
Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page i — #1

Software-Defined Radio
for Engineers

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page ii — #2

For a listing of recent titles in the Artech House
Mobile Communications, turn to the back of this book.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-457-1

Cover design by John Gomes

© 2018 Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski

All rights reserved. Printed and bound in the United States of America. No part
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Artech House cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page v — #5

Dedication

To my wife Lauren
—Travis Collins

To my wonderful children, Matthew, Lauren, and Isaac, and my patient wife,
Michelle—sorry I have been hiding in the basement working on this book. To
all my fantastic colleagues at Analog Devices: Dave, Michael, Lars-Peter, Andrei,
Mihai, Travis, Wyatt and many more, without whom Pluto SDR and IIO would
not exist.
—Robin Getz

To my lovely son Aidi, my husband Di, and my parents Lingzhen and Xuexun
—Di Pu

To my wife Jen
—Alexander Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page vi — #6

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 231 — #1

C H A P T E R 8

Frame Synchronization and
Channel Coding

In this chapter we will cover the topics of frame synchronization and channel coding.
First, frame synchronization will be discussed to complete our full reception of data
from the transmitter. As in Chapter 7, which required timing recovery to realize, for
frame synchronization to be accomplished, it requires that the signal has been timing
and frequency corrected. However, once frame synchronization has been completed
we can fully decode data over our wireless link. Once this has been accomplished,
we can move on toward channel coding, where we will discuss popular coding
techniques and some of the implementation details from the perspective of a system
integrator.

With regard to our receiver outline in Figure 8.1, this chapter will address the
second-to-last block, Frame Sync, which is highlighted.

8.1 O Frame, Where Art Thou?

In previous chapters we have discussed frequency correction, timing compensation,
and matched filtering. The final aspect of synchronization is frame synchronization.
At this point it is assumed that the available samples represent single symbols
and are corrected for timing, frequency, and phase offsets. However, since in a
realistic system the start of a frame will still be unknown, we need to perform an
additional correction or estimation. We demonstrate this issue visually in Figure 8.2,
which contains a sample synchronized frame with an unknown offset of p samples.
Mathematically, this is simply an unknown delay in our signal y:

u[n] = y[n − p], (8.1)

where p ∈ Z. Once we have an estimate p̂ we can extract data from the desired
frame, demodulated to bits, and perform any additional channel decoding or
source decode originally applied to the signal. There are various way to accomplish
this estimation but the implemented outline in this chapter is based around
cross-correlation.

Depending on the receiver structure and waveform it may be possible to perform
frame synchronization after demodulation, where we mark the start of a frame
with a specific sequence of bits. However, this cannot be used if symbols are
required downstream for an equalizer or if the preamble contains configuration
parameters for downstream modulation. This is the case in IEEE 802.11 [1], where
the preamble can have a different modulation than the payload. Alternatively, if the
system is packet-based and does not continuously transmit data it can be difficult

231

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 232 — #2

232 Frame Synchronization and Channel Coding

Figure 8.1 Receiver block diagram.

Figure 8.2 Example received frame in AWGN with an unknown sample offset.

to distinguish noise from actual received signal. However, if only bits are consult
the relative gain of the signal is removed, which is information that is useful when
determining if signal is present.

8.2 Frame Synchronization

The common method of determining the start of a given frame is with the use of
markers, even in wired networking. However, in the case of wireless signals, this
problem becomes more difficult, as made visible in Figure 8.2, which actually uses
a marker. Due to the high degree of noise content in the signal, specifically designed
preamble sequences are appended to frames before modulation. Such sequences are
typically known exactly at the receiver and have certain qualities that make frame
estimation accurate. In Figure 8.3 we outline a typical frame ordering containing
preamble, header, and payload data. Header and payloads are unknown are the
receiver, but will maintain some structure so they can be decoded correctly.

Before we discuss the typical sequences utilized we will introduce a technique
for estimation of the start of a known sequence starting at an unknown sample in
time. Let us consider a set of N different binary sequences bn, where n ∈ [1, ..., N

]
,

each of length L. Given an additional binary sequence d, we want to determine
how similar d is to the existing N sequences. The use of a cross correlation would
provide us the appropriate estimate, which we perform as

Cd,b(k) =
∑
m

d∗(m)bn(m + k), (8.2)

which is identical to a convolution without a time reversal on the second term.
When d = bn for a given n, Cd,b will be maximized compared with the other n − 1

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 233 — #3

8.2 Frame Synchronization 233

Figure 8.3 Common frame structure of wireless packet with preamble followed by header and
payload data.

sequences, and produce a peak at Lth index at least. We can use this concept to help
build our frame start estimator, which as discussed will contain a known sequence
called the preamble.

Common sequences utilized in preambles for narrowband communications are
Barker codes [2]. Barker codes are utilized since they have unique autocorrelation
properties that have minimal or ideal off-peak correlation. Specifically, such codes
or sequences a(i) have autocorrelation functions defined as

c(k) =
N−k∑
i=1

a(i)a(i + k), (8.3)

such that

|c(v)| ≤ 1, 1 ≤ v < N. (8.4)

However, only nine sequences are known N ∈ [1, 2, 3, 4, 5, 7, 11, 13
]
, provided

in Table 8.1. We provide a visualization of these autocorrelations in Figure 8.5 for
a select set of lengths. As the sequence becomes longer the central peak becomes
more pronounced. For communication systems we typically append multiple such
codes together to produce longer sequences for better performance, as well as for
other identifications.

Using these codes we have implemented a small example to show how a Barker
sequence a(k) can be used to locate sequences in a larger set of data r(k), which
we have provided in Code 8.1. In this example we insert a Barker code within
a larger random sequence at an unknown position p, similar to our original error
model in Section 8.1, shown as Figure 8.4(a). A cross correlation is performed using
MATLAB’s xcorr function, provided in Figure 8.4(b). The cross correlation will
be of length 2Lr − 1, where Lr is the length of r. Since xcorr will pad zeros to a
so its length is equal to Lr [3], this will result in at least Lr − La zeros to appear in
the correlation where La is the original length of a. From Figure 8.5, we know that
the peak will appear at La samples from the start of the sequence. Taking this into
account we can directly determine at what offset position of our desired sequence:

p̂ = argmax
k

Cra(k) − Lr, (8.5)

which is what we observe from our estimates in Figure 8.4(a).
The xcorr function is a useful tool in MATLAB and will actually utilize the

fft function for large sequences for performance. Since we know from Chapter 2
that convolution is just a multiplication in the frequency domain, and from above
the relation of correlation and convolution, this strategy is obvious for xcorr.
However, the process actually inflates the data processed since the sequences must
be of equal length for correlation. We can observe inflation from the zeros in

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 234 — #4

234 Frame Synchronization and Channel Coding

Table 8.1 Barker Codes from comm.BarkerCode
N Code
2 −1, +1
3 −1, −1, +1
4 −1, −1, +1, −1
5 −1, −1, −1, +1, −1
7 −1, −1, −1, +1, +1, −1, +1
11 −1, −1, −1, +1, +1, +1, −1, +1, +1, −1, +1
13 −1, −1, −1, −1, −1, +1, +1, −1, −1, +1, −1, +1, −1

Figure 8.4 Example of using cross correlation to find a sequence with a larger sequence of data.
(a) Random bit sequence with Barker code embedded at delay p, and (b) crosscorrelation of Barker
code with random sequence containing code.

Figure 8.4(b). A more efficient implementation would be to utilize a filter. The
output y of an FIR filter with taps bi can be written as

y[n] =
N∑

i=0

bi u[n − i], (8.6)

where u is our received signal that contains the sequence of interest. Equation (8.6)
is almost identical to (8.2) except for a time reversal. Therefore, to use an FIR filter

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 235 — #5

8.2 Frame Synchronization 235

Code 8.1 Barker Sequence Example: barkerBits13.m

1 % Show Barker Autocorrelations search example

2 sequenceLength = 13;

3 hBCode = comm.BarkerCode(’Length’,7,’SamplesPerFrame’, sequenceLength);

4 seq = hBCode(); gapLen = 100; gapLenEnd = 200;

5 gen = @(Len) 2*randi([0 1],Len,1)-1;

6 y = [gen(gapLen); seq; gen(gapLenEnd)];

7 corr = xcorr(y,seq);

8 L = length(corr);

9 [v,i] = max(corr);

10 % Estimation of peak position

11 % The correlation sequence should be 2*L-1, where L is the length of the

12 % longest of the two sequences

13 %

14 % The first N-M will be zeros, where N is the length of the long sequence

15 % and N is the length of the shorter sequence

16 %

17 % The peak itself will occur at zero lag, or when they are directly

as a cross correlator we could simply replace bi with the sequence of interest, but
in reverse order. This implementation would not require padding of the sequence
of interest d, and can be efficiently implemented in hardware.

Q Based on Code 8.1, reimplement the sequence search with an FIR
filter.

8.2.1 Signal Detection
Now that we have a method for estimating the start of a frame, let us consider a
slightly simpler problem. Can we determine that a frame exists in the correlation?
This can be useful if wish to handle data in smaller pieces rather than working with
complete frames, or possibly a mechanism for determining if a channel is occupied.
When we consider signal detection, we typically define this feature as a power
sensitivity or the minimum received power at the receiver to be detected. However,
this sensitivity will be based on some source waveform and cannot be generalized in
most cases. Therefore, such a value should never be given on its own, unless given
with respect to some standard transmission. Even when considering formal methods
of detection theory, such as Neyman-Pearson or even Bayesian, you must have some
knowledge or reference to the source signal [4]. The receiver sensitivity requirement
for IEEE 802.11ac specifically is defined as the minimum received signal power to
maintain a packet error rate of 10%, for a give modulation and coding scheme [1].

In a formal mathematic context, this process devolves into a simple binary
hypothesis test:

H0 : no signals,

H1 : signals exist, (8.7)

where H0 is usually referred to as a null hypothesis and H1 is usually called an
alternative hypothesis.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 236 — #6

236 Frame Synchronization and Channel Coding

Figure 8.5 Comparison of autocorrelations of Barker sequences of different lengths. (a) N = 5,
(b) N = 7, (c) N = 11, and (d) N = 13.

For a null hypothesis, since there are no primary signals present, the received
signal is just the noise in the RF environment. On the other hand, for the alternative
hypothesis, the received signal would be the superposition of the noise and the
primary signals. Thus, the two hypotheses in (8.14) can be represented as

H0 : r[n] = n[n],
H1 : r[n] = x[n] + n[n], (8.8)

where r[n] is the received signal, n[k] is the noise in the RF environment, and x[n]
is the signal we are trying to detect. Based on the observation r, we need to decide
among two possible statistical situations describing the observation, which can be

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 237 — #7

8.2 Frame Synchronization 237

expressed as

δ(x) =
{

1 x ∈ �1,
0 x ∈ �c

1.
(8.9)

When the observation x falls inside the region �1, we will choose H1. However,
if the observation falls outside the region �1, we will choose H0. Therefore, (8.9)
is known as decision rule, which is a function that maps an observation to an
appropriate hypothesis [5]. In the context of packet detection, thresholding is
actually the implementation of a decision rule.

Regardless of the precise signal model or detector used, sensing errors are
inevitable due to additive noise, limited observations, and the inherent randomness
of the observed data [6]. In testing H0 versus H1 in (8.14), there are two types of
errors that can be made; namely, H0 can be falsely rejected or H1 can be falsely
rejected [5]. In the first hypothesis, there are actually no signals in the channel, but
the testing detects an occupied channel, so this type of error is called a false alarm
or Type I error. In the second hypothesis, there actually exist signals in the channel,
but the testing detects only a vacant channel. Thus, we refer to this type of error
as a missed detection or Type II error. Consequently, a false alarm may lead to a
potentially poor data recovery, while a missed detection ignores an entire frame of
data requiring retransmission [6].

Given these two types of errors, the performance of a detector can be
characterized by two parameters; namely, the probability of false alarm (PF), and
the probability of missed detection (PM) [7], which correspond to Type I and Type
II errors, respectively, and thus can be defined as

PF = P{Decide H1|H0}, (8.10)

and
PM = P{Decide H0|H1}. (8.11)

Note that based on PM, another frequently used parameter is the probability of
detection, which can be derived as follows:

PD = 1 − PM = P{Decide H1|H1}, (8.12)

which characterizes the detector’s ability to identify the primary signals in the
channel, so PD is usually referred to as the power of the detector.

As for detectors, we would like their probability of false alarm to be as low as
possible, and at the same time, their probability of detection as high as possible.
However, in a real-world situation, this is not achievable, because these two
parameters are constraining each other. To show their relationship, a plot called
receiver operating characteristic is usually employed [8], as shown in Figure 8.6,
where its x-axis is the probability of false alarm and its y-axis is the probability of
detection. From this plot, we observe that as PD increases, the PF is also increasing.
Such an optimal point that reaches the highest PD and the lowest PF does not exist.
Therefore, the detection problem is also a trade-off, which depends on how the
Type I and Type II errors should be balanced.

When we consider the implementation consequences of detecting a signal, our
design become more complicated than for example from Code 8.1. In the most
basic sense detection becomes a thresholding problem for our correlator. Therefore,

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 238 — #8

238 Frame Synchronization and Channel Coding

Figure 8.6 A typical receiver operating characteristic, where the x-axis is the probability of false
alarm (PF), and the y-axis is the probability of detection (PD).

the objective becomes determining a reference or criteria for validating a peak,
which can be radically different over time depending on channel noise and the
automatic gain control of the Pluto SDR. However, even in simulations appropriate
thresholding becomes nontrivial, which we can demonstrate with Figure 8.7(a)
and 8.7(b). In these figures the peak appears larger relative to the rest of the
correlation in the case where no frame exists in the receive signal compared to
the condition when a frame exists. Therefore, for an implementation that performs
well it should handle such conditions and operate regardless of the input scaling.

A common technique to aid with this thresholding process is to self-normalize
the received signal. If we look back at Figure 8.7, we will notice that the magnitude
can be quite different, which makes thresholding even more difficult. If we self-
normalize the signal we can force it into a range closely between ∈ [0, 1]. A simple
way to accomplish this operation is to scale our cross-correlation metric Cy,x by
the mean energy of the input signal x. To do this in an efficient way we can again
utilize filtering to accomplish this task by implementing a moving average filter.
Mathematically, this moving averaging would be modeled as another sum:

uma[n] =
N∑

i=0

u[n − i], (8.13)

where N is the length of the preamble or sequence of interest. A useful aspect of
(8.6) and (8.13) is that these are simple FIR filter implementations, making them
simple to implement in hardware. In fact (8.13) requires no multiplication like the
CIC filter discussed in Section 2.6.4. This aspect is import since in many systems
this frame synchronize may also be used as packet detection mechanism at the front
of the receiver, requiring it to run at the fastest rate of the input data without
decimation. Combining our correlator from (8.6) and scaler from (8.13) we can

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 239 — #9

8.2 Frame Synchronization 239

Figure 8.7 Example of false peaks in a cross-correlation sequence search. (a) Correlation without
signal present, and (b) Correlation with signal present.

write our detector as

H0 :
y[n]

uma[n] < T no signals,

H1 :
y[n]

uma[n] ≥ T signals exist, (8.14)

where T is our threshold value.
In MATLAB code lst:findSignalStartTemplate we have provided

a template that nicely compensates for the transmit filter delay in the system,
providing the true delay of a given packet at the receiver.

Q
From the code provided in 8.2, implement a preamble start
estimator using xcorr and the filter function. Evaluation the
estimation accuracy over SNRs ∈ [0, 12] dB in single dB steps.

8.2.2 Alternative Sequences
Besides Barker sequences, there are other sequences that have similar properties
of minimal cross correlation except at specific instances. Two popular options are
Zadoff-Chu sequences and Golay complementary sequences, which are currently
both part of existing wireless standards.

Zadoff-Chu sequences, named after authors Solomon Zadoff and David
Chu [9], are used for LTE synchronization and channel sounding operations. They
are useful since they have a constant amplitude, zero circular autocorrelation,
and very low correlation between different sequences. This properly of limited
correlation between themselves is useful in a multiaccess environment where many
users can transmit signals. Mathematically, the sequence numbers are generated as

sn = exp
(

− j
π k n (n + 1 + 2q)

L

)
, (8.15)

where L is the sequence length, n the sequence index, q and integer, and k, which
is coprime with L. Unlike Barker sequences, which are purely integers 1 or −1,
Zadoff-Chu sequences are complex valued.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 240 — #10

240 Frame Synchronization and Channel Coding

Code 8.2 Loopback Pluto Example: findSignalStartTemplate.m

1 %% General system details

2 sampleRateHz = 1e6; samplesPerSymbol = 8; numFrames = 1e2;

3 modulationOrder = 2; filterSymbolSpan = 4;

4 barkerLength = 26; % Must be even

5 %% Impairments

6 snr = 15;

7 %% Generate symbols and Preamble

8 bits = randi([0 3], modulationOrder*1e3,1);

9 hBCode = comm.BarkerCode(’Length’,7,’SamplesPerFrame’, barkerLength/2);

10 barker = hBCode()>0; frame=[barker;barker;bits];frameSize = length(frame);

11 % Modulate

12 modD = comm.DBPSKModulator(); bMod = clone(modD);

13 modulatedData = modD(frame);

14 %% Add TX/RX Filters

15 TxFlt = comm.RaisedCosineTransmitFilter(...

16 ’OutputSamplesPerSymbol’, samplesPerSymbol,...

17 ’FilterSpanInSymbols’, filterSymbolSpan);

18 RxFlt = comm.RaisedCosineReceiveFilter(...

19 ’InputSamplesPerSymbol’, samplesPerSymbol,...

20 ’FilterSpanInSymbols’, filterSymbolSpan,...

21 ’DecimationFactor’, samplesPerSymbol);

22 RxFltRef = clone(RxFlt);

23 %% Setup visualization object(s)

24 hts1 = dsp.TimeScope(’SampleRate’, sampleRateHz,’TimeSpan’, ...

25 frameSize*2/sampleRateHz);

26 hAP = dsp.ArrayPlot;hAP.YLimits = [-3 35];

27 %% Demodulator

28 demod = comm.DBPSKDemodulator;

29 %% Model of error

30 BER = zeros(numFrames,1);PER = zeros(numFrames,1);

31 for k=1:numFrames

32 % Insert random delay and append zeros

33 delay = randi([0 frameSize-1-TxFlt.FilterSpanInSymbols]);

34 delayedSignal = [zeros(delay,1); modulatedData;...

35 zeros(frameSize-delay,1)];

36 % Filter signal

37 filteredTXDataDelayed = TxFlt(delayedSignal);

38 % Pass through channel

39 noisyData = awgn(filteredTXDataDelayed,snr,’measured’)

40 % Filter signal

41 filteredData = RxFlt(noisyData);

42 % Visualize Correlation

43 hts1(filteredData);pause(0.1);

44 % Remove offset and filter delay

45 frameStart = delay + RxFlt.FilterSpanInSymbols + 1;

46 frameHatNoPreamble = filteredData(frameStart:frameStart+frameSize-1);

47 % Demodulate and check

48 dataHat = demod(frameHatNoPreamble);

49 demod.release(); % Reset reference

50 BER(k) = mean(dataHat-frame);PER(k) = BER(k)>0;

51 end

52 % Result

53 fprintf(’PER %2.2fn’,mean(PER));

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 241 — #11

8.3 Putting the Pieces Together 241

The second sequence of interest are Golay complementary sequences, which
are currently used in IEEE 802.11ad. Again they are used for channel estimation
and synchronization within the preamble of IEEE 802.11ad packets. Golay
complementary sequences are sequences of bipolar symbols with minimal
autocorrelation properties. Therefore, they have a very similar to concept to Barker
codes. However, as the name suggests these sequences come in complementary pairs
that are typically denoted as Gan and Gbn, where n is the sequence length. IEEE
802.11ad uses pairs Ga32, Ga64, and Gb64. Using these sequences with BPSK is
exceptional since performing the autocorrelations under even severe phase rotation
is high. Another important aspect with Golay or specifically Ga and Gb sequence
pairs is that their autocorrelation can be performed in parallel in hardware. This
is very useful for a standard like 802.11ad, which is targeting transfer rates of 7
Gbits/s [10]. Building on this concept of minimal autocorrelation pairs and parallel
processing of sequences, the preamble in IEEE 802.11ad can be used to provide
signaling information to the receiver just based on its autocorrelation properties.
This means that depending on the packet type a correlator bank can be used to
identify that specific structure, conditioning the processing receiver to a specific
decoder path for that type of packet.

8.3 Putting the Pieces Together

At this point we have all the necessary pieces to build a wireless receiver that can
handle carrier offsets, timing mismatches, and random packet delay. With all these
components in our tool belt, now it is a good time to talk about the system as a whole
and determine the arrangement of components based on system requirements. This
discussion on algorithm arrangements will be based on what we have learned from
the previous chapters.

Starting at the front of the receiver we need to first accomplish two goals: carrier
offset removal and timing synchronization with the received signal. In the system
proposed so far we have first implemented timing recovery in the receive chain, but
this requires usage of a TED, which is insensitive to phase rotation. Based on the
options provided in Chapter 4, this would require a technique such as Gardner or
a polyphase type implementation from Harris [11]. It is possible to utilize the FFC
implementation described in Chapter 7 before timing recovery, but there can be
residual phase noise left in the system. The receiver would be arranged similar to
Figure 8.8. However, it is definitely useful to place a CFO before all processing,
even before matched filtering, to reduce the work of other recovery algorithm in
the receive chain. With that said, inserting CFO after a matched filter can make the
estimates more accurate from CFO since the received signal will be SNR maximized.
You must consider the trade-off in all these situations.

In Figure 8.9 we have outlined a possible receiver flow that contains the relative
sample rates Rn between the recovery stages. The blocks with dashed outlines, the

Figure 8.8 Example receiver processing flow to recover transmitted frames where frequency
recovery is considered first.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 242 — #12

242 Frame Synchronization and Channel Coding

Figure 8.9 Complete receiver processing flow to recover transmitted frames. The relative sample
rates are defined by Rn.

matched filter and CFO, can be optional if a RRC filter is used at the transmitter
or the carrier offset is not severe. We specifically place the CFO before matched
filtering since the matched filter can reduce the bandwidth CFO can utilize. With
regard to the rates Rm ≥ Rk where m < k, meaning that the system will never
upsample downstream or run at faster rates. Overall, downsampling will only occur
in two possible stages: matched filtering and timing recovery. It is not required to
do so in either stage but they can have specific benefits. For example, decimating
at the matched filter stage will provide useful averaging, making symbols easier
to distinguish. From a hardware perspective decimating reduces the sample rate
and the constrains on downstream processing, lowering the bounds on clock rates
for intensive operations in our downstream loops. When considering our timing
recovery algorithms we already know from Chapter 6 that we can have specific
requirements on Rn for the TED utilized. Providing the timing recovery loop with
more samples per symbol can provide better performance as well.

In Figure 8.9 between the carrier recovery and frame sync block we have
partitioned the system into two domains, blind and conditional. This is to define
which processing blocks are dependent on the actual data transmitted and those
blocks which are essentially blind to this fact. We can utilize this aspect of the
design to introduce training data into our system that can be used to help the
system converge to lock states in the recovery loops before actual data needs to be
recovered. In this type of configuration we could prepend random bits that would
be modulated and filtered as actual data of the transmitter to be sent. This extra
or training data could just be prepended to the start of each frame or continuously
transmitted in between data frames to keep the receiver locked. This would remove
convergence delays in our system. In hardware we could simply connect a linear-
feedback shift register (LFSR) to our modulator, which is a convenient mechanism of
generating random bits. In MATLAB this is represented by the comm.PNSequence
System object. Once converged it may not be necessary to continuously transmit
training data, which would increase the throughput of the system.

When implementing a system with Pluto SDR or even in simulation it can be
helpful to introduce training information into your system. In this configuration our
frame sync block from Figure 8.9 would act as a gateway to downstream processing,
only allowing data to pass through once a preamble or marker was detected.

8.3.1 Full Recovery with Pluto SDR
Throughout the last three chapters we have introduced templates of code and
provided guidance on how to implement scenarios with Pluto SDR. However,
when considering full frame recovery and actually demodulation of data we need

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 243 — #13

8.3 Putting the Pieces Together 243

to reenforce some implementation details. Since the receiver is a complex system
requiring many processing components, real-time operation should not be an initial
goal. Once your receiver algorithms are working you can extend them to work in
real-time if desired. Therefore, for your implementations you should focus on coding
templates Code 5.3, 5.4, and 5.5. Performing processing in between calls to Pluto
SDR similar to Code 5.6 will likely result in overflows and missed data, making it
difficult to recover full frames of data.

A second important tool to utilize is the transmitRepeat method of Pluto
SDR as in code example 5.7. This will deterministically transmit data continuously.
With regard to this data at the receiver, since the delay will be random from
the transmitter, you should always collect at least 2L samples where L is the
length of the desired frame. Setting Pluto SDR’s SamplesPerFrame property
to 2L will guarantee at least one full packet received when the transmitter is in
transmitRepeatmode. This was unnecessary in Chapters 4 and 7 since we could
lose data to an overflow and this would have little impact on our tests. However,
this is paramount when checking for full frames. Here is a simple example to follow
in Code 8.3. In this example we actually step the receive several times to remove
possible stale data in its IIO buffers.

Code 8.3 Capture Repeated Frame: captureExample.m

1 % Transmit frame repeatedly
2 tx = sdrtx(’Pluto’);
3 tx = sdrtx(’Pluto’,’SamplesPerFrame’,length(frame)*2);
4 tx.transmitRepeat(frame);
5 for k=1:4,rx();end; % Remove stale data from buffers
6 rxBuffer = rx();

Q

Using the template from Code 8.3 and the synchronization blocks
developed in Chapters 4, 7, and in this chapter, begin to estimate
the start of packets. First, utilizing transmitRepeat collect L×
N samples of data where N = 1, 2, 3, 4, 5. Your packet detector
should be able to locate at least L × (N − 1) of data for each
iteration of N. Evaluate the performance of your system for this
growing number of packets. Collect 1,000 packets and determine
your probability of detection (try to collect 10 packets at a time
and repeat this process).

A useful tool when evaluating complete recovered frames is a cyclic redundancy
check (CRC) that provides a binary value if a packet contains errors or not.
Conveniently, MATLAB’s Communication Systems Toolbox contains a system
object with this functionality called comm.CRCGenerator and its mirrored
detector comm.CRCDetector. They can be called in the following way in
Code 8.4 where we utilize the polynomial z3 + 1 in both objects.

A CRC works by appending a sequence of length Lc, called a checksum, to
the end of the our data. Lc will be equal to the order of the polynomial, which is

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 244 — #14

244 Frame Synchronization and Channel Coding

Code 8.4 Loopback Pluto Example: crcExample.m

1 x = logical([1 0 1 1 0 1 0 1 1 1 0 1]’);

2 crcGen = comm.CRCGenerator(’zˆ3 + 1’);

3 crcDet = comm.CRCDetector(’zˆ3 + 1’);

4 codeword = crcGen(x);

5 codewordWithError = codeword; codewordWithError(1) = ˜codewordWithError(1);

6 [tx, err] = crcDet(codeword);

7 [tx1, err1] = crcDet(codewordWithError);

three in the case of Code 8.4. This polynomial determines how bits are combined
(XORed) together to produce the checksum. The larger the value Lc the lower the
probability of Type I or Type II errors, as outlined in Section 8.2.1. However, this
is also dependent on the length of the data related to the checksum. In practice, the
data related to a checksum size will be orders of magnitude greater than Lc. With
regard to our frame synchronization testing we can utilize CRCs in transmitted
frames to easily check if we have recovered all our transmitted bits.

Q

Again, using the template from Code 8.3, and the synchronization
blocks developed in Chapters 4, 7, and in this chapter, begin to
estimate the start of packets. This appends CRC to each frame
before transmission. At the receiver demodulate the recovered
symbols, check the CRC values for 1,000 packets. Repeat this
process but calculate the bit error rate for each frame recovered.
Skip lost frames.

8.4 Channel Coding

Now that we can successfully recover data across the wireless link, we can discuss
techniques of making this process more robust. Channel coding is an obvious option
and is ubiquitous in any digital communications standard.

8.4.1 Repetition Coding
One of key building blocks of any communication system is the forward error
correction (FEC), where redundant data is added to the transmitted stream to make
it more robust to channel errors. There are many types of FEC techniques, such
as the repetition coding approach, where each transmitted bit is repeated multiple
times. In this section, we will explore together one technique for combating the
introduction of errors to data transmissions by implementing a simple repetition
coder (repetition factor R = 4). So what does it mean by a repetition coder with
repetition factor R = 4? A simple definition is that if a “0” symbol is to be
transmitted, this “0” symbol will be repeated four times by the repetition coder,
such that the output would be “0000.”

Let us first start by double-clicking on the repetition coder block, which
will result in a MATLAB function block editor opening, in which we can write

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 245 — #15

8.4 Channel Coding 245

customized MATLAB code. As mentioned previously, setting break points is a great
way for understanding and debugging M-files. For more information about break
points and how they can be used to debug and evaluate the code, please refer to
Appendix B.

i
The repmat function in MATLAB can be used to realize a simplistic
repetition coding scheme. For example, to repeat a vector u for 4
times, the following expression can obtain this result:
y=repmat(u,4,1);

Q What are the trade-offs to consider when choosing between a high
or a low repetition factor?

8.4.2 Interleaving
A repetition code is one of several useful tools for a communication systems engineer
in order to enhance a robust data transmission. However, it is sometimes not
enough, since it does not address the issue when a large quantity of data is corrupted
in contiguous blocks. For instance, if a transmitter sends the data stream “101101,”
a repetition coder with a repetition factor of 4 will yield

111100001111111100001111,

where each input bit is repeated four times. While this encoding scheme may appear
robust to error, it is still possible during a data transmission that a significant noise
burst occurs over many consecutive bits, corrupting numerous binary digits in the
transmission, and yields the following outcome:

111100 − − − − − − − −1100001111,

where some of the original data is completely irretrievable.

Q
Why is it that even with repetition coding, our data transmission
can still be severely affected? What could be done to make it even
more robust?

Interleaving is an approach where binary data is reordered such that the
correlation existing between the individual bits within a specific sequence is
significantly reduced. Since errors usually occur across a consecutive series of
bits, interleaving a bit sequence prior to transmission and deinterleaving the
intercepted sequence at the receiver allows for the dispersion of bit errors across the
entire sequence, thus minimizing its impact on the transmitted message. A simple
interleaver will mix up the repeated bits to make the redundancy in the data even
more robust to error. It reorders the duplicated bits among each other to ensure that
at least one redundant copy of each will arrive even if a series of bits are lost. For

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 246 — #16

246 Frame Synchronization and Channel Coding

example, if we use an interleaving step of 4, it means we reorder the vector by index
[1, 5, 9, ..., 2, 6, 10, ...]. As a result, running “111100001111111100001111”
through such an interleaver will yield the following output:

101101101101101101101101.

The interleaving step can be any of the factoring numbers of the data length.
However, different mixing algorithms will change the effectiveness of the
interleaver.

i
The reshape function in MATLAB can be used to realize the
interleaving.

Once we have implemented the interleaver, let us combine the repetition coder
and the interleaver into a single FEC subsystem. Although the simple interleaving
technique introduced above is sufficient for our implementation, there are various
other forms of interleaving, that we will investigate in the next two sections.

8.4.2.1 Block Interleaving
The first approach to interleaving is to employ a block interleaver, as shown in
Figure 8.10. Block interleaving is one method for reordering a bit sequence, where
N × M bits fill an N column by M row matrix on a column basis, and then each
resulting row is concatenated with each other in serial and outputted from the
interleave block. At the transmitter side, the block interleaver is loaded column by
column with N codewords, each of length M bits. These N codewords are then
transmitted row by row until the interleaver is emptied. Then the interleaver is
loaded again and the cycle repeats. The main drawback of block interleavers is the
delay introduced with each column-by-column fill of the interleaver [12].

8.4.2.2 Convolutional Interleaving
Another approach to interleaving is to employ a convolutional interleaver [13], as
shown in Figure 8.11. At the transmitter, the bit sequence is shifted into a bank of
N registers, each possessing an increasing amount of buffer memory. The bits in
the bank of registers are then recombined via a commutator and transmitted across
the channel. At the receiver, the reverse process is performed in order to recover
the original sequence. Compared with block interleavers, convolutional interleavers
reduce memory requirements by about one-half [14]. However, the delay problem
associated with the initial fill still exists.

8.4.3 Encoding
Besides interleaving multiple copies of data, we can instead encode the data
into alternative sequences that introduce redundancy. A unique property of many
encoding schemes is the ability to introduce redundancy without increases in data
size without integer order. For example, in the case of repetitive coding that
duplicates every bit with R = 2, this number is usually inverted in FEC discussions
as a rate of 1

2 , a convolutional encoding scheme can introduce rates closer to 1.
This makes them more efficient and provides more effective throughput. In this

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 247 — #17

8.4 Channel Coding 247

out

out

out

out

in inin in

M

N

Figure 8.10 Schematic of a block interleaver.

Figure 8.11 Schematic of a convolutional interleaver. (From [13].)

section we will discuss several common channel encoding schemes, with some basic
information on how they function. In general, channel encoding is a mathematically
complex area in information theory. Instead of diving into the theoretical designs
of these scheme, we will compare their relative performance as well as some
implementation details and drawbacks.

Similar to interleavers, encoders can typically be categorized into two basic
types: block encoders and convolutional type encoders. Block encoders work on
specific predefined groups or blocks of bits. Alternatively, convolutional encoders
work on streams of data of indeterminate size but can be made to work on blocks
of data if necessary.

The first coding scheme we will discuss is Reed-Solomon (RS) codes, which are
linear-block-code developed in the 1960s. RS codes work by inserting symbols into
a given frame or block of data, which are then used to correct symbol errors that
occur. If we define M as the length of a given frame, sometimes called the message
length, and define E as the encoded frame then we can correct up to �E−M

2 � symbols.
RS are interesting since they can even provide information on how many errors were
found and corrected as part of their implementation. However, RS encoders can
be specific on what inputs they can process, which is why we have so far only

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 248 — #18

248 Frame Synchronization and Channel Coding

considered symbols not bits. The symbols you can encode with a RS can be integers
between [0, 2N − 1], where N is the exponent of our finite Galois field GF(2N). A
Galois field is a field, a set which certain mathematical operations are defined, which
has a finite number of objects. Due to this definition there will be some restrictions
on E and N, but they are beyond the scope of this book. This set is how RS takes
advantage of during decoding, which will reduce solutions spaces based on received
data and selection of M, E and N.

With regard to implementation, it can be argued that RS codes are useful in
bursty error situations where a swath of symbols close to each other are corrupted.
When considering transmitted bits, each symbol will represent B bits, and since RS
operate on symbols it can correct B bits of data in a group. Therefore, a bursty
error corrupting B + 1 bits in a group can corrupt at most 2 symbols.

A similar code to RS is Bose Chaudhuri Hocquenghem (BCH) codes, which also
relies on the concept of Galois fields. BCH codes are better at correcting errors that
do not occur in groups, unlike RS. To reduce this probability of grouped data it can
be useful to shuffle or scramble bits before and after transmission to reduce error
locality, which is better for BCH when errors are sparse. However, this is a poor
thing to do with RS to some extent. BCH codes can also correct more errors for the
same amount of parity bits, but in general BCH codes require more computational
power to decode than RS.

The final popular block code to consider are low-density parity check (LDPC)
codes, which have even begun to replace the dominant Turbo codes, which we will
consider next. LDPC codes have been around since the 1960s, but due to their
complexity have only been considered for hardware implementation in the last
decade. Developed by Robert Gallager, LDPC codes can approach the theoretical
Shannon limit [15] for certain redundancy rates unlike RS and BCH. However, the
computation required to use LDPC is considerable higher. Nonetheless, they exist
in some modes of 802.11n and DVB-S2 standards.

When utilizing LDPC the implementor must select a parity matrix which the
encoder and decoder will utilize, and the characteristics of this matrix will determine
performance of the code. Strong performing codes will typically come in large block
lengths like 648, 1296, and 1944 IEEE 802.11n/ac. This means that, you need to
encode a significant amount of bits compared to the other codes to utilize LPDC
efficiently in many cases.

Besides block codes, an alternative or stream-based coding implementation
is convolutional codes. These codes convolutionally encode data, meaning
redundancy is introduced by the succession of information passed through the
encoder/decoder, essentially creating dependency on consecutive symbols or bits.
A convolutional encoder is best understood by an example. Let us consider an
encoding scheme with R = 2 with a recursive encoder, with three registers.
Figure 8.12 provides a possible structure for such an encoder, which outputs two
bits for every bit pushed into the system. You will notice that the current output is at
least dependent on the last three inputs, similar to the memory of an FIR or IIR filter.

Figure 8.12 can be interpreted as two equations, provided in (8.16).

yn,1 = (xn + xn−2 + xn−3) + xn−1 + xn−3
yn,2 = xn−2 + xn−3

(8.16)

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 249 — #19

8.4 Channel Coding 249

−− −

Figure 8.12 Example R = 2 convolutional encoder utilized in 3GPP LTE.

The decoder itself will utilize this dependency in the data to help remove errors
that can occur. The most popular algorithm to accomplish this task is called the
Viterbi algorithm [15], sometimes called a trellis algorithm or decoder. The concept
of the Viterbi/trellis decoder is to trace back through previous decisions made and
utilize them to best determine the most likely current bit or sample. This is what
naturally leads to Figure 8.13 and hence the name trellis. In Figure 8.13, the left-most
position represents the most recently receiver symbols or bits. The lines connecting
the dots represent possible previous symbols, where the thick gray line represents
the more probable symbols based on previous decisions made. The depth of this
trellis is called the traceback length, and the deeper this trace becomes the better
the recovery of bits will be. However, this process tends to plateau at a traceback
around 34 symbols, and the deeper the traceback the increased time required to
decode a specific symbol. This traceback limitation can be seen in Figure 8.14,
where we examine a variety of traceback lengths across EbN0 for a 16-QAM
signal.

In the early 1990s turbo codes were introduced, which are part of the
convolutional code family [16]. Turbo codes have been heavily utilized by both
third and fourth generation cellular standards as their primary FEC scheme. Like
LDPC, turbo code can operate near the Shannon limit for performance but are
less computationally intensive than LDPC with less correction performance. Turbo
inherently utilizes the Viterbi algorithm internally for decoding with some additional
interleaving, as well as using a set of decoders, and performs likelihood estimation
between them. This is an extreme simplification of how turbo decoders actually
work, and analysis of their operation is a very difficult topic area. However, they
are a very powerful coding technique as long as you have the resources on your
hardware to implement the decoder at the necessary speeds.

When utilizing FEC one should always consider the trade-offs with regard to
computational complexity, performance required, and coding overhead allowed
for the link. This is important since heavy coding may not be required in a clear
transmission channel where additional throughput could be gained at a better
coding rate closer to one. Therefore, modern standards like LTE and IEEE 802.11,
will utilize adaptive modulation and coding schemes (MCSs), which reduce coding
redundancy and increase modulation order, providing much higher throughput
across a link. IEEE 802.11 itself has 32 MCS states or indexes, for which we have
provided the first four entries in Table 8.2, for perspective on how code rates and
modulation are used to trade off redundancy and data rate.

MATLAB itself provides all of the coding techniques we have described so far.
However, some of the advanced codes are more complex to utilize, especially in

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 250 — #20

250 Frame Synchronization and Channel Coding

Figure 8.13 Viterbi/trellis decoder lattice diagram.

2 4 6 8 10 12 14

EbN0

10−4

10−3

10−2

10−1

10 0

BE
R

TBL: 5
TBL: 15
TBL: 20
TBL: 30
TBL: 35
TBL: 40

Figure 8.14 BER results of Viterbi decoder for 16-QAM with increasing traceback length.

different modes. For example, due to how turbo decoders work they require channel
estimates to correctly determine the noise variance of the channel. Therefore, in
a give receiver design this information must be provided for effective decoding.
LDPC, as we have discussed before, requires parity matrices in their design. By
default MATLAB provides the parity matrix for DVB, which requires 32,000 bits
per block, which is rather unreasonable for many applications. Designing a smaller
matrix can be complex, and this is rather outside the scope of MATLAB’s provided

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 251 — #21

8.5 Chapter Summary 251

Table 8.2 Shortended Modulation and Coding Schemes List for
IEEE 802.11∗
MCS Index Streams Modulation R Data Rate (Mbits/s)
0 1 BPSK 2 6.5
1 1 QPSK 2 13
2 1 16-QAM 4/3 19.5
3 1 16-QAM 2 26

∗ From [1]

tools. Nonetheless, RS, BCH, and general Viterbi decoding are extremely easy to
utilize out of the box and are simple to parameterize.

8.4.4 BER Calculator
After examing several techniques for protecting the reliability of a data transmission
subject to interference and noise, we now need an approach to measure how well
these techniques perform quantitatively. Referring back to Chapter 4, we saw that
BER is a commonly used metric for the evaluation and comparison of digital
communication systems. One straightforward way of calculating the BER is to
count the number of received bits of information and then determine which ones
are received in error. In other words, the ratio of bit errors to the total number of
bits received can provide us with an approximate BER calculation. Note that the
more bits that are received, the more accurate this link level metric becomes.

8.5 Chapter Summary

This chapter examined the concept of frame synchronization through correlation
techniques and covered some common channel coding techniques through
redundancy insertion. Given the last piece of the receiver with regard to
synchronization provided here, a full receiver can be implemented for frame
recovery. Possible arrangement for the receiver algorithms as discussed throughout
the book so far have been examined, focusing on requirements from the design.
Once full synchronization was covered, we moved on to techniques for making our
links more robust through encoding implementations, including a discussion on
their drawbacks and advantages with regard to implementation and use.

References

[1] IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems Local and Metropolitan Area Networks–Specific Requirements–
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications–Amendment 4: Enhancementsfor Very High Throughput for Operation
in Bands below 6 GHz, IEEE Std 802.11ac-2013, (Amendment to IEEE Std 802.11-
2012, as amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012, and IEEE Std
802.11ad-2012), December 2013, pp. 1–425.

[2] Barke, R. H., “Group Synchronizing of Binary Digital Sequences,” in Communication
Theory, London: Butterworth, 1953, pp. 273–287.

[3] The Math Works Inc., xcorr [online], 2017 https://www.mathworks.com/help/signal/ref/
xcorr.html.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch08_new” — 2018/3/26 — 11:43 — page 252 — #22

252 Frame Synchronization and Channel Coding

[4] Kay, S. M., Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.
Upper Saddle River, NJ: Prentice Hall, 1998.

[5] Poor, H. V., An Introduction to Signal Detection and Estimation, New York: Springer,
2010.

[6] Zhao, Q., and A. Swami, “Spectrum Sensing and Identification” in Cognitive Radio
Communications and Networks: Principles and Practice, Burlington, MA: Academic Press,
2009.

[7] Kay, S. M., “Statistical Decision Theory I,” in Fundamentals of Statistical Signal Processing,
Volume II: Detection Theory, Upper Saddle River, NJ: Prentice Hall, 1998.

[8] Shanmugan, K. S., and A. M. Breipohl, “Signal Detection,” in Random Signals: Detection,
Estimation and Data Analysis, Wiley, 1988.

[9] Finger, A., Pseudo Random Signal Processing: Theory and Application, Hoboken, NJ:
Wiley, 2013.

[10] IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems–Local and Metropolitan Area Networks–Specific Requirements-
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band,
IEEE Std 802.11ad-2012 (amendment to IEEEStd 802.11-2012, as amended by IEEE Std
802.11ae-2012 and IEEE Std 802.11aa-2012), December 2012,pp. 1-628.

[11] Harris, F. J., and M. Rice, “Multirate Digital Filters for Symbol Timing Synchronization
in Software Defined Radios,” IEEE Journal on Select Areas in Communications, Vol. 19,
October 2001, pp. 2346–2357.

[12] Jacobsmeyer, J. M., Introduction to Error-Control Coding, www.pericle.com/papers/
Error_Control_Tutorial.pdf.

[13] Forney, G. D., “Burst-Correcting Codes for the Classic Bursty Channel, in IEEE
Transactions on Communications, COM-19, 1971, pp. 772–781, 1971.

[14] Sklar, B., Digital Communications Fundamentals and Applications, Upper Saddle River,
NJ: Prentice Hall, 1988.

[15] Anderson, J., and S. Mohan, Source and Channel Coding: An Algorithmic Approach,
New York: Springer, 1991.

[16] Berrou, C., Error-Correction Coding Method with at Least Two Systematic Convolutional
Codingsin Parallel, Corresponding Iterative Decoding Method, Decoding Module and
Decoder, US Patent No. 5,446,747, 1995.

Analog Devices perpetual eBook license – Artech House copyrighted material.

	Software-Defined Radio
for Engineers
	Contents
	CHAPTER 8 Frame Synchronization and
Channel Coding
	8.1 O Frame, Where Art Thou?
	8.2 Frame Synchronization
	8.2.1 Signal Detection
	8.2.2 Alternative Sequences

	8.3 Putting the Pieces Together
	8.3.1 Full Recovery with Pluto SDR

	8.4 Channel Coding
	8.4.1 Repetition Coding
	8.4.2 Interleaving
	8.4.3 Encoding
	8.4.4 BER Calculator

	8.5 Chapter Summary
	References

