

Share on 🕑 Twitter 🛉 Facebook in LinkedIn 🖂 Email

StudentZone — 2019年2月 「ADALM1000」で、SMUの基本を学ぶ トピック14:カスケード接続した RCローパス・フィルタ

著者: Doug Mercer、Antoniu Miclaus

アナログ・ダイアログの2017年12月号から、アクティ ブ・ラーニング・モジュール「ADALM1000」について 紹介しています。今回も、引き続きこのSMU(ソース・ メジャー・ユニット)モジュールを使用し、小規模かつ 基本的な測定を行う方法を説明します。ADALM1000に 関する以前の記事は、こちらからご覧になれます。

図1. ADALM1000のブロック図

目的

この実験では、RC(抵抗、コンデンサ)で構成される ローパス・フィルタ(パッシブ・フィルタ)を最多で3 つカスケード接続した回路を取り上げます。2つ目と3 つ目のフィルタが負荷として存在する場合、シンプルな RCフィルタ回路の周波数応答に変化が生じます。この 実験では、具体的にどのような変化が生じるのか検証し ます。

背景

2つのRCローパス・フィルタ(1次のフィルタ)がカスケ ード接続されている回路を考えます。その場合、回路全体 の周波数応答は、単純に各ローパス・フィルタの伝達関 数の積をとれば求められるというわけではありません。 理想的な単極応答では、インピーダンスがゼロの信号源 によって、出力側に負荷が存在しないフィルタを駆動す るケースを考えます。つまり、フィルタは無限大のイン ピーダンスを駆動すると仮定しているということです。 しかし、実際には、2つ目のフィルタは1つ目のフィルタ にとっての負荷となります。つまり、2つのフィルタを 直接接続することで、事実上、1つ目のフィルタのRC時 定数が変化してしまうということです。 カスケード接続した回路について、フェーザを加えるだけ で解析を行おうとすると、すぐにその方法には欠点がある ことに気づきます。このような場合には、回路シミュレー ション・ソフトを利用すると非常に便利です。

実験を行う前の演習として、回路シミュレーション・ソ フト「ADIsimPE™」または「LTspice[®]」を使用し、図 2に示した回路図を入力してみてください。この回路に は、3つの異なるRCローパス・フィルタが含まれていま す。いずれのフィルタも、同じAC電源V1によって駆動 されます。抵抗R5とコンデンサC5は、dB-0を出力とす るシンプルな単極(1次)フィルタを構成しています。 方、抵抗R3とR4、コンデンサC1とC3は、2次のフィルタ を構成しています。ここでは、各値の関係をR4 = R3、C3 = C1としています。この2次のフィルタについては、1つ 目のフィルタの出力であるdB-1と、2つ目のフィルタの 出力であるdB-2の2つをプロットすることにします。更 に、抵抗R2とR1、コンデンサC4とC2によって、もう1つ の2次のフィルタを構成しています。それぞれの値は、R1 = 10×R2、C2 = C4/10という関係になるように設定して います。このフィルタについても、1つ目の出力である dB-3と、2つ目の出力であるdB-4をプロットすることに します。2つの2次のフィルタを比較すると、RCの時定 数については同じ値になります。但し、後者のフィルタ では抵抗の値を10倍にし、コンデンサの値を1/10にする ことで負荷の影響を削減しています。カスケード接続し たRCフィルタを設計する際には、このように10の倍数を 利用する調整方法がよく使用されます。

図2. LTspiceで入力するRCフィルタの回路図

ここで、入力周波数を100Hzから20kHzまで掃引してシミ ュレーションを実行します。すると、図3のような周波数 応答のプロットが得られるはずです。

図3を見ればわかるように、完全に無負荷の1次フィルタ の出力dB-0(緑色の線)と比較的負荷の軽いフィルタの 出力dB-3(橙色の線)は、ほぼ同じです。一方、比較的 負荷の重い出力dB-1(青色の線)は、RCの時定数で決ま る周波数において、dB-0、dB-3よりも振幅がかなり小さ くなっています。ただ、3つとも周波数が上昇して20kHz に達すると、振幅は等しくなっています。また、2つの2 次フィルタの出力dB-2(赤色の線、負荷あり)とdB-4(紫の線、軽い負荷)を比較すると、RCの時定数で決まる 周波数では、振幅に大きな違いがあります。ただ、こち らも周波数が20kHzに達すると、振幅は等しくなってい ます。2次のフィルタ全体としての応答は、想定どおり1 次のフィルタと比較して20dB減衰しています。

図3. 周波数掃引のシミュレーション結果

準備するもの

- ADALM1000
- ▶ 抵抗(1kΩ):3個
- ▶ 抵抗(10kΩ):1個
- ▶ 抵抗(100kΩ):1個
- ▶ コンデンサ(0.1µF):3個(表示は104)
- ▶ コンデンサ(0.01µF):1個(表示は103)
- ▶ コンデンサ(0.001µF):1個(表示は102)

手順

ソルダーレス・ブレッドボード上に、図4に示した1次の RCローパス・フィルタ(パッシブ・フィルタ)を構成 します。

図4.1次のRCローパス・フィルタ

デスクトップ・ソフトウェア「ALICE」のボーデ・プロ ッタの画面を、以下に説明するように設定します。まず 同ツールの画面が開いている状態で「Enab Time Plot」 セレクタの選択を解除し、メインの「Scope」ウィンド ウを最小化します。

次に「Frequency Scale」を対数に設定します。

続いて「Curves」ドロップダウン・メニューで「CAdBV」、「CB-dB - CA-dB」を選択します。前者は入力 レベルを確認するための設定であり、後者は入力に対す る出力応答をプロットするための設定です。

更に「Start Frequency」を100Hzに設定し、「Stop Frequency」を20000Hzに設定します。

掃引ソースとして「CHA」を選択し、掃引ポイントの 数を300に設定します。FFTウィンドウの形状は「Flat-Top」とします。「Options」ドロップダウン・メニュー で、「Cut-DC」オプションが選択されていることを確 認します。

「+dB/div」ボタンと「-dB/div」ボタンを使い、縦軸に 対して5dB/divを設定します。また「LVL+1」ボタンと 「LVL-1」ボタンを使って、グリッドの最上線のレベル を5dBに設定します。

「AWG」コントロール・ウィンドウにおいて、チャンネ ルAが「SVMI」モード、「Shape」が「Sin」、チャン ネルBが「Hi-Z」モードに設定されていることを確認し ます。加えて、チャンネルAの「Min」を1.0に設定し、 「Max」を4.0に設定します。

「Single Sweep」モードが選択されている状態で、緑色 の「Run」ボタンをクリックします。すると、数秒後に、 ローパス・フィルタの周波数応答を示すプロットが表示 されるはずです。「Options」ドロップダウン・メニュ ーで「Store Trace」ボタンをクリックし、プロットのコ ピーを保存します。また「Curves」ドロップダウン・メ ニューで、保存した「Math」プロットを選択して表示で きるようにします。

2次のフィルタ

続いて、図5に示すように、図4のフィルタに対してRC ローパス・フィルタをもう1つ追加します。チャンネ ルBの入力は、1つ目のフィルタの出力であるC1の上端 と、2つ目のフィルタの出力であるC2の上端に交互に接 続します。

図5.2次のRCローパス・フィルタ

チャンネルBをC1の上端に接続した状態で、再び緑色の「Start」ボタンをクリックします。再び掃引が行われ、 それが完了すると、図4のフィルタに対して掃引を行い 保存したプロットと、図5の回路(負荷が存在する)に 対して掃引を行った結果であるライブのプロットが確認 できるはずです。 2つのプロットは同様の結果になっているでしょうか。 そうでない場合には、どのような違いがあるのか、また なぜそのようになるのか考察してください。普段から使 用しているスクリーン・キャプチャ・ツールを使って、 プロットを保存してください。または、「File」ドロッ プダウン・メニューで「Save Screen」か「Save Data」 のどちらかのボタンをクリックして、プロット/データ を保存してください。

「Options」ドロップダウン・メニューで「Store Trace」 ボタンをクリックし、2回目の掃引結果であるプロットの コピーを保存します。このとき、保存したプロットとライ ブのプロットは互いに重なり合っています。

チャンネルBをC2の上端に移して、再び緑色の「Start」 ボタンをクリックします。再び掃引を行うと、C1の上端 における1次応答の保存済みプロットと、C2の上端で観 測された2次応答のライブのプロットが確認できるはず です。実験レポートにまとめるために、このプロットの スクリーン・ショットも取得しておくとよいでしょう。

「Options」ドロップダウン・メニューで「Store Trace」 をクリックし、新たな掃引結果であるプロットのコピー を保存します。

R2の値を10kΩ、C2の値を0.01µFに変更し、再び緑色の「Start」ボタンをクリックします。再び掃引が行われたら、C2が0.1µFの場合の2次応答の保存済みプロットと、C2が0.01µFである場合の2次応答のライブ・プロットを確認できるはずです。

2つのプロットは同等の結果になっているでしょうか。 そうでない場合には、どのような違いがあるのか、なぜ そうなるのか考察してください。実験レポートにまとめ るために、新しいプロットのスクリーン・ショットも取 得しておくとよいでしょう。

R2とC2の値を変えると何が起きるのか、より深く理解す るための方法があります。それには、チャンネルBをC1 の上端に戻して、再び緑色の「Start」ボタンをクリック します。得られた応答曲線を、R2が1kΩ、C2が0.1µFの 場合にC1の上端で観測した結果と比較します。両者の 差とそのような差が生じる理由について考察してくださ い。また実験レポートにまとめるために、得られたプロ ットのスクリーン・ショットも取得しておいてください。

3次のフィルタ

続いて、RCローパス・フィルタを更に拡張します。図6 に示すようにR3とC3を追加することにより、3つ目のフ ィルタをカスケード接続します。これにより、3次のフィ ルタが構成されることになります。R1、R2、R3をすべて 1kΩ、C1、C2、C3をすべて0.1µFとし、2次のフィルタの 場合と同じステップで再び掃引を実行します。その結果 得られた周波数応答の違いについて考察してください。 また、実験レポートにまとめるためにスクリーン・ショ ットも保存してください。

図6.3次のRCローパス・フィルタ

図7.図6のフィルタを構成するための ブレッドボード上での接続

次に、R1 = 1k Ω 、R2 = 10k Ω 、R3 = 100k Ω 、C1 = 0.1 μ F、C2 = 0.01 μ F、C3 = 0.001 μ Fに変更します。その 上で再び掃引を実行してください。

問題

図6に示した3次のRCローパス・フィルタのカットオフ周 波数を求め、測定およびシミュレーションで得た値と比較 してください。もし結果に違いがあれば、その理由を説明 してください。

答えはStudentZoneで確認できます。

注記

アクティブ・ラーニング・モジュールを使用する記事で は、本稿と同様に、ADALM1000に対するコネクタの接 続やハードウェアの設定を行う際、以下のような用語を 使用することにします。まず、緑色の影が付いた長方形 は、ADALM1000が備えるアナログI/Oのコネクタに対 する接続を表します。アナログI/Oチャンネルのピンは 「CA」または「CB」と呼びます。電圧を印加して電近 を測定するための設定を行う場合、「CA-V」のように 「-V」を付加します。また、電流を印加して電圧を測 定するための設定を行う場合には、「CA-I」のように 「-I」を付加します。1つのチャンネルをハイ・インピー ダンス・モードに設定して電圧の測定のみを行う場合、 「CA-H」のように「-H」を付加して表します。

同様に、表示する波形についても、電圧の波形は「CA-V」と「CB-V」、電流の波形は「CA-I」と「CB-I」のように、チャンネル名とV(電圧)、I(電流)を組み合わせて表します。

本稿の例では、ALICE (Active Learning Interface for Circuits and Electronics)のRev 1.1を使用しています。

同ツールのファイル (alice-desktop-1.1-setup.zip) は、 こちらからダウンロードすることができます。 ALICEは、次のような機能を提供します。

- ▶ 電圧/電流波形の時間領域での表示、解析を行うため の2チャンネルのオシロスコープ
- ▶ 2チャンネルのAWG(任意波形発生器)の制御
- 電圧と電流のデータのX/Y軸プロットや電圧波形のヒ ストグラムの表示
- ▶ 2チャンネルのスペクトル・アナライザによる電圧信 号の周波数領域での表示、解析
- ▶ スイープ・ジェネレータを内蔵したボーデ・プロッタ とネットワーク・アナライザ
- ▶ インピーダンス・アナライザによる複雑なRLC回路網 の解析、RLCメータ機能、ベクトル電圧計機能

- ▶ 既知の外付け抵抗または50Ωの内部抵抗に関連する未 知の抵抗の値を測定するためのDC抵抗計
- ▶ 2.5Vの高精度リファレンス「AD584」を利用して行 うボードの自己キャリブレーション。同リファレンス はアナログ・パーツ・キット「ADALP2000」に含ま れています
- ▶ ALICE M1Kの電圧計
- ▶ ALICE M1Kのメータ・ソース
- ▶ ALICE M1Kのデスクトップ・ツール

詳細についてはこちらをご覧ください。

注)このソフトウェアを使用するには、PCに ADALM1000を接続する必要があります。

図8. ALICE Rev 1.1のデスクトップ・メニュー

著者:

Doug Mercer (doug.mercer@analog.com)は、1977年にレンセラー工科 大学で電気電子工学の学士号を取得しました。同年にアナログ・デバイセ ズに入社して以来、直接または間接的に30種以上のデータ・コンバータ 製品の開発に携わりました。また、13件の特許を保有しています。1995 年にはアナログ・デバイセズのフェローに任命されました。2009年にフ ルタイム勤務からは退きましたが、名誉フェローとして仕事を続けてお り、Active Learning Programにもかかわっています。2016年に、レン セラー工科大学 電気/コンピュータ/システム・エンジニアリング学部 のEngineer in Residenceに指名されました。

Doug Mercer

この著者が執筆した 他の技術文書

StudentZone -2019年1月 「ADALM1000」で、 SMUの基本を学ぶ トピック13:バンド ストップ・フィルタ

Analog Dialogue 53-01

Antoniu Miclaus (antoniu.miclaus@analog.com) は、アナログ・デバイ セズのシステム・アプリケーション・エンジニアです。アカデミック・プ ログラムや、Circuits from the Lab®向けの組み込みソフトウェア、QA プロセス・マネジメントなどに携わっています。2017年2月から、ルー マニアのクルジュナポカで勤務しています。現在、バベシュボヨイ大学 においてソフトウェア・エンジニアリングに関する修士課程にも取り組 んでいます。また、クルジュナポカ技術大学で電子工学と通信工学の学 士号を取得しています。

Antoniu Miclaus

の著者が執筆した 他の技術文書

StudentZone -2019年1月 「ADALM1000」で、 SMUの基本を学ぶ-トピック13:バンド ストップ・フィルタ

Analog Dialogue 53-01