

回路ノート CN-0535

		接続または多	参考にしたナハイ ス		
Circuits from the Lab [™] Reference Circuits 実用回路集	テスト済み回路設計集 "Circuits from the Lab™"は 共通の設計課題を対象と し、迅速で容易なシステ ム統合のために製作され ました。さらに詳しい情 報又は支援は https://www.analog.com/jp/ CN0535 をご覧ください。	AD7768-1	DC~204kHz、ダイナミ ック・シグナル分析、 電力スケーリングによ る高精度 24 ビット ADC	AD8628	ゼロドリフト、単電源、 レール to レール入出力の オペアンプ
		LTC6373	36V 完全差動プログラマ ブル・ゲイン計装アン プ	LT3095	2 チャンネル低ノイズ・ バイアス・ジェネレータ
		ADA4945-1	オフセット・ドリフト ±0.1µV の高速完全差動 アンプ	ADP2300	1.2A、20V、700kHzの非 同期降圧レギュレータ
		ADR444	電流シンク/ソース機 能付き、超低ノイズ LDO XFET [®] 4.096V 電圧 リファレンス	ADP7182	ー28V、ー200mA、低ノイ ズ、リニア電圧レギュレ ータ

柔軟なデータ・アクイジション・システムを実現するための 高性能エイリアス・フリー測定プラットフォーム

評価と設計支援

回路評価用ボード
 CN0535 回路評価用ボード(EVAL-CN0535-FMCZ)
 システム・デモンストレーション・プラットフォーム・ボード(EVAL-SDP-CH1Z)
 設計および統合ファイル

回路図、PCB レイアウト・データ、部品表、ソフトウェア

回路の機能とその利点

データ・アクイジション (DAQ) システムでは、温度、力、加 速度、振動などの実世界の物理現象が測定され、これらの測定 値はデジタル値に変換されてデータ処理が行われたり、保存さ れたり、遠隔地に伝送されたりします。代表的な DAQ システム は、センサー、アナログ・フィルタリング/シグナル・コンデ ィショニング回路、A/D コンバータ (ADC) 、およびデジタ ル・コントローラで構成されています。DAQ ソリューション用 の構成要素は、アプリケーションごとに選択されます。DAQ シ ステムの中には、制御ループやマルチプレクス・アプリケーシ ョン向けに高速のセトリング・フィルタを使用して、システム 全体でセンサーからの DC 誤差を最小限に抑えるように設計さ れるシステムもあります。また一方で、歪みを低く抑えると共 に周波数応答を平坦にして、優れた AC 性能を実現するように 設計されるシステムもあります。 図1に示す DAQ システムは、これらの設計課題の多くを1つの 柔軟な DAQ プラットフォーム内に簡素化したもので、広範な AC アプリケーションと DC アプリケーションで使用できます。

入力電圧範囲が広く、入力インピーダンスが高く、しかも入力 コモンモード電圧が高いため、シグナル・コンディショニング を付加することなしに、ほとんどのセンサーや信号源を入力に 直接接続できます。ADC の入力範囲を最適に利用できるよう、 システムには入力信号を減衰または増幅するプログラマブルな ゲイン・ブロックが備わっています。

このシステムではDC性能とAC性能が最適化されているため、 アナログ入力帯域幅全体にわたって極めて高い性能を発揮する ことができます。入力バイアス電流が低いため、センサーの出 カインピーダンスに起因する DC 誤差が最小限に抑えられます。 また、同相ノイズ除去比(CMRR)が高いため、特にセンサー がDAQシステムから離れている場合に、周囲から侵入する同相 ノイズの影響が最小限に抑えられます。これらの効果により、 コンバータの AC 性能を犠牲にすることなく、DC 誤差が最小に 保たれます。

ADC には帯域幅とデータ・レートを調整できる完全にプログラ マブルなデジタル・フィルタが備えられているため、特定のシ ステム条件に適合することができます。システムのアナログ・ フィルタによって、サンプリング周波数の倍数の周波数が除去 されるため、エイリアシングの問題が解消されます。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

Rev. 0

©2021 Analog Devices, Inc. All rights reserved.

	本	社/〒105-6891	東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 10F 電話 03(5402)8200
アナログ・デバイセズ株式会社	大	阪営業所/〒532-0003	大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F 電話 06(6350)6868
	名古	屋営業所/〒451-6038	愛知県名古屋市西区牛島町 6-1 名古屋ルーセントタワー 38F 電話 052 (569) 6300

図 1. 簡略化した回路図(すべての接続とデカップリング・コンデンサが示されているわけではありません)

回路の説明

ADC

このソリューションの心臓部である AD7768-1 は低消費電力、高 性能の Σ-Δ ADC で、AC 信号と DC 信号の両方を正確に変換する ための Σ-Δ 変調器とデジタル・フィルタを内蔵しています。 AD7768-1 では、入力帯域幅、出力データ・レート(ODR)、お よび消費電力の間の設定と最適化を柔軟に行うことができます。

ODR は、アプリケーション条件ごとにプログラム可能です。 AD7768-1の ODR を計算するには、次式を使用します。

ODR = (FMOD/DEC RATE)

ここで、

*FMOD*は、AD7768-1の変調器の周波数です。 *DEC_RATE*は、デシメーション・レートです。

FMOD を計算するには、次式を使用します。

FMOD = (MCLK/MCLK DIV)

ここで、

MCLKは、マスタ・クロックの周波数です。

MCLK_DIV は、印加された MCLK と、ADC の変調器が使用する クロックとの比です。 AD7768-1 は、広範なシステム条件を満たす幅広いデジタル・フィルタ処理機能を備えています。このフィルタ・オプションによって、周波数範囲全域でゲイン誤差条件の厳しい周波数領域測定、線形位相応答条件(広帯域、低リップル、有限インパルス応答(FIR)フィルタ)、制御ループ・アプリケーションで使用される低遅延経路(sinc5 または sinc3)、50Hz または 60Hzのライン周波数を除去する sinc3フィルタを設定可能な DC 入力測定などの構成が可能になります。すべてのフィルタで、デシメーションのプログラムが可能です。

システム全体の帯域幅はデジタル・フィルタによって決まりま す。代表的なデジタル・フィルタの設定値については、入力信 号の帯域幅を記載した表1を参照してください。また、選択さ れたデジタル・フィルタの-3dB帯域幅は、次式を使用して計算 できます。

広帯域低リップルFIR フィルタ=0.433 × ODR

Sinc5 低遅延フィルタ= $0.204 \times ODR$

Sinc3 低遅延フィルタ=0.2617 × ODR

表 1. 最大入力信号帯域幅とデジタル・フィルタの関係

	Decimation	ODR	Input Signal
Digital Filter	Rate	(kSPS)	Bandwidth (kHz)
Low Ripple FIR	32	250	108.2
Sinc5	8	1000	204
Sinc3	32	250	65.425

CN-0535

アプリケーションで用いるフィルタの条件が、デフォルトのフ ィルタ・オプションと合わない場合には、特別仕様のデジタ ル・フィルタを設計してメモリにアップロードするオプション があります。このアップロードを行うと、デフォルトの低リッ プル FIR フィルタの係数は書き換えられます。

AD7768-1 はキャリブレーション・レジスタを内蔵しており、こ のレジスタによって、センサーから入力信号コンディショニン グを経由して ADC に至る全入力経路に対して、オフセットとゲ インの補正を実行するためのプログラミングが可能です。

キャリブレーション・レジスタに書込みを行う前と、書込みを 行った後での誤差の例を表2に示します。

表 2. キャリブレーション・レジスタを使用したシステムの オフセット誤差とゲイン誤差

Error	Before Calibration	After Calibration
Offset	-420.3 μV	2.319 μV
Gain	3010 ppm	10 ppm

入力信号コンディショニング

入力信号は、いくつかのコンディショニングを行ってから ADC に入力する必要があります。これは、ADC の入力範囲を最大限 に拡大することと不要な情報を除去することが目的です。シグ ナル・コンディショニングは 2 つの段で行います。初段のプロ グラマブルなゲイン計装アンプ (PGIA) は、信号の減衰または 増幅が可能で、次段のアンチエイリアシング・フィルタ (AAF) は、信号の完全性を劣化させる可能性のある折返しノイズの除 去が可能です。

PGIA

LTC6373 は完全差動 PGIA で、様々な入力信号の振幅を 0.25 倍 ~16 倍の範囲で減衰および増幅します。LTC6373 におけるゲイン・ピンの設定値とそれに対応するゲインを表 3 に示します。

表 3. LTC6373 のゲイン設定

2			
A2	A1	A0	Gain
Logic High	Logic high	Logic high	Shutdown
Logic High	Logic high	Logic low	0.25
Logic High	Logic low	Logic high	0.5
Logic High	Logic low	Logic low	1
Logic Low	Logic High	Logic high	2
Logic Low	Logic High	Logic low	4
Logic Low	Logic low	Logic high	8
Logic Low	Logic low	Logic low	16

LTC6373 は最大入力バイアス電流が 20pA と低く、入力インピー ダンスが 1000GΩ と高いため、センサー回路や H ブリッジ回路 によって、このソリューションを容易に駆動できます。 LTC6373 では、出力電圧を ADC ドライバと ADC 入力に使用す るのと同じ電源電圧に限定することで、ADC と ADC ドライバ を過電圧から保護することができます。この機能は、LTC6373 の V_{0UT} ピン、ADA4945-1 の+Vs ピン、および AD7768-1 の AVDD1 ピンに対して同じ電源を使用することで実現できます。

LTC6373のゲイン帯域幅積(GB積)は、ゲインを上げると増加 するため、ゲイン設定範囲にわたって広い帯域幅を確保しなが ら位相変化を最小限に抑えることができます。この機能は、ゲ イン設定値ごとに専用の周波数補償が必要なため、ディスクリ ートの PGIA 設計には実装が困難です。LTC6373のゲインと周 波数性能の関係を図2に示します。

AAF

AAF は、変調器のサンプル・レート(Fs)を中心とするフィル タ特性で周波数を減衰させるように設計されています。このサ ンプル・レートは、高速モードで8MHz、中速モードで4MHz、 および低速モードで1MHzになっています。AAF はカットオフ 周波数が330kHzに設定された4次のローパス・フィルタ(LPF) で、125kHzの信号帯域幅にわたって平坦な応答を維持します。 このカットオフ周波数に設定すると、高速モードでサンプル・ レートが8MHzの場合は、減衰が105dBになります。変調器の サンプル・レートを下げた場合は、サンプル・レートに応じて AAFのカットオフ周波数を下げる必要があります。

図 3. AAF と ADC のデジタル・フィルタの周波数応答

CN-0535

ADA4945-1 は AAF の一部であるだけでなく、AD7768-1 ADC の ドライバとしても機能します。ADA4945-1 は、優れた DC 性能 と AC 性能を備えた完全差動アンプです。AAF の通過帯域は、 $1.3k\Omega$ の帰還抵抗と、 249Ω 、 249Ω 、および 499Ω の抵抗の合計 との比で設定されているため、ゲインが 1.3 倍になっています。

図 4.4 次の AAF 回路

ノイズの影響

モードが混在したシグナル・チェーンの分析は複雑です。これ は、アナログ・シグナル・チェーンで発生するノイズは必ずし も一様であるとは限らず、また、アナログ・フィルタとデジタ ル・フィルタによる応答全体を数値的に解く必要があるためで す。高精度 ADC ドライバ・ツールを使用すると、ADC ドライ バ、フィルタ、および ADC のフロント・エンドにおけるノイズ の影響をシミュレートして評価することができ、設計工程を大 幅に簡素化できます。

表 4. 高精度 ADC ドライバ・ツールによるノイズの計算結果

高精度 ADC ドライバ・ツールにおいて、ADC、ドライバ、RC フィルタ、および入力信号の設定値は以下のようになります。

- ADC には、MCLK = 16.38MHz、MCLK_DIV = 2 分の 1、電 源モード = 高速、フィルタ・タイプ = FIR、デシメーショ ン = 32、リファレンス電圧 (V_{REF}) = 4.096V、プリチャー ジ・モードはイネーブル。
- ADC ドライバには、反転構成、ゲイン=1.3V/V、R_F= 1.3kΩ、+V_S=5V、-V_S=0V。
- RC フィルタには、外付け抵抗 (R_{EXT}) = 82Ω、外付けコン デンサ (C_{EXT}) = 100pF。
- 入力信号には、差動入力タイプ、周波数=1kHz、コモンモード出力電圧(V_{OCM})=2.5V。

各部におけるノイズの影響は、ADC と ADC ドライバのデータ シートの仕様から得られます。ADC 全体のノイズは、S/N 比仕 様から得られ、また、ADC ドライバ全体のノイズは、電圧ノイ ズ密度仕様と電流ノイズ密度仕様に ADC フィルタの等価ノイズ 帯域幅を掛けることで算出されます。

全体の実効値ノイズは、各ノイズ源に対して2乗和の平方根 (RSS)を取ることで算出されます。全体の実効値ノイズを計 算するには、次式を使用します。

全体の実効値ノイズ= \int (ドライバ²+RC フィルタ²+ ADC^{2})

高精度 ADC ドライバ・ツールは、以下のようにシステムの S/N 比 (SNR_{SYS})を計算します。

$$SNR_{SYS} = 20\log \frac{FS_{INPUT_{RMS}}}{Total RMS Noise}$$

ここで、 $FS_{INPUT_{RMS}}$ は、4.096V/√2です。

ADC、ADC ドライバ、およびシステム全体の S/N 比について、 ノイズの影響を計算した結果を表4に示します。

Section	Noise (V rms)	Noise (%)	SNR (dB)	
ADC Driver	7.15 μ	27	112.2	
Voltage Noise of the Amplifier (V _N)	2.45 μ			
Positive Bias Current (I _{B+})	866 n			
Negative Bias Current (I _{B-})	866 n			
Feedback Resistor (R _F)	4.35 μ			
Gain Resistor (R _G)	4.96 μ			
RC Filter	1.09 μ	1		
ADC	11.7 μ	72	107.9	
Total	13.7 μ	Not applicable	106.5	

CN-0535

ADA4945-1 は、また、広い帯域幅と高いスルー・レートを実現 できるため、サンプリング中に ADC からの電荷のキックバック を抑圧でき、次の変換サイクルの前に入力を完全に安定させる ことができます。61ns のサンプリング期間に入力が完全に安定 する様子を図5に示します。

このソリューションにおけるシステム全体のゲインと、対応す

る入力電圧範囲を表5に示します。

表 5. システム	・ゲインと入力電	電圧範囲	

PGIA Gain	AAF + ADC Driver Gain	Overall System Gain	Input Voltage Range (V)
0.25	1.3	0.325	±12.603
0.5	1.3	0.65	± 6.302
1	1.3	1.3	±3.151
2	1.3	2.6	± 1.575
4	1.3	5.2	± 0.788
8	1.3	10.4	±0.394
16	1.3	20.8	±0.197

AC 性能の測定結果

CN-0535 において、1kHz の入力信号を加えたときの S/N 比の測定結果を図6と図7に示します。これらの測定結果は、表4の高精度 ADC ドライバ・ツールによる全体の S/N 比の計算結果に近いものとなっています。ただし、測定結果は、高精度 ADC ドライバ・ツールの計算結果とは、わずかに異なっています。これは、CN-0535 ボードでの測定結果には、PGIA、電圧リファレンス、電源部品などが搭載された、システム全体の性能が含まれているためです。

図 6. S/N 比とシステム・ゲインの関係、入力 = 0.5dBFS

CN-0535 の信号/ノイズ + 歪み (SINAD) の測定結果を図 8 と 図 9 に示します。

回路ノー

DC 性能の測定結果

DAQ システムでは、直線性が入力信号を ADC 出力の等価なコ ードに正確に変換するための重要な要素となります。オフセッ ト誤差やゲイン誤差などの直線性誤差は、ADC のキャリブレー ション・レジスタまたはマイクロコントローラのルックアッ プ・テーブルを使用することにより、測定システムで容易に補 正できます。周辺温度に対し、オフセット電圧と DC 入力電圧 がどのように変化するかを図 12 と図 13 に示します。以前に ADC キャリブレーションのセクションで言及したように、これ らの測定値はシステムのオフセット誤差とゲイン誤差を補正す るために使用できます。

ボックス法を使用すると、システムのオフセット・ドリフトは 1.8µV/℃になり、ゲイン・ドリフトは7µV/℃になります。オフ セット・ドリフトとゲイン・ドリフトの式は、以下のようにな ります。

オフセット・ドリフト = $(V_{OSMAX} - V_{OSMIN}) / (T_{MAX} - T_{MIN})$ ゲイン・ドリフト = $(V_{GAINMAX} - V_{GAINMIN}) / (T_{MAX} - T_{MIN})$

CN-0535

積分非直線性(INL)などの非直線性誤差に対して、同様な補 正はできません。なぜなら、これらの誤差を予測するのが難し いためです。システムに必要なキャリブレーションを減らす最 善の策は、非直線性誤差が最小のシステムを設計することです。 シグナル・チェーンにおける代表的な INL 誤差(±5LSB 以内) を図 14 に示します。

図 14. 様々なシステム・ゲインでの INL と出力コードの関係

電圧リファレンスおよびバッファ

ADR444 と AD8628 は、ADC 用のリファレンス電圧を生成しま す。ADR444 は超低ノイズの 4.096V 電圧リファレンス、AD8628 はゼロ・ドリフト・アンプで、いずれも ADC のアナログ部と同 じ単電源を使用して動作できます。この構成にすると、リファ レンス・チップとリファレンス・バッファの両方に十分なヘッ ドルームを確保しながら、少ない電源レールでリファレンスを 生成できるため、パワー・ツリーの設計を簡素化できます。

ADC へのリファレンス入力電流は、変調器のクロック・レート に比例します。リファレンス入力には、バッファなしで 80µA/V で流れ込み、プリチャージ・バッファがイネーブルされている 場合に 4µA/V で流れ込みます。リファレンス・ブロックは、こ れら両方の条件で駆動できなければなりません。したがって、 リファレンス電圧が 4.096V の場合、ADCに流れ込むリファレン ス電流は以下のようになります。

- プリチャージ・バッファがオフの場合は、流入電流 (I_{DRAWN}) = 4.096V × 80 µ A/V = 328.68µA
- プリチャージ・バッファがオンの場合は、IDRAWN = 4.096V
 × 4 µ A/V = 16.384µA

これらの概算値を考慮すると、AD8628 には 10mA の駆動能力が あるため、リファレンス入力ピンを容易に駆動できます。

パワー・アーキテクチャ

図 15 に示すように、CN-0535 全体のパワー・アーキテクチャは、 シグナル・チェーン全体が 3.3V 単電源から供給できるように設 計されています。

図 15. 電源ソリューションの簡略ブロック図

3.3Vは、ホスト・ボードからFMCコネクタを介して供給されま す。CN-0535の起動中にコンデンサの突入電流のために必要な 250mA は、フィールド・プログラマブル・ゲート・アレイ (FPGA)メザニン・カード (FMC)のホスト・プラットフォ ームから必ず供給できるようにしてください。この供給ができ ない場合は、外部電源を使用して CN-0535 に供給できます。

LT3095 は、3.3V 電源からシステム用に+15V レールと+5V レー ルを生成します。LT3095 は小型の電源ソリューションで、1 チ ップに独立した DC/DC 昇圧レギュレータを 2 個と、各出力にリ ニア電圧レギュレータを各 1 個搭載しています。

ADP2300 レギュレータと ADP7182 レギュレータの組み合わせに よって、負電源を生成します。ADP2300 が降圧/昇圧レギュレ ータとして設定されて-16V 出力を生成し、後段に接続された ADP7182 リニア電圧レギュレータが-15V を生成します。

ADC のデジタル電源用の 3.3V は、3.3V 電源に直接接続されて います。なぜなら、このレールはノイズの影響を受けないため です。

ー方、シグナル・チェーンにおけるアナログ電源ピンについて は、電源ノイズがシステムの性能に大きな影響を及ぼす可能性 があるため、ノイズに関して細心の注意を払う必要があります。 低ドロップアウト(LDO)レギュレータで構成される電源を除 去すると、昇圧レギュレータや降圧/昇圧レギュレータで生じ たスイッチング・ノイズを、システム侵入前に抑圧できます。

シグナル・チェーンの各電源で必要な消費電力を図 16 に示します。

回路ノート

バリエーション回路

チャンネル数の多いシステムでは、AD7768-1の代わりに、マル チチャンネルの AD7768 および AD7768-4の使用が適しています。 これらのデバイスでは、ADCのノイズと直線性は、AD7768-1と 同等ですが、1チップで最大8チャンネルを同時に使用できると いう利点があるため、マルチチャンネル DAQ 設計を簡素化でき ます。

DAQ のシグナル・チェーン用に検討可能な ADC として、この 他にも AD4000、AD4002、AD7380 などがあります。

ADAQ7768-1 は、24 ビット、シングル・チャンネルの高精度 µModule[®] DAQ システムで、ADC、ADC ドライバ段、および PGIA 段だけでなく、最も重要なパッシブ・コンポーネントもシ ステム・イン・パッケージ(SiP) デザインに統合されています。 このオプションは、実装のサイズや簡素化が重要となる場合に 推奨されます。

回路の評価とテスト

以下のセクションでは、CN-0535の回路設計におけるテスト手順と結果の収集について概説します。ハードウェアとソフトウェアのセットアップの詳細については、CN-0535 ユーザ・ガイドを参照してください。

必要な装置

以下の装置類が必要になります。

- EVAL-CN0535-FMCZ リファレンス設計ボード
- EVAL-SDP-CH1Z (SDP-H1) システム・デモンストレーション・プラットフォーム・ボード
- オーディオ・プレシジョン AP2700 または同等の装置
- Bayonet Neill-Concelman (BNC) 端子および Subminiature Version B (SMB) 端子付きの同軸ケーブル

テストの開始にあたって

ハードウェア構成を図17に示します。

リファレンス設計ボードを使用する際には、以下の手順に従っ てください。

- EVAL-SDP-CH1Zが PCから取り外されていることを確認します。AD7768-1評価用ボード・ソフトウェアをインストールし、ソフトウェアのインストールが完了した後に PC を再起動します。
- EVAL-SDP-CH1Zを EVAL-CN0535-FMCZ リファレンス設 計ボードに接続します。EVAL-SDP-CH1Z のコネクタ J4 を EVAL-CN0535-FMCZ 上の受けソケット P1 に接続します。
- 3. EVAL-SDP-CH1Zと EVAL-CN0535-FMCZ を互いにねじ止めし、2枚のボードが互いにしっかりと接続されていることを確認します。
- 12VのDC電源をEVAL-SDP-CH1Zに接続し、次に付属の USBケーブルを使用してEVAL-SDP-CH1ZをPC接続しま す。オペレーティング・システムによって指示された場合 は、EVAL-SDP-CH1Z用のドライバを自動的に検索するよ うに選択します。
- プログラム・メニュー内のアナログ・デバイセズ・サブフ オルダから AD7768-1 評価用ボード・ソフトウェアを起動 します。
- 6. サイン波発生器または任意波形発生器を以下のようにパワ ーオンします。
 - a. 差動 AC 源を EVAL-CN0535-FMCZ の入力(J3 および J4)に接続します。
 - b. 信号タイプをサイン波に設定し、1kHz でのレベルを 5.9V p-pに設定します。
 - c. 出力をイネーブルします。
- 7. ソフトウェアを実行し、算出された ADC データおよび FFT データを取得します。

図 17. ハードウェア構成

CN-0535

図 18 と図 19の2 つのプロットは、前述の手順に従って設定を行った場合に、EVAL-CN0535-FMCZ から予想される代表的な取得 データを示しています。図 18 は ADC 取得データの時間領域表 示で、多数のサンプルにわたって予想される ADC 出力コードを 図示したものです。

図 19は、同じデータを周波数領域の FFT プロットとして処理し 表示したものです。AD7768-1 ソフトウェアのユーザ・インター フェースは、32,768 サンプルを取得するように設定されており、 窓関数として7項ブラックマン・ハリスが使用されています。

図 19. 入力信号が 1kHz のときの FFT

更に詳しい資料

CN0535 設計支援パッケージ:https://www.analog.com/jp/CN0535-DesignSupport CN0535 ユーザ・ガイド

高精度 ADC ドライバ・ツール

データシートと評価用ボード

CN-0535 回路評価用ボード (EVAL-CN0535-FMCZ) LT3095 データシート

ADP2300 データシート

ADP7182 データシート

ADR444 データシート

AD8628 データシート

ADA4945-1 データシート

AD7768-1 データシート

改訂履歴

1/2021-Revision 0: 初版

「Circuits from the Lab/実用回路集」はアナログ・デバイセズ社製品専用に作られており、アナログ・デバイセズ社またはそのライセンスの供与者の知的所有物です。お客さまは 製品設計で「Circuits from the Lab/実用回路集」を使用することはできますが、その回路例を利用もしくは適用したことにより、特許権またはその他の知的所有権のもとでの暗示 的許可、またはその他の方法でのライセンスを許諾するものではありません。アナログ・デバイセズ社の提供する情報は正確でかっ信頼できるものであることを期しています。し かし、「Circuits from the Lab/実用回路集」は現状のまま、かつ商品性、非侵害性、特定目的との適合性の暗示的保証を含むがこれに限定されないいかなる種類の明示的、暗示 的、法的な保証なしで供給されるものであり、アナログ・デバイセズ社はその利用に関して、あるいは利用によって生じる第三者の特許権もしくはその他の権利の侵害に関して一 切の責任を負いません。アナログ・デバイセズ社はいつでも予告なく「Circuits from the Lab/実用回路集」を変更する権利を留保しますが、それを行う義務はありません。商標お よび登録商標は各社の所有に属します。

©2021 Analog Devices, Inc. All rights reserved. 商標および登録商標は各社の所有に属します。