

ADIS16130 クイック・スタート・ガイドおよびバイアス最適化のヒント

Mark Looney 著

パッケージの装着と取扱い

ADIS16130は、M2または2-56ネジに対応する4個の取付け穴が あるプラスチック筐体に収められています。このパッケージは、 コネクタが上向き、または下向きの2種類の実装が可能です。図 2に、コネクタが下向きになる実装でのシステムの取り付け穴位 置図を示します。これに対して、コネクタが上向きになる実装で は、4個の取付けネジに使用する穴のパターンは同じですが、電 気的接続のためにケーブルおよびコネクタのインターフェース を追加する必要があります。コネクタは標準の1mmピッチ2列 タイプのもので、メイティング・コネクタには多くのオプション があります。図3に、メイティング・コネクタには多くのオプション があります。図3に、メイティング・コネクタにはなした推奨の パッド・レイアウトと穴パターンを示します。ここでは、Samtec CLM-112-02ファミリーのコネクタの使用を想定しています。取付 けパッドの内側の穴は、ADIS16130 コネクタのピンのずれにより 機械的なストレスやバイアス・シフトが発生するのを防ぎます。

電気的接続

図 4は、SPIマスタとなるシステム・プロセッサとADIS16130の接 続を示す基本回路図です。ADIS16130をこのように結線すると、 データを自動的に生成し、出力データ・レジスタを継続的に更新 します。この接続図は、電源、グラウンド、4線シリアル信号、 データ・レディ信号、帯域幅低減コンデンサに対応します。デー タ・レディ信号を用いてマスタ・プロセッサの割込みサービス・ ルーチンを駆動することで、プロセッサ・リソースの最適化を図 りながらデータの連続性を維持することができます。

図 4. 電気的接続図

表 1. 汎用マスタ・プロセッサのピン名と機能

ピン名	機能
SPISELx	スレーブ・セレクト
IRQ	割込み要求
MOSI	マスタ出力、スレーブ入力
MISO	マスタ入力、スレーブ出力
SCLK	シリアル・クロック

Rev. 0

アナログ・デバイセズ株式会社

本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03 (5402) 8200 大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 電話 06 (6350) 6868

SPIインターフェース

表 2に、マスタ・プロセッサとADIS16130 間のSPI通信に必要な 代表的な設定の一覧を示します。通常、これらの設定はマスタ・ プロセッサの制御レジスタ内にあります。たとえば、 ADSP-BF533 プロセッサ・ファミリーでは、SPI_BAUD、SPI_CTL、 SPI_FLGの各レジスタがその役割を果たしています。タイミング については、ADIS16130 データシートを参照してください。

表 2.	汎用マスタ	プロセッサの SPI	設定
1 4.			

Processor Setting	Description
Master	ADIS16130 operate as slave.
SPI Mode 3	CPOL = 1 (polarity), CHPA = 1 (phase).
MSB-First Mode	Bit sequence.
8-Bit Mode	Shift register/data length.

SDIにコマンドを送るには、送信バッファ・レジスタ (ADSP-BF533 のSPI_TDBR) への書込みが必要です。出力データをSDOから取得 するには、受信バッファ・レジスタ (ADSP-BF533のSPI_RDBR) の読出しが必要になります。多くのプロセッサでは、これらのコ マンドにより、制御レジスタ内の設定に従ってクロック/シーケ ンスが自動的に生成されます。

初期化

表 3のSDI欄に示す各コマンドをSDIピンに書き込むことによって、ADIS16130を初期化できます。

表3. 設定シーケンス

Step	SDI ¹	レジスタ	目的
1	0x01	СОМ	初期化書込みシーケンスの開始
2	0x38	IOP	RATEDATA 出力レジスタと TEMPDATA 出力レジスタ共に新しい データに更新された時にデータ・レ ディ信号に Low レベルのパルスを生 成
3	0x28	СОМ	RATECS レジスタの書込みシーケン スの開始
4	0x0A	RATECS	ジャイロスコープのデータ出力の設 定とイネーブル
5	0x30	COM	RATECONV レジスタの書込みシー ケンスの開始
6	0x05	RATECONV	ジャイロスコープ出力 AD 変換の初 期化
7	0x2A	COM	TEMPCS レジスタの書込みシーケン スの開始
8	0x0A	TEMPCS	温度データ出力の設定とイネーブル
9	0x32	COM	TEMPCONV レジスタの書込みシー ケンスの開始
10	0x05	TEMPCONV	温度出力データ AD 変換の初期化
11	0x38	COM	MODE レジスタの書込みシーケンス の開始
12	0x22	MODE	24 ビット分解能で AD 変換を開始し て RATEDATA と TEMPDATA を連 続取得開始

¹SDIの欄には各コマンドの16進コードを示しています。

出力データの読出し

データ・レディ(RDY)信号は、まだ読み出していない新しい データが出力レジスタ内に存在することを示します。データの連 続性とプロセッサ・リソースを最適化するには、この信号を使っ てマスタ・プロセッサの割込みサービス・ルーチンを駆動します。 ADIS16130では5.7kHzのレートでRATEレジスタとTEMPレジス タを更新してますので、その倍の11.4 kHzのレートで約26 μ間 ローレベルになるパルスがデータ・レディ信号に発生した場合、 RATEレジスタまたはTEMPレジスタのいずれかに更新があった ことを意味します。割込みサービス・ルーチンを起動するには、 ハイレベルからローレベルへの遷移を使用してください。この信 号パルスがローになった後、チップ・セレクト・ラインをローレ ベルにし、0x48をSDIラインに書き込むことによって、データを 読み出します。次に、出力データとなる次の3バイトをSDOから 読み出します。各8ビット・シーケンス間で、チップ・セレクト をハイレベルにしてください。

MODE レジスタで 24 ビット分解能を選択した場合、最上位バイトは SDO シーケンスの先頭に位置し、その後に次の上位バイトが来て、最後に最下位バイトが来ます。16 ビット分解能を選択した場合は、読出しシーケンス中に SDO から出力されるのは 2 バイトのみになります。

	v - www	u-nnnn	n	Մ
SDO	DATA			\rightarrow
SDI	>			
RDY				08407-005

データ・フォーマット

ADIS16130は、オフセット・バイナリのデータ・フォーマットを 使用します。

$$RATE = \left[\frac{Codes - 2^{23}}{23,488}\right] TEMP = \left[\frac{Codes - 2^{23}}{14,093} + 25^{\circ}C\right]$$

```
表 4. ジャイロスコープのレート出力データ・フォーマット
```

24-Bit (Codes)	16-Bit (Codes)	Rate Output
14,260,608	55,706	+250°/sec
8,623,488	33,686	+10°/sec
8.388,612	32,769	+0.00017030°/sec
8,388,609		+0.000042575°/sec
8,388,608	32,768	0
8,388,607		-0.000042575°/sec
8,388,604	32,767	-0.00017030°/sec
8,153,728	31,850	-10°/sec
2,516,608	9,830	-250°/sec
表 5. ジャイロスコープの温度出力データ・フォーマット		

24-Bit (Codes)	16-Bit (Codes)	Rate Output
9,516,048	37,172	+105°C
9,234,188	36,071	+85°C
8,402,701	32,823	+26°C
8,388,608	32,768	+25°C
8,036,283	31,392	+0°C
7,472,563	29,189	-40°C

AN-1042

バイアス精度と出力安定性の最適化

ジャイロスコープ・システムの2つの一般的な誤差源は、温度の 変化に伴うバイアス変化と初期バイアス誤差です。図6に、デジ タル・プロセッサ環境でこれらの誤差を修正する簡単なプロセス を示します。ADIS16130にはデバイスごとに独自の挙動があるた め、このプロセス図の補正係数を最適化するためには特性評価が 必要です。

図 6. 1次バイアス補正システム

この校正プロセスを実行すると、補正されたジャイロスコープ速 度出力が得られます。この出力は次の関係式で表すことができま す。

 $RBC = RATE + PBC + (TEMP - T3) \times BTC$

ここで、

RBCは補正された出力データです。 RATEはADIS16130ジャイロスコープの出力データです。 TEMPはADIS16130の温度出力データです。

バイアスの特性評価では、ADIS16130が無回転状態のときの出力 を測定します。ノイズがあると出力測定にランダム誤差が加わり、 バイアス測定の精度に影響を及ぼすことがあります。したがって、 バイアス測定時のノイズを処理するために、一般的に連続したサ ンプルの平均値を求めます。図7のアラン分散曲線は、平均化時 間とADIS16130のバイアス精度の関係を示しています。

図 7. ADIS16130のアラン分散曲線

各アプリケーションにはそれぞれに性能の基準がありますが、以 下の手順に従うことで基本的なバイアス校正プロセスを行うこ とができます。

- 1. 測定の最中に動かないようにするために、固定のプラット フォームにADIS16130を装着します。
- 安定した+5 Vのリニア電源電圧をADIS16130に印加します。 出力バイアスは、電源が1 mV変化するごとに 0.0002°/secシ フトし得ます。
- 3. 表 3の初期化コマンドをSDIピンに書き込みます。
- 5.7 kSPS の最大サンプル・レートで 10 秒間 TEMP と RATE のデータを読み出します。各データ・セットの平均値を求 め、この平均温度に対する温度推定値(T1)とバイアス推 定値(B1)を算出します。
- 5. デバイスがそれ自体の発熱に対して安定化するのを 10 分待 ちます。
- 6. 手順3をもう一度繰り返し、温度(T2)と出力バイアス(B2) の新しい推定値を算出します。次に、次式を使ってバイア ス温度係数(BTC)を計算します。

$$BTC = -bias tempco = -\left[\frac{B2 - B1}{T2 - T1}\right]$$

BTCを使って、温度条件に適した補正係数をロードするルッ クアップ・テーブルを作成します。表 6に、0.02℃の温度ス テップ・サイズを使ってバイアス温度係数 0.04°/sec/℃を補 正する補正係数の例を示します。

- 7. 環境温度変化に対する追従のために40分間待ちます。
- 5.7 kSPS のサンプル・レートで RATE データを 150 秒間読み 出します。正確なバイアス推定値を出すためにこのデータの 平均値を出し、その値に-1 を掛けて正確なバイアス補正係 数 (PBC) を求めます。
- 9. TEMP (T3)を読み出します。

表 6. バイアス補正係数、TBIAS=0.04°/sec/°C

Temperature Control (TEMP - T3)	Bias vs. Temperature Correction Factor (TEMP - T3) × BTC
+0.12°C	-0.0048°/sec
+0.10°C	-0.0040°/sec
+0.08°C	-0.0032°/sec
+0.06°C	-0.0024°/sec
+0.04°C	-0.0016°/sec
+0.02°C	-0.0008°/sec
0°C	0°/sec
-0.02°C	+0.0008°/sec
-0.04°C	+0.0016°/sec
-0.06°C	+0.0024°/sec
-0.08°C	+0.0032°/sec
-0.10°C	+0.0040°/sec
-0.12°C	+0.0048°/sec

その他のヒント

結論として、このアプリケーション・ノートに示した簡単な校正 プロセスによって、大幅な性能向上が見込めます。また、必要に 応じて、もっと大掛かりな校正方法を開発するための土台として も利用することができます。以下に、その他の役に立つと考えら れる情報をまとめました。

- 1. 5.7 kSPS のサンプル・レートにより、14.3 kHz 付近に現れる 共振をフィルタ処理できます。
- ROA1 とROA2 の間に 0.01 μFコンデンサを使えば、センサ 帯域幅を 50 Hzに低減することができます。これでノイズを 50%減らせます。帯域幅を 50 Hzにすると、低速サンプル・ レートも使用できるようになります。たとえば、RDY信号 を使って 200×カウンタを駆動し、読出し速度を 230 SPSに 低減できます。
- このアプリケーション・ノートの校正プロセスは、デバイ スの熱的に安定するまでの時間を利用します。精度を上げ るには、制御された温度槽を使ってデバイスを一定温度に 維持し、各バイアス・ポイントの平均化時間を長くします。 これによってさらに性能の最適化を図ることができます。
- 4. プロセッサ・システムがジャイロスコープ出力と温度セン サー出力の両方を 5.7 kSPS の速度で読み出せない場合は、 レート測定を低減する前に、まず温度センサーの読出し速 度を低減してください。温度変化の最大値が1°C/sec の場合 は、サンプル・レートが 100 SPS あれば十分に 0.02°C の変 化を検出して熱補正係数を更新することができます。