

AN-737 アプリケーション・ノート

ADIsimADC による ADC モデリングの方法

著者: Brad Brannon、Tom MacLeod

コンバータのモデリング

コンバータのモデリングは、見落とされるか、省略され てきました。あるいは理想データ・コンバータ・モデル を使って実行されてきました。ミックスド・シグナル技 術を採用するシステムが増えるにつれて、システム・モ デリングはますます重要になっています。デザイン・サ イクルの短縮とファースト・パスでの成功を求める圧力 により、完全なシステム・モデリングの重要性が増して います。ADIsimADCTMは、この増え続けるニーズに対す る答えとして開発されました。

理想コンバータ・モデルはよくファンクショナル・モデ リングとして使われますが、特定のデバイスがシステム の目標を満たすか否かを判断するために必要な詳しい性 能を提供してくれません。これが、ADIsimADCが開発さ れた理由です。まず、ADIsimADCは選択したデバイスの 適用性を判断する条件を使って、システム内の特定のコ ンバータの性能を確認する手段を提供します。

ADIsimADCは ADC のすべての特性をエミュレートしま せんが、システム・シミュレーション内で実際のコンバ ータをユーザがモデル化できるようにする目標を実現す るため努力を続けています。

ビット・イグザクト対ビヘイビア

ビット・イグザクト・モデルは、既知のテスト信号を入 力した場合に既知で予測可能な出力が得られるモデルで す。ADIsimADCはビット・イグザクト・モデルではあり ません。これらのタイプのモデルはよくデジタル・シス テムで使用されています。アナログ機能を扱う場合、ノイ ズ、歪み、その他の非直線性があるため、与えられた入 力に対して既知の応答が得られることはありません。応 答の一部を予測できる場合がありますが、その他の多く の部分は、歪み、ノイズ、さらにはデバイス間のバラツ キの影響を受けます。さらに、ビット・イグザクト・モ デルを用意するためには、過渡応答を処理する SPICE モ デルのような回路シミュレーション・ファイルを用意す る必要がありますが、これらのモデルは大規模、複雑、 非常に低速であるため、最終的な精度が制約されてしま います。縮小した、または等価な SPICE モデルを使うと 複雑さは軽減されますが、スタティック性能とダイナミ ック性能の詳細なモデリングができません。

ビヘイビア・モデルでは複雑さが解消されると同時に、 回路ファイルでは実現できない詳細性能のモデリングが 可能になります。ADIsimADCとVisualAnalog™の組み合 わせは、スタンドアロンのコンバータ評価ツールとして 機能します。ADIsimADC™は、Agilent Technologies社の ADS、Applied Wave Research社のVSS、National Instrument 社のツール、MATLAB®、C++などの他の多くのサー ド・パーティのシミュレーション・ツールと組み合わせ て使うこともできます。これらのツールと組み合わせて 使う情報は、www.analog.com/ADIsimADCから提供して います。

モデル対ハードウェア

システムまたは ADC のモデリングは、実システムの構築 やキャラクタライゼーションの代わりになるものではあり ません。回路をモデル化することは1つの問題ですが、 実際にモデルを構築してテストすることは別の問題です。

シミュレーションで得られた性能を実現するためには、 アナログまたはミックスド・シグナルのデバイスの場合 と同様に、適切なレイアウトと構成が必要です。このた め、製品データ・シートに記載するすべてのレイアウ ト・ルールとガイドラインに従うことが重要になります (図4参照)。十分な電源バイパス・コンデンサを使用す る重要性は1つの例です。ミックスド・シグナル・デバ イスには幾分かのデジタル回路が含まれているため、デ ジタル・スイッチング・ノイズが問題になり、適度なコ ンデンサを使用しないと、これらのスイッチング電流に より最適なデバイスであっても性能が大幅に損なわれて しまいます。コンバータの周囲には、追加コンデンサ、 インダクタ、抵抗などのその他のサポート・デバイスが必 要になります。必要なものを知る最善の方法は、製品デー タ・シートと評価ボード回路図を調べることです。

モデル化に重要な仕様は?

ADIsimADCは、実デバイスの実際の性能を提供すること を目標としています。モデル化に重要な仕様は、実行し ようとしている解析の種類に依存します。たとえば、制 御ループでは正確な伝達関数と遅延情報が必要となり、 無線システムではノイズと歪みの正確な表現が必要にな ります。ADIsimADCは、オフセット、ゲイン、サンプ ル・レート、帯域幅、ジッタ、レイテンシ、AC直線性、 DC直線性などの、データ・コンバータの重要な多くの仕 様をモデル化します(AC直線性の詳細については、AN-835 アプリケーション・ノート「Understanding High Speed ADC Testing and Evaluation」を参照してください)。

このアプリケーション・ノートでは、これらの仕様の詳 細とこれらの ADIsimADC での扱い方について説明しま す。

Rev. B

目次

コンバータのモデリング	1
ビット・イグザクト対ビヘイビア	1
モデル対ハードウェア	1
モデル化に重要な仕様は?	1
ゲイン、オフセット、DC直線性	3
サンプル・レート	5

帯域幅	5
ダイナミック歪みとスタティック歪み	5
ジッタ	6
レイテンシ	7
結論	7
参考文献	7

AN-737

ゲイン、オフセット、DC 直線性

コンバータのフルスケール・レンジは、コンバータのデ ザインによって決められます。固定、選択可能、または 可変です。コンバータのゲイン誤差は公称値からの偏差 で、入力スパンと呼ばれることもあります。ADC は電圧 入力デバイスであるため、フルスケール・レンジは DC または低周波での電圧として規定されます。

オフセットは、コンバータのフルスケール・レンジの1/2 からの実際の電荷(多数)キャリア変移によるずれ量と して定義されます。これは、入力をフルスケールの1/2 に接続することにより測定することができます。多くのデ バイスには、入力同相モード電圧を設定するために入力 ピンにバイアスを与える内部接続があります(図1参照)。 このようなデバイスでは、この接続を外部で行う必要は ありません。シングルエンド入力の場合は入力をフロー ティングにしておくか、あるいは差動入力の場合には互 いに短絡することができます。内部に同相モード電圧への 接続がないデバイスでは、外部で接続する必要がありま す(図2参照)。入力スパンの場合と同様に、同相モード電 圧は固定または調整可能にすることができます。設定方 法については、デバイスのデータ・シートをご覧ください。

図 1.内部同相モード電圧を持つ一般的なアナログ入力

図 2.内部同相モード電圧を持たない一般的なアナログ入力

ADIsimADCでは、入力スパンまたは同相モードの変更を 許していません。複数の入力スパンを持つデバイスには、 別々のコンバータ・モデルを提供します。同相モードは、 すべてのデバイスに対して固定で、変更することはでき ません。異なる同相モード・レンジを使うシステムのモ デル化が必要な場合は、外部オフセットを使って差を減 算することができます。

ADC の DC 直線性(図 3 参照)は、コンバータの量子化法 とスタティック伝達関数によって決定されます。コンバ ータには多くのタイプがあり、各々は独自の伝達関数を 持ち、DC と高周波で異なる結果を発生します。異なるタ イプのコンバータと伝達関数のコンバータ性能への影響 の詳細については、参考文献のセクションの Brannon (2001)と Kester (2004)の参考文献をご覧ください。

図 3.コンバータ伝達関数の重要な因子であるコンバータの 代表的な DNL

AN-737

サンプル・レート

サンプル・レートの変化とアナログ入力周波数の変化と して、コンバータの性能が変化します。サンプル・レー トの点では、大部分の優れたコンバータは最小規定サン プル・レートから最大規定サンプル・レートまで一貫し た性能を提供します(図5参照)。最小より下のサンプ ル・レートでは、正常に動作しないコンバータもありま す。これは、内蔵コンデンサに蓄積された電荷に起因し て発生するもので、この電荷の放電すなわち電圧低下に より正しくないデータ変換が生じます。したがって、コ ンバータのデータ・シートで最小有効サンプル・レート を確認しておく必要があります。最大サンプル・レート より上では、2つの問題が発生する可能性があります。 デバイス内部で、デジタル信号を1つのステージから次 のステージへ渡せないことがあります。これは、チップ 上でセットアップ・タイムまたはホールド・タイムが不 足するために発生します。もう1つの問題は、クリティ カルなアナログ信号が割り当てられた処理時間内に安定 しないことです。これの1つの例としては、ホールド・ コンデンサのアクイジション・タイムがあります。前と 同様に、コンバータのデータ・シートで最大サンプル・ レートを確認しておく必要があります。ADIsimADC では、 規定のサンプル・レートを使ってコンバータ動作を求め ますが、デバイスの規定範囲外に対しては、このモデル はすべてゼロの結果を出力します。

帯域幅

アナログ入力周波数が高くなると、振幅応答の減衰により、コンバータの見掛け上のフルスケール・レンジが実効的に大きくなるため、コンバータ応答でのロールオフが必要になります。応答が3dB減少する周波数は、コンバータの3dB帯域幅と呼ばれます。

コンバータの性能は、アナログ入力周波数が高くなるに つれて、コンバータの周波数応答に従ってロールオフし ます(図6参照)。これは、ADIsimADC内でモデル化され ているため、モデル内で応答が減衰させられています。 この減衰を考慮するため、モデルのデフォルトとして指 定された振幅を超えて入力信号振幅を大きくする必要が あり、このため入力はコンバータのフルスケール・レン ジより大きく見えます。実際には、この信号はパッケー ジ、デバイスの寄生、さらにサンプル・アンド・ホール ド・アンプ(SHA)のホールド・コンデンサにより形成さ れるフィルタにより減衰させられます。このため、この 信号は実際には規定スパン内に収まります。

ダイナミック歪みとスタティック歪み

ADC の帯域幅は有限であるため、原理的なスルーレート 制限、すなわちダイナミック制限があります。このスル ーレート制限が、ADC 内の歪み原因の1つになっていま す。データ・コンバータの入力周波数を DC から高い周 波数まで変化させると、コンバータの SFDR 性能と高調 波性能が低下します(図7参照)。

図7.一般的なコンバータ性能対アナログ入力周波数

歪み制限は少なくとも部分的にはスルーレートの問題か ら発生するため、アナログ周波数を一定に維持したまま 信号入力の振幅を小さくすると、スルーレートが小さく なるため、コンバータのフルスケールに対して高調波性 能と歪み性能を改善することができます。これらのスプ リアスは必ずしも古典的な n 次積の傾向に従いませんが、 この傾向は弱いながらもよく観測されます。信号レベル が小さくなると、ダイナミックな影響はなくなりますが、 スタティックな影響が歪みの支配的な因子として急速に 置き換わります。

スタティックな歪みは、コンバータの伝達関数に起因す る歪みです(図8参照)。この歪みはまったく予測できな い結果を発生させることがよくあります。これには、入 カレベルの関数として急激に変化するスプリアスが含ま

AN-737

れるため、正と負のスロープ特性を示すことがあります。 これらのスプリアスは、主にコンバータのアーキテクチ ャ特性に起因します。異なるコンバータは異なるスタテ ィック伝達関数を持つため、歪み応答は大きく異なりま す。さらに、これらはアナログ部品であるため、同じデ ザイン内の各部品は入力信号に対して異なる応答を示し ます。このため、部品間でバラツキがあります。

図 8.データ変換の一般的な伝達関数

ADIsimADCは、データ・コンバータの公称性能をモデル 化しようとします。ADIsimADCは優れた仕事をしますが、 部品間のバラツキは常に発生します。予測される性能バ ラツキを求めるときは、コンバータのデータ・シートを 調べてください。

ジッタ

コンバータ・アナログ入力のスルーレート制限の他に、 高周波アナログ信号のサンプリングで最も困難な点の1 つはジッタです。ジッタは、すべてのデータ・コンバー タ・フロント・エンドでのサンプリング・プロセスで発 生するサンプル間隔のバラツキです。低周波のアナログ 入力では、ジッタを無視することができますが、高周波の アナログ入力では、ジッタのためにアナログ・サンプリ ング・プロセスで発生する誤差は大きな性能低下を発生 させます(図9参照)。サンプリング・タイム誤差はフェ ムト秒のオーダーですが、SNRで発生する制約は大きく なります(www.analog.comに掲載するAN-501アプリケー ション・ノート、「Aperture Uncertainty and ADC System Performance」を参照してください)。高周波での全体ノイ ズには複数の要因がありますが、ジッタは明らかに支配 的な要因です。式1に示すように、特に高分解能コンバ ータでは支配的です。

ジッタには2つの原因があります。1つ目は、デバイス に内在する内部ジッタです。最新のコンバータ・デザイ ンでは、種々の技術を採用して内部ジッタを小さくする 努力をしているため、内部ジッタは2つの原因の内で小 さい方になっています(無視はできません)。2つ目として、 ジッタの主要原因になっているのは、外部クロック・ジ ッタです。モデルがジッタから生ずるノイズを計算する 際、これらの2つのジッタ原因はノイズを計算する前に 統合されます。

ADIsimADC は入力信号の瞬時スルーレートを計算し、こ の値にガウス・モデルによるジッタ・ノイズ原因(シグマ = 内部ジッタと外部ジッタを統合した rms値)を乗算しま す。この結果としてノイズのジッタ成分が得られます。 この値は、アナログ入力の周波数と振幅レベルの関数とし てジッタの影響を正確にモデル化しています。外部ジッ タのデフォルトは、デバイスのキャラクタライゼーショ ン時に使用されたセットアップでの外部ジッタですが、 この値は任意の値に変更することができます。

$$SNR = -20\log\left[\sqrt{\left(2\pi f_{ana}\log t_{jitter_{rms}}\right)^2 + \left(\frac{2}{3}\right)\left(\frac{1+\varepsilon}{2^N}\right)^2 + \left(\frac{2V_{Noise_{rms}}\sqrt{2}}{2^N}\right)^2}\right]$$
(1)

レイテンシ

多くのタイプのコンバータには、サンプルのタイミング から有効なデータがデジタル出力に出力されるまでの間 の遅延があります。SAR コンバータとフラッシュ・コン バータは一般に、サンプル周期後直ちにデータを出力し ます。パイプライン化コンバータや Σ-Δ コンバータのよ うなマルチステージ・コンバータは、多くのクロック・ サイクルが経過するまでデータを出力しません。これは、 制御システムやレイテンシが重要となるその他のシステ ムでは問題となります。ADIsimADC では、レイテンシを クロック周期の整数値でモデル化します。このため、パ イプラインへのデータ書き込み中に変換周期の始めで無 効なデータが発生し、パイプラインのフラッシュ中に変 換周期の終わりで有効なデータが発生するということが 起こります。このモデルを使用するときは、バッファの フラッシュまたはその他の方法により、パイプライン遅延 を適切に考慮するための注意が必要です。

結論

ADIsimADCは、特定の動作条件下でADC性能をシミュ レーションする有効なツールです。ソフトウェアが実世 界の状態をエミュレートするため、システム・モデリン グをより完全なものにすることができます。ハードウェ アを置き換えるものではありませんが、システム・デザ イン内でのADC動作を理解する最初のステップになりま す。

参考文献

- Brannon, Brad.2006. AN-501 Application Note Aperture Uncertainty and ADC System Performance. Analog Devices, Inc. (March).
- Brannon, Brad.2001. "DNL and Some of Its Effects on Converter Performance."Wireless Design and Development (June).
- Brannon, Brad and Rob Reeder.2006. AN-835 Application Note Understanding High Speed ADC Testing and Evaluation.Analog Devices, Inc. (April).
- Kester, Walt, ed. 2004. Analog-to-Digital Conversion. Analog Devices, Inc. ISBN 0-916550-27-3.
- Looney, Mark.Analog-to-Digital Converter (ADC) Signal-to-Noise Ratio (SNR) Analysis.Unpublished paper.

©2009 Analog Devices, Inc. All rights reserved. 商標および登録商標は各社の所有に属します。