

高度なRFシステムに、 デジタル・フィルタを簡単に 適用する方法

著者: Mitch Sternberg、システム・アプリケーション・エンジニア

概要

一般に、通信システムでは入力信号の帯域幅を制限する必要が あります。多くの通信アプリケーションでは、デジタル・フィ ルタがそのための有用な手段になります。アナログ・フィルタ を使用して帯域制限を行う場合、部品の調達、プリント基板の レイアウト、ばらつきといった事柄に悩まされることになりま す。デジタル・フィルタを採用すれば、そうしたことに煩わさ れることはありません。高調波を除去したり、特定の周波数帯 域の成分を遮断したりすることで、信号間の干渉を容易に防ぐ ことができます。もちろん、デジタル・フィルタにも欠点はあ ります。それでも、より一般的になりつつあるミックスド・シ グナル環境において簡単に利用できることから、システムに必 要なフィルタの要件を満たすための優れた選択肢となっていま す。読者の中には、デジタル設計は複雑なものだと感じる方も いるかもしれません。ただ、そのような理由で、デジタル・フィ ルタを選択肢から外すべきではありません。本稿では、シンプ ルで性能の高いデジタル・フィルタをRFシステムに迅速かつ 簡単に実装する方法を紹介します。

デジタル・フィルタの基礎

フィルタを使用する目的は、特定の周波数成分を歪みなく通過さ せつつ、それ以外のすべての周波数成分を完全に減衰させること です。デジタル・フィルタでもアナログ・フィルタでも、その利 用目的は基本的には同じです。デジタル・フィルタの場合、サン プリングによって取得した個々のデータ(サンプル)に対して重 み付けを行いつつ加算していくという処理を施します。入力され るデータ配列全体に対してその処理を繰り返すことで、フィルタ リングを実現します。その処理は以下の式で表すことができます。

(1)

$$y[n] = \sum_{i=0}^{N} c_i \times x[n-i]$$

この処理を担うフィルタは、FIR (Finite Impulse Response: 有限インパルス応答)フィルタと呼ばれます。FIRフィルタの場 合、タップ数Nが多いほど理想に近い応答が得られます。つまり、 通過帯域の応答は平坦に近くなり、遷移帯域の減衰はより急峻に なります。タップ数を増やすことの最大の欠点は、より多くのリ ソースが必要になることです。また、タップを1つ増やすと、演 算に必要なリソースの量に加えて遅延時間が増加します。つまり、 Nが大きくなるにつれて消費電力と時間遅延が増大するというこ とです。FIRフィルタではフィードバック機構は使用されません。 そのため、本質的に安定しています。つまり、入力に応じ、出力 が累積して無限に増大するといったことは生じません。加えて、 FIRフィルタは位相応答が線形になるように設計することも可能 です。したがって、タイミングや群遅延が重要なRFアプリケー ションにおいては特に有用です。

本稿では、高速なデータ・アクイジションを実現するプラット フォームにデジタル・フィルタを実装する方法について説明して いきます。最初に、実験用の設定、実験結果の検証方法、使用 するシステムの仕様を紹介します。次に、シングルトーンとその 高調波の両方を除去したい場合に、実用的なデジタル・フィルタ からはどのような出力が得られるのかを示します。更に、マルチ トーンのテスト・ベクトルを使用することで、より広い周波数帯 域にわたるフィルタのプロファイルがどのようなものになるのか を明らかにします。

なお、本稿ではIIR(Infinite Impulse Response:無限インパル ス応答)フィルタについては触れません。また、FIRフィルタの タップ数が192、サンプル・レートが1500MSPSである場合を 例にとることにします。

VISIT ANALOG.COM/JP

実験用の設定

本稿では、デジタル・フィルタを適用するプラットフォームとし て「AD9082」を例にとることにしました。これは、アナログ・ デバイセズが提供するMxFE[®](ミックスド・シグナル・フロン トエンド)製品です。実装したフィルタによって得られる結果に ついては、このプラットフォームをループバック・モードに設定 し、スペクトラム・アナライザを使用して検証することにします。 AD9082の設定は、アナログ・デバイセズの「ADS9」に接続す ることによって行いました。ADS9は、A/Dコンバータ(ADC) とD/Aコンバータ(DAC)を制御し、出力データを処理するた めの開発プラットフォームです。そのユーザ・ガイドはこちらか らダウンロードできます。必要な信号は、Rohde & Schwarz製 のベクトル信号発生器「R&S SMW200A」を使用して生成しま す。具体的には、5G NR (New Radio) で使用されるテスト・ ベクトルと、シングルトーン/マルチトーンのベクトルを生成す ることにしました。また、DACの出力スペクトルは、Rohde & Schwarzのスペクトラム・アナライザ「R&S FSW」を使用する ことによって取得します(図2)。

192 タップのFIRフィルタのブロック (PFILT) は、ADCのコア のすぐ後段に配置されています。実験の簡素化を図るために、本 稿では192 個すべてのタップを有効にした状態で、シングルエン ドで駆動される1つのADCチャンネルを対象とすることにしま した。システムのサンプリング・レートは、送信側と受信側共に 1500MSPS に設定します。そのため、プロットされるスペクトル の範囲は、ナイキスト周波数である750MHz (1500MHz/2) ま でとなります。

図1.AD9082を実装した基板

図2.実験用の環境

検証方法

図3に示したのは、ADCの出力データをFFT (Fast Fourier Transform)によって処理した結果です。一方、図4には、内部 ループバックを使用してDACの出力をスペクトラム・アナライ ザでキャプチャした結果を示しました。これら2つの信号のスペ クトル表現は、ほぼ等価だと言えます。ノイズ・フロアの違いは、 アナライザの分解能帯域幅に依存して現れています。このような 比較を行った目的は、PFILTを通過した後のADCのデータが、 ループバック・パスを経て得られるDACの出力信号と等価であ ることを確認することです。

また、より複雑なスペクトラム信号を使用することによって、間 接ループバックの精度を確認しました。その実験には5G NRの テスト・ベクトルも使用しました。ここで、図5をご覧ください。 これは、ベクトル信号発生器(SMW200A)によって生成した テスト・ベクトルのパワー・スペクトラムとループバックによっ て得たDACの出力を比較したものです。

図3. ADCの出力 (RF_{IN}: 200MHz、5dBm)

図5. SMW200Aの出力とAD9082のDACの出力。 5G NRのテスト・ベクトルを使用して比較しています。

実験結果

次に、フィルタのプロファイルを実験によって確認してみます。 フィルタの係数は、MATLAB[®]のFilter Designerを使用して生 成しました。また、スペクトラム・アナライザからのトレース・ データは、Pythonで記述したスクリプトを使用してキャプチャ しました。

図6. ローパス・フィルタの振幅応答と群遅延。 MATLABによる設計値とPFILTモデルで実装したフィルタの実測値を示しています。

表 1. MATLABによるローパス・フィルタ (FIRフィルタ)の設計仕様

フィルタの種類	チェビシェフ型の ローパス・ウィンドウ			
タップ数	191			
中心周波数	—			
帯域幅(6dBカットオフ)	100MHz			
サイドロープの減衰量	60dB			

MATLAB Filter Designerによって生成した係数を使用して、 フィルタの特性を確認しました。図6の赤色のプロットは、192 タップ、倍精度浮動小数点数のFIRフィルタによって得られる理 想的なプロファイルです。このFIRフィルタは、4つの16進数の コードワードをレジスタの入力として受け取ります。MATLABの 倍精度の値からこのフォーマットへの変換が行われる際には、精 度がいくらか損なわれます。MATLAB Filter Designerで生成し たフィルタの特性とPFILTモデルを使用した場合の特性を比較す ることにより、そのデータ型の変換によってフィルタの応答に及 ぶ影響を確認することができます。

続いて、図7に示したプロットをご覧ください。これは、 AD9082にテスト用の100MHzのトーンを入力し、DACにルー プバックした場合の結果です。ご覧のように、フィルタを適用し た場合と適用しない場合を比較しています。ADC側では、バッ ファの非直線性が原因で高調波が生成されることがあります。そ の高調波はPFILTによって除去することができます。そうすれば、 スプリアス・フリー・ダイナミック・レンジ(SFDR)が55.9dB から81.9dBに改善されます。実装されたフィルタの特性を見る と、60dBの減衰レベルまでのロールオフがシミュレーション結 果(MATLABで設計した理想状態)と比べて緩やかになります。 群遅延は192タップの場合で(N-1)/2 = 95.5〔サンプル〕なの で、通過帯域は平坦に保たれることがわかります。

次に、ベクトル信号発生器を使用してマルチトーンのテスト・ベ クトルを生成しました。そのトーンの列の振幅は、広い周波数範 囲にわたってフィルタの特性に即した形で減衰することになりま す。相互変調歪みの発生を防ぐために、各トーンの出力レベルは 約-40dBmに抑えました。図8に示したのは、その状態でリファ レンス・レベルを-40dBmとした場合のDACの出力応答です。 フィルタを適用した場合と適用しない場合を比較しています。

図8. マルチトーンのテスト・ベクトルに対するAD9082のDACの出力。 ローパス・フィルタを適用した場合と適用しない場合を比較しています。 MATLABで生成したフィルタのマスクも示しました。 リファレンスのレベルは-40dBmです。

図9. バンドパス・フィルタの振幅応答と群遅延。 MATLABによる設計値とPFILTモデルで実装したフィルタの実測値を示しています。

続いて、バンドパス・フィルタ(表2、図9)を適用した場合の 結果を紹介します。図10と図11は、振幅が-15dBm、周波数が 200MHzのCWを使用した場合の結果です。この例では、デジ タル・データ・パスを介してDACのコアへと信号を間接的にルー プバックしています。図10は、プログラマブルなフィルタを適 用しない(ディスエーブル)場合の例です。2fcにおける高調波 の測定値は-73.88dBmでした。一方の図11は、PFILTをイネー ブルにした場合の結果です。高調波が除去されているだけでな く、データ・パスのノイズ・フロアも抑えられていることがわか ります。また、チェビシェフ型のフィルタにおける典型的な帯域 外リップルも現れています。このバンドパス・フィルタでは、通 過帯域における群遅延も平坦な特性を示します。

表2. MATLABによるバンドパス・フィルタ (FIRフィルタ)の設計仕様

フィルタの種類	チェビシェフ型の バンドパス・ウィンドウ
タップ数	191
中心周波数	200MHz
帯域幅(6dBカットオフ)	100MHz
サイドロープの減衰量	80dB

AD9082のループバック出力 (RF_{IN}: 200MHz、15dBm)

続いて、図12をご覧ください。これは、同じマルチトーンのテ スト・ベクトルを使用し、DACの出力にバンドパス・フィルタを 適用した場合と適用しない場合の結果です。フィルタを適用した 場合の結果を見ると、通過帯域のノイズ・フロアは4.2dB上昇し ています。しかし、チェビシェフ型のフィルタの一般的な帯域外 リップルに続く阻止帯域のノイズ・フロアは2dB~3dB低下し ています。

図12. マルチトーンのテスト・ベクトルに対するAD9082のDACの出力。 バンドパス・フィルタを適用した場合と適用しない場合を比較しています。 MATLABで生成したフィルタのマスクも示しました。 リファレンスのレベルは -40dBmです。

表3. 実験用の構成におけるDACの遅延の計算値

遅延

続いて、ループバックの構成における遅延の測定結果を示します。 その測定は、同じ長さの同軸ケーブルを使用したテスト・ベンチ をベースとして実施しました。その結果、トータルの遅延の測定 値は500ナノ秒でした。

表3と表4は、実験に使用した構成でAD9082を動作させた場合に予想される遅延についてまとめたものです。ADCのレートとDACのレートを考慮してトータルの値を考えることにより、 最小値と最大値を算出することができます。500ナノ秒という値はその範囲内にあることがわかります。

ワイヤレス・システムの伝搬遅延を1マイクロ秒未満に抑えられ たとします。その場合、回路全体の遅延に対する影響を十分に 無視できるレベルに抑えて、リンクの両端の間で一貫性を保つこ とができます。IEEE 802.11b/g、4G/LTE、5G NRに対応する 携帯端末の同期についても同じことが言えます。デジタル・フィ ルタによる遅延が加わったとしても、トータルの遅延を500ナ ノ秒に抑えられれば問題はありません。つまり、本稿で例にとっ た設計であれば、システムはワイヤレス・レシーバーのプラット フォームとしての相互運用性を維持できるということになります。

表4. 実験用の構成における ADC の遅延の計算値

			公称遅延			
ADCのレート (GSPS)	DCMの総計	レーン・レート (Gbps)	ADCの クロック	ナノ秒 (DACの レート)		
1.5	1×	12.375	373	248.667		

まとめ

RF対応のシグナル・チェーンでは、信号波からビット・データ への変換において、必要なアナログ処理が実行されます。ただ、 現実のハードウェアには寄生素子やパワー・アンプの非直線性と いった誤差要因が存在します。また、ワイヤレス通信ではマルチ パスのフェージングといった現象が発生します。そうしたことが 原因となって信号品質は低下します。またシグナル・チェーンの 振る舞いは、非理想的な伝達関数で表される状態になります。信 号の減衰やスペクトルの損失を補償する処理は、データの精度と 信頼性を確保する上で非常に重要です。アナログ・デバイセズは、 プログラマブルなフィルタ機能を備えるMxFEとしてAD9082 を提供しています。この製品を採用すれば、広い周波数範囲を網 羅し、急峻な遷移帯域を実現する有用なフィルタのプロファイル を簡単に設計/実装することができます。

参考資料

[Evaluating the AD9082/AD9081/AD9986/AD9988 Mixed-Signal Front-End (MxFE) RF Transceiver (RFトラン シーバー機能を備えるミックスド・シグナル・フロントエンド (MxFE) [AD9082/AD9081/AD9986/AD9988] を評価す る)] Analog Devices、2022年1月

[AD9081/AD9082 System Development User Guide UG-1578 (UG-1578: AD9081/AD9082のシステム開発ユーザ・ ガイド)] Analog Devices、2021年7月

[Mixed Signal: Section 6 (ミックスド・シグナル:セクション 6)] Analog Devices

著者について

Mitchell Sternbergは、アナログ・デバイセズのシステム・アプリケーション・エンジニアです。計測器チームに 所属しています。シグナル・チェーン、信号/電源のイン テグリティ、ワイヤレス通信システムなどの設計/分析を 担当。イーサネットの規格に対するコンフォーマンス・テ ストを扱うテスト技術者/ハードウェア開発者としての経 験も有しています。ニューハンプシャー大学(ニューハン プシャー州ダーラム)で電気工学の学士号を取得しまし た。

EngineerZone[®] オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

ADI EngineerZone^{**}

SUPPORT COMMUNITY

Visit ez.analog.com

*英語版技術記事はこちらよりご覧いただけます。

	レーン・レート Gbps) しーン・レート 最小遅 (DACØ クロック	JESDの 星小波延	データ・	最小遅延		JESDの 公thy RAT	公称遅延		JESDの 豊士 海延	最大遅延	
		取り) (DACの クロック)	**** パスに) おける遅延	DACの クロック	ナノ秒 (DACの レート)	ム称娃処 (DACの クロック)	DACの クロック	ナノ秒 (DACの レート)	最大遅延 (DACの クロック)	DACの クロック	ナノ秒 (DACの レート)
	12.375	230	1038	1268	211.333	864	1902	317.000	1500	2538	423.000

アナログ・デバイセズ株式会社

お住いの地域の本社、販売代理店などの情報は、analog. com/jp/contact_をご覧ください。

オンラインサポートコミュニティEngineerZoneでは、アナ ログ・デバイセズのエキスパートへの質問、FAQの閲覧がで きます。 ©2023 Analog Devices, Inc. All rights reserved. 本紙記載の商標および登録商標は、各社の所有に属します。 Ahead of What's Possibleはアナログ・デバイセズの商標です。 VISIT ANALOG.COM/JP