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Data Converter Codes—Can You Decode Them? 
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INTRODUCTION 
 
Analog-to-digital converters (ADCs) translate analog quantities, which are characteristic of most 
phenomena in the "real world," to digital language, used in information processing, computing, 
data transmission, and control systems. Digital-to-analog converters (DACs) are used in 
transforming transmitted or stored data, or the results of digital processing, back to "real-world" 
variables for control, information display, or further analog processing. The relationships 
between inputs and outputs of DACs and ADCs are shown in Figure 1. 
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Figure 1: Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter 
(ADC) Input and Output Definitions 

 
Analog input variables, whatever their origin, are most frequently converted by transducers into 
voltages or currents. These electrical quantities may appear (1) as fast or slow "dc" continuous 
direct measurements of a phenomenon in the time domain, (2) as modulated ac waveforms 
(using a wide variety of modulation techniques), (3) or in some combination, with a spatial 
configuration of related variables to represent shaft angles. Examples of the first are outputs of 
thermocouples, potentiometers on dc references, and analog computing circuitry; of the second, 
"chopped" optical measurements, ac strain gage or bridge outputs, and digital signals buried in 
noise; and of the third, synchros and resolvers. 
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The analog variables to be dealt with in this article are those involving voltages or currents 
representing the actual analog phenomena. They may be either wideband or narrowband. They 
may be either scaled from the direct measurement, or subjected to some form of analog pre-
processing, such as linearization, combination, demodulation, filtering, sample-hold, etc.  
 
As part of the process, the voltages and currents are "normalized" to ranges compatible with 
assigned ADC input ranges. Analog output voltages or currents from DACs are direct and in 
normalized form, but they may be subsequently post-processed (e.g., scaled, filtered, amplified, 
etc.).  
 
Information in digital form is normally represented by arbitrarily fixed voltage levels referred to 
"ground," either occurring at the outputs of logic gates, or applied to their inputs. The digital 
numbers used are all basically binary; that is, each "bit," or unit of information has one of two 
possible states. These states are "off," "false," or "0," and "on," "true," or "1." It is also possible 
to represent the two logic states by two different levels of current, however this is much less 
popular than using voltages. There is also no particular reason why the voltages need be 
referenced to ground—as in the case of emitter-coupled-logic (ECL), positive-emitter-coupled-
logic (PECL) or low-voltage-differential-signaling logic (LVDS), for example.  
 
Words are groups of levels representing digital numbers; the levels may appear simultaneously in 
parallel, on a bus or groups of gate inputs or outputs, serially (or in a time sequence) on a single 
line, or as a sequence of parallel bytes (i.e., "byte-serial") or nibbles (small bytes). For example, 
a 16-bit word may occupy the 16 bits of a 16-bit bus, or it may be divided into two sequential 
bytes for an 8-bit bus, or four 4-bit nibbles for a 4-bit bus.  
 
Although there are several systems of logic, the most widely used choice of levels are those used 
in TTL (transistor-transistor logic) and, in which positive true, or 1, corresponds to a minimum 
output level of +2.4 V (inputs respond unequivocally to "1" for levels greater than 2.0 V); and 
false, or 0, corresponds to a maximum output level of +0.4 V (inputs respond unequivocally to 
"0" for anything less than +0.8 V). It should be noted that even though CMOS is more popular 
today than TTL, CMOS logic levels are generally made to be compatible with the older TTL 
logic standard.  
 
A unique parallel or serial grouping of digital levels, or a number, or code, is assigned to each 
analog level which is quantized (i.e., represents a unique portion of the analog range). A typical 
digital code would be this array:  
 

a7 a6 a5 a4 a3 a2 a1 a0  =  1 0 1 1 1 0 0 1 
 
It is composed of eight bits. The "1" at the extreme left is called the "most significant bit" (MSB, 
or Bit 1), and the one at the right is called the "least significant bit" (LSB, or  
bit N: 8 in this case). The meaning of the code, as either a number, a character, or a 
representation of an analog variable, is unknown until the code and the conversion relationship 
have been defined. It is important not to confuse the designation of a particular bit (i.e., Bit 1, Bit 
2, etc.) with the subscripts associated with the "a" array. The subscripts correspond to the power 
of 2 associated with the weight of a particular bit in the sequence.   
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The best-known code (other than base 10) is natural or straight binary (base 2). Binary codes are 
most familiar in representing integers; i.e., in a natural binary integer code having N bits, the 
LSB has a weight of 20 (i.e., 1), the next bit has a weight of 21 (i.e., 2), and so on up to the MSB, 
which has a weight of 2N–1 (i.e., 2N/2). The value of a binary number is obtained by adding up the 
weights of all non-zero bits. When the weighted bits are added up, they form a unique number 
having any value from 0 to 2N – 1. Each additional trailing zero bit, if present, essentially doubles 
the size of the number.  
 
In converter technology, full-scale (abbreviated FS) is independent of the number of bits of 
resolution, N. A more useful coding is fractional binary which is always normalized to full-scale. 
Integer binary can be interpreted as fractional binary if all integer values are divided by 2N. For 
example, the MSB has a weight of ½ (i.e., 2(N–1)/2N = 2–1), the next bit has a weight of ¼ (i.e., 2–

2), and so forth down to the LSB, which has a weight of 1/2N (i.e., 2–N). When the weighted bits 
are added up, they form a number with any of 2N values, from 0 to (1 – 2–N) of full-scale. 
Additional bits simply provide more fine structure without affecting full-scale range. The 
relationship between base-10 numbers and binary numbers (base 2) are shown in Figure 2 along 
with examples of each. 

Number10 = aN–12N–1 + aN –22N–2 + … +a121 + a020

LSBMSB

Example:  10112 = (1×23) + (0×22)+ (1×21)+ (1×20)
=  8    +  0     +  2 + 1   =   1110

FRACTIONAL NUMBERS:

Number10 = aN–12–1 + aN–2 2–2 + … + a12–(N–1) + a02–N

LSBMSB

Example:  0.10112 = (1×0.5) + (0×0.25) + (1×0.125) + (1×0.0625)  
=    0.5 +      0        +    0.125     +    0.0625    = 0.687510

WHOLE NUMBERS:

 
Figure 2: Representing a Base-10 Number with a Binary Number (Base 2) 

 
UNIPOLAR CODES 
 
In data conversion systems, the coding method must be related to the analog input range (or 
span) of an ADC or the analog output range (or span) of a DAC. The simplest case is when the 
input to the ADC or the output of the DAC is always a unipolar positive voltage (current outputs 
are very popular for DAC outputs, much less for ADC inputs). The most popular code for this 
type of signal is straight binary and is shown in Figure 3 for a 4-bit converter. Notice that there 
are 16 distinct possible levels, ranging from the all-zeros code 0000, to the all-ones code 1111. It 
is important to note that the analog value represented by the all-ones code is not full-scale 

 Page 3 of 11 



 MT-009

(abbreviated FS), but FS – 1 LSB. This is a common convention in data conversion notation and 
applies to both ADCs and DACs. Figure 3 gives the base-10 equivalent number, the value of the 
base-2 binary code relative to full-scale (FS), and also the corresponding voltage level for each 
code (assuming a +10 V full-scale converter. The Gray code equivalent is also shown, and will 
be discussed shortly.  
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Figure 3: Unipolar Binary Codes, 4-bit Converter 

 
 
Figure 4 shows the transfer function for an ideal 3-bit DAC with straight binary input coding. 
Notice that the analog output is zero for the all-zeros input code. As the digital input code 
increases, the analog output increases 1 LSB (1/8 scale in this example) per code. The most 
positive output voltage is 7/8 FS, corresponding to a value equal to FS – 1 LSB. The mid-scale 
output of 1/2 FS is generated when the digital input code is 100.  
 
The transfer function of an ideal 3-bit ADC is shown in Figure 5. There is a range of analog 
input voltage over which the ADC will produce a given output code; this range is the 
quantization uncertainty and is equal to 1 LSB. Note that the width of the transition regions 
between adjacent codes is zero for an ideal ADC. In practice, however, there is always transition 
noise associated with these levels, and therefore the width is non-zero. It is customary to define 
the analog input corresponding to a given code by the code center which lies halfway between 
two adjacent transition regions (illustrated by the black dots in the diagram). This requires that 
the first transition region occur at ½ LSB. The full-scale analog input voltage is defined by 7/8 
FS, (FS – 1 LSB). 
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Figure 4: Transfer Function for Ideal Unipolar 3-bit DAC 
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Figure 5: Transfer Function for Ideal Unipolar 3-bit ADC 
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GRAY CODE 
 
Another code worth mentioning at this point is the Gray code (or reflective-binary) which was 
invented by Elisha Gray in 1878 (Reference 1) and later re-invented by Frank Gray in 1949 (see 
Reference 2). The Gray code equivalent of the 4-bit straight binary code is also shown in the last 
column of Figure 3. Although it is rarely used in computer arithmetic, it has some useful 
properties which make it attractive to A/D conversion. Notice that in Gray code, as the number 
value changes, the transitions from one code to the next involve only one bit at a time. Contrast 
this to the binary code where all the bits change when making the transition between 0111 and 
1000. Some ADCs make use of it internally and then convert the Gray code to a binary code for 
external use.  
 
As mentioned above, the Gray code has the property that adjacent levels differ by only one digit 
in the corresponding Gray-coded word. Therefore, if there is an error in a bit decision for a 
particular level, the corresponding error after conversion to binary code is only one least 
significant bit (LSB). In the case of mid-scale, note that only the MSB changes. It is interesting 
to note that this same phenomenon can occur in modern comparator-based flash converters due 
to comparator metastability. With small overdrive, there is a finite probability that the output of a 
comparator will generate the wrong decision in its latched output, producing the same effect if 
straight binary decoding techniques are used. In many cases, Gray code, or "pseudo-Gray" codes 
are used to decode the comparator bank. The Gray code output is then latched, converted to 
binary, and latched again at the final output.  
 
Other examples where Gray code is often used in the conversion process to minimize errors are 
shaft encoders (angle-to-digital) and optical encoders.  
 
ADCs which use the Gray code internally almost always convert the Gray code output to binary 
for external use. The conversion from Gray-to-binary and binary-to-Gray is easily accomplished 
with the exclusive-or logic function as shown in Figure 6.  
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Figure 6: Binary-to-Gray and Gray-to-Binary Conversion 

Using the Exclusive-Or Logic Function 
BIPOLAR CODES 
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In many systems, it is desirable to represent both positive and negative analog quantities with 
binary codes. Either offset binary, twos complement, ones complement, or sign magnitude codes 
will accomplish this, but offset binary and twos complement are by far the most popular. The 
relationships between these codes for a 4-bit systems is shown in Figure 7. Note that the values 
are scaled for a ±5-V full-scale input/output voltage range.  
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Figure 7: Bipolar Codes, 4-bit Converter 

 
For offset binary, the zero signal value is assigned the code 1000. The sequence of codes is 
identical to that of straight binary. The only difference between a straight and offset binary 
system is the half-scale offset associated with analog signal. The most negative value (–FS + 1 
LSB) is assigned the code 0001, and the most positive value (+FS – 1 LSB) is assigned the code 
1111. Note that in order to maintain perfect symmetry about mid-scale, the all-zeros code (0000) 
representing negative full-scale (–FS) is not normally used in computation. It can be used to 
represent a negative off-range condition or simply assigned the value of the 0001 (–FS + 1 LSB).  
 
The relationship between the offset binary code and the analog output range of a bipolar 3-bit 
DAC is shown in Figure 8. The analog output of the DAC is zero for the zero-value input code 
100. The most negative output voltage is generally defined by the 001 code (–FS + 1 LSB), and 
the most positive by 111 (+FS – 1 LSB). The output voltage for the 000 input code is available 
for use if desired, but makes the output non-symmetrical about zero and complicates the 
mathematics.  
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Figure 8: Transfer Function for Ideal Bipolar 3-bit DAC 
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Figure 9: Transfer Function for Ideal Bipolar 3-bit ADC 
 
 

 Page 8 of 11 



 MT-009

 
The offset binary output code for a bipolar 3-bit ADC as a function of its analog input is shown 
in Figure 9. Note that zero analog input defines the center of the mid-scale code 100. As in the 
case of  bipolar DACs, the most negative input voltage is generally defined by the 001 code (–FS 
+ 1 LSB), and the most positive by 111 (+FS – 1 LSB). As discussed above, the 000 output code 
is available for use if desired, but makes the output non-symmetrical about zero and complicates 
the mathematics. 
 
Twos complement is identical to offset binary with the most-significant-bit (MSB) complemented 
(inverted). This is obviously very easy to accomplish in a data converter, using a simple inverter 
or taking the complementary output of a "D" flip-flop. The popularity of twos complement 
coding lies in the ease with which mathematical operations can be performed in computers and 
DSPs. Twos complement, for conversion purposes, consists of a binary code for positive 
magnitudes (0 sign bit), and the twos complement of each positive number to represent its 
negative. The twos complement is formed arithmetically by complementing the number and 
adding 1 LSB. For example, –3/8 FS is obtained by taking the twos complement of  +3/8 FS.  
This is done by first complementing +3/8 FS, 0011 obtaining 1100. Adding 1 LSB, we obtain 
1101.  
 
Twos complement makes subtraction easy. For example, to subtract 3/8 FS from 4/8 FS, add 4/8 
to –3/8, or 0100 to 1101. The result is 0001, or 1/8, disregarding the extra carry.  
 
Ones complement can also be used to represent negative numbers, although it is much less 
popular than twos complement and rarely used today. The ones complement is obtained by 
simply complementing all of a positive number's digits. For instance, the ones complement of 
3/8 FS (0011) is 1100. A ones complemented code can be formed by complementing each 
positive value to obtain its corresponding negative value. This includes zero, which is then 
represented by either of two codes, 0000 (referred to as 0+) or 1111 (referred to as 0–). This 
ambiguity must be dealt with mathematically, and presents obvious problems relating to ADCs 
and DACs for which there is a single code which represents zero.  
 
Sign-magnitude would appear to be the most straightforward way of expressing signed analog 
quantities digitally. Simply determine the code appropriate for the magnitude and add a polarity 
bit. Sign-magnitude BCD is popular in bipolar digital voltmeters, but has the problem of two 
allowable codes for zero. It is therefore unpopular for most applications involving ADCs or 
DACs.  
 
Figure 10 summarizes the relationships between the various bipolar codes: offset binary, twos 
complement, ones complement, and sign-magnitude and shows how to convert between them.  

 Page 9 of 11 



 MT-009

 

Sign Magnitude

2's Complement

Offset binary

1's Complement

No
Change

If MSB = 1,
complement
other bits,
add 00…01

Complement MSB
If new MSB = 0
complement
other bits,
add 00…01

If MSB = 1,
complement
other bits

If MSB = 1,
complement 
other bits,
add 00…01

No
Change

Complement
MSB

If MSB = 1,
add 11…11

Complement MSB
If new MSB = 1,
complement
other bits,
add 00…01

Complement
MSB

No
Change

Complement MSB
If new MSB = 1,
add 11…11

If MSB = 1,
complement
other bits

If MSB = 1,
add 00…01

Complement MSB
If new MSB = 0,
add 00…01

No
Change

To Convert From
To Sign Magnitude 2's Complement Offset Binary 1's Complement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Relationships Among Bipolar Codes 
 
The last code to be considered in this section is binary-coded-decimal (BCD), where each base-
10 digit (0 to 9) in a decimal number is represented as the corresponding 4-bit straight binary 
word as shown in Figure 11. The minimum digit 0 is represented as 0000, and the digit 9 by 
1001. This code is relatively inefficient, since only 10 of the 16 code states for each decade are 
used. It is, however, a very useful code for interfacing to decimal displays such as in digital 
voltmeters.  
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Figure 11: Binary Coded Decimal (BCD) Code 
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COMPLEMENTARY CODES 
 
Some forms of data converters (for example, early DACs using monolithic NPN quad current 
switches), require standard codes such as natural binary or BCD, but with all bits represented by 
their complements. Such codes are called complementary codes. All the codes discussed thus far 
have complementary codes which can be obtained by this  method. A complementary code 
should not be confused with a ones complement or a twos complement code.  
 
In a 4-bit complementary-binary converter, 0 is represented by 1111, half-scale by 0111, and FS 
– 1 LSB by 0000. In practice, the complementary code can usually be obtained by using the 
complementary output of a register rather than the true output, since both are available.  
 
Sometimes the complementary code is useful in inverting the analog output of a DAC. Today 
many DACs provide differential outputs which allow the polarity inversion to be accomplished 
without modifying the input code. Similarly, many ADCs provide differential logic outputs 
which can be used to accomplish the polarity inversion. 
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