
Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page i — #1

Software-Defined Radio
for Engineers

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page ii — #2

For a listing of recent titles in the Artech House
Mobile Communications, turn to the back of this book.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-457-1

Cover design by John Gomes

© 2018 Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski

All rights reserved. Printed and bound in the United States of America. No part
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Artech House cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page v — #5

Dedication

To my wife Lauren
—Travis Collins

To my wonderful children, Matthew, Lauren, and Isaac, and my patient wife,
Michelle—sorry I have been hiding in the basement working on this book. To
all my fantastic colleagues at Analog Devices: Dave, Michael, Lars-Peter, Andrei,
Mihai, Travis, Wyatt and many more, without whom Pluto SDR and IIO would
not exist.
—Robin Getz

To my lovely son Aidi, my husband Di, and my parents Lingzhen and Xuexun
—Di Pu

To my wife Jen
—Alexander Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page vi — #6

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 191 — #1

C H A P T E R 6

Timing Synchronization

In the next series of chapters we will be introducing receiver synchronization and
signal recovery concepts, which are necessary for wireless communications between
multiple devices. In this chapter will introduce the concept of timing recovery and
approach this topic first for two primary reasons. First the downstream recovery
methods used in this book for coherent modulations are sensitive to timing offset and
must be compensated for first. The second reason is for prototyping with the Pluto
SDR. We will be relying heavily on the loopback features of the radio, which will
allow for control of nonidealities to some degree. However, since signals must travel
a distance between the transmitting DAC and receiving ADC there will be a fixed
but random time offset between the chains. This is where timing recovery is used to
correct for this offset. With that said, a receiver can be designed in many different
ways but the specific ordering of chapters here relates to the successive application
of algorithms to be used: First timing recovery, then carrier phase correction, and
finally frame synchronization. Once these three major pieces are handled we will
then move on to more advanced topics including equalization and coding. Blocks
in Figure 6.1 will be highlighted at the start of each relevant chapter to outline the
progress of the overall receiver design and show how they fit with one another. In
this chapter, matched filtering and timing recovery are highlighted.

In this chapter, the concept of timing recovery will be broken down into five
primary sections. A brief overview of transmit filters will be first discussed, which is
necessary to understand how we algorithmically perform timing recovery. Then we
will move on to a simple model to demonstrate timing error, which will include Pluto
SDR as well for realistic data. Finally, several recovery techniques will be discussed
that adaptively handle correction of timing problems. Debugging methodology will
be provided to understand how to tune these techniques for your own datasets. In
regard to the algorithms discussed, an analytic analysis or derivations will not be
provided explicitly. However, these algorithms will instead be treated as tools used
to build a receiver component by component, where only a top-level understanding
is necessary. Alternative sources will be referenced for deeper analysis, but in this
work we will focus on implementations and specifically implementations with SDRs.
Our goal here is to motivate the construction of a receiver initially from existing
works, and readers can explore further literature if they wish to extract more
performance from their implementation.

6.1 Matched Filtering

In digital communications theory when matched filtering is discussed it is typically
called pulse-shaping at the transmitter and matched filtering at the receiver for

191

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 192 — #2

192 Timing Synchronization

Figure 6.1 Receiver block diagram.

reference. The goal of these techniques is threefold: first, to make the signal suitable
to be transmitted through the communication channel by limiting its effective
bandwidth, second, increase the SNR of the received waveform, and third, to
reduce intersymbol interference (ISI) from multipath channels and nonlinearities.
Pulse-shaping was discussed in Section 2.7.5, but we will revisit the topic here from
a slightly different approach that focuses on more practical aspects of these filters.

By filtering a symbol, sharp phase and frequency transitions are reduced
resulting in a more compact and spectrally efficient signal. Figure 6.2 provides
a simple example of a DBPSK signal’s frequency representation before and after
filtering with a transmit filter. As we can see the effective bandwidth of the signal
is reduced, primarily from the upsampling/interpolation that is applied at the
transmitter. Since time and frequency are inversely related we get this reduction
in bandwidth. These filter stage implementations will typically upsample and
downsample signals, which reduce their effective bandwidth. However, upsampling
inherently increases the so-called surface area of a symbol, making it easier to
determine, since we will have multiple copies of it at the receiver. Therefore, we
are trading recoverability for bandwidth since data will be produced at the same
rate from the transmitter but will not utilize the entire bandwidth available. These
operations of rate transitions (upsampling/downsampling) are performed during
the matched filtering stages since it is efficient to utilize a single filter to perform
both operations.

The filter used to generate this figure was a square-root raised cosine (SRRC)
filter, which is a common filter used in communication systems. We provided the
raised cosine (RC) filter in Section 2.7.5, but the more common SRRC has the
impulse response:

h(t) =

1√
Ts

(
1 − β + 4

β

π

)
, t = 0

β√
2Ts

[(
1 + 2

π

)
sin

(
π

4β

)
+
(

1 − 2
π

)
cos

(
π

4β

)]
, t = ± Ts

4β

1√
Ts

sin
[
π

t
Ts

(1 − β)

]
+ 4β

t
Ts

cos
[
π

t
Ts

(1 + β)

]

π
t

Ts

[
1 −

(
4β

t
Ts

)2
] , otherwise

(6.1)

where Ts is the symbol period and β ∈ [0, 1
]

is the roll-off factor. In practice these
filters will be arranged in two ways as outlined in Figure 6.3. First we can place
a single RC filter at the transmitter or place a SRRC at both the transmitter and
receiver. Both options produce Nyquist filter arrangements of signals to reduce or
eliminate ISI. Details on how to select β and Ts will be discussed later in Section 8.2.
However, we examine β through use of an eye diagram in Figure 6.4, and we can
easily see the time domain effects for very different roll-offs of β = [0.3, 0.99]. For

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 193 — #3

6.1 Matched Filtering 193

Figure 6.2 Frequency spectrum of PSK signal before and after pulse-shaping filter.

Figure 6.3 Arrangements of transmit filters with respect to the transmitter and receiver nodes for
raised cosine and root-raised cosine filters.

Figure 6.4 Eye diagrams of in-phase portion of QPSK signal after being passed through SRRC filters
with different β values. (a) β = 0.3, and (b) β = 0.99.

these results the signal was passed through a SRRC filter at the transmitter, AWGN
channel with an SNR of 27 dB, and SRRC filter at the receiver. A high SNR was
used to keep the eyes open and remove noise as the limiting factor for eventual
decisions. At the decisions times 200 and 400 the symbols are well defined in both
cases but with β = 0.99 the transitions are less noisy. However, with a β = 0.99 the
frequency domain outer bands contain more energy as seen in Figure 2.52, which
may be undesirable.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 194 — #4

194 Timing Synchronization

Alternatively, we can examine the impulse response with respect to β in
Figure 6.5, which compares the RC and SRRC responses. You will notice that unlike
the RC filter, the impulse response is not zero at the intervals of Ts. However, the
composite response of the SRRC filters at the transmitter and receiver will have
zeros at intervals of Ts like the RC filter. The SRRC is used since it is a Nyquist type
filter, which produces zero ISI when sampled correctly [1] as discussed in Chapter 2.
We can demonstrate the effect of ISI by introducing a simple nonlinearity into the
channel and consult the resulting eye diagrams that were introduced in Section 2.4.1.
Nonlinearities cause amplitude and phase distortions, which can happen when we
clip or operate at the limits of our transmit amplifiers. For more details on the model
used, consult [2], but other models exists such as in [3]. In Figure 6.6 we observe the
effects of ISI as the eye becomes compressed and correct sampling becomes difficult
to determine. We will revisit ISI effects again when equalization is discussed in
Chapter 9.

As mentioned previously, rate conversion will typically occur in these transmit
or receive filters. Therefore, a polyphase filter can be used where the taps of the
SRRC filter are used within the individual arms of the polyphase filter. This is
a very efficient implementation since the taps will be applied at the lower rates,

Figure 6.5 Impulse response comparison between raised-cosine and square-root raised-cosine
filters. (a) RC impulse response, and (b) SRRC impulse response.

Figure 6.6 Eye diagrams of QPSK signal affected by nonlinearity causing ISI, which is reduced by
SRRC matched filtering. (a) Original signal at transmitter, (b) passed through nonlinearity without
pulse-shaping, and (c) SRRC filters used at transmitter and receiver with nonlinearity.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 195 — #5

6.2 Timing Error 195

before interpolation or after decimation within the polyphase design, reducing the
number of multiplies required.

The final aspect of the matched filters we want to discuss and provide insight
into is SNR maximization. This argument logically comes out of the concept of
correlation. Since the pulsed-shaped/filtered signal is correlated with the pulse-
shaped filter and not the noise, matched filtering will have the effect of SNR
maximizing the signal, creating peaks at central positions of receive pulses. We
demonstrate this effect in Figure 6.7, where we present data transmitted with and
without pulse-shaping under AWGN. In the middle plot of Figure 6.7(b) we observe
a signal closely related to the originally transmitted sequence, even under high noise.
However, without pulse-shaping even visually the evaluation of the transmitted
pulse becomes difficult. We even observe demodulation errors in this third plot of
Figure 6.7(c) without any timing offset introduced.

6.2 Timing Error

Timing error between transmitter and receiver is a simple concept to understand, but
can be difficult to visualize and debug in a communication system. In the most basic
sense the purpose of symbol timing synchronization is to align the clocking signals
or sampling instances of two disjointed communicating devices. In Figure 6.8(a) we
consider a simple example where we overlap the clocking signals of the transmit and
receiver nodes and the input signal to be sampled. The sampling occurs at the rising
clock edges, and the optimal timing is the transmitter’s clock. A small delay τ , less
than a single clock cycle, is introduced at the receiver. This is known as a fractional
delay since it is less than a sample. Due to this delay the signal is sampled at the
wrong positions and the eventual demodulated signal is incorrect. Figure 6.8(b)
shows a comparison of the correct and receiver’s demodulated symbols with an
obvious error occurring at the second transition.

Mathematically we can model this offset received signal r as

r(t) =
∑

n

x(n)h(t − τ(t) − nTs) + v(t), (6.2)

where x is the transmitted symbol, h is the pulse shape of the transmit filter, τ is
the fractional offset, Ts is the sampling period, n is the sample index, and v is the
additive channel noise. After reception the r is passed through the receive matched
filter and the relation of the source symbols will be

y(t) =
∑

n

x(n)hA(t − τ(t) − nTs) + vh(t), (6.3)

where hA = h(t)∗h̄(−t) is the autocorrelation of the transmit filter and its conjugate
used on the source data x, vh is the shaped noise, and y is the output symbols. This
demonstrated our notion of matched filtering and correlation. You will notice that
the delay τ is indexed as well, since this delay will change since the oscillator at the
transmitter and receiver will not have identical frequencies. Therefore, over time this
timing difference will drift. However, changes in τ from symbol to symbol should
be small relative to the sample rate of the device in a practical RF communication
system.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 196 — #6

196 Timing Synchronization

Figure 6.7 Comparison of pulse-shaped and nonpulse-shaped received signals after an AWGN
channel. An obvious advantage is visible in the receiver signal when using matched filtering. (a)
Transmitted SRRC filtered signal, (b) received SRRC filtered signal, and (c) received signal without
SRRC filtering at the receiver.

As discussed in Section 6.1 we will interpolate the signal to be transmitted
at the transmit filter stage before actually sending the signal. Although this
reduces the throughput of our system it provides the receiver more data to
perform decisions without having to oversample the signal itself. In MATLAB we
will use comm.RaisedCosineTransmitFilter, which first uses a polyphase
interpolator to upsample the signal and applies the necessary RC or SRRC taps.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 197 — #7

6.2 Timing Error 197

Figure 6.8 Comparison of different clock timings associated with a analog waveform and the
resulting sampled and demodulated output. (a) Transmitter and receiver clocking signals with analog
waveform to be sampled, and (b) demodulator outputs of receiver and transmitter according to their
sampling times.

The upsampling factor N, also known as sample per symbol, will be chosen based
on the recovery algorithms used and the desired data rate of the system. In general
increasing N can improve the recovery process at the receiver to a point, but again
this will reduce our useful bandwidth, forcing hardware to run at higher rates to
achieve the same throughput.

Next if we consider timing error from the perspective of the constellation
diagram we will observe clustering or scattering of the symbols. In Figure 6.9(a),
we provide a simulated timing offsets (τ) of 0.2N and 0.5N, where N is the samples
per symbol. An offset of 0.5N is the worst case because we are exactly between two
symbols. In Figure 6.9(b) we provide a QPSK single transmitted through loopback
of a single Pluto SDR. We can clearly observe a similar clustering and some rotation
from the transmit and receive chains lack of phase synchronization. This clustering
happens because the receiver is actually sampling the transitions between samples.
For example, if symbols y(n) and y(n + 1) are [1 + i] and [−1 − i], respectively.
Then if they are sampled at time n + 0.5, the resulting point will be close to zero.

Q
In the case of the Pluto SDR constellation plot in Figure 6.10(b)
why does the constellation appear rotated? It may be helpful to
refer to Chapter 5.

At the receiver the unknown delay τ must be estimated to provide correct
demodulation downstream. A crude but simple way we can illustrate a correction
for the offset is to fractionally resample the signal with use of a polyphase filter.
We will utilize the dsp.VariableFractionalDelay in the script below, which
implements a polyphase filter for a given delay provided. We can use this with Pluto
SDR to demonstrate different delays we should provide to correct for the offset. At
the correct value of τ̂ , where τ̂ + τ = kTs and k = Z≥0, the constellation will have
four distinct points.

In Figure 6.10, four example delays are used as estimates to correct for the
timing missmatch during loopback on a single Pluto SDR. These represent four
instances from the above MATLAB script.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 198 — #8

198 Timing Synchronization

Figure 6.9 Comparison of simulation versus hardware timing offset. (a) Simulation-only example
of several timing offsets with a QPSK received signal, and (b) hardware example created with a QPSK
signal transmitted through Pluto SDR using a loopback cable.

Code 6.1 Loopback Pluto Example: plutoLoopback.m

1 % User tunable (samplesPerSymbol>=decimation)
2 samplesPerSymbol = 12; decimation = 4;
3 % Set up radio
4 tx = sdrtx(’Pluto’,’Gain’,-20);
5 rx = sdrrx(’Pluto’,’SamplesPerFrame’,1e6,’OutputDataType’,’double’);
6 % Create binary data
7 data = randi([0 1],2ˆ15,1);
8 % Create a QPSK modulator System object and modulate data
9 qpskMod = comm.QPSKModulator(’BitInput’,true); modData = qpskMod(data);
10 % Set up filters
11 rctFilt = comm.RaisedCosineTransmitFilter(...
12 ’OutputSamplesPerSymbol’, samplesPerSymbol);
13 rcrFilt = comm.RaisedCosineReceiveFilter(...
14 ’InputSamplesPerSymbol’, samplesPerSymbol, ...
15 ’DecimationFactor’, decimation);
16 % Pass data through radio
17 tx.transmitRepeat(rctFilt(modData)); data = rcrFilt(rx());
18 % Set up visualization and delay objects
19 VFD = dsp.VariableFractionalDelay; cd = comm.ConstellationDiagram;
20 % Process received data for timing offset
21 remainingSPS = samplesPerSymbol/decimation;
22 % Grab end of data where AGC has converged
23 data = data(end-remainingSPS*1000+1:end);
24 for index = 0:300
25 % Delay signal
26 tau_hat = index/50;delayedsig = VFD(data, tau_hat);
27 % Linear interpolation
28 o = sum(reshape(delayedsig,remainingSPS,...
29 length(delayedsig)/remainingSPS).’,2)./remainingSPS;
30 % Visualize constellation
31 cd(o); pause(0.1);
32 end

6.3 Symbol Timing Compensation

There are many ways to perform correction for symbol timing mismatches between
transmitters and receivers. However, in this chapter we will examine three digital

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 199 — #9

6.3 Symbol Timing Compensation 199

Figure 6.10 Resulting constellations of Pluto SDR loopback data after different fractional delays τ̂ .
(a) τ̂ = 0.1, (b) τ̂ = 0.5, (c) τ̂ = 1, and (d) τ̂ = 1.5.

Q

Using the above MATLAB code verify the timing offset observed.
Is this a fixed offset? Change the frequency of both transmitter
and receiver to 900 MHz, then explain the observation. Change
she sampling rate of both the transmitter and receiver to 2 MHz,
then explain your observation.

PLL strategies that will also share the same methodology as in Chapter 7 for our
carrier recovery implementations. This type of timing recovery was chosen because it
can be integrated with our future recovery solutions, can be robust, and is not overly
complex algorithmicly. A basic PLL structure will be introduced first, which will be
used to derive our feedback timing correction design. This will frame the discussion
around Figure 6.11, where we will replace the individual blocks leading to our
eventual design in Figure 6.12. During this process we will provide an overview
conceptually how timing is synchronized and then move into each individual block,
explaining their design. The specific detectors discussed will be Zero-Crossing,
Müller/Mueller, and Gardner. However, more can be found in the literature from
Mengali [4] and Oerder [5] among others. Rice [6] provides a more indepth analysis

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 200 — #10

200 Timing Synchronization

Figure 6.11 Basic PLL structure with four main component blocks.

Figure 6.12 Basic structure of PLL for timing recovery for both decision direction and blind timing
recovery. There are five major blocks that measure, control, and correct for the timing error in the
received signal y.

of these techniques and covers purely analog designs as well as hybrid analog and
digital designs. Here we will focus on MATLAB implementations and algorithmic
structural features.

6.3.1 Phase-Locked Loops
The timing correction we will be using is a feedback or closed-loop method based
on PLL theory. The structure of this algorithm is provided in Figure 6.11 derived
from [6, Chapter 7], which essentially locks when an error signal is driven to zero.
There are many different designs for PLLs and implementation strategies, but here
we will outline four basic components that we will interchange here for timing
correction and in the following chapter on carrier recovery. This all-digital PLL-
based algorithm shown here works by first measuring some offset, such as timing
error or phase error, of the received sample in the error detector (ED), which we call
the error signal e. The ED is designed based on the structure of the desired receive
constellation/symbols or the nature of the sequence itself. Next, the loop filter helps
govern the dynamics of the overall PLL. The loop filter can determine operational
ranges, lock time, and dampness/responsiveness of the PLL. Next, we have the
correction generator. The correction generator is responsible for generation of the
correction signal for the input, which again will be fed back into the system. Finally
is the corrector itself, which modifies the input signal based on input from the
correction generator. Working together, these blocks should eventually minimize e
over time and contually adapt to future changes from the environment or the system
itself.

The correction generator, error detector, and corrector are specific to the
purpose of the PLL structure, such as timing recovery or carrier recovery. However,

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 201 — #11

6.3 Symbol Timing Compensation 201

the loop filter can be shared among the designs with modification to its numerical
configuration. The loop filter in all PLL designs is the most challenging aspect,
but provides the most control over the adaption of the system. Here we will use a
proportional-plus-integrator (PI) filter as our loop filter, which maintains a simple
transfer function:

F(s) = g1 + g2

s
, (6.4)

where g1 and g2 are selectable gains. PI filters produce second-order PLLs and only
consist of a single pole in their transfer function; therefore, they are relatively easy
to analyze. Since we are dealing with discrete time signals a z-domain representation
is preferable:

F(z) = G1 + G2

1 − z−1 , (6.5)

where G1 �= g1 and G2 �= g2.1 The fractional portion of (6.5) can be represented
nicely by a biquad filter.2 For the calculation of the gain values (G1, G2) utilize the
following equations based on a preferred damping factor ζ and loop bandwidth
BLoop:

θ = BLoop

M(ζ + 0.25/ζ)
� = 1 + 2ζθ + θ2 (6.6)

G1 = 4ζθ/�

M
G2 = 4θ2/�

M
(6.7)

where M is the samples per symbol associated with the input signal. Note that BLoop
is a normalized frequency and can range BLoop ∈ [0, 1]. If you are interested in how
these are derived, see [6, Appendix C]. For the selection of ζ :

ζ =

< 1, Underdamp

= 1, Critically Damped

> 1, Overdamped,

(6.8)

which will determine the responsiveness and stability of the PLL.

6.3.2 Feedback Timing Correction
The timing synchronization PLL used in all three algorithms consists of four main
blocks: interpolator, timing ED (TED), loop filter, and an interpolator controller.
Their interaction and flow is presented in Figure 6.14. These operations first estimate
an unknown offset error, scale the error proportionally, and apply an update for
future symbols to be corrected. To provide necessary perspective on the timing error,
let us considered the eye diagram presented in Figure 6.13. This eye diagram has
been upsampled by twenty times so we can examine the transitions more closely,
which we notice are smooth unlike Figure 6.6. In the optimal case, we chose to
sample our input signal at the dark gray instances at the widest openings of the
eye. However, there will be an unknown fractional delay τ that shifts this sampling
period. This shifted sampling position is presented by the light gray selections.
To help work around this issue, our receive signal is typically not decimated fully,

1. A simple way to translate between (6.4) and (6.5) is to utilize a bilinear transform.
2. See dsp.BiquadFilter for a simple realization of a biquad filter.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 202 — #12

202 Timing Synchronization

Figure 6.13 Eye diagram of received signal marking positions where received samples may exist.
This figure is highly oversampled to show many positions, but a received sample could lie anywhere
on the eye.

providing the receiver with multiple samples per symbol (this is not always the case).
Therefore, if we are straddling the optimal sampling position instead as in the black
markers, we can simply interpolate across these points to get our desired period.
This interpolation has the effect of causing a fractional delay to our sampling,
essentially shifting to a new position in our eye diagram. Since τ is unknown we
must weight this interpolation correctly so we do not overshoot or undershoot the
desired correction. This is similar to the idea presented at the end of Section 6.2.
Finally, controlling the instances in time when an output is produced or sampled
from the input data is the function of the interpolator control block, which will be at
the symbol rate. This correction loop, when implemented properly, that will cause
the eye diagram to open for input signals with clock timing missmatches. However,
a constellation diagram may also be useful tool for evaluating timing correction as
presented in Figures 6.4 and 6.9.

We will initially discuss the specifics of the blocks in Figure 6.12 through the
perspective of the zero-crossing (ZC) method, since it is the most straightforward to
understand. Then we will provide extensions to the alternative methods. ZC, as the
name suggests, will produce an error signal e(n) of zero when one of the sampling
positions is at the zero intersection. ZC requires two samples per symbol or more,
resulting in the other sampling position occurring at or near the optimal position.
The TED for ZC [4] is evaluated as

e(n) =Re(y((n − 1/2)Ts + τ))[sgn{Re(y((n − 1)Ts + τ))} − sgn{Re(y(nTs + τ))}]
+ Im(y((n − 1/2)Ts + τ))[sgn{Im(y((n − 1)Ts + τ))}
− sgn{Im(y(nTs + τ))}], (6.9)

where Re and Im extract the real and imaginary components of a sample, and sgn
process the sign (−1 or 1) for the sample. In (6.9) it is important to note that these

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 203 — #13

6.3 Symbol Timing Compensation 203

indexes are with respect to samples, not symbols, and to be specifc y(nTs + τ) is
simply the latest output of the interpolator filter. Looking at (6.9) it first provides
a direction for the error with respect to the sgn operation, and the shift required to
compensate is determined by the midpoints. The in-phase and quadrature portions
operate independently, which is desirable.

Once the error is calculated it is passed to the loop filter, which we can entirely
borrow from Section 6.3.1. The same principles apply here, with a near identical
formulation for our equations we have provided in a slightly more compact form.

G1 = −4ζθ

GDN�
G2 = −4θ2

GDN�
(6.10)

Here BLoop is the normalized loop bandwidth, ζ is our damping factor, N is our
samples per symbol, and GD is our detector gain. The new variable GD provides
an additional step size scaling to our correction. Again the loop filter’s purpose is
to maintain stability of the correction rate. This filter can be implemented with a
simple linear equation:

y(t) = G1x(t) + G2
∑
n=0

y(n), (6.11)

or with a biquad filter.
The next block to consider is the Interpolation Controller, which is responsible

to providing the necessary signaling to the interpolator. With respect to our original
PLL structure in Figure 6.11 the interpolation controller takes the place of the
correction generator. Since the interpolator is responsible for fractionally delaying
the signal, this controller must provide this information and generally the starting
interpolant sample. By starting interpolant sample we are referring to the sample
on the left side of the straddle, as shown by the second black sampling position
from the left in Figure 6.13. The interpolation controller implemented here will
utilize a counter-based mechanism to effectively trigger at the appropriate symbol
positions. At these trigger positions the interpolator is signaled and updated, as well
as an output symbol is produced from the system.

The main idea behind a counter-based controller is to maintain a specific
triggering gap between updates to the interpolator, with an update period on
average equal to symbol rate N of the input stream. In Figure 6.14 a logical flowchart
of the interpolation controller is provided to better understand the complex flow.
If we consider the case when the timing is optimal and the output of the loop filter
g(n) is zero, we would want to produce a trigger every N samples. Therefore, it is
logical that the weighting or decrement for the counter would be

d(n) = g(n) + 1
N

. (6.12)

resulting in a maximum value of 1 under modulo-1 subtraction of the counter c(n),
where wraps of the modulus occur every N subtractions. This modulus counter
update is defined as

c(n + 1) = (c(n) − d(n)) mod 1. (6.13)

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 204 — #14

204 Timing Synchronization

Figure 6.14 Timing recovery triggering logic used to maintain accurate interpolation of input signal.

We determine a trigger condition, which is checked before the counter is
updated, based on when these modulus wraps occur. We can easily check for this
condition before the update, such as

Trigger =
{

c(n) < d(n) True

Otherwise False
. (6.14)

This triggering signal is the method used to define the start of a new symbol;
therefore, it can also be used to make sure we are estimating error over the correct
samples. When the trigger occurs we will update µ(n) our estimated gap between
the interpolant point and the optimal sampling position. This update is a function
of the new counter step d(n) and our current count c(n):

µ(k) = c(n)/d(n). (6.15)

This µ will be passed to our interpolator to update the delay it applies.
We want to avoid performing timing estimates that span over multiple symbols,

which would provide incorrect error signals and incorrect updates for our system.
We can avoid this by adding conditions into the TED block. We provide additional
structure to the TED block in Figure 6.15, along with additional logic to help
identify how we can effectively utilize our trigger signals. Based on this TED
structure, only when a trigger occurs the output error e can be nonzero. Looking
downstream in Figure 6.14 from the TED, since we are using a PI loop filter only
nonzero inputs can update the output, and as a result modify the period of the
triggering associated d. When the system enters steady state, where the PLL has
locked, the TED output can be nonzero every N samples.

The final piece of the timing recovery we have not yet discussed is the
interpolator itself. With respect to our original PLL structure in Figure 6.11 the
interpolator takes the place of the corrector. Interpolation here is simply a linear

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 205 — #15

6.3 Symbol Timing Compensation 205

Figure 6.15 An internal view of the timing error detector to outline the error and triggering control
signals relation to operations of other blocks in Figure 6.14.

combination of the current and past inputs y, which in essence can be thought of
as a filter. However, to create a FIR filter with any arbitrary delay τ ∈ [

0, ..., Ts
]

cannot be realized [7]. Realizations for ideal interpolation IIR filters do exist, but the
computation of their taps are impractical in real systems [8]. Therefore, we will use
an adaptive implementation of a FIR lowpass filter called a piecewise polynomial
filter (PPF) [6]. The PPF can only provide estimations of offsets to a polynomial
degree. Alternative implementations exists such as polyphase-filterbank designs, but
depending on the required resolution the necessary phases become large. However,
they can be straightforward to implement [9].

The PPF are useful since we can easily control the form of interpolations by
determining the order of the filter, which at most is equivalent to the order of
the polynomial used to estimate the underlying received signal. Here we will use
a second order, or quadratic, interpolation requiring a four-tap filter. The general
form of the interpolator’s output is given by

y(kTs + µ(k)Ts) =
2∑

n=1

h(n)y((k − n)Ts), (6.16)

where hk are the filter coefficients at time instance k determined by [10]:

h =[αµ(k)(µ(k) − 1),

− αµ(k)2 − (1 − α)µ(k) + 1,

− αµ(k)2 + (1 + α)µ(k),

αµ(k)(µ(k) − 1)],

(6.17)

where α = 0.5. µ(k) is related to the fractional delay, which is provided by the
interpolator control block, which relates the symbol period Ts to the estimated
offset. Therefore, we can estimate the true delay τ as

τ̂ ∼ µ(k)Ts. (6.18)

Without any offset (µ = 0), the interpolator acts as a two-sample delay or
single-symbol delay for the ZC implementation. We can extend the PPF to utilize

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 206 — #16

206 Timing Synchronization

more samples creating cubic and greater interpolations, but their implementations
become more complex. The underlying waveform should be considered when
determining the implementation of the interpolator as well as the required degrees
of freedom to accurately capture the required shape.

This design using four samples in a quadratic form can be considered irregular,
since the degree of taps does not reach three. However, odd length realizations (using
an odd number of samples) are not desirable since we are trying to find values in-
between the provided samples. We also do not want a two-sample implementation
due to the curvature of the eye in Figure 6.13.

In MATLAB we can realize this interpolator with a few lines of code that are
dependent on the input data y and the last output of the interpolator controller µ

provided in Code 6.2.

Code 6.2 Interpolator: interpFilter.m

1 % Define interpolator coefficients
2 alpha = 0.5;
3 InterpFilterCoeff = ...
4 [0, 0, 1, 0; % Constant
5 -alpha, 1+alpha, -(1-alpha), -alpha; % Linear
6 alpha, -alpha, -alpha, alpha]; % Quadratic
7 % Filter input data
8 ySeq = [y(i); InterpFilterState]; % Update delay line
9 % Produce filter output

10 filtOut = sum((InterpFilterCoeff * ySeq) .* [1; mu; muˆ2]);
11 InterpFilterState = ySeq(1:3); % Save filter input data

From this output filtOut we can drive our TED using the ZC equation (6.9)
to create error signals for the loop filter and interpolator controller. Based on
Figure 6.14 we know that this TED calculation will be based on a triggered signal
from the interpolator controller. Additional historical triggers are also checked
which prevent driving the output of the timing loop faster than the symbol rate.
This logic and TED measurement is captured in Code 6.3.

Additional logic is added to the TED from lines 13 to 22, which manage
symbol stuffing. Symbol stuffing is basically forcing an additional trigger from the
synchronizer routine. This is necessary when clock deviations force the interpolator
to minimally straddle the symbol of interest. To compensate we must insert an
additional output symbol. Note that at the output of the system, the sample rate
will equal the symbol rate, essentially downsampling our signal when N > 1.

Following the TED is the loop filter, which has already been discussed
in Section 6.3.1. Since the filter is quite simple it can be implemented in a
straightforward way without filter objects. However, using a biquad filter object
provides more compact code as shown Code 6.4.

Finally, we can evaluate the filtered error at the interpolator control block. In
steady state this block should produce a trigger every N input samples. This trigger
signal can be considered a valid output signal, which will concide with output
data from the whole algorithm. In the coding context here, when Trigger is true
at time n the output of the interpolation filter at input n + 1 should be processed

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 207 — #17

6.3 Symbol Timing Compensation 207

Code 6.3 ZC TED: zcTED.m

1 % ZC-TED calculation occurs on a strobe

2 if Trigger && all(˜TriggerHistory(2:end))

3 % Calculate the midsample point for odd or even samples per symbol

4 t1 = TEDBuffer(end/2 + 1 - rem(N,2));

5 t2 = TEDBuffer(end/2 + 1);

6 midSample = (t1+t2)/2;

7 e = real(midSample)*(sign(real(TEDBuffer(1)))-sign(real(filtOut))) ...

8 imag(midSample)*(sign(imag(TEDBuffer(1)))-sign(imag(filtOut)));

9 else

10 e = 0;

11 end

12 % Update TED buffer to manage symbol stuffs

13 switch sum([TriggerHistory(2:end), Trigger])

14 case 0

15 % No update required

16 case 1

17 % Shift TED buffer regularly if ONE trigger across N samples

18 TEDBuffer = [TEDBuffer(2:end), filtOut];

19 otherwise % > 1

20 % Stuff a missing sample if TWO triggers across N samples

21 TEDBuffer = [TEDBuffer(3:end), 0, filtOut];

22 end

Code 6.4 Loop Filter: loopFilter.m

1 % Loop filter
2 loopFiltOut = LoopPreviousInput + LoopFilterState;
3 g = e*ProportionalGain + loopFiltOut; % Filter error signal
4 LoopFilterState = loopFiltOut;
5 LoopPreviousInput = e*IntegratorGain;
6 % Loop filter (alternative with filter objects)
7 lf = dsp.BiquadFilter(’SOSMatrix’,tf2sos([1 0],[1 -1])); % Create filter
8 g = lf(IntegratorGain*e) + ProportionalGain*e; % Filter error signal

downstream. The interpolation controller itself will utilize the filtered error signal
g and will update the internal counter as data is processed in Code 6.5.

Code 6.5 Interpolator Control Logic: interpControl.m

1 % Interpolation Controller with modulo-1 counter
2 d = g + 1/N;
3 TriggerHistory = [TriggerHistory(2:end), Trigger];
4 Trigger = (Counter < d); % Check if a trigger condition
5 if Trigger % Update mu if a trigger
6 mu = Counter / d;
7 end
8 Counter = mod(Counter - d, 1); % Update counter

The overall design of the timing synchronizer can be complex and
implementations do operate at different relative rates. Therefore, we have provided
Table 6.1 as a guide to a recommended implementation. These rates align with

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 208 — #18

208 Timing Synchronization

Table 6.1 Operational Rates of Timing
Recovery Blocks

Block Operational rate
Interpolator Sample rate
TED Symbol rate
Loop filter Symbol rate
Interpolator controller Sample rate

the trigger implementation outlined in Figure 6.14. This system will result in one
sample per symbol (N) when output samples of the interpolator are aligned with
the triggers.

Q Starting with script TimingError, which models a timing offset,
implement ZC timing correction.

6.4 Alternative Error Detectors and System Requirements

Within the discussed PLL framework alternative TEDs can be used if the application
or system arrangement is different. For example, the discussed method of ZC cannot
operate under carrier phase or frequency offsets. Therefore, such a nonideality
would require compensation first before application of ZC, which is not true for
other methods. Besides carrier offsets, a requirement of the ZC method is an
upsample factor N of at least two, which may not be possible for certain systems
due to bandwidth and data rate constraints.

6.4.1 Gardner
The second TED we will considered is called Gardner [11], which is very similar to
ZC. The error signal is determined by

e(n) = Re(y((n − 1/2)Ts + τ))
[
Re(y((n − 1)Ts + τ)) − Re(y(nTs + τ))

]+
Im(y((n − 1/2)Ts + τ))

[
Im(y((n − 1)Ts + τ)) − Im(y(nTs + τ))

]
.

(6.19)

This method also requires two samples per symbol and differs only in the
quantization of the error direction from ZC. One useful aspect of Gardner is that it
does not require carrier phase correction and works especially well with BPSK and
QPSK signals. However, since Gardner is not a decision-directed method, for best
performance the excess bandwidth of the transmit filters should be β ∈ (0.4, 1

)
.

Q
Implement the Gardner TED inside your existing timing error
detector. Introduce a small phase shift into the received signal of
π/4. Compare ZC and Gardner in these cases.

6.4.2 Müller and Mueller
Next is the Müller and Mueller (MM) method named after Kurt Mueller and
Markus Müller [12]. This can be considered the most efficient method since it does

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 209 — #19

6.5 Putting the Pieces Together 209

not require upsampling of the source data, operating at one sample per symbol. The
error signal is determined by [6]

e(k) = Re(y((k)Ts + τ)) × sgn{Re(y((k − 1)Ts + τ))}
− Re(y((k − 1)Ts + τ)) × sgn{Re(y((k)Ts + τ))}
+ Im(y((k)Ts + τ)) × sgn{Im(y((k − 1)Ts + τ))}
− Im(y((k − 1)Ts + τ)) × sgn{Im(y((k)Ts + τ))}.

(6.20)

MM also operates best when the matched filtering used minimizes the excess
bandwidth, meaning β is small. It is important to note when the excess bandwidth of
the receiver or transmitter filters is high the decisions produced by the sgn operation
can be invalid. Therefore, this trade-off must be considered during implementation.
However, even though MM is technically most efficient performance can be
questionable at N = 1 due to the lack of information available per symbol.

Q
Add phase and frequency offsets to the input signal and compare
the performance of ZC, Gardner, and MM estimation methods.
Do this for fixed fractional delays Ts

2 , Ts
4 ,Ts

5 in the channel and plot
the error output of the TEDs for Gardner and ZC.

6.5 Putting the Pieces Together

Throughout this chapter we have outlined the structure and logic behind a
PLL-based timing recovery algorithm and the associated MATLAB code. In the
remaining sections we will discuss putting the algorithmic components together
and provide some intuition on what happens during evaluation. Here we will also
address parameterization and the relation to system dynamics.

The system-level scripts have shown a constant theme throughout where data is
modulated, transmit filtered, passed through a channel with timing offset, filtered
again, then is timing recovered. Many rate changes can happen in this series of
steps. To help understand these relations better we can map things out as in
Figure 6.16, which takes into account these stages. Here the modulator produces
symbols equal to the sample rate. Once passing through the transmit filter we
acquire our upsampling factor N, which increases our samples per symbol to N. At
the receiver we can perform decimation in the receive filter by a factor NF where
NF ≤ N. Finally, we will perform timing recovery across the remaining samples
and remove the fractional offset τ , returning to the original rate of one sample
per symbol. The rate pattern outlined in Figure 6.16 is identical to that of the first
MATLAB script in Code 6.1. That script can be modified to produce a slightly
dynamic timing offset, which we provide below:

From Code 6.6 we can evaluate the receive filtered signal with a variable
offset over time. Figure 6.17(a) provides the direct output of rxFilt when
samplesPerSymbol is equal to decimation, where we can observe the
constellation of the signal collapsing into constellations over time similar to
Figure 6.9. This is essentially when no timing recovery is being used. Next,

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 210 — #20

210 Timing Synchronization

Figure 6.16 Relative rates of transmit and receive chains with respect to the sample rate at different
stages. Here τ ∗ represents a timing shift not an increase in the data rate. This is a slight abuse of
notation.

Code 6.6 Transmit Filter Data: srrcFilterData.m

1 % User tunable (samplesPerSymbol>=decimation)
2 samplesPerSymbol = 4; decimation = 2;
3 % Create a QPSK modulator System object and modulate data
4 qpskMod = comm.QPSKModulator(’BitInput’,true);
5 % Set up filters
6 rctFilt = comm.RaisedCosineTransmitFilter(...
7 ’OutputSamplesPerSymbol’, samplesPerSymbol);
8 rcrFilt = comm.RaisedCosineReceiveFilter(...
9 ’InputSamplesPerSymbol’, samplesPerSymbol, ...

10 ’DecimationFactor’, decimation);
11 % Set up delay object
12 VFD = dsp.VariableFractionalDelay;
13 % Delay data with slowly changing delay
14 rxFilt = [];
15 for index = 1:1e3
16 % Generate, modulate, and tx filter data
17 data = randi([0 1],100,1);
18 modFiltData = rctFilt(qpskMod(data));
19 % Delay signal
20 tau_hat = index/30;
21 delayedsig = VFD(modFiltData, tau_hat);
22 rxSig = awgn(delayedsig,25); % Add noise
23 rxFilt = [rxFilt;rcrFilt(rxSig)]; % Rx filter
24 end

taking the lessons from this chapter and utilizing the implementation of timing
recovery proposed, we can adapt to this changing fractional delay. Figure 6.17(b)
demonstrates the recovery for the ZC technique when N

NF
= 2. Here we can observe

clear division between the level for the real component of the signal, meaning our
output constellation is collapsing to a correct QPSK signal. In Figure 6.17(c) we
increase BLoop from 0.001 to 0.01, which causes the system to react faster. However,
for BLoop = 0.001 once converged the residual symbols have less noise than for
BLoop = 0.01.

Q Regenerate Figure 6.17 and utilize alternative ζ = {0.5,
√

2,
10, 20}. Comment on the dynamic of the recovery algorithm.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 211 — #21

6.5 Putting the Pieces Together 211

Figure 6.17 Comparison of a signal that requires timing recovery, and outputs of two
parameterization of ZC timing recovery after application. (a) Receive signal without timing recovery,
(b) receive signal with ZC timing recovery for parameterization {N, ζ , BLoop, GD} = {2, 1, 0.001, 2.7},
and (c) receive signal with ZC timing recovery for parameterization {N, ζ , BLoop, GD} =
{2, 1, 0.01, 2.7}.

Analog Devices perpetual eBook license – Artech House copyrighted material.

Wyglinski: “ch06_new” — 2018/3/26 — 11:43 — page 212 — #22

212 Timing Synchronization

Q
Regenerate Figure 6.17, but utilize Pluto SDR in loopback as
the channel. Tune the recovery algorithm (N, ζ , BLoop, GD) and
measure the best conference you can achieve.

6.6 Chapter Summary

Timing recovery is a fundamental tool for successful transmission between nodes
with independent oscillators. In this chapter, a model for timing offset was
introduced mathematically, in simulation, and demonstrated with Pluto SDR. To
combat this offset, a PLL-based timing recovery methodology was introduced that
included several timing error detectors. This included an review and extension to
matched filtering introduced in Chapter 6. MATLAB code was provided for the
different components of the timing recovery algorithms, and a considerable amount
of time was spent examining their configuration and interactions. Finally, once
all the components were investigated, portions of the design’s parameterization
were explored. In subsequent chapters, the implementations developed here will
be utilized to created a full receiver design which can recover signals transmitted
between separate Pluto SDR devices.

References

[1] Proakis, J., and M. Salehi, Digital Communications, Fifth Edition, Boston: McGraw-Hill,
2007.

[2] Saleh, A. A. M., “Frequency-Independent and Frequency-Dependent Nonlinear Models of
TWT Amplifiers,” IEEE Transactions on Communications, Vol. 29, No. 11, November
1981, pp. 1715–1720.

[3] Boumaiza, S., T. Liu, and F. M. Ghannouchi, “On the Wireless Transmitters Linear and
Nonlionear Distortions Detection and Pre-correction,” in 2006 Canadian Conference on
Electrical and Computer Engineering, May 2006, pp. 1510–1513.

[4] Mengali, U., Synchronization Techniques for Digital Receivers, Applications of
Communications Theory, New York: Springer, 2013.

[5] Oerder, M., and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Transactions
on Communications, Vol. 36, No. 5, May 1988, pp. 605–612.

[6] Rice, M., Digital Communications: A Discrete-Time Approach, Third Edition,
Pearson/Prentice Hall, 2009.

[7] Laakso, T. I., V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting the Unit Delay
[FIR/All Pass Filters Design],” IEEE Signal Processing Magazine, Vol. 13, No. 1, January
1996, pp. 30–60.

[8] Thiran, J. P., “Recursive Digital Filters with Maximally Flat Group Delay,” IEEE
Transactions on Circuit Theory, Vol. 18, No. 6, November 1971, pp. 659–664.

[9] Rice, M., and F. Harris, “Polyphase Filterbanks for Symbol Timing Synchronization in
Sampled Data Receivers,” in MILCOM 2002, Proceedings, Vol. 2, October 2002, pp.
982–986.

[10] Erup, L., F. M. Gardner, and R. A. Harris, “Interpolation in Digital Modems. ii.
Implementation and Performance,” IEEE Transactions on Communications, Vol. 41,
No. 6, June 1993, pp. 998–1008.

[11] Gardner, F., “A BPSK/QPSK Timing-Error Detector for Sampled Receivers,” IEEE
Transactions on Communications, Vol. 34, No. 5, May 1986, pp. 423–429.

[12] Mueller, K., and M. Muller, “Timing Recovery in Digital Synchronous Data Receivers,”
IEEE Transactions on Communications, Vol. 24, No. 5, May 1976, pp. 516–531.

Analog Devices perpetual eBook license – Artech House copyrighted material.

	Software-Defined Radiofor Engineers
	Contents
	CHAPTER 6Timing Synchronization
	6.1 Matched Filtering
	6.2 Timing Error
	6.3 Symbol Timing Compensation
	6.3.1 Phase-Locked Loops
	6.3.2 Feedback Timing Correction

	6.4 Alternative Error Detectors and System Requirements
	6.4.1 Gardner

	6.5 Putting the Pieces Together
	6.6 Chapter Summary
	References

