

2017年8月

LTpowerPlanner: システムレベルの電源アーキテクチャ設計ツール

NOW PART OF

ANALOG

Henry Zhang, Tim Kozono

はじめに

最新の電子システムは、ますます複雑性が増しています。シ ステム・ボード上には、さまざまな負荷に電力を供給する多 数の電源レールや電源ソリューションがあります。システム・ ハードウェア技術者は、個々の電源を選択または設計する 前に、まずシステムの電力要件を理解し、それに応じてシス テムのパワー・ツリーを設計し、パワー・マネージメント・シス テムの効率、サイズ、コストを最適化する必要があります。シ ステムの複雑性の度合によっては、システムレベルの電源の 最適化は簡単ではありません。この課題に対応するには、直 感的なシステムレベルの設計ツールが必要です。

LTpowerPlanner ツールとは

LTpowerPlanner[®]プログラムは、システム設計者によるパワー・マネージメント・システムの計画、設計、最適化を支援する、システムレベルのパワー・ツリー設計ツールです。このツールは、直感的なグラフィック・ユーザー・インタフェース(GUI)によってシステムレベルの設計作業を大幅に簡素化します。

LTpowerPlannerツールは以下の作業を支援します。

- 「パワー・ツリー」タイプのシステム・ブロック図の作成
- システムの合計入力電力、出力電力、電力損失、効率、 ボード・サイズの計算/推定
- システムレベルの最適化を目的とする複数の電源アーキ テクチャの比較
- LTpowerCAD[®]電源設計ツールおよびLTspice[®]回路シ ミュレーション・ツールへのインタフェース
- システム・ソリューションの直感的な文書化と提示

LTpowerPlanner 設計ツールは、LTpowerCAD 設計ツール・ プログラムの一部です。LTpowerPlanner ツールを開くには、 LTpowerCADのメイン・ページで[System Design]アイコン をクリックします(図1を参照)。LTpowerCADプログラムは Windows PC上で動作するオフラインのプログラムであり、 www.linear-tech.co.jp/LTpowerCADから無償でダウンロー ドできます。

図1. [System Design]アイコンをクリックしてLTpowerPlannerツールを開く

LTpowerPlannerの3つの基本設計手順

まず最初に、LTpowerPlanner設計ツールを使用する際の3 つの基本手順について説明します。

ステップ1:システム・パワー・ツリーの作成

図2に、LTpowerPlannerツールを使用した簡単なシステム・ パワー・ツリーの作成例を示します。パワー・ツリーには、入 力電力源、電源コンバータ、負荷デバイスの3種類の主な部 品があります。電力源部品は出力端子のみを持ち、負荷部 品は入力端子のみを持ちます。各コンバータ部品は、左側に 電力入力端子、右側に電力出力端子を持ちます。コンバータ 部品は複数の出力レールを持つことができます。これはマル チチャネル電源を表します。同じように、負荷部品は複数の 入力レール端子を持つことができます。 ユーザーはまずこれらの部品を配置し、次に左から右へ電 源線で部品を接続できます(電流/電力が流れる方向は、デ フォルトでは左から右です)。

ステップ2:部品パラメータの更新

各部品をダブルクリックすると、[Properties]ウィンドウで主要な電源パラメータ(入力電圧範囲、出力電圧、最大負荷電流など)を更新できます。またユーザーは、システム計算用に各電源コンバータ部品の予想効率と推定サイズを入力できます。

図2. システム・パワー・ツリーの作成

図3. コンバータの主要なパラメータの更新

an164f

ステップ3:システム計算の実行

パワー・ツリーが完成し、全ての主要なパラメータを更新したら、システム計算を実行できます。LTpowerPlannerプログラムは、各部品について入力されたパラメータに基づいて、システムの合計入力電力、出力電力、電力損失、効率、コンバータの合計基板面積の値を計算し、画面上の[Summary Report]に表示します。図4に示すように、各部品端子には、その端子の入力または出力電圧と電流が表示されます。各

コンバータの下には、そのコンバータの効率と電力損失が 表示されます。各負荷および各電力源の電力レベルも表示 されます。このGUIインタフェースは、システム開発者に対し てシステム・パワー・ツリーの多くの詳細情報の非常に直感 的な表示を提供します。

図4. システム計算の実行

パワー・ツリーの比較によるシステムの最適化

LTpowerPlannerツールを使用して、複数の電源アーキテク チャを比較し、最適なシステム・ソリューションを達成できま す。図5に、多少異なる2つのパワー・ツリーAとBの比較の 簡単な例を示します。この場合、LTpowerPlannerツールは、 アーキテクチャをオプションAからオプションBに少し変更 するだけで、システム効率を素早く改善できることを示してい ます。

図5.2つのパワー・システム・アーキテクチャ(AおよびB)の比較

FPGAのパワー・ツリーの例

LTpowerPlannerツールは、はるかに複雑なシステムの描画 にも使用できます。図6に例を示します。この例はマルチ出力 パワー・コンバータとマルチ入力負荷を示しています。同じ電 圧の複数の出力端子を並列接続して、電流分担を実現でき ます。また抵抗部品を利用して、電圧降下と電力損失を表す こともできます。LTpowerPlannerツールの高度な機能につい ては、『LTpowerPlanner User Guide』を参照してください。

図6. FPGAパワー・ツリーの例

コンバータから LTpowerCAD 回路設計または LTspice シミュレーションへのリンク

LTpowerPlannerプログラムは汎用システム・ツールですが、 LTpowerCAD電源設計ツールによって生成された既存のデ ザイン・ファイルまたはLTspice回路シミュレーション・ツール によって生成された既存のシミュレーション・ファイルにパ ワー・コンバータをリンクさせることができます。これを行う には、コンバータの[Properties]ウィンドウで、ユーザーのPC ディスク上の特定のファイルにコンバータをリンクさせます。 リンクが確立されたら、LTpowerPlannerコンバータ上の対応するアイコンをクリックして、リンク先のLTpowerCADデザイン・ファイルまたはLTspiceシミュレーション・ファイルを直接開くことができます。この機能により、使いやすい体系的な方法で、パワー・マネージメント・システムの全てのデザイン・ファイルを管理できます。

図7. 既存のLTpowerCADファイルとLTspiceファイルへのリンク

AN164-7

パワー・ツリー・ソリューション・ライブラリ

LTpowerPlannerには内蔵のパワー・ツリー・ソリューション・ ライブラリがあり、さまざまなパワー・ツリー・リファレンス・デ ザインをユーザーに提供します。図8に示すように、[Solution Library]ソフトキーをクリックすることにより、ユーザーは FPGA、プロセッサ、データ通信システム、車載システムなど のアプリケーションに各種の既存ソリューションを利用でき ます。これらの既存デザインに基づいて、開発者は短時間で パワー・マネージメント・システムについて理解し、類似のシ ステムを設計できます。更に、ユーザーは自作のデザインを 保存し、将来使用するためのユーザー・ソリューション・ライ ブラリを作成できます。

まとめ

要約すると、LTpowerPlanner設計ツールにより、システム開 発者は非常に効率的で直感的な方法でパワー・マネージメ ント・システムの設計と最適化を実行できます。このツール は、ユーザーの入力に基づいて、システムの合計入力電力、 出力電力、電力損失、効率、物理サイズを計算します。シス テム開発者は、このツールを使用して、パワー・システム・ツ リーの描画、設計、比較、最適化を実行できます。このツー ルは、システム電源アーキテクチャの文書化と提示のための 簡単で優れた方法も提供します。

図8. LTpowerPlanner パワー・ツリー・ソリューション・ライブラリ

