます。 チェックサムが正しくありません。		
				1	チェックサムが正しくめりません。		
		1	FS4	1	レーン4のフレーム同期ステータス。この制御	0x0	R
			134		は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	K
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS4		レーン 4 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B5	LINK_STATUS5	7	BDE5		レーン 5 の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント <eth [7:0]="" td="" の値。<=""><td></td><td></td></eth>		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		6	NIT5		レーン5のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御	0x0	R
					によってページングされます。		
				0	エラー・カウント< ETH [7:0] の値。		
			******	1	エラー・カウント ≥ ETH [7:0] の値。		_
		5	UEK5		レーン5の予期しないK文字エラー・ステータ ス。この制御は、レジスタ0x300のLINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		4	ILD5		レーン 5 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御に	0x0	R
				0	よってページングされます。 スキュー除去に失敗しました。		
				1	スキュー除去に矢敗しました。		
		3	ILS5	1	レーン5の初期レーン同期ステータス。この制御	0x0	R
		3	iLos		レーン 3 の初期レーン同期ステータス。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	UXU	K
				0	同期が失われました。		
				1	同期が確立されました。		

Rev. 0 — 141/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		2	CKS5		レーン 5 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS5		レーン 5 のフレーム同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によって	0x0	R
					ページングされます。		
				0	同期が失われました。		
		0	0005	1	同期が確立されました。	0.0	D
		0	CGS5		レーン 5 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B6	LINK_STATUS6	7	BDE6		レーン 6の異常ディスパリティ・エラー・ステー タス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		6	NIT6		レーン 6 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		5	UEK6		レーン 6 の予期しない K 文字エラー・ステータ ス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		4	ILD6		レーン 6のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
				1	スキューが除去されました。		
		3	ILS6		レーン 6 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS6		レーン 6 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS6		レーン 6 のフレーム同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS6		レーン 6のコード・グループ同期ステータス。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		

Rev. 0 — 142/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
0x4B7	LINK_STATUS7	7	BDE7		レーン 7 の異常ディスパリティ・エラー・ステータス。この制御は、レジスタ 0x300 の LINK PAGE 制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント ≥ ETH [7:0] の値。		
		6	NIT7		レーン 7 のテーブル不記載エラー・ステータス。 この制御は、レジスタ 0x300 の LINK_PAGE 制御 によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		5	UEK7		レーン 7 の予期しない K 文字エラー・ステータス。この制御は、レジスタ 0x300 の LINK_PAGE制御によってページングされます。	0x0	R
				0	エラー・カウント< ETH [7:0] の値。		
				1	エラー・カウント≥ETH [7:0] の値。		
		4	ILD7		レーン 7 のレーン間スキュー除去ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	スキュー除去に失敗しました。		
			H 05	1	スキューが除去されました。	0.0	
		3	ILS7		レーン 7 の初期レーン同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		2	CKS7		レーン 7 の計算チェックサム・ステータス。この 制御は、レジスタ 0x300 の LINK_PAGE 制御によ ってページングされます。	0x0	R
				0	チェックサムが正しくありません。		
				1	チェックサムは正常です。		
		1	FS7		レーン 7 のフレーム同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
		0	CGS7		レーン 7 のコード・グループ同期ステータス。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R
				0	同期が失われました。		
				1	同期が確立されました。		
0x4B8	JESD_IRQ_ENABLE A	7	EN_BDE		異常ディスパリティ・エラー・カウンタ。この制 御は、レジスタ 0x300 の LINK_PAGE 制御によっ てページングされます。	0x0	R/W
		6	EN_NIT		テーブル不記載エラー・カウンタ。この制御は、 レジスタ 0x300 の LINK_PAGE 制御によってペー ジングされます。	0x0	R/W
		5	EN_UEK		予期しない K 文字エラー・カウンタ。この制御 は、レジスタ 0x300 の LINK_PAGE 制御によって ページングされます。	0x0	R/W
		4	EN_ILD		レーン間スキュー除去。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングさ れます。	0x0	R/W
		3	EN_ILS		初期レーン同期。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R/W

Rev. 0 — 143/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		2	EN_CKS		正常チェックサム。このビットは2個のチェックサムを比較します。すなわち、トランスミッタがILAS時にリンクを介して送信するチェックサムと、トランスミッタがリンクを介して送信したILASデータからレシーバーが計算するチェックサムです。チェックサム IRQ が確認するデータはトランスミッタが送信するデータだけで、レジスタ 0x45Dに設定されたチェックサムは確認しません。この制御は、レジスタ 0x300 のLINK_PAGE 制御によってページングされます。	0x0	R/W
		1	EN_FS		フレーム同期。この制御は、レジスタ 0x300 の LINK_PAGE制御によってページングされます。	0x0	R/W
		0	EN_CGS		コード・グループ同期。この制御は、レジスタ 0x300の LINK_PAGE 制御によってページングさ れます。	0x0	R/W
0x4B9	JESD_IRQ_ENABLE B	[7:1]	RESERVED		予備	0x0	R
		0	EN_ILAS		構成ミスマッチ(レーン 0 のみをチェック)。 ILAS IRQ は、レシーバーが取得した 2 セットの ILAS データを比較します。最初のデータ・セットは、トランスミッタが JESD204B リンクを介して送信する ILAS データです。もう 1 つのデータ・セットは、SPI を介してレシーバー内に設定される ILAS データです(レジスタ 0x450~レジスタ 0x45D)。これらのどちらかのデータに違いがあると、IRQ がトリガされます。チェックサムを含むすべての ILAS データが比較されます。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R/W
0x4BA	JESD_IRQ_STATUS A	7	IRQ_BDE		異常ディスパリティ・エラー・カウンタ。この制 御は、レジスタ 0x300 の LINK_PAGE 制御によっ てページングされます。	0x0	R/W
		6	IRQ_NIT		テーブル不記載エラー・カウンタ。この制御は、 レジスタ 0x300 の LINK_PAGE 制御によってペー ジングされます。	0x0	R/W
		5	IRQ_UEK		予期しない K 文字エラー・カウンタ。この制御 は、レジスタ 0x300の LINK_PAGE 制御によって ページングされます。	0x0	R/W
		4	IRQ_ILD		レーン間スキュー除去。この制御は、レジスタ 0x300のLINK_PAGE制御によってページングさ れます。	0x0	R/W
		3	IRQ_ILS		初期レーン同期。この制御は、レジスタ 0x300 の LINK_PAGE制御によってページングされます。	0x0	R/W
		2	IRQ_CKS		正常チェックサム。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされま す。	0x0	R/W
		1	IRQ_FS		フレーム同期。この制御は、レジスタ 0x300 の LINK_PAGE 制御によってページングされます。	0x0	R/W
		0	IRQ_CGS		コード・グループ同期。この制御は、レジスタ 0x300のLINK_PAGE制御によってページングさ れます。	0x0	R/W
0x4BB	JESD_IRQ_STATUS B	[7:1]	RESERVED		予備	0x0	R
		0	IRQ_ILAS		構成ミスマッチ(レーン 0 のみをチェック)。こ の制御は、レジスタ 0x300 の LINK_PAGE 制御に よってページングされます。	0x0	R/W
0x4BC	IRQ_OUTPUT_MUX	[7:1]	RESERVED		予備	0x0	R
	JESD	0	MUX_JESD_IRQ		どの IRQ ピンを JESD204B IRQxソースに接続するかを選択します。	0x0	R/W

Rev. 0 — 144/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
				0	IRQ トリガ信号をIRQ0ピンに送ります。		
				1	IRQ トリガ信号をIRQ1ピンに送ります。		
0x580	BE_SOFT_OFF_ GAIN_CTRL	7	BE_SOFT_OFF_ GAIN_EN		ソフト・オフ/オンを使用するには1にする必要 があります。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされま す。	0x0	R/W
		[6:3]	RESERVED		予備	0x0	R
		[2:0]	BE_GAIN_RAMP_ RATE		ランプ・レートを設定します。ゲインは、2 (CODE+8) DAC クロック周期の間に、32 ステップで 0 から 1 (または 1 から 0) にランプします。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x0	R/W
0x581	BE_SOFT_OFF_ ENABLE	7	ENA_SHORT_ PAERR_SOFTOFF		ショートPAエラー・ソフト・オフを有効にします。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x1	R/W
		6	ENA_LONG_ PAERR_SOFTOFF		ロング PA エラー・ソフト・オフを有効にします。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x1	R/W
		[5:4]	RESERVED		予備	0x0	R
		3	ENA_JESD_ERR_ SOFTOFF		JESD204B 側エラー・ソフト・オフを有効にしま す。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされま す。	0x0	R/W
		2	ROTATE_SOFT_ OFF_EN		1に設定すると、同期ロジックのローテーション が DAC 出力ソフト・オフをトリガします。レジ スタ 0x03B のビット 0 もハイでなければなりません。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x1	R/W
		1	TXEN_SOFT_OFF_EN		1に設定すると、TXENxの立下がりエッジが DAC 出力ソフト・オフをトリガします。この制 御は、レジスタ 0x008 の MAINDAC_PAGE 制御 によってページングされます。	0x1	R/W
		0	SPI_SOFT_OFF_EN		ゲイン1のときにソフト・オフを強制します。この制御は、レジスタ0x008のMAINDAC_PAGE 制御によってページングされます。	0x0	R/W
0x582	BE_SOFT_ON_ ENABLE	7	SPI_SOFT_ON_EN		ゲイン 0 のときにソフト・オンを強制します。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x0	R/W
		6	LONG_LEVEL_ SOFTON_EN		このビットを1に設定すると、ロング・レベル・ ソフト・オンが有効になります。この制御は、レ ジスタ 0x008の MAINDAC_PAGE 制御によって ページングされます。	0x1	R/W
		[5:0]	RESERVED		予備	0x0	R/W
0x583	LONG_PA_THRES_ LSB	[7:0]	LONG_PA_ THRESHOLD[7:0]		比較のための長平均電力関値。この制御は、レジ スタ 0x008 の MAINDAC_PAGE 制御によってペ ージングされます。	0x0	R/W
0x584	LONG_PA_THRES_	[7:5]	RESERVED		予備	0x0	R
	MSB	[4:0]	LONG_PA_ THRESHOLD[12:8]		比較のための長平均電力関値。この制御は、レジ スタ 0x008 の MAINDAC_PAGE 制御によってペ ージングされます。	0x0	R/W
0x585	LONG_PA_ CONTROL	7	LONG_PA_ENABLE		長平均による電力計算とエラー検出を有効にしま す。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされま す。	0x0	R/W
		[6:4]	RESERVED		予備	0x0	R

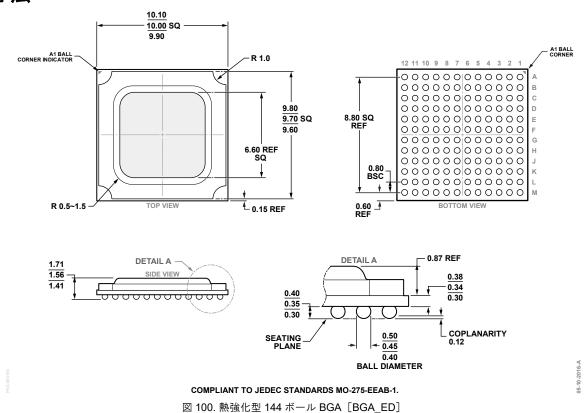
Rev. 0 — 145/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[3:0]	LONG_PA_AVG_ TIME		長 PA 平均の時間を設定します。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。平均時間 = 29 + LONG_PA_AVG_TIME (PA クロック周期)。 PA クロック周期は次式により計算します。 メイン・インターポレーション > 1×の場合は、PA クロック周期 = 4×メイン・インターポレーション×DAC クロック周期。	0x0	R/W
					チャンネル・インターポレーション > 1×の場合は、PAクロック周期 = 8×メイン・インターポレーション× DACクロック周期。 それ以外の場合、PAクロック周期 = 32×DACクロック周期。		
0x586	LONG_PA_POWER_ LSB	[7:0]	LONG PA POWER[7:0]		長平均電力リードバック。データ・バスで検出された電力=I²+Q²。データ・バス計算で使用するのは、IおよびQデータ・バス・サンプルの上位6ビットだけです。この制御は、レジスタ0x008のMAINDAC_PAGE制御によってページングされます。	0x0	R
0x587	LONG_PA_POWER_	[7:5]	RESERVED		予備	0x0	R
	MSB	[4:0]	LONG_PA_ POWER[12:8]		長平均電力リードバック。データ・バスで検出された電力=I²+Q²。データ・バス計算で使用するのは、IおよびQデータ・バス・サンプルの上位6ビットだけです。この制御は、レジスタ0x008のMAINDAC_PAGE制御によってページングされます。	0x0	R
0x588	SHORT_PA_THRES_ LSB	[7:0]	SHORT_PA_ THRESHOLD[7:0]		比較のための短平均電力閾値。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x0	R/W
0x589	SHORT_PA_THRES_	[7:5]	RESERVED		予備	0x0	R
	MSB	[4:0]	SHORT_PA_ THRESHOLD[12:8]		比較のための短平均電力閾値。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x0	R/W
0x58A	SHORT_PA_ CONTROL	7	SHORT_PA_ENABLE		短平均による電力計算とエラー検出をイネーブルします。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされます。	0x0	R/W
		[6:2]	RESERVED		予備	0x0	R
		[1:0]	SHORT_PA_AVG_ TIME		短 PA 平均の時間を設定します。この制御は、レジスタ 0x008の MAINDAC PAGE 制御によってページングされます。平均時間 = 2SHORT_PA_AVG_TIME (PA クロック周期)。 PA クロック周期は次式により計算します。 メイン・インターポレーション > 1×の場合は、PA クロック周期 = 4 × メイン・インターポレーション × DAC クロック周期。 チャンネル・インターポレーション > 1×の場合	0x0	R/W
					は、PAクロック周期=8×メイン・インターポレーション×DACクロック周期。 それ以外の場合、PAクロック周期=32×DACクロック周期。		
0x58B	SHORT_PA_POWER_ LSB	[7:0]	SHORT_PA_ POWER[7:0]		短平均電力リードバック。データ・バスで検出された電力= I^2+Q^2 。データ・バス計算で使用するのは、 I および Q データ・バス・サンプルの上位6ビットだけです。この制御は、レジスタ 0 x008の $MAINDAC_PAGE$ 制御によってページングされます。	0x0	R
0x58C	SHORT PA POWER	[7:5]	RESERVED		予備	0x0	R

Rev. 0 — 146/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[4:0]	SHORT_PA_ POWER[12:8]		短平均電力リードバック。データ・バスで検出された電力 = $I^2 + Q^2$ 。データ・バス計算で使用するのは、 I および Q データ・バス・サンプルの上位 6 ビットだけです。この制御は、レジスタ 0 x008 の $MAINDAC_PAGE$ 制御によってページングされ	0x0	R
0.50D	TYPN CM O	[7.1]	DECEDIED		ます。	0x1	R/W
0x58D	TXEN_SM_0	0	RESERVED ENA_TXENSM		予備 TXEN ステート・マシンをイネーブルします。この制御は、レジスタ 0x008の MAINDAC_PAGE 制御によってページングされます。	0x1 0x0	R/W
0x596	BLANKING CTRL	[7:4]	RESERVED		予備	0x0	R
	_	3	SPI_TXEN		ENA_SPI_TXEN(このレジスタのビット 2)=1の 場合、このレジスタの値が TXENx ステータスの値 です。この制御は、レジスタ 0x008 の MAINDAC_PAGE 制御によってページングされま す。	0x0	R/W
		2	ENA_SPI_TXEN		このビットを1に設定することにより、SPIを介してTXENx制御を有効にします。この制御は、レジスタ 0x008の MAINDAC_PAGE 制御によってページングされます。	0x0	R/W
		[1:0]	RESERVED		予備	0x0	R
0x597	JESD_PA_INT0	[7:0]	JESD_PA_INT_ CNTRL[7:0]		各ビットが JESD204B PA 割込みをイネーブルします。 ビット 8 = CGS。 ビット 7 = フレーム同期。 ビット 6 = 正常チェックサム。 ビット 5 = 初期レーン同期。 ビット 4 = レーン間スキュー除去。 ビット 3 = 異常ディスパリティ・エラー・カウンタ。 ビット 2 = NIT エラー・カウンタ。 ビット 1 = UEK エラー・カウンタ。 ビット 0 = レーン FIFO のオーバーフローまたはアンダーフロー。	0x0	R/W
0x598	JESD PA INT1	[7:1]	RESERVED		予備	0x0	R
		0	JESD_PA_INT_ CNTRL[8]		各ビットが JESD204B PA 割込みをイネーブルします。 ビット8 = CGS。 ビット7 = フレーム同期。 ビット6 = 正常チェックサム。 ビット5 = 初期レーン同期。 ビット4 = レーン間スキュー除去。 ビット3 = 異常ディスパリティ・エラー・カウンタ。 ビット2 = NIT エラー・カウンタ。 ビット1 = UEK エラー・カウンタ。 ビット0 = レーン FIFO のオーバーフローまたはアンダーフロー。	0x0	R/W
0x599	TXEN_FLUSH_CTRL0	[7:1]	RESERVED		予備	0x0	R
		0	SPI_FLUSH_EN		データパス・フラッシュを有効にします。この制 御は、レジスタ 0x008 の MAINDAC_PAGE 制御に よってページングされます。	0x1	R/W
0x705	NVM_LOADER_EN	[7:1]	RESERVED		予備	0x0	R
		0	NVM_BLR_EN		ブート・ローダを有効にします。このビットは、ブ ート・ローダによる処理が完了するか失敗すると、 自動的にクリアされます。	0x0	R/W
0x790	DACPLL_PDCTRL0	7	PLL_PD5		PLL 停止制御。PLL をバイパスする場合は、この ビットに 1 を書き込みます。PLL を使用する場合 は、この値をデフォルト (0) のままにします。	0x0	R/W
		[6:4]	PLL_PD4		PLL 停止制御。PLL をバイパスする場合は、この ビットに 1 を書き込みます。PLL を使用する場合 は、この値をデフォルト (0) のままにします。	0x0	R/W
		3	PLL_PD3		PLL 停止制御。PLL をバイパスする場合は、この ビットに 1 を書き込みます。PLL を使用する場合 は、この値をデフォルト(0)のままにします。	0x0	R/W

Rev. 0 — 147/150 —


アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		2	PLL_PD2		PLL 停止制御。PLL をバイパスする場合は、この ビットに 1 を書き込みます。PLL を使用する場合 は、この値をデフォルト (0) のままにします。	0x0	R/W
		1	PLL_PD1		PLL停止制御。PLLをバイパスする場合は、この ビットに1を書き込みます。PLLを使用する場合 は、このビットに0を書き込みます。	0x1	R/W
		0	PLL_PD0		PLL停止制御。PLL をパイパスする場合は、この ビットに 1 を書き込みます。PLL を使用する場合 は、この値をデフォルト (0) のままにします。	0x0	R/W
0x791	DACPLL_PDCTRL1	[7:5]	RESERVED		予備	0x0	R/W
		4	PLL_PD10		PLL停止制御。PLLをバイパスする場合は、この ビットに1を書き込みます。PLLを使用する場合 は、この値をデフォルト(0)のままにします。	0x0	R/W
		3	PLL_PD9		PLL停止制御。PLLをパイパスする場合は、この ビットに1を書き込みます。PLLを使用する場合 は、この値をデフォルト(0)のままにします。	0x0	R/W
		2	PLL_PD8		PLL停止制御。PLLをパイパスする場合は、この ビットに 1を書き込みます。PLLを使用する場合 は、この値をデフォルト(0)のままにします。	0x0	R/W
		1	PLL_PD7		PLL停止制御。PLLをバイパスする場合は、この ビットに1を書き込みます。PLLを使用する場合 は、この値をデフォルト(0)のままにします。	0x0	R/W
		0	PLL_PD6		PLL 停止制御。PLL をバイパスする場合は、この ビットに 1 を書き込みます。PLL を使用する場合 は、この値をデフォルト (0) のままにします。	0x0	R/W
0x792	DACPLL CTRL0	[7:2]	RESERVED		予備	0x0	R
	_	1	D_CAL_RESET		VCO キャリブレーションをリセットします。	0x1	R/W
		0	D_RESET_VCO_DIV		これをハイに設定すると、VCO入力分周器がリセット状態に維持されます。ADCクロック・ドライバの入力(と出力)をオフにする効果があります。	0x0	R/W
0x793	DACPLL_CTRL1	[7:2]	RESERVED		予備	0x0	R
		[1:0]	M_DIVIDER-1	0 1 10 11	PFD の設定可能前置分周器の値(n − 1 表記)。 M_DIVIDER = PLL リファレンス・クロック/PFD 周波数。最大限のスペクトル性能を得るには、許容される PFD 範囲内で高い PFD 周波数を使用する M 分周器設定を選択します。 9.96GHz ≤ VCO 周波数、または、VCO 周波数 ≤ 10.87 GHz に対して、25MHz ≤ PFD 周波数 ≤ 225MHz。 9.96GHz > VCO 周波数 > 10.87GHz に対して、25MHz ≤ PFD 周波数 ≤ 770MHz。 1 分周 2 分周 3 分周 4 分周	0x0	R/W
0x794	DACPLL_CTRL2	[7:6]	RESERVED		予備	0x0	R/W
		[5:0]	DACPLL_CP		チャージ・ポンプ電流制御。チャージ・ポンプ電流 = $100\mu A + コード \times 100\mu A$ 。	0x4	R/W
0x795	DACPLL_CTRL3	[7:4]	RESERVED		予備	0x0	R/W
		[3:0]	D_CP_CALBITS		DAC PLL 最適化制御。	0x8	R/W
0x796	DACPLL_CTRL4	[7:4]	PLL_CTRL0		DAC PLL 最適化制御。	0xD	R/W
. ===		[3:0]	RESERVED		予備	0x2	R/W
0x797	DACPLL_CTRL5	[7:6]	RESERVED	1	予備	0x0	R/W
0. 700	D. CONT. COMP.	[5:0]	PLL_CTRL1		DAC PLL 最適化制御。	0x20	R/W
0x798	DACPLL_CTRL6	7	RESERVED	1	予備	0x0	R
		6	PLL_CTRL3		DAC PLL 最適化制御。	0x0	R/W

Rev. 0 — 148/150 —

アドレス	名前	ビット	ビット名	設定	説明	リセット	アクセス
		[5:0]	PLL_CTRL2		DAC PLL 最適化制御。	0x1C	R/W
0x799	DACPLL_CTRL7	[7:6]	ADC_CLK_DIVIDER		ADC クロック出力分周器。	0x0	R/W
				0	1分周		
				1	2分周		
				10	3 分周		
				11	4分周		
		[5:0]	N_DIVIDER		N 分周値は 2~50 の範囲で設定可能です。 N_DIVIDER = (DAC 周波数× M_DIVIDER) / (8×リ ファレンス・クロック周波数) 。	0x8	R/W
0x7A0	DACPLL_CTRL9	[7:6]	RESERVED		予備	0x2	R/W
		5	D_EN_VAR_FINE_ PRE		DAC PLL 制御。	0x0	R/W
		[4:3]	RESERVED		予備	0x2	R/W
		2	D_EN_VAR_ COARSE_PRE		DAC PLL 制御。	0x0	R/W
		[1:0]	RESERVED		予備	0x0	R/W
0x7A2	DACPLL_CTRL10	7	RESERVED		予備	0x0	R
		[6:5]	D_REGULATOR_ CAL_WAIT		DAC PLL 最適化制御。	0x1	R/W
		[4:3]	D_VCO_CAL_WAIT		DAC PLL 最適化制御。	0x2	R/W
		[2:1]	D_VCO_CAL_ CYCLES		DAC PLL 最適化制御。	0x2	R/W
		0	RESERVED		予備	0x1	R/W
0x7B5	PLL_STATUS	[7:1]	RESERVED		予備	0x0	R
		0	PLL LOCK		DAC PLL ロック・ステータス。	0x0	R

Rev. 0 — 149/150 —

外形寸法

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option
AD9175BBPZ	−40°C to +85°C	144-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]	BP-144-1
AD9175BBPZRL	−40°C to +85°C	144-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]	BP-144-1
AD9175-FMC-EBZ		Evaluation Board	

(BP-144-1) 寸法:mm

Rev. 0 — 150/150 —

¹Z=RoHS 準拠製品。