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Appendix B

SYNCHRO AND RESOLVER MANUFACTURERS

Listed below are some of the manufacturers of synchros and resolvers classified according to

country.

France

Precilec Thomson CSF

48 Rue D’Alesia 52 Rue Guynemer / BP 28
75014 Paris 92132 Issy-Les-Moulineaux
Tel. 707-69-39 Tel. 554-95-15

Sagem

6 Avenue D’lena
75783 Paris
Cedex 16

Tel. 723-54-55
Telex. 611-890 F

Germany

Siemens AG

UBK SK RK
Hoffmanstrasse 51
D-8000 Munchen 70
Tel. (089) 722 26959
Telex. 5288225

Japan

Tamagawa Seiki Co. Ltd. Shinkoh Communication Industry Co. Ltd.
3-19-9 Shinkamata, TOC Building

Ohta-Ku No. 7-22-17 Nishi Gotanda

Tokyo Shinagawaku

Japan 144 Tokyo

Tel. 03-731-2131 Telex. 246 7435

Telex. 246 6166

Sweden

Jungner Marine AB
Hemvirnsgatan 13
Box 1102, S-171 22
SOLNA

Tel. 08-98 01 20
Telex. 17300
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United Kingdom

Moore Reed and Company Ltd
Walworth Industrial Estate
Walworth

Andover

Hants SP10 SAB

Tel. (0264) 4155/4355

Telex. 47654

United States

American Electronics Inc
1600 E. Valencia Drive
Fullerton

CA 92631

Tel. (714) 871-3020
TWX. 910-592-1256

Clifton Precision
(Litton. Systems Inc)
Marple at Broadway
Clifton Heights

PA 19018

Tel. (215) 622-1000
TWX 510-669-9782

Harowe Servo Controls Inc
Chester Pike West

Chester

PA 19380

Tel. (215) 692-2700

‘Transicoil Inc
Trooper Rd
Worcester

PA 19490

Tel. (215) 277-1300
TWX 510-660-0132

Appendix B

Muirhead Vactric Components Ltd
Garth Rd

Morden

Surrey SM4 4LL

Tel. (01) 337 6644

Telex. 27796

Bendix Corporation
Route 46
Teterboro
NJ 07608
Tel. (201) 288-2000
TWX. 201-288-4550

The Singer Company
Kearfott Division
1150 McBride Avenue
Little falls

NJ 07424

Tel. (201) 256-4000
TWX 710-988-5700

Tachtronics Instruments Inc
1500 North Front St

New Ulm:

Minnesota 56073

Tel. (507) 354-3105

TWX 910-565-2251
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Appendix C

HARMONIC DISTORTION OF THE REFERENCE WAVEFORM

Common Signal Distortion

Tracking type Synchro to Digital converters are not sensitive to distortion of the reference
waveform, very large distortions like 20% third harmonic will have negligible effect on the
working of the converters. Distortion of the reference will alter the internal loop gain of the
converter, but since the type 2 servo loop is employed in all the tracking converters very large
loop changes can be tolerated without errors being caused.

The following analysis shows the way in which distortion of the reference waveform is of
no practical consequence. '

If there is distortion on the reference the resolver form signals can be represented by:

n=N
Sin¢ Y B,Sin(nwt+c,)
n=1
and
n=N
Cos¢ Y B,Sin (nowt+a,)
n=1

where ¢ is the resolver angle, w = 2xf, where f is the reference fundamental frequency with
B, and «, as the harmonic amplitudes and phases.

The operation of the tracking control loop is to multiply the resolver form signals by
Cos 0 and Sin 0 respectively, where 6 is the RDC output angle. They are then subtracted and
the result is applied to a phase sensitive detector to produce the control loop error signal.
The error signal is reduced to zero by the action of the control loop. Carrying out these
operations in steps we have:

n=N
e, = Y, B,Sin(nwt+a,)(Sin¢ Cos§—Cos ¢ Sin 6)

n=|

n=N

e, = Y B,Sin(nwt+a,)Sin (¢ -6)
n=}

where ¢, is the error signal before the phase sensitive detector.
Then:

n=N wl==x
¢ = Sin(¢-6 ¥ B, S Sin (nwt + a,) dt

n=1 who
where ¢ is the error after the phase sensitive detector and integrator.
The summation part of the above equation ie.

n=N

3 B, S Sin (nwt + «,) dt
=1 w=0

n=
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is just a constant, it will change in value according to the harmonic content but the
important point is that this gives rise only to a change of loop gain-and for the type 2 loop no
errors will be caused by very large changes in this factor.

Differential Distortion

While distortion of the reference waveform is of little consequence, since it occurs on both
the sine and cosine channels, distortion of one channel only has a very different effect. In
practice there is no reason why the carrier on the sine channel should be distorted differently
from that of the cosine channel. It could be that amplifiers giving distortion are being used
in which case it is worth knowing the effect of the differential distortion. Differential
distortion does produce errors. '

The following simple analysis shows the effect of 1% third harmonic (in phase with the
carrier at 0°) added to the sine input with the cosine input undistorted.

Let the input signal be:
Sin wt Sin ¢ + K Sin 3wt Sin ¢  (Sine input)

Sin wt Cos ¢ (Cosine input)
As before the operation of the converter is to multiply the sine input by Cos ¢ and to
multiply the cosine input by Sin f, to subtract them, pass them through a phase sensitive

detector and integrate the output to produce the error signal. Fig. C-1 shows the system and
the equations for the voltages at the different points,

JULL

REFERENCE
[Sinwt + KSin3wt] Sing COSINE [Sinwt + KSin3wt} Sing Cosé
" MULTIPLIER

19
4 —_ = P.S.D.
' Sin wt [Sin {¢ —8)]

(Sin wt] Cos ¢ SINE + KSin3wt Sing Cos @ v ERROR

IMULTIPLIER SIGNAL

; 0 Sin wt Cos ¢ Sin 6 i .
A L
|
! ]
i 1
| |
O D

Fig. C-1 The effect of differential distortion on Sine Channel only.

(1) Assume § = ¢ due to the feedback.

(2) The error is caused by the second term of the output from the subtractor and for
f = ¢, Sin ¢ Cos 6 has a maximum of 0.5 for § = ¢ =45°,

(3) For § = ¢=45°, the signal into the PSD is:
Sin wt [Sin (¢ —0)] + 0.5 K Sin 3wt
(4) The output from the PSD is integrated and reduced to zero by the control loop.

(5) To simulate the effect of the PSD, integration is carried out only over one half period
of the carrier. Due to the phase reversal of the PSD the other half period will be the
same.

Writing o—-0 = ¢

Sine s Sinwtdwt + 0.5K | Sin3wtdwt = 0
0

Oy T
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or

wt=x

Sine[Coswt] + 0.5K[Y5Cos3wt] =0

wt=0 wl=0
which gives:
2Sine + —l?;(- =0

and for € in radians and ¢ small

' __k

€T 7%
For example if K=0.01 (1% third harmonic)
€ = 0—60—1— X 57 = 0.095°

The conclusion here then is that differential harmonic distortion does have a considerable
effect on the accuracy of the converter. Fortunately the areas where it is likely to occur are
within the converters themselves, and care has been taken in the design to avoid errors due to
this cause,
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Appendix D

SPEED VOLTAGES IN RESOLVERS AND SYNCHROS

Introduction

In many application areas for synchros and synchro converters the synchros are required to
generate signals from shafis rotating at high speeds. The requirement for synchros working
at high speeds occurs particularly in geared systems, for example antenna systems where step
up ratios of 36:1 are quite common. Generally the scanning rates are increasing, aerials
rotating at 1 revolution per second are now being used instead of 0.25 revolutions per
second; with gearing the synchro speed might be 36 revolutions per second or higher. In a
completely different area of application, machine tool control, Inductosyns are often used
to provide the position feedback. Such a system is electrically equivalent to a resolver where
one pitch, for example 2mm, is equivalent to 360° rotation of the resolver. Resolver to
digital converters are often used in conjunction with inductosyn systems. The speeds
required may be 10 meters per minute or greater. 10 meters per minute is equivalent to 83
revolutions per second. These two examples are cases where relatively high tracking rates are
required and in such cases the synchro to digital converters must be able to give the required
accuracy in the presence of the so called “‘speed voltages’” which will now be explained.

Speed voltages

The explanations which follow will be in terms of resolver format signals but are directly
transferable to synchro form by using the Scott connected transformer operations. What we
are assuming is that given two systems (1) A synchro transmitter and (2) A resolver feeding
into a theoretically perfect Scott connected transformer, an observer with access to the input
shafts and output wires would not find any difference between the two systems. If we
analyse the resolver system the results will therefore also apply to the synchro system.

Figure D-1 shows the resolver being considered, the rotor is driven from a low impedance
voltage source e and is rotating at a constant velocity of « radians per second. ¢, and ¢,
represent the fluxes linking the windings and e, and e, are the instantaneous voltages across
them. The stator windings are taken to be unloaded which will be the case when the outputs
are fed into resolver to digital converters.

.dﬁf?@ |

7
N »-

a = VELOCITY IN
RADIANG/SEC

Fig. D-1 Resolver driven from a low impedance voltage source.
Takinge=E Sinwt........co0tuiiiiiniiiiiii ittt 1

We shall first take the case of the impedance of the rotor as being purely reactive and equal
to Xp=wL. The current which will flow in the rotor will be only due to e, the fact that it is
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rotating will not alter this current since there are no permanent magnets around and we have
assumed that there are no currents in the stator coils. The current will lag on the voltage by
90° and is given by:

This current will produce a flux in the rotor proportional to it and in phase with it, this flux
is ¢, where:

B, = KE/ L oSt .\ttt ettt (3)

The K in (3) will depend upon the iron, shape of the rotor, the number of turns etc. The
geometry of the resolver is such that if the rotor has a magnetic flux ¢, and the resolver angle
is set at # one of the stator windings will have a flux ¢, proportional to Sin 6 and the other
will have a flux ¢, proportional to Cos 0, ie.

¢I = K]¢,Sin0 (4)
¢2 Kz(brCoso ...............................................

and by design K, will be made equal to K,.

In the case being considered 6 is not a fixed angle, it is varying linearly with time, ie.
O=at+0,.

Substituting for ¢, using (3) and putting 6 =at + 6, in the equations (4), also using K,=K,
gives:

It

¢, = K,KE/ 1. Cos wt Sin (at+6,) )
4)2 K’ KE/wL Cos wt Cos (at+00) ---------------------------------

The voltages induced in the two stator windings will be proportional to:

dé./4t and dé./g¢. Writing KK/ as A and differentiating with respect to t gives:

déi/qt = AE @/, Coswt Cos(at+0,)~ AE Sin wt Sin (at+6,) ©
dé»/qy = —AE @/, Cos wt Sin (at+8,)— AE Sin wt Cos (at+6,) """ """

The equations (6) represent the voltages which will be produced in the two stator windings
when the rotor is rotating at o radians per second. ,
If we put o =0 the voltages correspond with those of a stationary rotor at the angle 4, ie.

dé /gy — AE Sin wt Sin 6,
dd’z/dt

The first terms in equation (6) are therefore extra voltages produced by the rotation — they
are referred to as the ‘‘speed voltages’’. The important things to notice about them are that
(1) The speed voltages are in quadrature with respect to the static voltages and (2) The
maximum magnitude of the speed voltage is a/w times the maximum static voltage.

Rejection of the speed voltages

Synchro and resolver to digital converters can use differing principles of operation, the so
called “‘tracking’’ synchro to digital converter has many advantages over alternative
methods and is almost universally used today. One of the advantages of the tracking type of
converter is that the phase sensitive rectifier driven from the reference signal theoretically
eliminates the effects of quadrature terms. In practice there are three requirements to be met
for the elimination of the quadrature components. (1) The output of the phase sensitive
detector must be integrated over an integral number of half periods of the carrier frequency.
(2) The reference phase must be exactly correct, ie. in phase with the signal carrier. (3) The
magnitude of the quadrature signals must not be such as to cause asymmetrical limiting in
the phase sensitive detector or any amplifiers preceeding it.

The necessary integration or smoothing does not cause any problems, on the question of
the reference phase being exactly correct there are problems which stem from the resolvers or
synchros. The assumption made at the beginning of these notes was that the rotor of the
resolver was purely reactive and that the stator coils were not loaded. The second
requirement of effectively no load on the stator coils can be reasonably approached in
practice but the rotor windings are not purely reactive, typical values will be K(1 + 5i) where
K will vary according to the voltage. The effect of the resistive component is to shift the
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phase of the signal voltages relative to the reference by several degrees, in the case given by
11.2 degrees.

The effect of phase shift between signal and reference

The operation of the tracking RDC is to multiply the two voltages of equation (6) by Sin 6
and Cos & respectively and to subtract the results; then to carry out phase sensitive
demodulation and integrate the result. A closed loop alters § to reduce the integrated output
of the phase sensitive detector to zero. If this operation is carried out on the static voltages
given in equation (7), no error will result when the phase of the reference signal is shifted by
up to 30 degrees or more. The reference phase shift will cause an effective change of loop
gain but since the control loop is a type 2 system this does not give rise to errors. In the
presence of the speed quadrature voltages this situation is no longer the case.

When the resolver is rotating at « radians per second and there is a phase shift of 8
between the signal and the reference the error signal due to the non velocity sensitive terms
of (6) equal to AE Sin (at +6,— 6) will be modified by the effective gain of the phase sensitive
detector to be:

CCOSBAESIN (0,76 oo ()
but in addition to this the velocity sensitive terms of (6) will give rise to a voltage of:

Sin B AEQ/ ,Cos(at40,=0) v 9
and the control loop will null the sum of the two terms, giving:

SinB.a/wCos(at+6,—6) = CosBSin(at+8,—8).......c.covvvvviin.. 10
writing at +8,— 6 as the error in angle ¢ and assuming that ¢ is small and § is small gives:

B0y S € (11

The error due to ‘‘speed voltages’ caused by a phase shift between the control signals and
reference is given approximately by equation (11) where « and w are the frequency of
rotation and the carrier frequency in the same units and 3 is the reference to signal shift in
the same units as ¢, eg. if

30 radians/sec.
2500 radians/sec.
and B8 = 10 degrees.

10x 30
2500

o

Il

W

= 0.12 degrees

The voltages developed from a resolver rotating at « radians per second with a carrier
frequency of w radians per second are proportional to:

a/w Cos wt, Cos (ot +8,) — Sin wt Sin (ot +6,),
and —a/w Cos wt. Sin (at +6,) — Sin wt Cos (at +6,)

The first terms are the ‘‘speed’’ voltages where «t is the rotation speed in the same units as
w, ie. the carrier frequency. The angle of rotation is a linear function of time 6+ «at.

The mechanism of the SDC is to multiply the first voltage by Cos #(t) and the second by
Sin ¢(t); to subtract the two terms and null the answer. ¢(t) is the output digital angle as a
function of time.

To simplify the mathematics we will ignore the transient situation and assume that
#(t) =6, + at +¢ where € is a constant error, ie. we assume that the output is rotating at the
same speed as the input where ¢ is the error to be determined. This assumption presupposes a
long time constant smoothing between the phase sensitive detector and the output.

Multiplying the two terms by Cos (f,+at+¢) and Sin (8,+at+e) respectively and
subtracting to produce the error signal before the phase sensitive detector gives:

a/w Cos wt. Cos (at +6,) Cos (8, + at + ¢) + a/w Cos wt Sin (at +6,) Sin (, + at + ¢€),
—Sin wt Sin (ot +6,) Cos (6, + ot +¢) + Sin wt Cos (at +86,) Sin (8, + at +¢),

or a/w. Cos wt Cos e — Sin wt Sin e,
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This error signal is integrated over half a period from wt =+ = where 8 is the reference to
signal phase shift to give

o/w Cos ¢ Sin 3~ Sin e Cos 8

equating this to zero and assuming e and 8 small gives fa/w=ce.

Reduction of Signal to Reference phase angle

Most of the phase shift in a synchro or resolver which is not loaded on its stator outputs is
due to the resistance of the rotor winding, to the extent that this is so, the phase shift can be
improved by obtaining the reference voltage across a high Q inductance in series with the
rotor. In the case of the reference transformer teeding into a high impedance amplifier the
primary of the transformer can be put in series with the rotor energisation. The phase error
between the signals and reference can be reduced to about | degree by this method as
compared with 8 to 11 degrees being typical unloaded phase shifts. The need tor reduction
of the phase shift is to avoid speed errors, static errors are not caused by the phase shift.

In large installations where a standard reference is piped around the series technique may
not be feasible, in this case individual phase correction will have to be used for example by
putting a resistance in series with the reference transformer primary winding.

Synthetic reference

To reduce the effects of this phase shift an alternative reference which is derived from the
signals plus the phase shifted reference can be used.

The word improved reference is used deliberately because the synthetic reference does not
produce the ideal reference but it will generally be substantially better than say a reference
shifted by 8 degrees. This point will be clearer when the method of deriving the Synthetic
reference is explained.

V, = -V Sinwt Sin¢ pEREE
S
OUTPUT SQUARE

\ WAVEFORM IN
V, = V Sin wt Cos & ! PHASE WITH Sinwt.

! |

PHASE |
DETECTOR
@it~

V¢ Sin (wt+«) (REFERENCE)

Fig. D-2 Principle of a synthetic reference.

Figure D-2 shows the method used. Two signal voltages V, and V, derived from the output
of the quadrant select circuits ot the SDC are used as inputs. These voltages are subtracted
and limited to produce the output square waveform which is either taken directly or inverted
according to the output from the phase comparator which uses the phase shifted reference
and the limited signal as its inputs. The reason for saying that the output is an improved
reference will be clear if we consider V, and V,to be other than the voltages shown.

One of the main applications for the use of a synthetic reference is when speed voltages
are producing errors in the presence of a phase shifted reference. In these circumstances V,
and V, will not be the voltages shown in figure D-2 but will be those given in equations (6),
under the heading Speed Voltages, ie.:

-V, = a/wCos wt Cos (at + 6) — Sin wt Sin (at +6)
V, = o/wCos wt Sin (at + 6) — Sin wt Cos (at + 6)

The reference required to completely eliminate speed errors is V sin wt.

The synthetic reference produces a reference by subtracting V, and V, and the resultant
does not have the phase of Sin wt. The zero crossings of V,— V,which determine the square
waveform output transitions do not coincide with the zero crossings of Sin wt and therefore
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the synthetic reference obtained in this way is not equivalent to the ideal required. For
reasonable values of a/w the equivalent phase shift is considerably less than 8 degrees which
may be on the actual reference and because of this, improvement in velocity errors will be
obtained. The same type of argument follows when the Synthetic reference is used to reduce
the effects of spurious quadrature residual signals, but in this case the improvement is
usually very considerable. A detailed discussion would require knowledge of how the
quadrature signal is caused and will therefore not be given here.

Appendix D 179



Appendix E

VECTOR ROTATION ALGORITHMS

In the synchro to digital and digital to synchro converters, the sine and cosine multiplication
can be considered as an angular shifting operation, i.e. given an input vector represented by
the components say X,, y, the output from the sine and cosine multiplier system produces a
new vector X, y, which is rotated in angle relative to the first by the angle 6 which is applied to
the multiplier. These operations are very similar to the CORDIC algorithm used in digital
pocket calculators. Techniques very similar to the CORDIC rotation are used in some of the
converters. In the following, the z transform is used to solve the generalised CORDIC
equations given by J.S. Walther*. In the paper by J.S. Walther the solution to the equations
is given without proof. The usefulness in the z transform method given below is that it leads
us to an alternative set of equations which have advantages when applied to the synchro
conversion problem.

In the paper by J.S. Walther, vectors P, = (x,, y,) and P,,,= (X,,,, ¥..,), which have a
geometrical interpretation, are formed according to the itterative relations:

Xpo = X,+myd, L. (1)
Your = Yo~ Kby L (2
An additional equation
2= 2, o, 3)
where
@, = m*tan'(m*s,) ... @)

is used for accumulating the angles o, .

Equations (1), (2), (3) and (4) form the basic Walther equations which reduce to the
CORDIC equations for m=1.

The equations have the solution

x, = K[% Cos(am”)+y,m”sin(em*)] ..., (5)
y, = K[y Cos'(am"‘)—xm"“ sin(em”®)} ... (6)
where K = nK, K, = v (1+mé)
r=n-1
and o = o, a, = Tan ', (m=1)

a, = Tann '8, (m=-1)

The values of m= +1, m=0 and m= —1 give the trigonometric, linear and hyperbolic
functions respectively.

® A Unified Algorithm for Elementary Functions, Spring Joint Computer Conference, 1971, J.S. Walther.
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By trial equations (5) and (6) are found to satisfy equations (1) and (2). In what follows
equations (5) and (6) will be obtained by a forward going process from equations (1) and (2),
i.e. equations (1) and (2) will be solved by the use of the z transform. There are four things to
be gained by this:

(1) The solution is obtained by forward going logical steps given (1) and (2), and the
method can be used for other such equations.

(2) The method brings out the analogy between the difference equations and the second
order differential equation which gives simple harmonic motion.

(3) 1t becomes obvious why m= — 1 leads to the hyperbolic functions.
(4) The method leads us to alternative difference equations which are more useful for
angular rotation of resolver form signals.

In the first algorithm §, is varied through a series of values to give rapid convergence, here
we will first assume §, to be a constant and solve the difference equations for this condition.
We will then show that 6 can-be changed in magnitude after any number of steps and the
process continued.

Writing equations (1) and (2) as

X, — X, = mMy,0

Yor1 = ¥a = —X,0
or AXx, = my,6 ... N
Ay, = —-x,6 L 8)

Taking differences of equation (7) gives:
A'x, = may, ... )
and substitution of y, from (8) into (9) gives:
A'x, = -mé&x, (10)

By comparing equation (10) with the equivalent differential equation it is now obvious that
the solution is likely to contain trigonometric or hyperbolic functions according to the sign
of m. ‘

We now proceed to solve equation (10) by using the z transform. Taking z transforms of
both sides of equation (10) leads to:

-12X@)-z[x—-%+@Z-Dx] = —m&X(z ... an

This equation has been obtained by using line 4 and line 1 of the table of transforms in
Fig. E-1. X (2) is the z transform of x,.
Solving for X (z) gives:
Z[x,—X+(z—1) X, ]
(z— 1)+ mé?
Z[ X, —Xe+(z—1) %, ]
(z—1-i6v/m)(z — 1 +i6+/m)

X(z) =

or X (2)

or using partial fractions

z[x —%+@E-1)x] 1 1
X@ = 7753 Jmo ([(z—l)—i«S\/m] - [(z—1)+16\/m]) """ 12)
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Line Function of n z transform of the function of n

o

=
[}

1) f (n) f(n)z-" = F(z)
n=0 :
@ f(n - m) 2™ F@)+z"™ Y, z7" f(n)
n=~|
) Y, f(n-ng) F(2)G(z)
=0
@ A° f(n) (z— 1) F(z)—z[as™! f(0) + (z ~ DA~ f(0) +
(sth difference of f(n)) (z—-1? A% ? f(o)t(0). . .(z— 1)*~! f(0)]
- N z z ]s 7
r=n S F f
(5) [2] f(n) . @O [(z—l) [Eo @+ @
=0 s—1 18
[E] ...+ —= 3, (fn)
0 @z-1 0
_ Kz
(6) K —constant 7
) 2™ = n(n-1)...(n-m+1) (T_'il’)_zm_
n r4
3 a p—
) z sin 0
© sin 6 n 22 —-27 cosf + 1
z(z — cosh)
10 cos 6 n 282z cosf + 1
Pulse of amplitude A at A
an time m e

r=n"Ys rg=n Tg_ =Ty r=rg
(12) * The symbol [E] f(n) is equal to E E .. 2 f(r) ie it is the sth summation of f(r).

r=0 rg=0 r5_1=0 r=0

s
The symbol[z] is the same as the above except the lower limit only is taken in the last summation.
0

Fig. E-1 Table of z Transforms.

Taking inverse z transforms of equation (12) by using lines 8 and 2 in Fig. F-1 gives x, as
below:

1_2 . .
X, = li%i:/mi [(1+iby/m) — (1 —i6ym)° ]
+ _iz"s%a” [(+iym)et = (1—idym)e*' ] eeees (13)

The values of m of interest are m= + 1 and m= — 1. We shall proceed from here restricting
m to be + 1 but the same method may be used for m= — 1 (the case of m=0 has to be dealt
with differently from before equation (12) because the roots are then equal).
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Putting m =1 in equation (13) gives

X, — . .
X, = -—'Tﬁz’-“’— [(1+i8) — (1-i6)"]
b [ HiB) — (1—i)] (14)
oy [y —(a—igye]

Writing 1+i6 = re?

and , i—i6 = re ¥
gives r= A+ L. (15)
¢ = Tan's .. (16)

and substitution of the equations (15) and (16) into equation (14) gives

X, —
X, = (—'——(Sz—xol " Sin nd +

’;" EOSin@+)0 ... an
From equation (7), i.e.
xn+l— xn = myn
putting m=1 and n=0 gives
Xy = XtV

and substitution of this value for x, into equation (17) to obtain an equation for x, in terms
of x, and y, gives

6_
X, = (y"—aﬁ)- r Sin nd + % £ +1 Sin (0 + 1)8

X, = r"[y,Sinnf-x, 7;— Sinnd—-Sin(n+ 1))} ... (18)
If 5=tan 0 and r =+/(1 +6?) from (15) and (16) are substituted in the second term of (18) and
use is made of:
Sin(nf+48) = Sin# Cos né + Cos 9 Sin nf
we obtain
X, = r"[y%Sinnd + X,Cosn6] ..., (19)

Equation (19) corresponds to equation (5) for m=1 and o =nf, K=r"

Equation (19) is the solution to the difference equations (7) and (8) for x, for m=1 and for a
fixed value of 8. Either by substitution for x_ in (19) or by the elimination of x, and x, ,, from
(7) and (8) to give an equation in y,,, and y, and solving this equation, y, can be obtained in
terms of X,, ¥, in exactly the same way as x, was obtained giving:

y, = r"[y,Cosnf-x,Sinn8} ..., (20)

Variable size angular steps

Having obtained a solution for fixed angular steps it is now necessary to find what happens
if having proceeded through n itterations with a constant §, its magnitude or its sign is
changed and further steps are taken. Let the new step be ké in size. After n steps of ¢ and |

Appendix E 183



steps of ké the solution will be
Xpo= I''[y¢Sinlkd + x;Coslkd] ... 1)
Yo = 1" [ysCos Ik —x;Sin 1k ] e (22)
where the y), x;are the new initial conditions which equal y,and x, reépectively and:
| r' = J(1+8')  wheres' = tankf
Since x, = x,and y, = y¢, equations (19) and (20) can be substituted for x; and y; in

equations (21) and (22). Carrying out the substitution and making use of the Sin (A +B)
formulae gives:

X, = I'r'' [x,Cos(nf+1kf) +y,Sin(mf+1k6)} ..... (23)
Yoo = r'r'' [y,Cos (nf+1kf) —x,Sin(néd +1k)] ..... (24)

and this procedure can obviously be repeated for any number of steps any size and either
sign,

An alternative algorithm

One of the problems in applying this algorithm in digital to resolver converters is caused by
the fact that together with the angular shift there is a change in the vector length due to the
fact that r 1. r determines the amount by which the vector length increases at each step.
We now come to the justification for the lengthy method of solution of the equations. The
CORDIC algorithm is equivalent to the solution of the difference equation (10) i.e.

A, = =8, (10)
and it has a solution which is divergent. This is in contrast with the differential equations

d?y
e = -cy (25)

which has a solution which neither diverges or converges (no clamping). Equation (25) can

be made to converge or diverge by the addition of a term proportional to —ai'— and its

magnitude and sign will determine the rate of divergence or convergence of the solution.
It seems reasonable therefore that the addition of a first difference term in equation (10)
of a suitable magnitude and sign, will give an equation which has a solution with r=1.
What we are seeking therefore is suitable values for A and B in equation (26) to give a
sequence of values for x, which represent the trigonometric functions with constant
coefficients i.e. the radius should remain constant.

A, +AAx,+Bx, =0 .. (26)

The z transform can again be used to solve equation (26). Taking z transforms using 4th line
in Fig. E-1 gives:
z-1)*X(z) — z[x,— Xo+ (z— 1)X,] + Alz— 1)X(2) —2X,] + BX(z) = 0
z{x,— X0+ (z— 1)x,] + Azx,
z-1)+A@z-1)+B
Numerator
2+ (A-2)z2+B-A+H T

or X(z) =

X@) =
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The numerator of equation (27) is a polynomial in z and since powers of z in the numerator
simply give rise to shifts in the ordinates the numerator need not be considered concerning
questions of convergence or divergence of the solution. Whether the solutions of equation
(27) diverge or converge depend on the position of the roots of the denominator. We can
take a short cut however by referring to the table of z transforms; the 9th and 10th lines of
Fig. E-1 show that the solution with a constant radius vector requires that:

A-2 = 2Cos @
B-A+1 1
or A =B 2+2 Cos 6

I

and substituting these values in equation (26) gives
Arx, + [2+2Cos0]Ax,+ [2+2Cosf])x, =0 ... (28)

Equation (28) will generate trigonometric values x, which have a constant radius. The
equation will be more recognisable if it is put in terms of x,,,, X,,, and x,.

2 —
A xn - xn+2—2Xn+l+xn

AX = Xn+|~—xn

Substitution of these in (28) gives
Xpi2— 2%, + X, +(24+2Cos0) [x,,, —x,] +2+2Cos®x, = 0
or X,.2—2Cos8.x,,,+%x, = 0 L 29

Equation (29) is the Chebyshev difference equation. Circuits based on this equation are used
to rotate the resolver form voltages in some of the synchro converter products, that is the
reason for including its derivation in these notes. Whilst the method of derivation of
equation (29) implies that the x, will generate the required angular shifts we have not so far
solved the difference equation. Before doing so the more usual symbols for the Chebyshev
equation will be used.

The Chebyshev difference equation is usually written

T-2T,  0+T, ., =0 ... (30)

The T in this equation is equivalent to the x in equation (29). The x in (30) is equivalent to
Cos 6 in (29). The n in (30) is equivalent to n +2 in (29). To avoid confusion the variable x in
(30) will be replaced by u giving the equation (31) which will be solved by the use of the z
transform.

Lw-2uT,_  +T, ,x) =0 ... (3D

The fact that T, is written as a function of u is equivalent to saying that the x, in (29) are
functions of Cos 6, which they clearly are.

The solution of the Chebyshev difference equation

Since the difference equation holds for n=>2 the weighted summation from n=2 to n= o
will also be true. Therefore taking z transforms:

Y 20 [T, - 2T, ,@)+T, ;@] = 0

n=2
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n=oo

or Y 2T (w-z'Ti(w)-T(w

-2u nf 2T, _, (u)+2uTy(u)z~' + 2uT_, (u)

n=0

+ Y 2T, W2, ) -T,@W = 0

n=0
putting n—1=m, n—2=s gives:

Y 2T, @) -2 T, (u) - Ty (u)
= 2uz™! m‘E z T, (u)+2uT,(u)z~! +2uT_, (u)

+2z? “Ew 22T (uw)-z'T (W)-T_,(u) = 0

§= -2

or nE z° T, (u)—z"' T, (u) - T; (u)
n=0

2wV e T, (- 20272 T (u)+ 20T, Wz + 20T, (1)

m== |

422 ¥ 2 T@-T, W = 2T, -2 T, @) -T,) = 0

s=0

or on substituting F(z,u) = f; z-"T, (u)
n=0

0 = Fiz,u)[1-2uz'+27?] + [2uz"' - 1] T, ()~ z"' T, (w)
+T_,(u) [2u-22z""] -2T, (u)

Since T_, (u) and T_, (u) are not within the range for which (31) holds, they must both be set
equal to zero. Giving:

[2uz'—1] T,(w)—z"' T, (u)
[1-2uz-'+2z-2]

F(z,u) =

The starting values T, (u) and T, (u) must now be defined.
IfT, = land T, = u, we have:

[2uz-'=1] —z"'u

F@z,u) = 1-2uz+2z2
__Z(z—w)
or Few = a2+

Using the 10th lmc in Fig. E-1 gives the solution T,(u) = Cos [ n Cos-'u ] which is the
Chebyshev fu.nctl.on. u = Cosd. .. T,(u) = Cosnf.

InthcapplxganonofthcdiffercncecquationsthesinglevalueofCosoisuscdtoobtain
Cos nf, and with a small modification Sin nf is also obtained.
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Appendix F

EFFECTS OF QUADRATURE SIGNALS ON SERVO SYSTEMS

The usual arrangement of the Digital to Synchro converter in a control loop is shown in
Chapter 4, Fig. 4-38. The signal from the control transformer is amplified and fed into a
Phase sensitive detector (PSD). The DC output from the PSD forms the error signal for the
control loop.

As can be seen from Fig. 4-38, the PSD is driven from the reference signal and the
operation of the PSD is such as to give a gain of + I when the reference is positive and a gain
of — 1 when the reference signal is negative. Simple consideration of the PSD will show that,
if an AC voltage at the same frequency as the reference voltage but shifted in phase by 90
degrees is introduced in series with the usual input from the CT, no errors will be caused.
(Errors could however be caused by the injection of such an AC voltage, if the voltage was
of sufficient magnitude to cause asymmetric limiting in the amplifiers). Such an injection of
a 90° phase shifted signal is not the same as the introduction of a real quadrature voltage
caused by different phase shifts in the signal paths.

The following simple analysis shows the errors due to quadrature and how these errors are
increased by a signal to reference phase shift. The signals will be considered in Resolver form
to reduce the number of terms in the equations.

Referring to Fig. F-1, we will consider the reference to be in phase with the input signals
and then introduce a small phase shift on one signal relative to the other.

RESOLVER CONTROL REF.
TRANSFORMER

ERROR SIGNAL
V Sin wt Sin ¢ P.S.D. p—&—

\al“mﬂ

V Sin (wt + o) Cos ¢

Fig. F-1 A resolver with a differential signal phase shift o.
In a perfect system the voltages would be,

Vs = V Sin wt Sin ¢
V¢ = V Sin wt Cos ¢
V = V Sinwt
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To show how the quadrature terms arises a phase shift of « will be applied to the carrier in
V¢. The three voltages are now: :

Vs = V Sin wt Sin ¢
Ve = V Sin (wt+a) Cos ¢
V = V Sin wt

At a fixed angle 0 the Resolver behaves like two transformers with a common secondary
where the ratios are: :

R Cos 8 — Sine input to rotor
and —R Sin § — Cosine input to rotor

The equivalent R for the Synchro control transformer type 11CT4b (90v L-L) is 0.64.
The voltage in the rotor winding will be the sum of the two voltages i.e.

Vrotor = (V SinwtSin¢) R Cos @ — [V Sin (wt+a) Cos¢] RSinf ..... 4]

Where ¢ is the digital angle and 0 is the angle of the resolver shaft and « is the phase shift
introduced into the Cosine channel.

In equation (1) the next step is to expand the term
Sin (wt + )
by using the relationship:
Sin(A+B) = Sin A CosB+Cos A SinB
"Doing this we get,
Vrotor = RV[Sin wt*Sin¢.Cosd — Cosé.Sinf (Sinwt*Cosa + Coswt TSina)]

*These terms are in phase. T This is the quadrature term.

Collecting the “‘in-phase’’ and quadrature terms we have:

Vrotor = RV[Sinwt (Sing.Cosf — Cos¢.Sinf.Cosa)
+ Coswt(Cos¢SindSine)) ..., )

A properly designed control loop with a perfect phase sensitive detector will ignore the term:
Coswt(Cos ¢SinfSina)

in equation (2). For such a properly designed servo loop there is an error which is very small
due to the fact that Cos « in the first term of equation (2) is not quite equal to 1.

Before proceeding to the case of the quadrature term itself we will find what the error
would be in a loop which rejects the quadrature.

We make use of the fact that

o af

Cosa = l—-2—+4~! ........

and for small o (which we are considering)

(« in radians)

2

o . . .
Cosa=1~— > where o is in radians.
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Since we are concerned for the present with a good loop which rejects the quadrature signal,
we can ignore that term in the error signal, Doing this and substituting for Cos « as above
gives: .

2
Viotor = RV{Sinwt[Sind:.Coso—(1—%)Sm0.Cos¢]]
The servo will alter 6 to make Vrotor = ZET0,
2
ie. 0 = [Sin¢ Cosf~Sin 6 Cos ¢+ %—sma.me ..... 3)

In equation (3), it is the term
2
o

3 Sin 6 Cos ¢
which gives rise to the error.
For 6 = ¢, Sin 8 Cos ¢ has a maximum of 0.5 at § = ¢ = 45°

And since Sin ¢ Cos 6 — Sin 0 Cos ¢ = (¢ —0) radians, the error in radians is:
2

o . .
€ = - X 0.5 (o and error are in radians)

2
in d . a’x 0.5 in d
error in degrees = TS w2 (a in degrees).
in minutes — 60 x 0.5 o? in d
error in minutes = 57 % 2 (o in degrees).
2
= 7 (o in degrees).

i.e. ¥4 arc minute for 1° of phase at worst angle of 45°

We now look at the quadrature signal which should be rejected, It is the term
RV Cos w t [Cos ¢ Sin @ Sin a] of equation (2)
For ¢ = 6, the maximum Cos ¢ Sin 6 is for ¢ =0 = 45° and the value is 0.5,
The peak value of the quadrature is
Quadrature = o RV % 0.5 (a is in radians) Sina = o)
V = 9.2
R = 0.64 for the 11CT4b Control Transformer (90 volts L-L)
and for o = 1/57 (1 degree).

90 x 0.64 x 0.5
37

rms Quadrature Voltage on rotor = 0.5 volts per 1 degree of differential phase shift.

The rms value of the quadrature on the rotor is volts per degree.

i.e. For 100mV rms the differential phase has to be 0.2 degrees.

The foregoing example of the effect of quadrature was based on the assumption that the
signals and reference were in phase before the small differential phase shift was introduced.
In practical systems there is often a phase shift of several degrees between the signals and
reference. This phase shift should be minimised in the design of Synchro systems. Both
control transmitter and control receiver Synchros give rise to phase leads between the input
and output voltages and balancing phase leads are often introduced into the reference before
it is used to drive the phase sensitive detector. DSC’s generally give negligible phase shift
between the input reference and output signals, if therefore a CX is replace by a DSC, the
phase angle between the CT output voltage and the reference will be changed and a
corresponding correction should be put in to the system at some point.
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