

低価格、300MHz レール to レール・アンプ

AD8061/AD8062/AD8063

特長

低価格

シングル (AD8061) デュアル (AD8062) ディスエーブル付きシングル (AD8063) レールtoレールの出力振幅

6mV Vos

高速

300MHz**の -** 3dB帯域幅(G=1)

800V/ µ sスルーレート

5Vで8.5nV/√Hz

1Vステップで35nsのセトリング・タイム(0.1%まで)

2.7~8\単電源で動作

入力電圧範囲= - 0.2 ~ + 3.2V (V_S = 5) 優れたビデオ仕様 (R_L = 150 、G = 2)

ゲイン平坦性:30MHz**まで**0.1dB

微分ゲイン誤差: 0.01% 微分位相誤差: 0.04度 過負荷回復: 35ns

低消費電力

消費電流:1アンプ当たり6.8mA (Typ) ディスエーブル時:400 µ A (AD8063)

小型パッケージ

AD8061:8 L'>SOIC, 5 L'>SOT-23 AD8062:8 L'>SOIC, μ SOIC AD8063:8 L'>SOIC, 6 L'>SOT-23

アプリケーション

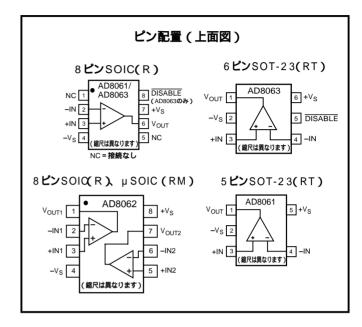
画像処理

光ダイオード・プリアンプ

業務用ビデオ / カメラ ハンドセット

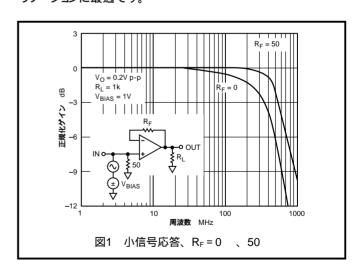
DVD/CD

基地局


フィルタ

A/Dドライバ

概要


AD8061/AD8062/AD8063は、低価格の使い易いレール to レール出力の電圧フィードバック・アンプです。 しかも、電流フィードバック・アンプで通常見られる帯域幅とスルーレートを提供できます。3製品とも広い入力コモン・モード電圧範囲と出力電圧振幅を持ち、2.7Vと低い単電源でも使用が容易になっています。

AD8061/AD8062/AD8063は、低価格にもかかわらず、優れた全

体性能を実現します。ビデオ・アプリケーションに対しては、微分ゲイン誤差0.01%、微分位相誤差0.04度(150 負荷を達成し、30MHzまで0.1dBの平坦性を持っています。さらに、300MHzまでの広い帯域幅と800V/µsのスルーレートを実現します。

AD8061/AD8062/AD8063は、1アンプ当たり6.8mA(typ)の低消費電力で、50mAの負荷電流を駆動する能力を持っています。 AD8063はパワーダウン・ディスエーブル機能を内蔵しており、消費電流を400 µ Aまで削減できます。 これらの機能により、AD8063はサイズと消費電力が重要な携帯機器およびバッテリ駆動のアプリケーションに最適です。

アナログ・デバイセズ社が提供する情報は正確で信頼できるものを期していますが、その情報の利用または利用したことにより引き起こされる第3者の特許または権利の侵害に関して、当社はいっさいの責任を負いません。さらに、アナログ・デバイセズ社の特許または特許の権利の使用を許諾するものでもありません。

REV.0

本 社/東京都港区海岸1-16-1 電話03(5402)8400 〒105-6891 ニューピア竹芝サウスタワービル

大阪営業所 / 大阪市淀川区宮原3-5-36 電話06(6350)6868(代) 〒532-0003 新大阪第二森ビル

AD8061/AD8062/AD8063 - 仕様 (特に指定のない限り、TA = 25 、 Vs = 5V、RL = 1k 、 Vo = 1V)

パラメータ	条件	Min	Тур	Max	単位
ダイナミック性能					
- 3dB小信号帯域幅	$G = 1$, $V_0 = 0.2Vp-p$	150	320		MHz
	$G = -1$, $+2$, $V_0 = 0.2Vp-p$	60	115		MHz
- 3dB大信号带域幅	$G = 1$, $V_0 = 1Vp-p$		280		MHz
平坦性0.1dBでの帯域幅	$G = 1$, $V_0 = 0.2Vp-p$		30		MHz
スルーレート	$G=1$ 、 $V_0=2Vステップ$ 、 $R_L=2k$	500	650		V/µs
X// D	$G=2$, $V_0=2V$	300	500		V/µs
0.1%までのセトリング時間	$G=2$, $V_0=2VX$, $V_0=2V$	300	35		1
	G-2, V ₀ -2VXJ 9 J		33		ns
ノイズ / 歪み性能	(5MH V 0V				I.D.
総高調波歪み	$f_C = 5MHz$, $V_O = 2Vp-p$, $R_L = 1k$		- 77		dBc
U. + 88 6 1 6	$f_C = 20MHz$, $V_O = 2Vp-p$, $R_L = 1k$		- 50		dBc
出力間クロストーク	f = 5MHz、G = 2、AD8062		- 90		dBc
入力電圧ノイズ	f = 100kHz		8.5		nV/√Hz
入力電流ノイズ	f = 100kHz		1.2		pA/√Hz
微分ゲイン誤差(NTSC)	G = 2、R _L = 150		0.01		%
微分位相誤差(NTSC)	$G = 2$, $R_L = 150$		0.04		度
第3次インターセプト	f = 10MHz		28		dBc
SFDR	f = 5MHz		62		dB
DC性能					
入力オフセット電圧			1	6	mV
	T _{MIN} ~ T _{MAX}		2	6	mV
入力オフセット電圧ドリフト	- WIN - WAA		3.5	•	μ V/
入力バイアス電流			3.5	9	μA
バルバーンス電流	T _{MIN} ~ T _{MAX}		4	9	μA
入力オフセット電流	I MIN I MAX		0.3	4.5	1 '
オープン・ループ・ゲイン	V = 0.5 4.5V D = 450	C0		4.5	±μΑ
オープン・ループ・サイン	$V_0 = 0.5 \sim 4.5 V$, $R_L = 150$	68 74	70 90		dB dB
\ +\#±\#\	$V_0 = 0.5 \sim 4.5 V, R_L = 2k$	14	90		ub
入力特性			40		, ,
入力抵抗			13		M
入力容量			1		pF
入力コモン・モード電圧範囲			- 0.2 ~ + 3.2		V
コモン・モード除去比	$V_{CM} = -0.2 \sim +3.2 V$	62	80		dB
出力特性					
出力電圧振幅(負荷抵抗を電源電圧の中心で終端)	R _L = 150	0.3	0.1 ~ 4.5	4.75	V
	$R_L = 2k$	0.25	0.1 ~ 4.9	4.85	V
出力電流	V ₀ = 0.5 ~ 4.5 V	25	50		mA
容量性負荷駆動、V _{out} = 0.8V	30%オーバーシュート: G = 1、R _s = 0		25		pF
	$G = 2$, $R_S = 4.7$		300		pF
パワーダウン・ディスエーブル					1
ターン・オン時間			40		ns
ターン・オフ時間			300		ns
フレック ありょうほう DISABLE電圧 オフ			2.8		V
DISABLE電圧 オン DISABLE電圧 オン			3.2		V
			3.2		V
電源 新作祭 网络		0.7	F	0	,
動作範囲		2.7	5	8	V .
1アンプ当たりの静止電流			6.8	9.5	mA
ディスエーブル時の電源電流 AD8063の場合)			0.4		mA
電源変動除去比	$V_{\rm S} = 2.7 \sim 5 \rm V$	72	80		dB

2

仕様は予告なく変更することがあります。

AD8061/AD8062/AD8063 - 仕様 (特に指定のない限り、 $T_A = 25$ 、 $V_S = 3V$ 、 $R_L = 1k$ 、 $V_O = 1V$)

パラメータ	条件	Min	Тур	Max	単位
ダイナミック性能					
- 3dB小信号帯域幅	$G = 1$, $V_0 = 0.2Vp-p$	150	300		MHz
	$G = -1$, $+2$, $V_0 = 0.2Vp-p$	60	115		MHz
- 3dB大信号帯域幅	$G = 1$, $V_0 = 1Vp-p$		250		MHz
平坦性0.1dBでの帯域幅	$G = 1$, $V_0 = 0.2Vp-p$		30		MHz
スルーレート	G = 1、V ₀ = 1Vステップ、R _L = 2k	190	280		V/µs
	G = 2、V ₀ = 1.5Vステップ、R _L = 2k	180	230		V/µs
0.1%までのセトリング時間	G = 2、V ₀ = 1Vステップ		40		ns
ノイズ / 歪み性能					
総高調波歪み	$f_C = 5MHz$, $V_O = 2Vp-p$, $R_L = 1k$		- 60		dBc
1001-31137/AZZ-7	$f_C = 20MHz$, $V_O = 2Vp-p$, $R_L = 1k$		- 44		dBc
出力間クロストーク	f = 5MHz, G = 2		- 90		dBc
入力電圧ノイズ	f = 100kHz		8.5		nV/√Hz
入力電流ノイズ	f = 100kHz		1.2		pA/√Hz
DC性能	1 1001112		1.2		pro viiiz
入力オフセット電圧			1	6	mV
/(パラウェント 電圧	$T_{MIN} \sim T_{MAX}$		2	6	mV
入力オフセット電圧ドリフト	IMIN IMAX		3.5	U	μ V/
入力バイアス電流			3.5	8.5	μΑ
バルバノス电池	$T_{MIN} \sim T_{MAX}$		4	8.5	μA
入力オフセット電流	'MIN 'MAX		0.3	4.5	±μΑ
オープン・ループ・ゲイン	$V_0 = 0.5 \sim 2.5 V$, $R_{\perp} = 150$	66	70	4.5	dΒ
オープン・ループ・ライン	$V_0 = 0.5 \sim 2.5 V, R_L = 150$ $V_0 = 0.5 \sim 2.5 V, R_L = 2k$	74	90		dB
	V ₀ = 0.3 ·· 2.5 V, INL = 2R	74	30		ub
入力抵抗			13		М
入力容量			13		pF
八刀子皇 入力コモン・モード電圧範囲			- 0.2 ~ + 1.2		V
コモン・モード除去比	V _{CM} = - 0.2 ~ + 1.2V		80		dB
出力特性	V _{CM} = -0.2 11.2 V		00		иь
出力電圧振幅	R _L = 150	0.3	0.1 ~ 2.87	2.85	V
山刀电压旅帽	R _L = 2k	0.3	0.1 ~ 2.9	2.90	V
出力電流	$V_0 = 0.5 \sim 2.5 V$	0.3	25	2.90	mA
山刀電/// 容量性負荷駆動、V _{о∪т} = 0.8V	30%オーバーシュート、G = 1、R _S = 0		25		pF
台里注其19减型、 V OUT - 0.0 V			-		1.
パワーダウン・ディスエーブル	$G = 2$, $R_S = 4.7$		300		pF
ターン・オン時間			40		ne
ターノ・オノ時間 ターン・オフ時間			40 300		ns
					ns V
DISABLE電圧 オフ			0.8		
DISABLE電圧 オン			1.2		V
電源		0.7		0	
動作範囲		2.7	0.0	3	V .
1アンプ当たりの静止電流			6.8	9	mA
ディスエーブル時の電源電流(AD8063のみ)			0.4		mA
電源変動除去比		72	80		dB

仕様は予告なく変更されることがあります。

AD8061/AD8062/AD8063 - 仕様 (特に指定のない限り、 $T_A=25$ 、 $V_S=2.7V$ 、 $R_L=1k$ 、 $V_0=1V$)

パラメータ	条件	Min	Тур	Max	単位
ダイナミック性能					
- 3dB小信号帯域幅	$G = 1$, $V_0 = 0.2Vp-p$	150	300		MHz
	$G = -1$, $+2$, $V_0 = 0.2Vp-p$	60	115		MHz
- 3dB大信号帯域幅	$G = 1$, $V_0 = 1Vp-p$		230		MHz
平坦性0.1dBでの帯域幅	$G = 1$, $V_0 = 0.2Vp-p$, $V_0DC = 1V$		30		MHz
スルーレート	G = 1、V ₀ = 0.7Vステップ、R _L = 2k	110	150		V/µs
	G = 2、V ₀ = 1.5Vステップ、R _L = 2k	95	130		V/µs
0.1%までのセトリング時間	G=2、V ₀ =1Vステップ		40		ns
ノイズ / 歪み性能					
総高調波歪み	$f_C = 5MHz$, $V_O = 2Vp-p$, $R_L = 1k$		- 60		dBc
	$f_C = 20MHz$, $V_O = 2Vp-p$, $R_L = 1k$		- 44		dBc
出力間クロストーク	f = 5MHz、G = 2		- 90		dBc
入力電圧ノイズ	f = 100kHz		8.5		nV/√Hz
入力電流ノイズ	f = 100kHz		1.2		pA/√Hz
DC性能					
入力オフセット電圧			1	6	mV
	$T_{MIN} \sim T_{MAX}$		2	6	mV
入力オフセット電圧ドリフト			3.5		μV/
入力バイアス電流			3.5		μA
	$T_{MIN} \sim T_{MAX}$		4	8.5	μA
入力オフセット電流			0.3	4.5	±μΑ
オープン・ループ・ゲイン	$V_0 = 0.5 \sim 2.2 V_{\chi} R_L = 150$	63	70		dB.
	$V_0 = 0.5 \sim 2.2 V, R_L = 2k$	74	90		dB
入力特性					
入力抵抗			13		M
入力容量			1		pF
入力コモン・モード電圧範囲			- 0.2 ~ + 0.9		V
コモン・モード除去比	$V_{CM} = -0.2 \sim +0.9V$		80		dB
出力特性					
出力電圧振幅	R _L = 150	0.3	0.1 ~ 2.55	2.55	V
	$R_L = 2k$	0.25	0.1 ~ 2.6	2.6	V
出力電流	$V_0 = 0.5 \sim 2.2 V$		25		mA
容量性負荷駆動、V _{OUT} = 0.8V	30%オーバーシュート: G = 1、R _s = 0		25		pF
	$G = 2_{x} R_{s} = 4.7$	300			pF
パワーダウン・ディスエーブル					
ターン・オン時間			40		ns
ターン・オフ時間			300		ns
DISABLE電圧 オフ			0.5		V
DISABLE電圧 オン			0.9		V
電源					
動作範囲		2.7		8	V
1アンプ当たりの静止電流			6.8	8.5	mA
ディスエーブル時の電源電流(AD8063のみ)			0.4		mA
電源変動除去比			80		dB

仕様は予告なく変更されることがあります。

絶対最大定格1

5.医毒豆

電源電圧	87
内部消費電力 ²	
プラスチック・パッケージ (N)	1.3W
スモール・アウトライン・パッケージ (R)	W8.0
5ピンSOT-23パッケージ	0.5W
6ピンSOT-23パッケージ	0.5W
μ SOICパッケージ	0.6W
差動入力電圧 (-V _S -0.2V)~((+ V _S - 1.8V)
入力電圧(コモン・モード)	$\pm V_S$
出力短絡時間	

消費電力ディレーティング曲線を参照

保管温度範囲R、RM、5ピンSOT-23、6ピンSOT-23

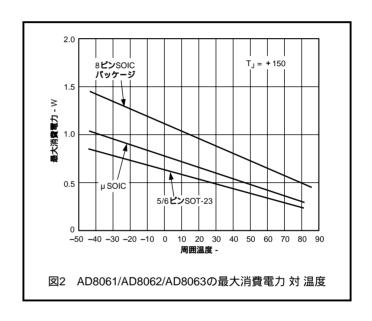
- 65 ~ + 125 - 40 ~ + 85

動作温度範囲

ピン温度範囲(ハンダ処理10秒)

300

注


1 上記の絶対最大定格を超えるストレスを加えるとデバイスに恒久的な損傷を与えることがあります。この規定はストレス定格の規定のみを目的とするものであり、この仕様の動作セクションに記載する規定値以上でのデバイス動作を定めたものではありません。デバイスを長時間絶対最大定格状態に置くとデバイスの信頼性に影響を与えます。

2 仕様は自然空冷のデバイスに対して規定しています。 8 ピンSOICパッケージ: 」 AB = 160 W; 」 CB = 56 W 5 ピンSOT-23パッケージ: 」 AB = 240 W; 」 CB = 92 W 6 ピンSOT-23パッケージ: 」 AB = 230 W; 」 CB = 92 W 8 ピン µ SOICパッケージ: 」 AB = 200 W; 」 CB = 44 W

最大消費電力

AD806xが安全に消費できる最大電力は、接合温度の上昇に対応して制限されます。プラスチック・パッケージを使用するデバイスの安全な最大接合温度は、プラスチックのガラス遷移温度が決定します。この温度は約+150 です。パッケージからチップに対して加えられる応力が変化するため、一時的にこの規定値を超えた場合でも、パラメータ性能がシフトすることがあります。+175 の接合温度を長時間超えるとデバイスの故障の原因になります。AD806xは内部で短絡保護が行われていますが、すべての条件下で最大接合温度(+150)を超えないことを保証するためには十分ではありません。

正常動作を保証するためには、最大消費電力ディレーティング曲線を参照する必要があります。

オーダー・ガイド

モデル	温度範囲	パッケージ	パッケージ・オプション
AD8061AR	- 40 ~ + 85	8ピンSOIC	R-8
AD8061ART	- 40 ~ + 85	5ピンSOT-23	RT-5
AD8062AR	- 40 ~ + 85	8ピンSOIC	R-8
AD8062ARM	- 40 ~ + 85	8ピンμSOIC	RM-8
AD8063AR	- 40 ~ + 85	8ピンSOIC	R-8
AD8063ART	- 40 ~ + 85	6ピンSOT-23	RT-6
AD806x-EB		AD806xAR評価ボード	

注音

ESD(静電放電)の影響を受けやすいデパイスです。4000Vもの高圧の静電気が人体やテスト装置に容易に帯電し、 検知されることなく放電されることがあります。本製品には当社独自のESD保護回路を備えていますが、高エネル ギーの静電放電を受けたデパイスには回復不可能な損傷が発生することがあります。このため、性能低下や機能喪 失を回避するために、適切なESD予防措置をとるようお奨めします。

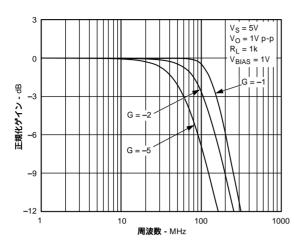


図9 大信号周波数応答

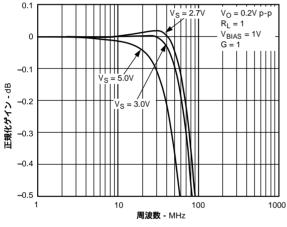


図10 0.1dB平坦性

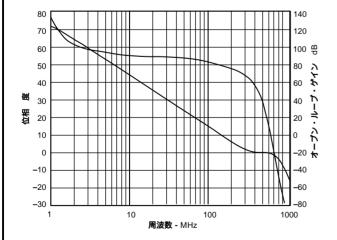


図11 オープン・ループ・ゲインと位相 対 周波数 (VS=5V、RL=1k)

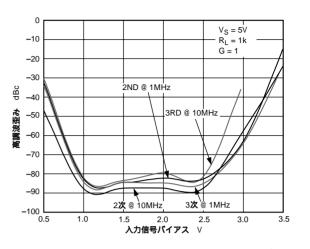


図12 1Vp-p信号の高調波歪み 対 入力信号DCバイアス

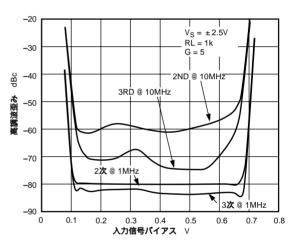


図13 1Vp-p信号の高調波歪み 対 出力信号DCバイアス

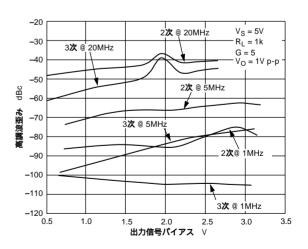
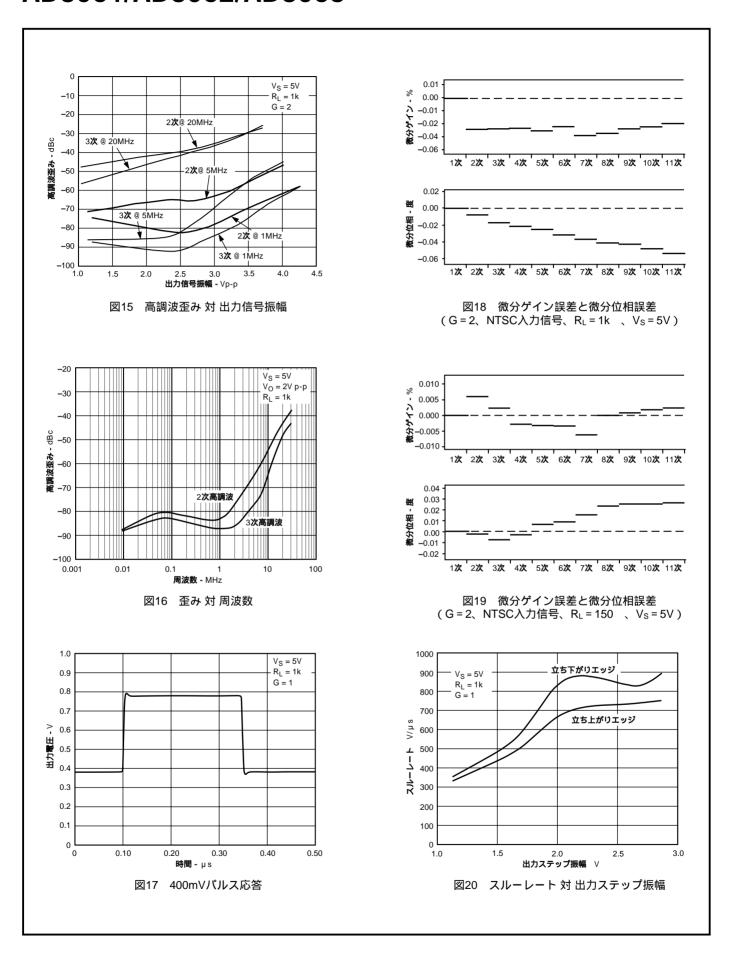



図14 高調波歪み 対 出力信号DCバイアス

8

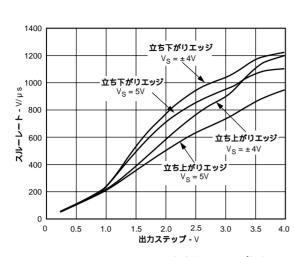


図21 スルーレート対 出力ステップ振幅 $(G = 2, R_L = 1k, V_S = 5V)$

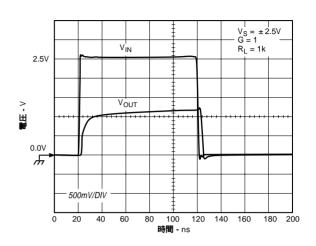


図24 入力過負荷回復(入力ステップ=0~2V)

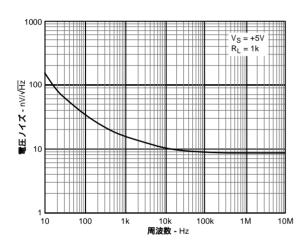


図22 電圧ノイズ 対 周波数

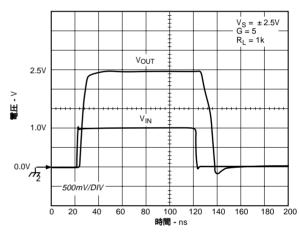


図25 出力過負荷回復(入力ステップ=0~1V)

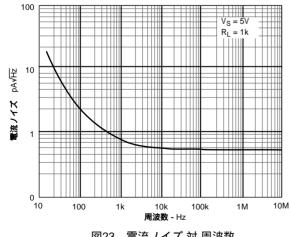


図23 電流ノイズ 対 周波数

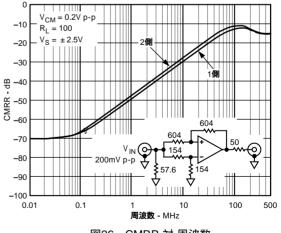
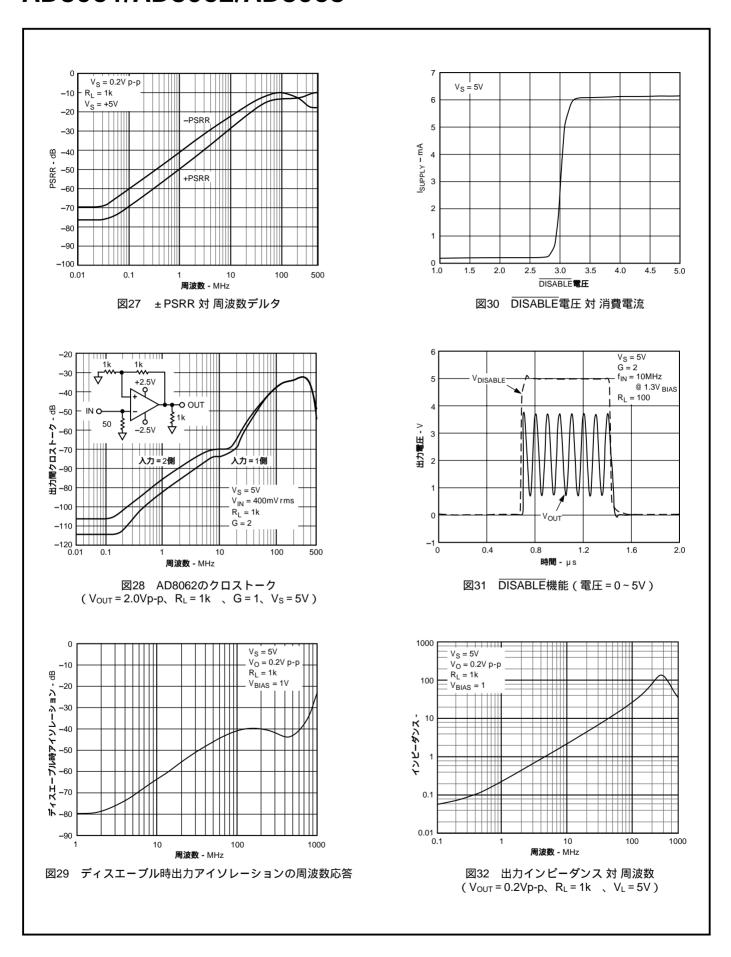
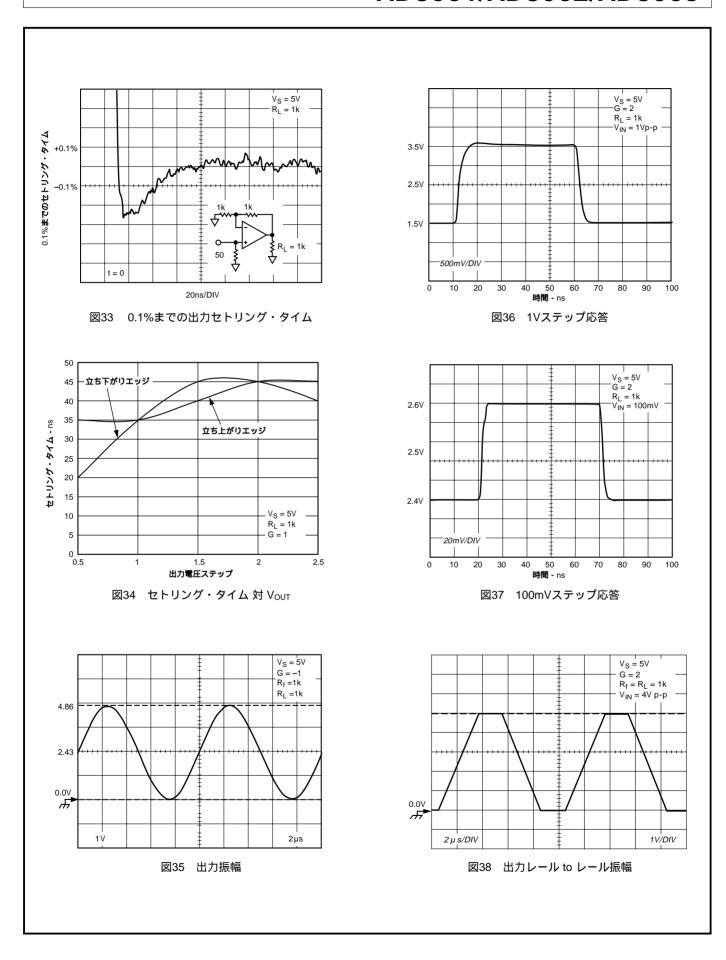
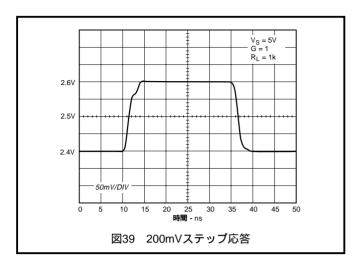
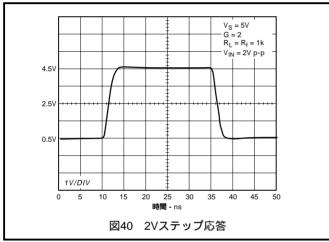
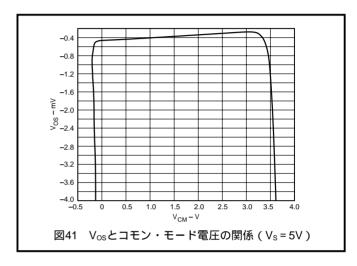
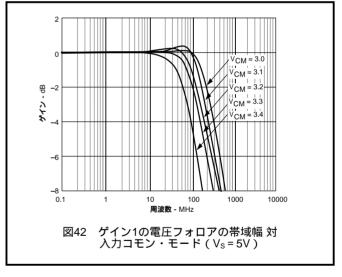






図26 CMRR 対 周波数

回路の説明

AD8061/AD8062/AD8063ファミリーは非常に高速な電圧フィード バック・オペアンプです。高スルーレートの入力ステージは真の単電源回路設計で、マイナス側電源ピン電圧を下回る信号をも検出できる機能を持っています。レール to レールの出力ステージは、軽い負荷を駆動する場合には両電源ピンから30mV内側まで駆動でき、150 負荷を駆動する場合には0.3V内側まで駆動できます。この高速性能は、2.7Vの低電圧まで維持できます。


ヘッドルームに対する注意事項


AD8061/AD8062/AD8063は、低電圧システムでの使用を対象に設計されています。最適性能を得るためには、入/出力信号がアンプのヘッドルーム限界に近づいた場合のアンプ動作を理解することが重要です。

AD806xの入力コモン・モード電圧範囲は、負電源電圧(実際にはこれより200mV下側)すなわち単電源動作の場合はグラウンドから正電源電圧の1.8V内側まで広がっています。したがって、入力信号振幅が - V (またはグラウンド)~+V s/2の場合、ゲイン=2で、AD806xは3.6Vまでの低電源電圧に対して、フルのレール toレール出力振幅を提供します。ゲイン=3では、AD806xは2.7Vまでの低い合計電源電圧に対してレール to レール出力範囲を提供できます。

アンプ正入力でのリファレンスがアンプの入力コモン・モード範囲内にある限り、ヘッドルーム限界を超えても、各電源電圧での任意

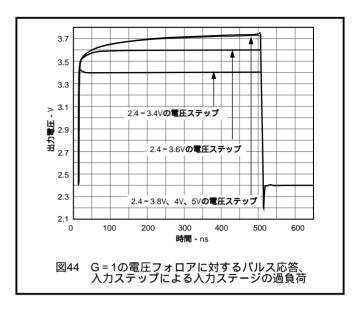
の反転ゲインに対する問題はありません。正の電源ピン電位に近づく信号に対してゲイン=1でアンプを使用する場合は、入力ステージが信号に対してヘッドルーム限界になります。図41に、5V電源動作時のAD806xアンプの代表的なオフセット電圧と入力コモン・モード電圧の関係を示します。高精度なDC性能は、負電源電位の約200mV下側から正電源電位の1.8V内側まで維持されます。ただし、高速な信号に対しては、他の点も考慮する必要があります。図42に、ゲイン1の電圧フォロアの-3dB帯域幅とDC入力電圧の関係を示します。

コモン・モード電圧が正電源電位に近づくと、アンプの動作は変わりませんが、+ V_sの内側1.9Vから帯域幅が狭くなり始めます。このことは、歪みまたはセトリング・タイムが大きくなることにより明らかになります。図12に、AD806xアンプを5V電源で電圧フォロアとして使用した場合の、1Vp-p信号の歪みと信号コモン・モード電圧の関係を示します。歪み性能は、入力信号の中心電圧が2.5Vを超えて、入力サイン波のピークが上側のコモン・モード電圧限界にさしかかるまで維持されます。高周波数の信号が歪み性能を維持するためには、低周波数の場合より大きなヘッドルームが必要です。図43に、1Vステップ入力が規定の入力コモン・モード電圧限界に近づき、これを超えるときに、ゲイン1の電圧フォロアとして構成されたアンプの立ち上がリエッジのセトリング・タイムが大きくなっていく様子を示します。

REV.0

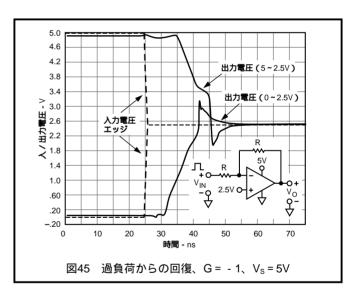
12

負電源に近づく信号、反転ゲイン設定、高い正ゲイン設定に対しては、出力ステージがヘッドルーム限界になります。AD806xアンプは、共通エミッタ型の出力ステージを採用しています。この出力ステージは有効出力範囲を最大にしますが、出力トランジスタの飽和電圧の制限を受けます。この飽和電圧は、出力トランジスタのコレクタ抵抗に起因して、出力トランジスタが供給する必要がある駆動電流の増加とともに増大します。飽和電圧は式V_{SAT} = 25mV + I_o × 8を使って計算できます。ここで、I_oは出力電流、8 は出力トランジスタのコレクタ抵抗値(typ)です。


出力ステージの飽和点が近づくと、出力信号は圧縮されクリップされるようになります。入力ヘッドルームに関しては、高周波数の信号になるほど、低周波数の信号に比べて大きなヘッドルームを必要とします。ゲイン=2とゲイン=5の場合の、飽和点、代表的な歪み、出力振幅、バイアスの関係を図13、図14、図15に示します。

過負荷時の動作と回復

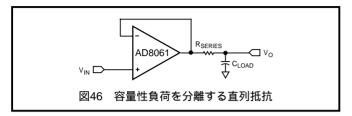
入力


AD806xの規定入力コモン・モード電圧は、負電源の下側 - 200mVから正電源の内側1.8Vまでです。上限を超えると、 帯域幅が狭くなりセトリング・タイムが大きくなります (図42、図43)。 ゲイン1の電圧フォロアの入力電圧を正電源 電位の内側1.6Vまで上げると、図44の動作が発生します。 すなわち、出力誤差が大きくなり、かつセトリング・タイムも大きくなります。入力電圧1.6V付近から正電源電位までの回復時間は約35nsです。この値は、入力ステージが飽和から抜け出す際の、トランジスタのセトリングに制限されます。

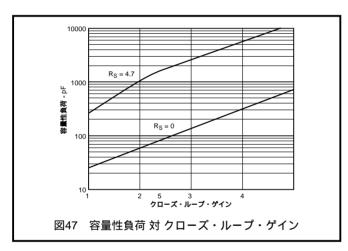
AD806xファミリーでは、入力電圧が電源電圧を超えても位相反転が生じません。電源電圧より0.6V高くなると、入力ステージの保護ダイオードがターン・オンして、デバイスへの流入電流を大きく増大させます。

出力

出力の過負荷回復は、アンプの入力が非過負荷値に戻ってから40ns(typ)以内になっています。図45に、飽和出力から回復するアンプの出力回復過渡電圧を示します(アンプ出力は電源の上限または下限から電源電圧の中点へ変化)。



容量性負荷の駆動


AD806xファミリーは、帯域幅と動作速度の最適化は行われていますが、容量性負荷の駆動に対しては最適化されていません。出力容量はアンプの帰還パスで極を構成するため、大きなピーキングと発振を生じることがあります。負荷容量を駆動する必要があるアプリケーションの場合は、次の2つの方法を検討してください。

- (1)アンプ出力と負荷容量の間に直列に小さい値の抵抗を接続する。
- (2)全体のノイズ・ゲインを増やしてアンプの帰還ループ 帯域幅を狭くする。

図46に、直列抵抗を使用するユニティ・ゲインの電圧フォロアを示します。この抵抗は出力を容量から分離し、さらに重要なことには、帰還パスにゼロ点を構成します。このゼロ点は、出力容量により構成される極を相殺します。

AD806xファミリーのような電圧フィードバック・アンプは高いゲインを設定すると、大きなピーキングを生じさせずに、さらに大きな容量性負荷を駆動できます。これは、ノイズ・ゲインの増加により、フィードバック・ループ全体の帯域幅が狭くなるためです。図47に、30%のオーバーシュートを発生する容量と代表的なアンプのノイズ・ゲインの関係を示します。

ディスエーブル動作

AD8063のディスエーブル機能の内部回路を図48に示します。 DISABLE ノードを正電源電位から2Vに下げると、電源電流は6.5m/(typ)から400μ/(typ)未満に減少し、AD8063の出力が高インピーダンス状態になります。DISABLEを開放フロート状態のままにした場合は、AD8063はフル・パワーのバイアス状態になります。

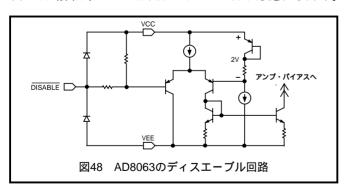


図30は、AD8063の電源電流とDISABLE電圧の関係です。図31は、AD8063の入力を10MHzのサイン波で駆動し、さらにDISABLEピンを0Vと+5Vの間でトグルした場合のアンプ出力(デバイスのターン・オン時間とターン・オフ時間を示します。

図29は、AD8063がシャットオフした場合の入/出力アイソレーション応答です。

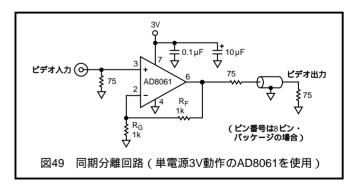
ボード・レイアウトの考慮事項

AD806xファミリーの高速性能を維持するためには、高速ボード用のレイアウト技術を使い、かつ寄生容量の小さい部品を使用する必要があります。

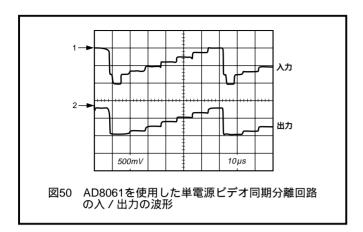
PCBには、ボード部品面の未使用部分をカバーするグラウンド・プレーンを設けて、インピーダンスの小さいパスを実現する必要があります。寄生容量を小さくするためには、パッケージ付近にグラウンド・プレーンを設けないようにします。

適切なバイパスも不可欠です。両電源をバイパスするために、 0.1μ Fのセラミック・コンデンサを各電源ピンから3mm以内に配置する必要があります。出力信号の高速で大きな変化に対して電荷を供給するために、 $4.7 \sim 10 \mu$ Fのタンタル電解コンデンサを並列に接続する必要があります。

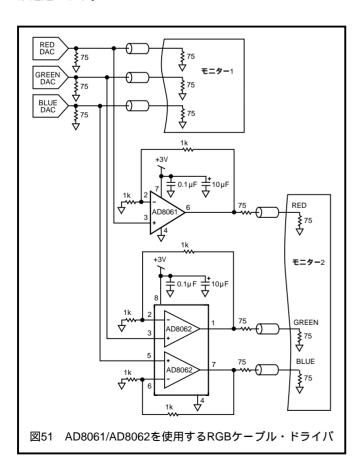
アンプの反転入力ピンの寄生容量を抑えることは非常に重要です。帰還抵抗は反転入力ピンの近くに配置する必要があります。 帰還抵抗の値も重要です。例えば、抵抗が1k で寄生容量が1pFの場合、159MHzに極が発生します。


信号パターン長が25mmを超える場合は、ストリップライン設計技術を使う必要があります。これらの信号パターンは50 または75 の特性インピーダンスを持つように設計し、各ピンで適切に終端する必要があります。

アプリケーション


単電源同期分離回路

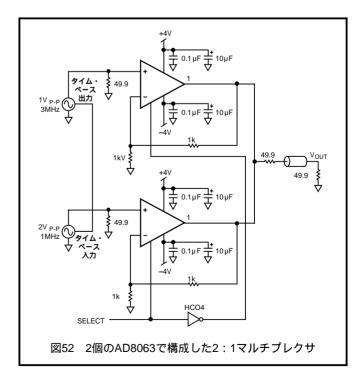
ビデオ信号に同期パルスが含まれる場合、処理を行う前にこれらを分離することが望ましい場合があります。A/D変換の場合は、同期パルスがダイナミックレンジの一部を使ってしまうため、これらを除去すると、コンバータのビデオ情報に対する有効ダイナミックレンジを広げられます。


図49に、単電源で動作するAD8061を使った同期分離の基本回路を示します。負電源がグラウンド電位の場合は、出力の可能な最小電位はグラウンド・レベルです。この機能は、最小振幅がビデオの黒レベルであり、かつ同期レベルを含まない波形を生成するために開発されました。

この場合、入力ビデオ信号はグラウンド・レベルの黒レベルを持っているので、入力ではグラウンド・レベルになります。同期レベルが黒レベルより下なので、出力には現れませんが、波形のアクティブなビデオ部分はすべてゲイン2で増幅されて、逆側終端の送信ラインによりゲイン1に正規化されます。図50は入/出力のオシロスコープ波形を示します。

同期信号を持つビデオ信号の中は、ビデオDACのような単電源デバイスから出力されたものもあります。これらの信号に同期信号が含まれることもありますが、その全波形は正であり、黒レベルはグラウンドではなく正電位です。このような波形の同期分離機能を追加するために、この回路を変更できます。RGをグラウンドに接続せずに、入力信号黒レベルの2倍のDC電圧に接続します。正入力から出力までのゲインを2にします。これは、黒レベルが2倍に増幅されて出力されることを意味します。ただし、RGから出力までのゲインは・1にします。出力での黒レベルをグラウンドにシフトするためには、入力に黒レベルの2倍のDCレベルが必要です。このようにすると、同期が分離されて、グラウンドを基準とする場合と同様にアクティブなビデオ信号が通過します。

RGBアンプ


多くのRGBグラフィック信号は、抵抗を介して電流をグラウンドに駆動するビデオDACにより発生します。ビデオ黒レベルでは電流がゼロになり、ビデオの電圧もゼロになります。高速なレール to レール・オペアンプが使用可能になる前は、このような信号を増幅するために、アンプは負電源を使う必要がありました。同じDAC出力を使って2つ目のモニターを駆動する場合には、このようなアンプが必要になります。

しかし、AD8061/AD8062のような高速レール to レール出力 アンプの場合、グラウンド・レベルの信号の入 / 出力が可能なので、RGB信号アンプとして使用できます。AD8061 (シングル)とAD8062 (デュアル)を組み合せて、RGBシステムの3つのビデオ・チャンネルを増幅できます。図51に、この機能を実行する回路を示します。

マルチプレクサ

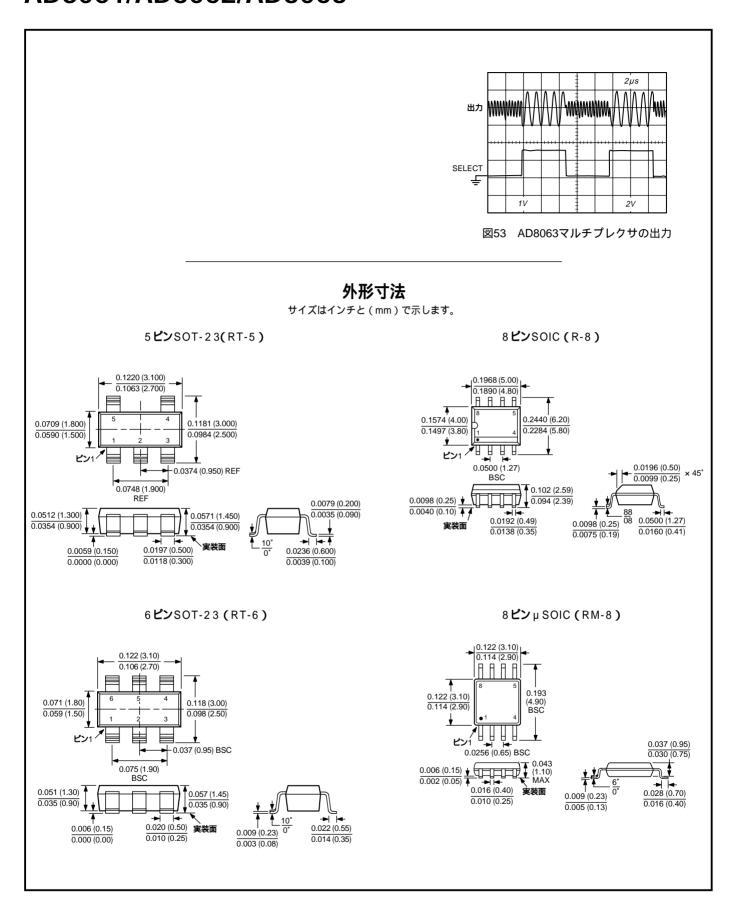

AD8063は、省電力のためにアンプをパワーダウンさせたり、あるいはマルチプレクサ回路を構成するために使用できるディスエーブル・ピンを持っています。複数のAD8063の出力を相互に接続して、その内の1つだけをイネーブルすると、イネーブルされたアンプの信号だけが出力に現れます。この構成は、複数の入力信号源から1つを選択するときに使用できます。さらに、同じ入力信号を異なるゲイン・ステージまたは異なる周波数に同調させたフィルタに接続して、ゲイン・ステップ・アンプまたはセレクタブル周波数アンプを構成できます。

図52は、2個のAD8063を使って構成した、2つの入力を選択するマルチプレクサ回路です。2つの入力の内の1つは1p-pの3MHzサイン波で、他の1つは2Vp-pの1MHzサイン波です。

REV.0

15

