
Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page i — #1

Software-Defined Radio 
for Engineers

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ii — #2

For a listing of recent titles in the Artech House
Mobile Communications, turn to the back of this book.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio 
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-457-1

Cover design by John Gomes

© 2018 Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski

All rights reserved. Printed and bound in the United States of America. No part 
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information 
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service 
marks have been appropriately capitalized. Artech House cannot attest to the 
accuracy of this information. Use of a term in this book should not be regarded 
as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page v — #5

Dedication

To my wife Lauren
—Travis Collins

To my wonderful children, Matthew, Lauren, and Isaac, and my patient wife,
Michelle—sorry I have been hiding in the basement working on this book. To
all my fantastic colleagues at Analog Devices: Dave, Michael, Lars-Peter, Andrei,
Mihai, Travis, Wyatt and many more, without whom Pluto SDR and IIO would
not exist.
—Robin Getz

To my lovely son Aidi, my husband Di, and my parents Lingzhen and Xuexun
—Di Pu

To my wife Jen
—Alexander Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vi — #6

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 171 — #1

C H A P T E R 5

Understanding SDR Hardware

In this chapter, we will discuss the real-world implications of using SDR hardware
and fundamentals for interacting with the Pluto SDR from MATLAB. Using Pluto
SDR as a template we will provide an introduction in the receive and transmit
chains, discussing how analog waveforms become digital samples in MATLAB.
Once we have a solid grasp on this process a common code templating will be
introduced, which will be used throughout the remaining chapters when working
with the radio in MATLAB. This templating will provide a simplified workflow
that can help alleviate common problems faced when working with SDR’s and
specifically Pluto SDR. Finally, the chapter will conclude with a small example to
make sure the Pluto SDR is configured correctly with MATLAB.

5.1 Components of a Communication System

The software-defined radio described in Section 5.1.1 can constitute a radio node
in anything from a point-to-point link to an element in a large ad hoc network of
radios. It can be used as an RFFE to a MATLAB script or Simulink model or it can
be programmed and used as a complete stand-alone radio. The radio front end, in
this case the Pluto SDR, is a single components in a larger communications system,
which would also normally include external filters and band-specific antennas. A
description of the communication systems, and the block diagram are shown in
Figure 5.1(c). The major aspects of that are

• An analog RF section (atennna, RF filters, input mux, LNA, gain,
attenuation, mixer);

• An analog baseband section (analog filters, ADC or DAC);
• Some signal processing units (fixed filters inside a transceiver, or user defined

inside a FPGA or DSP, or general-purpose processor).

While Pluto SDR provides a great low-cost platform for STEM education and SDR
experimentation, it is representive of many SDRs used in commuications systems.
Although it is small and low-cost, the Pluto SDR has enough capability to tackle
a wide range of SDR applications, such as GPS or weather satellite receiver or
ad hoc personal area networks. The Pluto SDR plays the part of the communications
systems described above as follows:

• An analog RF section (atennna, RF filters, input mux, LNA, gain,
attenuation, mixer)
– Antenna and RF filters are expected to be done outside the Pluto SDR and

are the responsibility of the end user

171

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 172 — #2

172 Understanding SDR Hardware

– The remaining portions of the first first bullet (input mux, LNA, gain,
attenuation, mixer), are all implmented in the AD9363, Integrated RF
Agile Transceiver

• Analog baseband section (analog filters, ADC or DAC) is implmented in the
AD9363, Integrated RF Agile Transceiver

• Signal processing; this is split between
– Parts of signal processing is implmented in the AD9363, Integrated

RF Agile Transceiver. This includes the fixed halfband decimiation and
interpolation filters and programmable 128-tap FIR filters.

– Optional filtering and decimation may be done in the Xilinx Zynq’ FPGA
fabric.

– The I/Q data is then passed up to the USB to a host, where MATLAB can
continue the signal processing.

To understand the details of these pieces, it is necessary to peel back the plastic
on the Pluto SDR and look at the devices that make up the device itself. Being
a SDR platform specifically targeted for students, not only are schematics for the
Pluto SDR readily available, but also the entire software and HDL stack, so we
can examine in detail the makeup of the device at any level from hardware to
software.

5.1.1 Components of an SDR
Most modern SDR devices typically share a similar structural design, which makes
up the receive and/or transmit chains to translate data from the analog RF domain
into analog baseband domain, and into IQ samples, and eventually into a software
package such as MATLAB. In the very simplest sense the Pluto SDR (shown in
Figure 5.1[b]) is made up of two components, as shown in Figure 5.1(a):

• An analog RF section (which specifies the receive and transmit capabilities);
• The communications mechanism (Ethernet, USB) to get IQ data back to host

for processing.

Referring to Figure 5.1(c), the receive, transmit, and communication specifications
of the ADALM-PLUTO consist of

• Transmit (SMA connector labeled Tx)
– 300–3, 800 GHz, 200–20, 000 kHz channel bandwidth, 65.1–61, 440

kSPS
– 2.4 Hz LO step size, 5 Hz sample rate step size
– Modulation accuracy (EVM): 40 dB (typical, not measured on every unit)
– 12-bit DACs

• Receive (SMA connector labeled Rx)
– 300–3, 800 GHz, 200–20, 000 kHz channel bandwidth, 65.1–61, 440

kSPS
– 2.4 Hz LO step size, 5 Hz sample rate step size
– Modulation accuracy (EVM): 40 dB (typical, not measured on every unit)
– 12-bit ADCs

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 173 — #3

5.1 Components of a Communication System 173

Figure 5.1 Views of the ADALM-PLUTO SDR. (a) Simplified block diagram of the ADALM-PLUTO,
(b) photo of the ADALM-PLUTO [1], and (c) I/O on the ADALM-PLUTO.

• USB 2 OTG (480 Mbits/seconds), device mode
– libiio USB class, for transfering IQ data from/to the RF device to the host
– Network device, provides access to the Linux on the Pluto device
– USB serial device, provides access to the Linux console on the Pluto device
– Mass storage device

• USB 2 OTG (480 Mbits/seconds), host mode
– Mass storage device, plug in a thumb drive, and capture or playback

waveforms
– Wifi dongle, access the Pluto SDR via WiFi
– Wired LAN, access the Pluto SDR via wired LAN

• External power, for when using the Pluto SDR in host mode.

It is possible to run the Pluto SDR out of spec and extend the frequency range
to 70–6, 000 MHz to be able to capture and listen to FM broadcasts (in the 87.5–
108.0 MHz bands most places, 76–95 MHz in Japan, and legacy 65.8–74.0 MHz in
some Eastern European countries) at the low end, and the all the interesting things
happening in 5.8-GHz ISM worldwide bands.

Because of the wide tuning range, 70–6, 000 MHz, which is over three orders
of magnitude, there are no band-specific receive or transmit filters in the Pluto SDR.
What this means is that from a receive side, everything that is broadcasting from
70–6, 000 MHz will be picked up, and could affect your signal. This is normally
only an issue when you are trying to receive a very low amplitude signal. More
about this in Section 5.2.6.

5.1.2 AD9363 Details
At the front of the Pluto SDR is a AD9363 5.2 transceiver from Analog Devices Inc.,
which is responsible for capturing and digitization of the RF data. This transceiver

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 174 — #4

174 Understanding SDR Hardware

provides amplification, frequency translation (mixing), digital conversion, and
filtering of transmitted and receive signals. In Figure 5.2 we provide a detailed
outline of the of the AD9363. While it can look complicated to the beginner,
it is has nothing more than the three sections we mentioned before: an analog
RF section, an analog baseband section, and some signal processing for both
receive and transmit. It is important to understand the physical analog and
digital hardware boundary because it will provide the necessary knowledge to
configure the device from MATLAB and understand nonidealities experienced in
the transmitted and received data. However, an extreme indepth understanding
of the device is not required to effectively work with a SDR but some basics are
invaluable.

We will discuss the AD9363 from the perspective of the receiver, but logically
the same operations just apply in reverse order for the transmitter. At the very
front of the AD9363 is a low-noise amplifier (LNA) providing analog gain that is a
component of the automatic gain control (AGC) pipeline of the receiver. Following
the LNA is the mixer, which is responsible for direct frequency translation. Unlike
many traditional heterodyne transceivers, the AD9363 is a direct conversion,
or ZeroIF design that does not utilize an intermediate frequency (IF) stage. For
more details on the trade-offs between heterodyne and direct-conversion receivers,
consider reading Razavi [2].

The mixer in the AD9363 operates from 325 MHz to 3.8 GHz within datasheet
specification [2], but software modifications can be made to expand this range,
which we will discuss in Section 5.2.6. Prior to this mixing process, the signal is
split and fed along two different but identical paths. This process creates the in-
phase and quadrature components of our signal through a simple phase rotation
of the mixer’s clock. Effectively this doubles the effectively bandwidth of the
receiver since the in-phase and quadrature signals are orthogonal (bandwidth is
− fs

2 to fs
2 ).

After mixing, the signal is filtered to remove aliasing effects of the now down-
mixed signal and to reduce out of band interference and noise. The combined
transimpedance amplifier (TIA) and analog filter are configured together to maintain
the desired analog bandwidth, which can range from 200 kHz to 20 MHz. The
TIA acts as a single pole filter and the analog programmable filter is a third-order
Butterworth.

The final stage of the AD9363 is the digital conversion and decimation
stage. Here the ADC will typically run at a much higher rate than the desired
receive bandwidth, but the ADC itself will not provide all 12 bits defined in the
specifications. The additional bits are gained in the halfband filter (HBF) stages,
which will allow bit growth. The ADC itself only provides ∼ 4.5 bits of resolution.
This is a typical design for sigma-delta converters (�-� ADC), which inherently
have low noise and run faster than the alternative successive approximation (SAR)
ADCs. Refer to Section 2.5.4 for more information about �-� ADCs. However,
by utilizing a very high speed ADC and associated HBFs the receive signal can be
digitized at 12 bits at the desired configured sample rate. Therefore, for the best
signal resolution is achieved through large oversampling of the input signal and
then followed by several decimation stages.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 175 — #5

5.1 Components of a Communication System 175

Fi
g

ur
e

5.
2

Bl
oc

k
di

ag
ra

m
of

th
e

A
D

93
63

[3
].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 176 — #6

176 Understanding SDR Hardware

5.1.3 Zynq Details
Once the data is digitized it is passed to the Xilinx Zynq System on Chip (SoC),
shown in Figure 5.3. The Zynq-7000 family offers the flexibility and scalability of
an FPGA, while providing performance, power, and ease of use typically associated
with ASIC and ASSPs. Providing integrated ARM Cortex-A9 based processing
system (PS) and programmable logic (PL) in a single device, the Zynq is the used in
the Pluto SDR as the main controller.

Having the combination of the programmable logic and a programming
subsystem provide some unique advantages. The AD9363 ADC’s lowest data
conversion rate is 25 MHz. The maximum amount of decimation allows is 48.
This provides a lowest sample rate of 520.833 kSPS. An additional divide by 8
decimation filter was put inside the FPGA to extend the lowest sample rate to
65.1042 kSPS. Running Linux on the ARM-A9 inside the Pluto SDR provides some
unique advantages. Being able to use the Linux IIO infrastructure allows existing
device drivers to be used for the AD9363. Controlling all aspects of the device, from
sample rates, to FIR settings, to LO settings, to the additional decimation filters,
this proven software did not have to be touched for the creation of the Pluto SDR.

Once the digital receive IQ data from the AD9363, described in Section 5.1.2 is
transferred to the FPGA fabric, the AXI DMAC core writes that to the Pluto’s
external memory. During this step, a change is made from unique continuous
samples to n-sample buffers.

Figure 5.3 Block diagram of the Zynq [4].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 177 — #7

5.1 Components of a Communication System 177

Figure 5.4 Block diagram of libiio and iiod [5].

5.1.4 Linux Industrial Input/Output Details
The industrial input/output (IIO) subsystem inside the Linux kernel is intended
to provide support for devices that in some sense are ADCs or DACs, which don’t
have their own existing subsystems (like audio or video). This is not specific to Pluto
nor specific to any SDR implmentation. It is an open-source standard adopted by
many different manufactures for providing a common API to deal with a variety
of different devices, This includes, but is not limited to, ADCs, accelerometers,
gyros, IMUs, capacitance to digital converters (CDCs), pressure sensors, color,
light and proximity sensors, temperature sensors, magnetometers, DACs, direct
digital synthesis (DDS), phase-locked loops (PLLs), variable/programmable gain
amplifiers (VGA, PGA), and integrated RF transceivers, like the AD9363.

There are three main aspects:

• The Linux kernel IIO driver, which runs inside the Linux kernel, in this case
in the ARM in the Pluto SDR.

• libiio, the userspace library for accessing local and remote IIO devices, in this
case both in the ARM, and on the host.

• iiod, the IIO Daemon, responsible for allowing remote connection to IIO
clients, in this case on the ARM inside the Pluto SDR.

libiio is used to interface to the Linux industrial input/output (IIO) subsystem.
libiio can be natively used on an embedded Linux target (local mode) or to
communicate remotely to that same target from a host Linux, Windows, or MAC
over USB, Ethernet, or Serial.

Although libiio was primarily developed by Analog Devices Inc., it is an active
open-source library that many people have contributed to. It released under the
GNU Lesser General Public License, version 2.1 or later, this open-source license
allows anyone to use the library on any vendor’s processor/FPGA/SoC that may
be controlling any vendor’s peripheral device (ADC, DAC, etc.) either locally or

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 178 — #8

178 Understanding SDR Hardware

remotely. This includes closed- or open-source, commercial or noncommercial
applications (subject to the LGPL license freedoms, obligations and restrictions).

Once buffers of Rx data are in external memory, they are passed to iiod, the
IIO Daemon. The iiod is responsible for managing various iio clients (normally
remote on a network or USB), and translating their requests to local devices. It is
able to accomplish this via the libiio library, which provides access to the AD9363
through a series of interfaces. Convinently, the libiio API access to the transceiver
is identical whether working on the ARM or on a host PC which also has a libiio
driver installed. Therefore, code can be implemented on the host machine connected
to Pluto SDR and then deployed onto the ARM with the same code.

5.1.5 MATLAB as an IIO client
MATLAB can be used as a cross-platform IIO client to interface with the Pluto
SDR. It includes a Pluto SDR system object interface. A fundamental background
on system objects in MATLAB is provided in Appendix B.3. The two system objects
provided in the hardware support package (HSP) for Pluto SDR are:

• comm.SDRRxPluto: Pluto SDR Receiver System object
• comm.SDRTxPluto: Pluto SDR Transmitter System object

These objects are typically constructed through the sdrrx or sdrtx function calls
as in Code 5.1.

Code 5.1 Instantiating Pluto SDR System Objects: pluto1.m

1 rx = sdrrx(’Pluto’)
14 tx = sdrtx(’Pluto’)

However, these objects can also be directly instantiated directly. The resulting
object of sdrrx either way will have the following basic properties, which will be
directly printed to the terminal when not using the semicolon as Code 5.2.

Code 5.2 Instantiating Pluto SDR System Objects: pluto1.m

1 rx = sdrrx(’Pluto’)
2 rx =
3 comm.SDRRxPluto with properties:
4 DeviceName: ’Pluto’
5 RadioID: ’usb:0’
6 CenterFrequency: 2.4000e+09
7 GainSource: ’AGC Slow Attack’
8 ChannelMapping: 1
9 BasebandSampleRate: 1000000

10 OutputDataType: ’int16’
11 SamplesPerFrame: 3660
12 ShowAdvancedProperties: false

Since the Pluto SDR is part of a larger family of SDR devices, it shares the
DeviceName attribute, which will be defined as Pluto for the Pluto SDR. As seen

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 179 — #9

5.1 Components of a Communication System 179

from the usage in Code 5.2, there are various attributes for the System object.

• RadioID is related to the enumerate interface that the radio is using. This
will either be USB:# where # is a number associated with the number of USB
radios connected to MATLAB starting at zero, or ip:<ipaddress>, which
utilizes the Pluto SDR over Ethernet.

• CenterFrequency defines the RF center frequency in hertz. Note there are
separate Rx and Tx LO, on the Pluto SDR, and these are managed separately
in the Rx and Tx Objects.

• BasebandSampleRate defines the sample rate of the in-phase/quadrature
receive chains, respectively. Note, there is only one clock generator for both
the ADC and DAC in the AD9363, so these must be set to the same value
managing Rx and Tx on the same device.

• GainSource has three possible options: Manual, AGC Slow Attack, and
AGC Fast Attack. When Manual is selected, another option called Gain will
become available. This Gain value is associated with a gain table located
within the AD9363. Therefore, when the Gain value changes multiple stages
in the receive path shown in Figure 5.2 are updated based on this internal
table. Custom gain tables can be used if necessary. However, such settings
are considered advanced implementation options and will not be considered
in this book. The other GainSource settings enable state machine based gain
control within the AD9363 to adapt during operation based on receive signal
strength (RSSI).

• The ChannelMapping attribute for the Pluto SDR can only be set to 1.
However, on other SDRs in the Analog Devices Inc. family this is used for
multichannel (multiple-input and multiple-output, or MIMO) reception.

• OutputDataType determines the format data is provided out of the object.
Technically, from the AD9363 and libiio, MATLAB can only receive 16-bit
complex integers, but we can tell MATLAB to cast them to other data types
by default. Typically we will cast them to doubles since they provide the most
precision, and working with trigonometric functions will require double or
single precision data. As mentioned previously the receive and transmit paths
only provide 12 bits of resolution, but since several of the hardware and
software layers can only deal with base 8-bit types these 12 bits are provided
as a 16-bit integer. For reference, on the receive side the 16-bit samples are
sign extended and the transmitter will simply throw away the lowest four
significant bits.

• SamplesPerFrame determines the number of samples in the buffer or frame
that is passed to MATLAB from iiod. This will be the size of the vector
provided at a given call to the object. This data will always be continguous as
received from the radio unless an overflow has occurerd. However, successive
calls to an instantiated object will not guarantee buffer-to-buffer continuity.
Therefore, it can be useful to collect large amounts of data at a given time
for processing.

The transmitter system object comm.SDRTxPluto has nearly identical properties
except for GainSource, SamplesPerFrame, and OutputDataType, which do not
make sense in the transmitter context.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 180 — #10

180 Understanding SDR Hardware

5.1.6 Not Just for Learning
The architecture combination of the AD936x RF transceiver, the Zynq SoC, and
external memory, which is found on the Pluto SDR should not just be thought of as
just a learning platform. There are many commercial systems built on a similar
architectures that can use the same software (HDL, Linux kernel, and IIO) to
communicate with the IIO clients (like MATLAB). For example, Epiq Solutions,
located in Schaumburg, Illinois, builds an industrial-grade, commercial solution,
shown in Figure 5.5 known as Sidekiq Z2.

Although the Sidekiq Z2 utilizes a similar architecture as Pluto SDR, it does it
in a standards-compliant Mini PCIe card form factor measuring ∼ 51 × 30 mm.
In addition, the Sidekiq Z2 incorporates RF filtering, a high-precision reference
clock, a more powerful dual-core Zynq, an extended RF tuning range from 70 –
6, 000 MHz using the AD9364, doing so with industrial temperature range (-40◦
– +70◦ C) rated components. This allows the Sidekiq Z2 to serve as the basis for
real-world flexible RF solutions, even in harsh industrial environments.

By building on the same architecture and using the same software infrastructure,
this allows algorithm developers to prototype using a device like the Pluto SDR, and
when they are ready for an industrial form factor, or need something embeddable,

Figure 5.5 Sidekiq Z2 from Epiq [6]. Not to scale.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 181 — #11

5.2 Strategies For Development in MATLAB 181

they can easily transition over to the Sidekiq Z2. This also allows developers using
the Sidekiq Z2 to communicate directly to MATLAB or any of the other IIO client
software packages for testing in their specific end product. There are many things
about RF that just cannot be simulated, and unless you have a final product with
the ability to save and playback waveforms, or to remotely connect to the device,
making a final release to production can be difficult to impossible. There is nothing
more frustrating for an engineer than to have something that works on the bench
fail in the field and have to go there for local troubleshooting. Using the provided
open-source, industry-standard frameworks can reduce that.

5.2 Strategies For Development in MATLAB

As we discussed in Section 5.1.5, controlling how data enters MATLAB is very
important for consistent operation. In this section we will discuss some strategies
for structuring MATLAB code to effectively develop an algorithm. To help guide
the development process we have provided templates to show how to appropriately
form source around the radio’s API. These templates can help progression of designs
to real-time or offline work without the radio attached.

5.2.1 Radio I/O Basics
In each of these templates we will assume that a radio has been instantiated as
the object rx, as in running the code in Code 5.1. Additionally, we assume that
the SamplesPerFrame parameter of the object is set to some variable frameSize. In
the first template presented in Code 5.3 we first collect framesToCollect frames
of data, where each frame is of frameSize samples. The code in Code 5.1 tries to
guarantee that we have collect framesToCollect×frameSize samples of continguous
data from the radio with gaps. This is a good technique if more data than 220

samples need to be collected, which is the maximum value you can make the
SamplesPerFrame parameter of the Pluto SDR System object. After this data is
collected we perform some processing, which in this case is a visualization with
dsp.SpectrumAnalyzer scope.

Alternatively, if we don’t require fresh samples for every run it can be useful
to save data to a file so we don’t have to worry about clearing data from the
workspace. A useful tool for this work is thecomm.BasebandFileWriter, which
saves complex received data with additional metadata like sample rate to a file for
off-line processing. We show usage of the comm.BasebandFileWriter system
object in Code 5.4 with the collected data from Code 5.3.

Utilizing data from a filesource can make testing much more repeatable when
debugging issues during algorithm development. It can also be much faster to
address a file than to go out to the radio and pull in new data, especially
when setting up a transmitter is also required. In Code 5.5 we show use of
the complementary System object to thecomm.BasebandFileWriter called
comm.BasebandFileRead. The comm.BasebandFileRead System object can
be configured to provide a specific amount of samples for each call to the object
through the SamplesPerFrame parameters to emulate using the Pluto SDR. This is
a useful strategy when a radio is not available.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 182 — #12

182 Understanding SDR Hardware

Code 5.3 Template Example: template1.m

1 %% Template 1
2 % Perform data collection then offline processing
3 data = zeros(frameSize, framesToCollect);
4 % Collect all frames in continuity
5 for frame = 1:framesToCollect
6 [d,valid,of] = rx();
7 % Collect data without overflow and is valid
8 if ˜valid
9 warning(’Data invalid’)
10 elseif of
11 warning(’Overflow occurred’)
12 else
13 data(:,frame) = d;
14 end
15 end
16
17 % Process new live data
18 sa1 = dsp.SpectrumAnalyzer;
19 for frame = 1:framesToCollect
20 sa1(data(:,frame)); % Algorithm processing
21 end

Code 5.4 Template Example for Saving Data: template1.m

23 % Save data for processing
24 bfw = comm.BasebandFileWriter(’PlutoData.bb’,...
25 rx.BasebandSampleRate,rx.CenterFrequency);
26 % Save data as a column
27 bfw(data(:));
28 bfw.release();

Code 5.5 Template Example for Saving Data: template2.m

1 %% Template 2
2 % Load data and perform processing
3 bfr = comm.BasebandFileReader(bfw.Filename, ’SamplesPerFrame’,frameSize);
4 sa2 = dsp.SpectrumAnalyzer;
5 % Process each frame from the saved file
6 for frame = 1:framesToCollect
7 sa2(bfr()); % Algorithm processing
8 end

Once an algorithm has been tuned we can place the processing sections within
the main loop with the Pluto SDR’s System object like in Code 5.6. This type of
processing is defined as stream processing in MATLAB [7], where we immediately
work on new data. This will limit the amount of information required to be collected
and can be useful if logical actions, such as changing channels, need to be applied.
As long as the algorithm placed within the loop is able to keep up with the data
streaming in from the radio, no overflow warning should occur. This is known as

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 183 — #13

5.2 Strategies For Development in MATLAB 183

operating in real time. However, since there is some elasticity with the buffers to
and from the radio overflows will not always happen immediately. For example,
if the algorithm is only slightly slower than the radio’s data rate then it may take
many loop iterations for the internal radio and operating system buffers to fill to
a point of overflow. Therefore, when testing for real-time operation it is useful to
run an algorithm for several minutes to check if an overflow will occur.

Code 5.6 Template Example for Saving Data: template3.m

1 %% Template 3
2 % Perform stream processing
3 sa3 = dsp.SpectrumAnalyzer;
4 % Process each frame immediately
5 for frame = 1:framesToCollect
6 [d,valid,of] = rx();
7 % Process data without overflow and is valid
8 if ˜valid
9 warning(’Data invalid’)
10 else
11 if of
12 warning(’Overflow occurred’)
13 end
14 sa3(d); % Algorithm processing
15 end
16 end

5.2.2 Continuous Transmit
Anytime the Pluto SDR is powered on, the transceiver is activated and begins to
operate even if the user did not intend to. When powered on Pluto SDR will transmit
data; this is just how the transceiver was designed. Therefore, when using just the
receiver System object (comm.SDRRxPluto) data will be transmitted by the actual
device. Normally, the transceiver will transmit the last buffer available in the DMA
continuously until powered down. If the Tx LO is accedentily tuned to the same
value as the RX LO, when communicating between multiple radios or just receiving,
this continuous transmit operation can cause significant interference.

Code 5.7 Template Example Transmit Repeat: transmitRepeat.m

1 % Transmit all zeros
2 tx = sdrtx(’Pluto’);
3 fs = 1e6; fc = 1e4; s = 2*pi*fs*fc*(1:2ˆ14).’;
4 wave = complex(cos(s),sin(s));
5 tx.transmitRepeat(wave);

There are two options to reduce or even remove this interference. The first
option is to instantiate a transmitter System object (comm.SDRTxPluto) and write
a vector of zeros to the object as shown in Code 5.8. This will reduce the transmit
energy of the device to a minimal level. However, there will still be leakage into the
receiver’s data due to Tx LO leakage.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 184 — #14

184 Understanding SDR Hardware

Code 5.8 Template Example Transmit Zeros: transmitzeros.m

1 % Transmit all zeros
2 tx = sdrtx(’Pluto’);
3 tx(zeros(1024,1));

Alternatively, we can simply shift the LO of the transmitter to a frequency
beyond the receive bandwith. We demonstrate this configuration in Code 5.9 where
we offset the CenterFrequency of the transmitter’s System object. This is a better
alternative since there LO leakage from the transmitter should not appear in the
received data.

Code 5.9 Template Example Transmit Zeros: transmitoffset.m

1 % Move transmitter out of receive spectrum
2 tx = sdrtx(’Pluto’);
3 rx = sdrrx(’Pluto’);
4 tx.CenterFrequency = rx.CenterFrequency + 100e6;

5.2.3 Latency and Data Delays
When working with the Pluto SDR from a host it will soon become obvious that
there will delays associated with transmitted and received data, especially when
performing loop-back operations from transmitter to receiver. These delays are
a function of the internal buffers and FIFOs of the host PC and the Pluto SDR
itself. However, there exists both deterministic and elastic/random delay across the
various layers illustrated in Figure 5.6. The reason why there is a nondeterministic
delay in the transport stacks is due to contention in the kernels of the ARM and
host PC. In the worst case the round-trip time should be on the order of tens of
milliseconds. In order to guarantee certain delays or minimal delay would require
operating directly on the ARM or on the FPGA. Nevertheless, development in
these processing regions becomes much more time consuming. However, any radio
platform that passes data into MATLAB will have to deal with these delays, but
they may have different sources depending on the radio architecture.

One of the complications of looking at Figure 5.6 is that in many places, the
transport is defined by bytes, while in other places it convenient to discuss samples.
A single I/Q sample (complex) in this circumstance (singe radio channel) is two
16-bit samples, or 4 bytes.

To review Figure 5.6 in detail on the receive side, when an IIO client like
MATLAB requests a buffer of 32768 samples at a sample rate of 1 MSPS:

• iiodwill capture 32768 continuous samples via libiio. This will take 32.768
milliseconds, and consume 131,072 bytes. While iiod ensures the packet is
contiguous by not sending any data until it has all been captured, it does
increase a fixed latency of the sample rate × the number of samples being
captured. iiod was designed to ensure there are no memory copies after the
data has been captured, and simply passes pointers around from the AD9363
driver to libiio to iiod and then to the USB stack.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 185 — #15

5.2 Strategies For Development in MATLAB 185

Figure 5.6 Hardware and software stacks transmitted and received packets must traverse from
MATLAB to the transceiver throught the various layers in the system.

• This data will then be passed to the Linux kernel on the Pluto where it will
be segmented into 512 byte USB packets (per the USB 2.0 spec), were it
will be reassembled into a 131,072-byte buffer on the host side. The USB
stack will introduce an unknown, and unbounded latency, which will be
determined by the host operating system and how much free memory it has
available.

• Once the entire buffer is assembled, it is passed to libiio, where it is then
passed (untouched) to the iio client, in this case MATLAB, which may do
further processing.

• In this case, MATLAB may cast the data from fixed point to floating point
or double ±1.0 data, which also takes some time.

Due to these delays we must design our algorithms and overall system with an
understanding of these conditions. For example, if a single frame wanted to be
transmitted and received from the same Pluto SDR we can observe a large gap of
samples before the frame is observed at the receiver output vectors due to these
delays.

It is for these reasons that many systems want to put as much processing as
possible as close to the radio as possible. With this architecture, that would be on
the FPGA or the ARM processor. However, on the Pluto SDR, the FPGA is small,
and there is only a single core ARM, limiting its targeting capabilities.

5.2.4 Receive Spectrum
The receive signals we observe will always will contain noise from the environment
and from the radios themselves. To provide perspective on this noise we demonstrate
a simple example using the script shown in Code 5.10.

If one employs Code 5.10, we will notice the spectrum is not perfectly flat,
containing peaks or spurs in the spectrum. These are actually artifacts of the

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 186 — #16

186 Understanding SDR Hardware

Code 5.10 Template Example View Spectrum: template_rt.m

1 % View some spectrum
2 rx = sdrrx(’Pluto’);
3 rx.SamplesPerFrame = 2ˆ15;
4 sa = dsp.SpectrumAnalyzer;
5 sa.SampleRate = rx.BasebandSampleRate;
6 for k=1:1e3
7 sa(rx());
8 end

radio itself, which naturally come about through the complex receive chain, which
provides signal gain enhancement through the AGC stages. Depending on the
bandwidths we choose in the receive chain and the AGC configuration itself, we
can modify these spurs. However, due to the complexity of the AD9363 transceiver
this can be a challenging task since it contain thousands of registers for the AGC
itself for configuration. Therefore, since these spurs can be minor relatively to the
signal of interest itself we can simply ignore them or perform filtering in software to
reduce their affects. Nonetheless, when working with Pluto SDR we should always
be aware of these nonidealities in the hardware.

Fortunately, Pluto SDR does maintain many built-in calibrations to help reduce
self-induced problems. These include RF DC tracking, quadrature tracking, and
baseband DC tracking. To access these features, Pluto SDR enabled the parameter
ShowAdvancedProperties, which will then display these features. Since the AD9363
is a direction conversion receiver, a common problem with such devices is the
presence of a tone or energy at DC or near the zeroith frequencies. This is due to
the radio itself. The DC tracking components, RF and baseband, both work to
reduce these effects.

The last advanced feature is quadrature tracking. The quadrature tracking
reduces and in-phase and quadrature (IQ) imbalance that may occur, which may be
difficult to spot in a frequency domain plot. An imbalance would typically appear
as a spur reflection in the frequency domain. When enabling quadrature tracking,
these image spurs should be reduced significantly. However, when working with
a constellation plot IQ imbalances become more noticable. There will always be
some residual imbalance, but corrections are performed during initialization so it
will not be improved over time necessarily.

5.2.5 Automatic Gain Control
One of the most complex pieces of the AD9363 is the AGC. The AGC is actually
spread out through the receive chain apply gain at different stages and sensing the
amplitude of the received signals. From the simplistic API of MATLAB we have
three options: Manual, AGC Slow Attack, and AGC Fast Attack. Under Manual
the receiver will simply fix the input gain to a specific value based on an internal
gain table. Essentially the manual gain acts as a single index into the internal table.
This Manual setting is useful when using cabling or when the transmitter is at a
fixed known distance. Under the Manual setting it can make receiver algorithms
easier to debug since the AD9363’s state will remain the same.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 187 — #17

5.3 Example: Loopback with Real Data 187

In practice the amplitude of the receive signal will be unknown and even change
across multiple transmissions. Therefore, we can simply utilize the AGC Slow
Attack and AGC Fast Attack modes. If the received transmission is very short or
rapidly changes in amplitude AGC Fast Attack will be the best option. However,
AGC Slow Attack will be prefered when received data has a relatively maintained
amplitude. An obvious question would be, why not always used AGC Fast Attack?
The main disadvantage of AGC Fast Attack is that it can create large discontinuities
in the amplitude, which may distort the received signal. For illustration we provide
a comparison of a system setup in loopback with a single Pluto SDR transmitted
a QPSK signal. We provide a time plot of the received signal to demonstrate
both the delay of the received signal and the changes in amplitude when using
the different gain modes. As we can observe there are rapid changes in gain for
the AGC Fast Attack mode, but the gain is more gradual over time for the AGC
Slow Attack mode. The determination of the correct mode is not always obvious.
Therefore, time series testing and observation can be useful during algorithm
development.

5.2.6 Common Issues
The way that various signals mix can also be an issue. As described in Section 2.3.1,
the mixer accepts a single-ended local oscillator (LO).

5.3 Example: Loopback with Real Data

Now that we have a solid understanding of the system object that controls the
Pluto SDR and some coding structures for interacting with Pluto, we can explore a
simple loopback example. Loopback means that the waveform is both transmitted
and received by the same Pluto SDR, which is a common strategy for algorithm
debugging and general hardware debugging.

Starting from the transmitter (tx), in this example you will first notice we have
set the gain to −30, which is 20 dB down from the default. The reasoning behind
reducing the gain is to prevent clipping or saturation at the receiver. Since the
transmit and receive antennae are about 12 mm from one another the received
signal will be rather loud. The sinewave used here was simply generated by the
dsp.SineWave system object for convenience, which will provide a complex
output for the Pluto SDR. A special method called transmitRepeat was used,
which will continuously transmit the passed vector. This will prevent any gaps in
the transmission.

In the received waveform in Figure 5.7 we can observe both the complex and
real components of the signal over time, which are π

2 radians out of phase with one
another as expected. At the start of the signal we can observe a larger amplitude than
future samples. This is a direct result of the AGC settling, and since the AGC starts
from a high gain by default at configuration or setup time. In MATLAB this setup
time only occurs on the first call to the receiver object (rx), not the construction
time. This is also known as the first Step method call, which will call an internal
method of the system object called setupImpl.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 188 — #18

188 Understanding SDR Hardware

Code 5.11 Loopback Example: loopback.m

1 % Setup Receiver
2 rx=sdrrx(’Pluto’,’OutputDataType’,’double’,’SamplesPerFrame’,2ˆ15);
3 % Setup Transmitter
4 tx = sdrtx(’Pluto’,’Gain’,-30);
5 % Transmit sinewave
6 sine = dsp.SineWave(’Frequency’,300,...
7 ’SampleRate’,rx.BasebandSampleRate,...
8 ’SamplesPerFrame’, 2ˆ12,...
9 ’ComplexOutput’, true);

10 tx.transmitRepeat(sine()); % Transmit continuously
11 % Setup Scope
12 samplesPerStep = rx.SamplesPerFrame/rx.BasebandSampleRate;
13 steps = 3;
14 ts = dsp.TimeScope(’SampleRate’, rx.BasebandSampleRate,...
15 ’TimeSpan’, samplesPerStep*steps,...
16 ’BufferLength’, rx.SamplesPerFrame*steps);
17 % Receive and view sine
18 for k=1:steps
19 ts(rx());
20 end

Figure 5.7 Loopback sinewave of 300 Hz from Pluto SDR generated by Code 5.11.

Looking closer on the sine wave, discontinuities can be observed that result
from small gaps between received frames. This is actually a result of the transmitter
that is repeating the same waveform over and over. Since the transmitted waveform
is not cyclic when relating the start and end of the data passed to the transmitter
we observe these discontinuities. To avoid these we would need to make sure a
period ends at the end of the passed frame and started exactly at the beginning of
the passed frame.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 189 — #19

5.4 Noise Figure 189

5.4 Noise Figure

With the receiver pipeline discussed in the previous section, the AD9363 is able
to achieve a noise figure (NF) of only 2 dB at 800 MHz. NF is a common metric
to compare receivers, which is a measure of the internal or thermal noise of the
electrical components of the device. NF is calculated based on the SNR ratio of
output to input in dB as

NF = 10 log10
SNRINPUT

SNROUTPUT
, (5.1)

where NF is in dB, and both SNRINPUT and SNROUTPUT are in linear scale [8]. For
comparison, another popular SDR the RTL-SDR has a NF of 4.5 dB, which is almost
double the NF of the Pluto SDR. NF is important because it will affect the eventual
sensitivity of the receiver, and the lower the better. The easiest way to measure NF
is with a noise figure analyzer that generates noise into the receive path of a system,
which is then fed back out. The output noise is then measured and compared with
the input noise to create an NF measurement. Figure 5.8 demonstrates an example
set up to evaluate NF using a noise figure analyzer where the device under test (DUT)
will operate in loopback mode transmitted out the received noise. When measuring
NF it can be useful to use a very stable LO to drive the device to limit internal noise,
since generally the noise of a DUT needs to be measured, not the source oscillator
driving it. Furthermore, NF is always based on frequency and the measured NF of
a DUT such as an SDR will typically be based on the noisiest part of the device.

NF is a common metric that hardware manufacturers typically use but it can be
difficult to relate to a communications problem, since communications engineers
tend to measure further down the receive chain after the filter stages. NF also
requires specific and usually expensive instruments to measure. However, it is
important to understand its meaning when specified on a datasheet, since it can
give a rough estimate on the low bound for error vector magnitude measurements.

Figure 5.8 Example noise figure evaluation of SDR or device under test using a noise figure analyzer
and external stable LO source.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch05_new” — 2018/3/26 — 11:43 — page 190 — #20

190 Understanding SDR Hardware

References

[1] Analog Devices ADALM-PLUTO Software-Defined Radio Active Learning Module,
http://www.analog.com/plutosdr 2017.

[2] Razavi, B., “Design considerations for direct-conversion receivers,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, Vol. 44, No. 6, June 1997,
pp. 428–435.

[3] Analog Devices AD9363 Datasheet, http://www.analog.com/AD9363 2015.
[4] Xilinx, Zynq-7000 All Programmable SoC Overview, [Online], 2017, https://

www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.
[5] Analog Devices, What is libiio?, [Online], 2018, https://wiki.analog.com/resources/tools-

software/linux-software/libiio.
[6] Epiq Solutions, Sidekiq Embeddable Software Defined Radio 70MHz–6GHz, [Online],

https://epiqsolutions.com/sidekiq/.
[7] The Math Works, Inc., Stream Processing in MATLAB: Process Streaming Signals and Large

Data with System Objects, https://www.mathworks.com/discovery/stream-processing.html.
[8] Friis, H. T., “Noise Figures of Radio Receivers,” Proceedings of the IRE, Vol. 32, No. 7,

July 1944.

Analog Devices perpetual eBook license – Artech House copyrighted material. 


	Software-Defined Radio
for Engineers
	Contents
	CHAPTER 5
Understanding SDR Hardware
	5.1 Components of a Communication System
	5.1.1 Components of an SDR
	5.1.2 AD9363 Details
	5.1.3 Zynq Details
	5.1.4 Linux Industrial Input/Output Details
	5.1.5 MATLAB as an IIO client
	5.1.6 Not Just for Learning

	5.2 Strategies For Development in MATLAB
	5.2.1 Radio I/O Basics
	5.2.2 Continuous Transmit
	5.2.3 Latency and Data Delays
	5.2.4 Receive Spectrum

	5.2.5 Automatic Gain Control
	5.2.6 Common Issues

	5.3 Example: Loopback with Real Data
	5.4 Noise Figure
	References





