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C H A P T E R 4

Digital Communications Fundamentals

In this chapter, we will provide an overview of several key fundamental concepts
employed in the transmission of digital data. Starting with an understanding of how
binary data can be used to manipulate the physical characteristics of electromagnetic
waveforms, we will then look at the basic anatomy of a digital communication
system before concentrating our attention on several different approaches for
modulating electromagnetic waveforms using binary data. Once we have established
how a digital data transmission process operates, we will then explore one of the
key analytical tools for assessing the quantitative performance of such systems: the
bit error rate. Finally, this chapter will conclude with an introduction to the design
of digital receivers via a signal vector space perspective.

4.1 What Is Digital Transmission?

A digital transceiver is a system composed of a collection of both digital and analog
processes that work in concert with each other in order to handle the treatment and
manipulation of binary information. The purpose of these processes is to achieve
data transmission and reception across some sort of medium, whether it is a twisted
pair of copper wires, a fiber optic cable, or a wireless environment. At the core of
any digital transceiver system is the binary digit or bit, which for the purposes of
this book is considered to be the fundamental unit of information used by a digital
communication system.

Therefore, a digital transceiver is essentially responsible for the translation
between a stream of digital data represented by bits and electromagnetic
waveforms possessing physical characteristics that uniquely represent those bits.
Since electromagnetic waveforms are usually described by sine waves and cosine
waves, several physical characteristics of electromagnetic waveforms commonly
used to represent digital data per time interval T include the amplitude, phase, and
carrier frequency of the waveform, as shown in Figure 4.1. Notice how different
combinations of bits represent different amplitude levels or different phase values or
different carrier frequency values, where each value uniquely represents a particular
binary pattern. Note that in some advanced mapping regimes, binary patterns can
potentially be represented by two or more physical quantities.

However, there is much more going on in a digital transceiver than just a
mapping between bits and waveforms, as shown in Figure 4.2. In this illustration
of the basic anatomy for a digital transceiver, we observe that there are several
functional blocks that constitute a communication system. For instance, the
mapping between bits and electromagnetic waveform characteristics is represented
by the modulation and demodulation blocks. Additionally, there are the source

117
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Figure 4.1 Possible mappings of binary information to EM wave properties.

Figure 4.2 Generic representation of a digital communication transceiver.

encoding and source decoding blocks that handle the removal of redundant
information from the binary data, channel encoding and channel decoding blocks
that introduce a controlled amount of redundant information to protect the
transmission for potential errors, and the radio frequency front end (RFFE) blocks
that handle the conversation of baseband waveforms to higher carrier frequencies.

One may ask the question, Why do we need all these blocks in our digital
communication system? Notice in Figure 4.2 the presence of a channel between the
transmitter and the receiver of the digital transmission system. The main reason why
the design of a digital communication system tends to be challenging, and that so
many blocks are involved in its implementation, is due to this channel. If the channel
was an ideal medium where the electromagnetic waveforms from the transmitter
are clearly sent to the receiver without any sort of distortion or disturbances, then
the design of digital communication systems would be trivial. However, in reality a
channel introduces a variety of random impairments to a digital transmission that
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can potentially affect the correct reception of waveforms intercepted at the receiver.
For instance, a channel may introduce some form of noise that can obfuscate some
of the waveform characteristics. Furthermore, in many real-world scenarios many of
these nonideal effects introduced by the channel are time-varying and thus difficult
to deal with, especially if they vary rapidly in time.

Thus, under real-world conditions, the primary goal of any digital
communication system is to transmit a binary message m(t) and have the
reconstructed version of this binary message m̂(t) at the output of the receiver to be
equal to each other. In other words, our goal is to have P(m̂(t) �= m(t)) as small as
needed for a particular application. The metric for quantitatively assessing the error
performance of a digital communication system is referred to as the probability of
error or BER, which we define as Pe = P(m̂(t) �= m(t)). Note that several data
transmission applications possess different Pe requirements due in part to the data
transmission rate. For instance, for digital voice transmission, a BER of Pe ∼ 10−3

is considered acceptable, while for an average data transmission application a BER
of Pe ∼ 10−5 − 10−6 is deemed sufficient. On the other hand, for a very high data
rate application such as those that employ fiber-optic cables, a BER of Pe ∼ 10−9

is needed since any more errors would flood a receiver given that the data rates can
be extremely high.

To help mitigate errors that may occur due to the impairments introduced by
the channel, we will briefly study how source encoding and channel encoding works
before proceeding with an introduction to modulation.

Hands-On MATLAB Example: Communication systems convey information
by manipulating the physical properties of an electromagnetic signal before it is
broadcasted across a medium. Signal properties such as the amplitude, phase,
and/or frequency are manipulated over time in such a manner that the receiver
can interpret the message being conveyed by the transmitter. These electromagnetic
broadcasts often use sine wave signals, which makes them relatively straightforward
to manipulate for the purposes of conveying information. In the MATLAB script
below, we generate three sine wave-based transmissions, where information is
embedded in them via their amplitude levels (amplitude shift keying), phase
characteristics (phase shift keying), or frequency values (frequency shift keying).
In this script, we generate random binary data using the rand function and then
round it to the nearest integer (one or zero), and then map those binary values to
a corresponding amplitude, phase, or frequency value to be used by a sine wave
signal. Note that since sine wave signals are continuous waveforms, we have to
approximate this situation by using a large number of discrete points to model the
sine wave signal as continuous.

The mapping of these random binary values to the physical attributes of a
signal wave signal are shown in Figure 4.3, where we can readily observe how
the amplitude (Figure 4.3[b]), phase (Figure 4.3[c]), and frequency (Figure 4.3[d])
values change over time in order to represent the binary values being transmitted
to the receiver (see Figure 4.3[a]). In all three case, we use the exact same sine
wave signal as the basis for communicating this information, but the sine wave
characteristics are changing as a function of time.
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Code 4.1 Sending Binary Data via Sinusoidal Signal Manipulation: chapter4.m

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 % Sending binary data via sinusoidal signal manipulation
23
24 % Parameters
25 sig_len = 1000; % Signal length (in samples)
26 sampl_per_bin = 100; % Samples per binary representation
27 bin_data_len = sig_len/sampl_per_bin;

% Length of binary stream is a multiple of signal length
28 bin_data = round(rand(1,bin_data_len));
29
30 % Create sinusoidal carriers
31 sig_carrier_base = sin(2*pi*(0:(1/sampl_per_bin):

(1-(1/sampl_per_bin)))); % Baseline carrier
32 sig_carrier_freq = sin(2*2*pi*(0:(1/sampl_per_bin):

(1-(1/sampl_per_bin)))); % Double frequency
33 sig_carrier_phase = sin(2*pi*(0:(1/sampl_per_bin):

(1-(1/sampl_per_bin)))+(pi/4)); % Phase shifted by 45 degrees
34
35 % Modulate sinusoidal carrier via amplitude, phase, and frequency
36 % manipulations
37 sig_bin = []; % Binary waveform
38 sig_ask = []; % Amplitude modulated
39 sig_psk = []; % Phase modulated
40 sig_fsk = []; % Frequency modulated
41 for ind = 1:1:bin_data_len,
42 if (bin_data(ind)==1)
43 sig_bin = [sig_bin ones(1,sampl_per_bin)];
44 sig_ask = [sig_ask sig_carrier_base];
45 sig_psk = [sig_psk sig_carrier_base];
46 sig_fsk = [sig_fsk sig_carrier_base];
47 else
48 sig_bin = [sig_bin zeros(1,sampl_per_bin)];
49 sig_ask = [sig_ask 0.5*sig_carrier_base];
50 sig_psk = [sig_psk sig_carrier_phase];
51 sig_fsk = [sig_fsk sig_carrier_freq];
52 end;
53 end;

4.1.1 Source Encoding
One of the goals of any communication system is to efficiently and reliably
communicate information across a medium from a transmitter to a receiver. As a
result, it would be ideal if all the redundant information from a transmission could
be removed in order to minimize the amount of information that needs to be sent
across the channel, which would ultimately result in a decrease in the amount of
time, computational resources, and power being expended on the transmission.
Consequently, source encoding is a mechanism designed to remove redundant
information in order to facilitate more efficient communications.

The way source encoding operates is by taking a sequence of source symbols
u and mapping them to a corresponding sequence of source encoded symbols v,
vi ∈ v as close to random as possible and the components of v are uncorrelated
(i.e., unrelated). Thus, by performing this source encoding operation we hopefully
achieve some level of redundancy minimization in vi ∈ v, thus limiting the amount
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Figure 4.3 Examples of amplitude, phase, and frequency representations of binary transmissions.
These sine wave properties are the building blocks for most commonly used modulation schemes
used in digital communication systems. (a) Binary signal, (b) amplitude shift keying, (c) phase shift
keying, and (d) frequency shift keying.

of wasted radio resources employed in the transmission of otherwise predictable
symbols in u. In other words, a source encoder removes redundant information
from the source symbols in order to realize efficient transmission. Note that in
order to perform source encoding, the source symbols need to be digital.

Hands-On MATLAB Example: Source coding exploits redundancy in a
collection of data by removing it and replacing that redundancy with a short
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i
A single analog television channel occupies 6 MHz of frequency
bandwidth. On the other hand, up to eight digitally encoded
television channels can fit within the same frequency bandwidth
of 6 MHz.

codeword, thus reducing the overall amount of information. In the following
MATLAB script, we will illustrate how source coding works when it is applied to
data possessing different amounts of redundancy. Using a combination of the rand
and round functions, we generate two binary data vectors, with one possessing an
equal amount of one and zero values while the other vector possesses approximately
90% one values and 10% zero values. To compress the data in these vectors, we use
an encoding technique where we take all continuous strings of ones in each vector
and replace it with a decimal value representing the length of these strings of one.
For example, if a binary vector existed, and 15 one values exist betwen two zero
values, we would replace those 15 one values with a decimal value (or equivalent
codeword) indicating that 15 one values exist in that part of the binary vector.

Based on the implemented encoding scheme, our intuition would dictate that
the binary vector with the 90/10 ratio of one to zero values would be compressed
more relative to the binary vector with the 50/50 ratio since the former would have
a greater likelihood of having long strings of one values to compress. Referring to
Figure 4.4, our intuition is confirmed, with a significant reduction in size for the
compressed 90/10 binary data stream. On the other hand, we observe that the 50/50
binary vector does not even compress but rather grow in size. This is due to the
fact that the amount of overhead needed to replace every string of one values with
a corresponding codeword actually takes up more information than the original
binary sequence. Consequently, when performing source coding, it is usually worth
our while to compress data streams that possess obvious amounts of redundancy,
otherwise we can actually make the situation even more inefficient.

4.1.2 Channel Encoding
To protect a digital transmission from the possibility of its information being
corrupted, it is necessary to introduce some level of controlled redundancy in order
to reverse the effects of data corruption. Consequently, channel encoding is designed
to correct for channel transmission errors by introducing controlled redundancy into
the data transmission. As opposed to the redundancy that is removed during the
source encoding process, which is random in nature, the redundancy introduced by

Figure 4.4 Impact of source coding on binary transmissions.
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Code 4.2 Reducing Amount of Data Transmission Using Source Coding: chapter4.m

92 % Define parameters

93 len = 10000; % Length of binary data stream

94

95 % Have two binary sources, one 50/50 and the other 90/10 in terms of ones

96 % and zeros

97 bin1 = round(rand(1,len)); % 50/50 binary

98 bin2 = round(0.5*rand(1,len)+0.45); %90/10 binary

99

100 % Encode strings of ones in terms of the length of these strings

101 enc_bin1 = [];

102 enc_bin2 = [];

103 for ind = 1:1:len,

104 if (bin1(ind) == 1) % Encoding 50/50

105 if (ind == 1)

106 enc_bin1 = 1;

107 else

108 enc_bin1(end) = enc_bin1(end)+1;

109 end;

110 else

111 enc_bin1 = [enc_bin1 0];

112 end;

113 if (bin2(ind) == 1) % Encoding 90/10

114 if (ind == 1)

115 enc_bin2 = 1;

116 else

117 enc_bin2(end) = enc_bin2(end)+1;

118 end;

119 else

120 enc_bin2 = [enc_bin2 0];

121 end;

122 end;

123

124 % Find size of encoded binary streams

125 % (assume all one string length values possess the same number of bits)

126 ind1 = find(enc_bin1 ˜= 0);

127 ind2 = find(enc_bin2 ˜= 0);

128 [largest_ebin1,ind_largest_ebin1] = max(enc_bin1(ind1));

129 [largest_ebin2,ind_largest_ebin2] = max(enc_bin2(ind2));

130 numbits1 = length(dec2bin(largest_ebin1)-’0’);

131 numbits2 = length(dec2bin(largest_ebin2)-’0’);

132 total_size_ebin1 = length(ind1)*numbits1 + length(find(enc_bin1 == 0));

133 total_size_ebin2 = length(ind2)*numbits2 + length(find(enc_bin2 == 0));

a channel encoding is specifically designed to combat the effects of bit errors in the
transmission (i.e., the redundancy possesses a specific structure known to both the
transmitter and receiver).

In general, channel encoding operates as follows: Each vector of a source
encoded output of length K; namely, vl where l = 1, 2, ..., 2K, is assigned a unique
codeword such that the vector vl = (101010 . . .) is assigned a unique codeword
cl ∈ C of length N, where C is a codebook. During this process, the channel encoder
has introduced N−K = r controlled number of bits to the channel encoding process.
The code rate of a communications system is equal to the ratio of the number of
information bits to the size of the codeword (i.e., the code rate is equal to k/N).

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch04_new” — 2018/3/26 — 11:43 — page 124 — #8

124 Digital Communications Fundamentals

When designing a codebook for a channel encoder, it is necessary to
quantitatively assess how well or how poorly the codewords will perform in
a situation involving data corruption. Consequently, the Hamming distance is
often used to determine the effectiveness of a set of codewords contained within
a codebook by evaluating the relative difference between any two codewords.
Specifically, the Hamming distance dH(ci, cj) between any two codewords, say ci
and cj, is equal to the number of components in which ci and cj are different. When
determining the effectiveness of a codebook design, we often are looking for the
minimum Hamming distances between codewords; that is,

dH,min = min
ci ,cj∈C, i �=j

dH(ci, cj), (4.1)

since our goal is to maximize the minimum Hamming distance in a given codebook
to ensure that the probability of accidentally choosing a codeword other than the
correct codeword is kept to a minimum. For example, suppose we have a codebook
consisting of {101, 010}. We can readily calculate the minimum Hamming distance
to be equal to dH,min = 3, which is the best possible result. On the other hand,
a codebook consisting of {111, 101} possesses a minimum Hamming distance of
dH,min = 1, which is relatively poor in comparison to the previous codebook
example.

In the event that a codeword is corrupted during transmission, decoding spheres
(also known as Hamming spheres) can be employed in order to make decisions
on the received information, as shown in Figure 4.5, where codewords that are
corrupted during transmission are mapped to the nearest eligible codeword. Note
that when designing a codebook, the decoding spheres should not overlap in order
to enable the best possible decoding performance at the receiver (i.e., → dH,min =
2t + 1).

Hands-On MATLAB Example: Let us apply repetition coding to an actual
vector, using a range of repetition rates, and observe its impact when the binary
vector is exposed to random bit-flips. The MATLAB script below takes the original
binary vector bin_str and introduces controlled redundancy into it in the form of
repeating these binary values by a factor of N. For example, instead of transmitting
010, applying a repetition coding scheme with a repetition factor of N = 3 would
yield an output of 000111000. The reason this is important is that in the event
a bit is flipped from a one to a zero or from a zero to a one, which is considered
an error, the other repeated bits could be used to nullify the error at the receiver;

Figure 4.5 Example of decoding spheres.
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Q

A rate 1/3 repetition code with no source encoding would look
like:

1 → 111 = c1 (1st codeword)

0 → 000 = c2 (2nd codeword)

∴ C = {000, 111}
What are the Hamming distances for the codeword pairs
dH(111,000) and dH(111,101)?

that is, if a zero value is flipped to a one, the other two zero values will inform the
receiver that one of the bits is in error and discard that value when decoding the
incoming binary vector. Intuitively, we would assume that with the more repetition
applied to a binary vector, the more secure it is from corruption; for example, there
are circumstances = where more than one bit is corrupted, which could still yield
an error unless there are even more repeated bits to inform the receiver otherwise.

Code 4.3 Protect Data Using Simple Repetition Channel Coding: chapter4.m

151 % Define parameters
152 len = 100000; % Length of original binary data stream
153 N1 = 3; % First repetition factor; should be odd to avoid tie
154 N2 = 5; % Second repetition factor; should be odd to avoid tie
155 N3 = 7; % Third repetition factor; should be odd to avoid tie
156
157 % Generate binary data stream
158 bin_str = round(rand(1,len));
159
160 % Employ repetition code with repetition factors N1, N2, N3
161 chcode1_bin_str = zeros(1,N1*len);
162 chcode2_bin_str = zeros(1,N2*len);
163 chcode3_bin_str = zeros(1,N3*len);
164 for ind = 1:1:max([N1 N2 N3]),
165 if (ind<=N1)
166 chcode1_bin_str(ind:N1:(N1*(len-1)+ind))=bin_str;
167 end;
168 if (ind<=N2)
169 chcode2_bin_str(ind:N2:(N2*(len-1)+ind))=bin_str;
170 end;
171 if (ind<=N3)
172 chcode3_bin_str(ind:N3:(N3*(len-1)+ind))=bin_str;
173 end;
174 end;
175
176 % Corrupt both binary strings with zero-mean unit variance Gaussian
177 % noise followed by rounding (creates "bit flipping" errors)
178 noisy_bin_str = bin_str + randn(1,len);
179 rx_bin_str0 = zeros(1,len);
180 ind0 = find(noisy_bin_str >= 0.5);
181 rx_bin_str0(ind0) = 1;
182 noisy_chcode1_bin_str = chcode1_bin_str + randn(1,N1*len);
183 rx_chcode1_bin_str = zeros(1,N1*len);
184 ind1 = find(noisy_chcode1_bin_str >= 0.5);
185 rx_chcode1_bin_str(ind1) = 1;
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186 noisy_chcode2_bin_str = chcode2_bin_str + randn(1,N2*len);
187 rx_chcode2_bin_str = zeros(1,N2*len);
188 ind2 = find(noisy_chcode2_bin_str >= 0.5);
189 rx_chcode2_bin_str(ind2) = 1;
190 noisy_chcode3_bin_str = chcode3_bin_str + randn(1,N3*len);
191 rx_chcode3_bin_str = zeros(1,N3*len);
192 ind3 = find(noisy_chcode3_bin_str >= 0.5);
193 rx_chcode3_bin_str(ind3) = 1;
194
195 % Decode three encoded binary sequences
196 dec1_bin = (vec2mat(rx_chcode1_bin_str,N1)).’;
197 dec2_bin = (vec2mat(rx_chcode2_bin_str,N2)).’;
198 dec3_bin = (vec2mat(rx_chcode3_bin_str,N3)).’;
199 ind11 = find(((sum(dec1_bin,1))/N1) >= 0.5);
200 ind12 = find(((sum(dec2_bin,1))/N2) >= 0.5);
201 ind13 = find(((sum(dec3_bin,1))/N3) >= 0.5);
202 rx_bin_str1 = zeros(1,len);
203 rx_bin_str1(ind11) = 1;
204 rx_bin_str2 = zeros(1,len);
205 rx_bin_str2(ind12) = 1;
206 rx_bin_str3 = zeros(1,len);
207 rx_bin_str3(ind13) = 1;
208
209 % Calculate bit error rate
210 ber0 = sum(abs(bin_str - rx_bin_str0))/len;
211 ber1 = sum(abs(bin_str - rx_bin_str1))/len;
212 ber2 = sum(abs(bin_str - rx_bin_str2))/len;
213 ber3 = sum(abs(bin_str - rx_bin_str3))/len;

Based on the MATLAB script, we can see the impact of repetition coding on
a binary vector being corrupted by bit-flipping in an error-prone environment (see
Figure 4.6). As we introduce more controlled redundancy in the form of larger
repetition rates, the amount of bit errors present in the transmission decreases
gradually. This makes sense since as we are introducing more resources into the
transmission to make it more reliable in an error-prone environment, the rate at
which errors occur will start to decrease. However, one should note that there
is a cost-benefit trade-off here since we are introducing more resources into the
transmission but this may or may not linearly correlate with the benefits we are
obtaining.

4.1.2.1 Shannon’s Channel Coding Theorem
In digital communications, it is sometimes necessary to determine the upper limit
of the data rate for a specific digital transceiver design. Consequently, in 1949

Figure 4.6 Impact of repetition coding on binary transmissions for different repetition factors N.
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Claude Shannon published his seminar paper that addressed this topic, entitled
“Communication in the Presence of Noise” [1]. In this paper, he defined a
quantitative expression that described the limit on the data rate, or capacity, of
a digital transceiver in order to achieve error-free transmission.

Suppose one considers a channel with capacity C and we transmit data at a fixed
code rate of K/N, which is equal to Rc (a constant). Consequently, if we increase
N, then we must increase K in order to keep Rc equal to a constant. What Shannon
states is that a code exists such that for Rc = K/N < C and as N → ∞, we have the
probability of error Pe → 0. Conversely, for Rc = K/N ≥ C, Shannon indicated
that no such code exists. Hence, C is the limit in rate for reliable communications
(i.e., C is the absolute limit that you cannot go any faster than this amount without
causing errors).

So why is the result so important? First, the concept of reliability in digital
communications is usually expressed as the probability of bit error, which is
measured at the output of the receiver. As a result, it would be convenient to know
what this capacity is given the transmission bandwidth, B, the received SNR using
mathematical tools rather than empirical measurements. Thus, Shannon derived
the information capacity of the channel, which turned out to be equal to

C = B log2(1 + SNR) [b/s], (4.2)

where this information capacity tells us the achievable data rate. Note that Shannon
only provided us with the theoretical limit for the achievable capacity of a data
transmission, but he does not tell us how to build a transceiver to achieve this limit.

Second, the information capacity of the channel is useful since this expression
provides us with a bound on the achievable data rate given bandwidth B and received
SNR, employed in the ratio η = R/C, where R is the signaling rate and C is the
channel capacity. Thus, as η → 1, the system becomes more efficient. Therefore,
the capacity expression provides us with a basis for trade-off analysis between B
and SNR, and it can be used for comparing the noise performance of one modulated
scheme versus another.

4.2 Digital Modulation

In analog modulation schemes, the analog message signal modulates a continuous
wave prior to transmission across a medium. Conversely, digital modulation
involves having a digital message signal modulating a continuous waveform. As we
have seen earlier in this chapter, this can be accomplished by uniquely manipulating
the amplitude and phase information of a signal during each symbol period T based
on a specific pattern of bits. However, most digital modulation techniques possess
an intermediary step that we will focus on in this section, where collections of b
bits forming a binary message mb are mapped to a symbol, which is then used to
define the physical characteristics of a continuous waveform in terms of amplitude
and phase. In particular, for each of the possible 2b values of mb, we need a unique
signal si(t), 1 ≤ i ≤ 2b that can then be used to modulate the continuous waveform,
as shown in Figure 4.7.
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Figure 4.7 Modulation process of equivalent binary data.

In this section, we will study several different families of approaches for
mapping binary data into symbols that can then be used to modulate continuous
waveforms. These modulation scheme families are defined by which physical
characteristic or combination of characteristics are manipulated by the mapping
process in order to uniquely represent a specific bit pattern. However, there exist
various trade-offs between these different families, including how efficiently a bit is
mapped to a symbol in terms of the transmit power expended. Consequently, we
will first explore how we assess this trade-off before studying three major families
of digital modulation schemes and how they compare to each other.

4.2.1 Power Efficiency
In order to assess the effectiveness of mapping a bit to a symbol in terms of the
transmit power expended per symbol, we can employ the power efficiency metric.
Suppose we define the energy of a symbol s(t) as

Es =
T∫

0

s2(t)dt, (4.3)

where T is the period of the symbol. Then, for a modulation scheme consisting of
M symbols, we can define the average symbol energy via the following weighted
average:

Ēs = P(s1(t)) ·
∫ T

0
s2
1(t)dt + · · · + P(sM(t)) ·

∫ T

0
s2
M(t)dt, (4.4)

where P(si(t)) is the probability that the symbol si(t) occurs. Furthermore, if we
would like to calculate the average energy per bit, we can approximate this using
Ēs and dividing this quantity by b = log2(M) bits per symbol, yielding

Ēb = Ēs

b
= Ēs

log2(M)
. (4.5)

To quantitatively assess the similarity between two symbols in terms of their
physical characteristics, we define the Euclidean distance as

d2
ij =

∫ T

0
(si(t) − sj(t))2dt = E�sij , (4.6)

where �sij(t) = si(t)− sj(t). Since we are often interested in the worst-case scenario
when assessing the performance of a modulation scheme, we usually compute the
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minimum Euclidean distance; namely:

d2
min = min

si(t),sj(t),i �=j

∫ T

0
(si(t) − sj(t))2dt. (4.7)

Thus, the power efficiency of a signal set used for modulation is given by the
expression

εp = d2
min

Ēb
. (4.8)

Q

Suppose we would like to find the εp given the following
waveforms:

s1(t) = A · [u(t) − u(t − T)] = s(t)

s2(t) = −A · [u(t) − u(t − T)] = −s(t)

where u(t) is the unit step function. Compute the following:

• The minimum Euclidean distance d2
min.

• The average bit energy Ēb.
• The power efficiency εP.

4.2.2 Pulse Amplitude Modulation
Of the various physical characteristics of a signal waveform that can be manipulated
in order to convey digital information, the most obvious choice is the signal
amplitude level. Leveraging this physical characteristic, pulse amplitude modulation
(PAM) is a digital modulation scheme where the message information is encoded
in the amplitude of a series of signal pulses. Furthermore, demodulation of a PAM
transmission is performed by detecting the amplitude level of the carrier at every
symbol period.

The most basic form of PAM is binary PAM (B-PAM), where the individual
binary digits are mapped to a waveform s(t) possessing two amplitude levels
according to the following modulation rule:

• “1′′ → s1(t)
• “0′′ → s2(t)

where s1(t) is the waveform s(t) possessing one unique amplitude level while s2(t)
is also based on the waveform s(t) but possesses another unique amplitude level.
Note that the waveform s(t) is defined across a time period T and is zero otherwise.
Since the duration of the symbols is equivalent to the duration of the bits, the bit
rate for a B-PAM transmission is defined as Rb = 1/T bits per second.

The energy of the waveform s(t) is defined as

Es =
∫ T

0
s2(t)dt (Joules). (4.9)

Suppose we define s(t) as a rectangular waveform; namely,

s(t) = A · [u(t) − u(t − T)], (4.10)
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where u(t) is the unit step function and A is the signal amplitude. Furthermore,
suppose that the bit “1” is defined by the amplitude A while the bit “0” is defined by
the amplitude −A. We can subsequently write our modulation rule to be equal to

• “1" → s(t)
• “0" → −s(t)

Therefore, the symbol energy is given by Es=E−s=A2T=A2

Rb
. From this result, we can

define the energy per bit for a B-PAM transmission as

Ēb = P(1) ·
∫ T

0
s2
1(t)dt + P(0) ·

∫ T

0
s2
2(t)dt, (4.11)

where P(1) is the probability that the bit is a “1,” and P(0) is the probability that
the bit is a “0.” Thus, if we define s1(t) = s(t) and s2(t) = −s(t), then the average
energy per bit is equal to

Ēb = Es{P(1) + P(0)} = Es =
∫ T

0
s2(t)dt = A2T. (4.12)

Calculating the minimum Euclidean distance, we get

d2
min =

∫ T

0
(s(t) − (−s(t)))2dt =

∫ T

0
(2s(t))2dt = 4A2T, (4.13)

which is then plugged into (4.8) in order to yield a power efficiency result for a
B-PAM transmission of

εp = d2
min

Ēb
= 4A2T

A2T
= 4. (4.14)

As we will observe throughout the rest of this section, a power efficiency result
of 4 is the best possible result that you can obtain for any digital modulation scheme
when all possible binary sequences are each mapped to a unique symbol.

Suppose we now generalize the B-PAM results obtained for the average bit
energy, the minimum Euclidean distance, and the power efficiency and apply them
to the case when we try mapping binary sequences to one of M possible unique signal
amplitude levels, referred to as M-ary pulse amplitude modulation (M-PAM). First,
let us express the M-PAM waveform as

si(t) = Ai · p(t), for i = 1, 2, . . . , M/2 (4.15)

where Ai = A(2i − 1), p(t) = u(t) − u(t − T), and u(t) is the unit step
function. Graphically speaking, the M-PAM modulation scheme looks like the
signal constellation shown in Figure 4.8.

In order to compute the power efficieny of M-PAM, εp,M−PAM, we select the d2
min

pair s1(t) = A · p(t) and s2(t) = −A · p(t) since this pair of signal waveforms are
the closest to each other in terms of shape. Thus, using this selection of waveforms,
we can solve for the difference between them:

�s(t) = 2A · p(t), (4.16)
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Figure 4.8 M-PAM signal constellation.

which yields a minimum Euclidean distance of

d2
min = 4A2T. (4.17)

In order to calculate the average symbol energy, Ēs, we can simplify the
mathematics by exploiting the symmetry of signal constellation, which yields

Ēs = 2
M

A2T
M/2∑
i=1

(2i − 1)2

= A2T
(M2 − 1)

3
which is simplified via tables

→ Ēb = Ēs

log2(M)
= A2T(22b − 1)

3b
.

(4.18)

Finally, solving for the power efficiency yields

εp,M−PAM = 12b

22b − 1
. (4.19)

4.2.3 Quadrature Amplitude Modulation
Similar to PAM, quadrature amplitude modulation (QAM) implies some sort of
amplitude modulation. However, QAM modulation is a two-dimensional signal
modulation scheme as opposed to PAM modulation. The two dimensions of
the QAM modulation; namely, the in-phase and quadrature components, are
orthogonal to each other, which implies that one can essentially double the
transmission data rate for free. Furthermore, rectangular QAM can be thought
of as two orthogonal PAM signals being transmitted simultaneously.

Mathematically, if a rectangular QAM signal constellation consists of M
unique waveforms, this could potentially be represented as

√
M-PAM transmissions

operating simultaneously in orthogonal dimensions. Note that QAM signal
constellations could also take the form of nested circles (called circular QAM),
or any other geometric pattern that involves orthogonal modulators. Rectangular
QAM is a popular modulation scheme due to its relatively simple receiver structure,
as shown in Figure 4.9, where each dimension employs a

√
M-ary PAM detector.

In order to determine the power efficiency of M-QAM, let us first define
the mathematical representation of a signal waveform belonging to this form of
modulation:

sij(t) = Ai · cos(ωct) + Bj · sin(ωct), (4.20)
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Figure 4.9 M-QAM receiver structure.

where ωc is the carrier frequency, and Ai and Bj are the in-phase and quadrature
amplitude levels. Notice how the cosine and sine functions are used to modulate
these amplitude levels in orthogonal dimensions. Visualizing M-QAM as a signal
constellation, the signal waveforms will assume positions in both the real and
imaginary axes, as shown in Figure 4.10.

To compute the power efficiency of M-QAM, εp,M−QAM, we first need to
calculate the minimum Euclidean distance, which becomes

d2
min =

T∫
0

�s2(t)dt = 2A2T, (4.21)

where we have selected the following signal waveforms without loss of generality:

s1(t) = A · cos(ωct) + A · sin(ωct)

s2(t) = 3A · cos(ωct) + A · sin(ωct).
(4.22)

In order to derive the average symbol energy, Ēs, we leverage the expression
from M-ary PAM by replacing M with

√
M such that

Ēs = A2T
M − 1

3
, (4.23)

which can then be used to solve

Ēb = Ēs

log2(M)
= A2T

2b − 1
3b

. (4.24)

Thus, the power efficiency is equal to

εp,M−QAM = 3!b
2b − 1

. (4.25)

Hands-On MATLAB Example: QAM modulation is a very useful technique
for sending information efficiently within the same symbol period. As mentioned
previously, it exploits both the in-phase and quadrature domains in order to
transmit information in parallel down both channels orthogonally. In the MATLAB
script above, we implement a QAM transmitter and receiver that takes binary
vectors samp_I and samp_Q, modulates them to the in-phase and quadrature
channels of a QAM transmission, and then extracts these binary vectors using QAM
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Figure 4.10 M-QAM signal constellation.

demodulation. At the core of QAM modulation are the sine and cosine functions,
which are mathematically orthogonal. As we can see in the script, the in-phase
and quadrature data is modulated onto the cosine and sine wave signals at the
transmitter. At the receiver, the in-phase and quadrature information is separated
out of the received signal by exploiting this orthogonality and using trigonometric
properties.

In Figure 4.11, we can observe the usage cosine and sine waves as carriers
of information, where this information can be transmitted simultaenously
and recovered perfectly. By exploiting two dimensions for the transmission of
information, we make more efficient use of each symbol period that we use when
broadcasting data.

4.2.4 Phase Shift Keying
Phase shift keying (PSK) is a digital modulation scheme that conveys data by
changing or modulating the phase of a reference signal (i.e., the carrier wave).
Any digital modulation scheme uses a finite number of distinct signals to represent
digital data. PSK uses a finite number of phases, each assigned a unique pattern of
binary digits. Usually, each phase encodes an equal number of bits. Each pattern of
bits forms the symbol that is represented by the particular phase. The demodulator,
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Code 4.4 Decoding QAM Waveform Using I/Q Receiver: chapter4.m

383 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
384 % Decoding QAM waveform using I/Q receiver
385
386 % Define parameters
387 N_samp = 1000; % Number of samples per symbol
388 N_symb = 10; % Number of symbols in transmission
389 cfreq = 1/10; % Carrier frequency of cosine and sine carriers
390
391 % Generate inphase and quadrature channels with 2-PAM waveforms
392 chI = 2*round(rand(1,N_symb))-1;
393 chQ = 2*round(rand(1,N_symb))-1;
394 samp_I = [];
395 samp_Q = [];
396 for ind = 1:1:N_symb,
397 samp_I = [samp_I chI(ind)*ones(1,N_samp)];
398 samp_Q = [samp_Q chQ(ind)*ones(1,N_samp)];
399 end;
400
401 % Apply cosine and sine carriers to inphase and quadrature components,
402 % sum waveforms together into composite transmission
403 tx_signal = samp_I.*cos(2.*pi.*cfreq.*(1:1:length(samp_I)))

+ samp_Q.*sin(2.*pi.*cfreq.*(1:1:length(samp_Q)));
404
405 % Separate out inphase and quadrature components from composite

Figure 4.11 Example of quadrature amplitude modulation waveform using an in-phase/quadrature
receiver. (a) In-phase signal component, and (b) quadrature signal component.

which is designed specifically for the symbol set used by the modulator, determines
the phase of the received signal, and maps it back to the symbol it represents, thus
recovering the original data. This requires the receiver to be able to compare the
phase of the received signal to a reference signal. Such a system is termed coherent.
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PSK characterizes symbols by their phase. Mathematically, a PSK signal
waveform is represented by

si(t) = A cos (2π fct + (2i − 1)
π

m
), for i = 1, ..., log2 m, (4.26)

where A is the amplitude, fc is carrier frequency, and (2i − 1) π
m is the phase offset

of each symbol. PSK presents an interesting set of trade-offs with PAM and QAM.
In amplitude modulation schemes, channel equalization is an important part of
decoding the correct symbols. In PSK schemes, the phase of the received signal is
much more important than the amplitude information.

There are several types of PSK modulation schemes based on the number of
M possible phase values a particular PSK waveform can be assigned. One of the
most popular and most robust is binary PSK, or B-PSK, modulation, whose signal
constellation is illustrated in Figure 4.12. In general, the modulation rule for B-PSK
modulation is the following:

“1” → s1(t) = A · cos(ωct + θ)

“0” → s2(t) = −A · cos(ωct + θ)

= A · cos(ωc(t) + θ + π)

= −s1(t).

(4.27)

In other words, the two signal waveforms that constitute a B-PSK modulation
scheme are separated in phase by θ .

In order to derive the power efficiency of a B-PSK modulation scheme, εp,BPSK,
we first need to compute the minimum Euclidean distance d2

min by employing the
definition and solving for

d2
min =

T∫
0

(s1(t) − s2(t))2dt

= 4A2

T∫
0

cos2(ωct + θ)dt

Figure 4.12 BPSK signal constellation.
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i

Notice how in (4.28) how the second term disappeared from the
final result. This is due to the fact that the second term possessed
a carrier frequency that was twice that of the original signal. Since
the carrier signal is a periodic sinusoidal waveform, integrating
such a signal possessing such a high frequency would result in
the positive portion of the integration canceling out the negative
portion of the integration, yielding an answer than is close to zero.
Consequently, we refer to this term as a double frequency term.
Also note that many communication systems filter their received
signals, which means the probability of filtering out the double
frequency term is also quite high.

= 4A2T
2

+ 4A2

2

T∫
0

cos(2ωct + 2θ)dt

= 2A2T. (4.28)

Note that another way for computing d2
min is to use the concept of correlation,

which describes the amount of similarity between two different signal waveforms.
In this case, we can express the minimum Euclidean distance as

d2
min =

T∫
0

(s2(t) − s1(t))2dt = Es1 + Es2 − 2ρ12 (4.29)

where the symbol energy for symbol i, Esi , and the correlation between symbols 1
and 2, ρ12, are given by

Esi =
T∫

0

s2
i (t)dt and ρ12 =

T∫
0

s1(t)s2(t)dt.

Employing the definition for Ēb, we can now solve for the average bit energy
of the B-PSK modulation scheme by first solving for the symbol energies of the two
signal waveforms and then averaging them; that is,

Es1 =
T∫

0

s2
1(t)dt = A2

T∫
0

cos2(ωct + θ)dt

= A2T
2

+ A2

2

T∫
0

cos(2ωct + 2θ)dt

= A2T
2

Es2 = A2T
2

Ēb = P(0) · Es2 + P(1) · Es1 = A2T
2

.

(4.30)
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Note that since the number of bits represented by a single symbol is equal to
one, and both the bit energy and symbol energy are equivalent.

Finally, applying the definition for the power efficiency, we get the following
expression:

εp,BPSK = d2
min

Ēb
= 4. (4.31)

This is supposed to be the largest possible value for εp for a modulation scheme
employing all possible signal representations; that is, M = 2b waveforms. Notice
when using the correlation approach to calculate the minimum Euclidean distance,
in order to get a large εp, we need to maximize d2

min, which means we want ρ12 < 0.
Thus, to achieve this outcome, we need the following situation:

Es1 = Es2 = E = A2T/2, (4.32)

which means d2
min = 2(E − ρ12) and consequently ρ12 = −E.

Q

Show that for the following signal waveforms:

s1(t) = A · cos(ωct + θ)

s2(t) = 0

the power efficiency is equal to εp = 2.

Q

Show that for the following signal waveforms:

s1(t) = A · cos(ωct + θ)

s2(t) = A · sin(ωct + θ)

the power efficiency is equal to εp = 2.

So far we have studied a PSK modulation scheme that consists of only just one
of two waveforms. We will now expand our PSK signal constellation repertoire to
include four distinct waveforms per modulation scheme. In quadrature PSK (QPSK)
modulation, a signal waveform possesses the following representation:

si(t) = ±A · cos(ωct + θ) ± A · sin(ωct + θ), (4.33)

where each signal waveform possesses the same amplitude but one of four possible
phase values. This kind of phase modulation is illustrated by the signal constellation
diagram shown in Figure 4.13, where each waveform is located at a different phase
value.

In order to derive the power efficiency of QPSK, εp,QPSK, we first need to solve
for the minimum Euclidean distance, d2

min, which is equal to

d2
min =

T∫
0

�s2(t)dt = 2A2T. (4.34)
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Figure 4.13 QPSK signal constellation.

Next, we would like to find Ēb, which requires us to average over all the signal
waveforms. Consequently, this is equal to

Ēb = (Es1 + Es2 + Es3 + Es4)/4
log2(M)

= A2T
2

, (4.35)

where the symbol energy of all four symbols is equal to Es1 = Es2 = Es3 = Es4 =
A2T. Finally, solving for the power efficiency using (4.8), we get

εp,QPSK = d2
min

Ēb
= 4, (4.36)

which is the same as BPSK but with 2 bits per symbol, making this a fantastic result!
Finally, let us study the general case when a PSK modulation scheme has a choice

of M possible phase values, where the distance of a signal constellation point to the
origin is always a constant and the signal constellation consists of M equally spaced
points on a circle. Referred to as M-PSK, a signal waveform can be mathematically
represented as

si(t) = A · cos
(

ωct + 2π i
M

)
, for i = 0, 1, 2, . . . , M − 1. (4.37)

Note that there are several advantages and disadvantages with this modulation
scheme. For instance, as M increases the spacing between signal constellation points
decreases, thus resulting in a decrease in error robustness. Conversely, having
the information encoded in the phase results in constant envelope modulation,
which is good for nonlinear power amplifiers and makes the transmission robust to
amplitude distortion channels.

Regarding the derivation of the power efficiency for an M-PSK modulation
scheme, εp,M−PSK, suppose we define two adjacent M-PSK signal waveforms as
s1(t) = A · cos(ωct) and s2(t) = A · cos(ωct + 2π/M). Calculating the minimum
Euclidean distance using

d2
min = Es1 + Es2 − 2ρ12 (4.38)
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where we define the symbol energy as

Esi =
T∫

0

s2
i (t)dt = A2T

2
, for i = 1, 2, (4.39)

and the correlation between the two signal waveforms as

ρ12 =
T∫

0

s1(t)s2(t)dt = A2T
2

cos
(

2π

M

)
, (4.40)

this yields

d2
min = A2T

(
1 − cos

(
2π

M

))
. (4.41)

The average bit energy Ēb is equal to Ēb = Ēs
log2(M)

= Ēs
b , where Ēs = A2T/2.

Using the definition for the power efficiency from (4.8), we see that

εp,M−PSK = 2b
(

1 − cos
(

2π

M

))
= 4b sin2

(
π

2b

)
. (4.42)

4.2.5 Power Efficiency Summary
After examining the power efficiency performance of several different modulation
schemes, it is important to assess the trade-offs between the different schemes such
that we can make the appropriate design decisions in the future when implementing
a digital communication system. To determine how much power efficiency we
are losing relative to εp,QPSK, which possesses the best possible result, we use the
following expression:

δSNR = 10 · log10

(
εp,QPSK

εp,other

)
. (4.43)

Using this expression, we created a table of δSNR values for the modulation
schemes studied in this chapter, as shown in Table 4.1.

From Table 4.1, notice how the two-dimensional modulation schemes perform
better than the one-dimensional modulation schemes. Furthermore, notice how
all of the modulation schemes studied are linear modulation schemes, which means
they possess a similar level of receiver complexity. Given these insights on the power
efficiency performance of these modulation schemes, we now turn our attention to
the robustness of a modulation technique in the presence of noise.

Table 4.1 δSNR Values of Various Modulation Schemes
M b M-ASK M-PSK M-QAM
2 1 0 0 0
4 2 4 0 0
8 3 8.45 3.5 —
16 4 13.27 8.17 4.0
32 5 18.34 13.41 —
64 6 24.4 18.4 8.45
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Hands-On MATLAB Example: Noise introduced by a transmission medium can
potentially result in symbols being decoded in error. In the following MATLAB
script, we will examine the behavior of how the introduction of noise can obfuscate
the true identity of an intercepted symbol. Specifically, we will compare the
originally transmitted symbols and the noisy received symbols using a visual
representation referred to as a signal constellation diagram, which plots the
locations of symbols across a 2-axis plot with an in-phase axis and a quadrature
axis. Notice that we are considering three different waveforms in this example: 4-
PAM, 4-QAM, and QPSK. For each of these waveforms, we generated an alphabet
of different symbols that each can produce. The randomly generated binary data
streams representing in-phase and quadrature information are mapped to these
different waveform symbols for each modulation scheme. Then, we introduce
Gaussian noise to the three transmissions using the randn function.

The before-and-after signal constellation plots for the 4-PAM, 4-QAM, and
QPSK modulated transmissions are shown in Figure 4.14. The original symbols are

Figure 4.14 Examples of four-level pulse amplitude modulation, quadrature amplitude modulation,
and quadrature phase shift keying waveforms. (a) Four-level pulse amplitude modulation, (b) four-
level quadrature amplitude modulation, and (c) four-level quadrature phase shift keying.
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Code 4.5 Generating Four Level Pulse Amplitude Modulation, Quadrature Amplitude
Modulation, and Quadrature Phase Shift Keying Waveforms: chapter4.m

232 % Define parameters
233 len = 10000; % Length of binary string
234 nvar = 0.15; % Noise variance
235
236 % Generate the random bit streams that have already been demultiplexed
237 % from a single high speed data stream
238 bin_str1 = round(rand(1,len)); % Inphase data stream
239 bin_str2 = round(rand(1,len)); % Quadrature data stream
240
241 % Perform mapping of binary streams to symbols
242 ind_wavefm = 2.*bin_str2 + 1.*bin_str1; % Create waveform indices
243 wavefm_4pam = zeros(1,len); % 4-PAM
244 wavefm_4qam = zeros(1,len); % 4-QAM
245 wavefm_qpsk = zeros(1,len); % QPSK
246 symb_4pam = [-3 -1 3 1];
247 symb_4qam = [-1+i 1+i -1-i 1-i];
248 symb_qpsk = [exp(i*(pi/5+pi/2)) exp(i*(pi/5+pi)) exp(i*(pi/5+0))

exp(i*(pi/5+3*pi/2)) ];
249 for ind = 1:1:4,
250 wavefm_4pam(find(ind_wavefm == (ind-1))) = symb_4pam(ind);
251 wavefm_4qam(find(ind_wavefm == (ind-1))) = symb_4qam(ind);
252 wavefm_qpsk(find(ind_wavefm == (ind-1))) = symb_qpsk(ind);
253 end;
254
255 % Add complex zero-mean white Gaussian noise
256 noise_signal = (1/sqrt(2))*sqrt(nvar)*randn(1,len)

+ i*(1/sqrt(2))*sqrt(nvar)*randn(1,len);
257 rx_wavefm_4pam = wavefm_4pam + noise_signal;
258 rx_wavefm_4qam = wavefm_4qam + noise_signal;
259 rx_wavefm_qpsk = wavefm_qpsk + noise_signal;

shown as little red cross marks in the center of a cloud of corrupted received symbols
after the noise is added to them. This is occurring since whenever a transmission
is occurring over a noisy channel, the symbols that are sent over this channel are
being displaced from their original coordinates in the in-phase/quadrature plane
by the complex Gaussian noise. This displacement is what makes it difficult for the
receiver to decode these symbols without any error since the noise might sufficiently
displace these symbols closer to another nearby symbol location that is part of the
signal constellation. For all of these modulation schemes shown in Figure 4.14(a) (4-
PAM), Figure 4.14(b) (4-QAM), and Figure 4.14(c) (QPSK), there is a nonneglible
probability that these symbols have been moved closer to another point in the overall
signal constellation, which would result in an error in decode that would translate
into a bit error.

4.3 Probability of Bit Error

One of the most commonly used quantitative metrics for measuring the performance
of a digital communication system is the probability of BER, which is the probability
that a bit transmitted will be decoded incorrectly. This metric is very important
when assessing whether the design of a digital communication system meets the
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specific error robustness requirements of the application to be supported (e.g.,
voice, multimedia, or data). Furthermore, having a metric that quantifies error
performance is helpful when comparing one digital communication design with
another. Consequently, in this section we will provide a mathematical introduction
to the concept of BER.

Suppose that a signal si(t), i = 1, 2 was transmitted across an AWGN channel
with noise signal n(t), and that a receiver intercepts the signal r(t). The objective of
the receiver is to determine whether either s1(t) or s2(t) was sent by the transmitter.
Given that the transmission of either s1(t) or s2(t) is a purely random event, the
only information that the receiver has about what was sent by the transmitter is the
observed intercepted signal r(t), which contains either signal in addition to some
noise introduced by the AWGN channel.

Given this situation, we employ the concept of hypothesis testing [2] in order
to set up a framework by which the receiver can decide on whether s1(t) or s2(t)
was sent based on the observation of the intercepted signal r(t). Thus, let us employ
the following hypothesis testing framework:

H1 : r(t) = s1(t) + n(t), 0 ≤ t ≤ T

H0 : r(t) = s2(t) + n(t), 0 ≤ t ≤ T

where H0 and H1 are Hypothesis 0 and Hypothesis 1.
Leveraging this framework, we next want to establish a decision rule at the

receiver such that it can select which waveform was sent based on the intercept
signal. Suppose we assume that s1(t) was transmitted. In general, we can determine
the level of correlation between two signals x(t) and y(t) over the time interval
0 ≤ t ≤ T using the expression

T∫
0

x(t)y(t)dt.

Consequently, our decision rule on whether s1(t) or s2(t) was transmitted given
that we observe r(t) is defined as

T∫
0

r(t)s1(t)dt ≥
T∫

0

r(t)s2(t)dt, (4.44)

where we assume that s1(t) was transmitted. Recall that correlation tells us how
similar one waveform is to another waveform. Therefore, if the receiver knows the
appearance of s1(t) and s2(t), we can then determine which of these two waveforms
is more correlated to r(t). Since s1(t) was assumed to be transmitted, ideally the
received signal r(t) should be more correlated to s1(t) than s2(t).

On the other hand, what happens if some distortion, interference, and/or noise
is introduced in the transmission channel such that the transmitted signal waveforms
are corrupted? In the situation where a transmitted signal waveform is sufficiently
corrupted such that it appears to be more correlated to another possible signal
waveform, the receiver could potentially select an incorrect waveform, thus yielding
an error event. In other words, assuming s1(t) was transmitted, an error event occurs
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when
T∫

0

r(t)s1(t)dt ≤
T∫

0

r(t)s2(t)dt. (4.45)

Since r(t) = s1(t) + n(t), we can substitute this into the error event in order to
obtain the decision rule

T∫
0

s2
1(t)dt +

T∫
0

n(t)s1(t)dt ≤
T∫

0

s1(t)s2(t)dt +
T∫

0

n(t)s2(t)dt

Es1 − ρ12 ≤
T∫

0

n(t)(s2(t) − s1(t))dt

Es1 − ρ12 ≤ z.

From this expression, we observe that both Es1 and ρ12 are deterministic
quantities. On the other hand, z is based on the noise introduced by the transmission
channel, and thus it is a random quantity that requires some characterization. Since
n(t) is a Gaussian random variable, then z is also a Gaussian random variable. This
is due to the fact that the process of integration is equivalent to a summation across
an infinite number of samples, and since we are summing up Gaussian random
variables, the result in is also a Gaussian random variable. With z ∼ N (0, σ 2), we
now need to calculate the variance of z, σ 2, which can be solved as follows:

σ 2 = E{z2} = N0

2

T∫
0

(s1(t) − s2(t))2dt

= N0

2
(Es1f :ch44modsqpsk + Es2 − 2ρ12) → Assume Es1 = Es2 = E

= N0(E − ρ12),

where E = Ei =
T∫
0

s2
i (t)dt and ρ12 =

T∫
0

s1(t)s2(t)dt. Note that we are assuming that

the channel is introducing zero-mean noise, which means the sum of these noise
contributions; that is, z will also be zero-mean.

With both deterministic and random quantities characterized, we can now
proceed with the derivation for the probability of bit error. The probability of
an error occurring given that a “1” was transmitted; that is, P(e|1) is equal to

P(z ≥ E − ρ12) = Q
(

E − ρ12

σ

)
→ Since z ∼ N (0, σ 2)

and E − ρ12 is constant

= Q



√

(E − ρ12)2

σ 2


 → Use σ 2 = N0(E − ρ12)

= Q

(√
E − ρ12

N0

)
,
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where the Q-function is defined as

Q(x) = 1√
2π

∞∫
x

e−t2/2dt. (4.46)

The next step is to optimize the probability of bit error by optimizing the
probability of error by minimizing P(e|1), which can be achieved by optimizing the
correlation term ρ12. Intuitively, the best choice we can make is when s2(t) = −s1(t),
which gives us ρ12 = −E. Consequently, this result yields

P(e|1) = Q



√

2Ēb

N0


 . (4.47)

Note that when Es1 �= Es2 , we can then use d2
min = Es1 + Es2 − 2ρ12, which

yields the following expression for the probability of bit error:

Pe = Q



√

d2
min

2N0


 . (4.48)

Q
Show that the total probability of bit error is equal to:

Pe = P(e|1)P(1) + P(e|0)P(0) = Q

(√
E − ρ12

N0

)
(4.49)

When dealing with a large number of signal waveforms that form a modulation
scheme, the resulting probability of error, Pe, is expressed as a sum of pairwise error
probabilities; that is, the probability of one received symbol being another specific
received symbol. The pairwise error probability of si(t) being decoded when sj(t)
was transmitted is given as

Q

(
d2

ij

2N0

)
, (4.50)

where N0 is the variance of the noise. An important note here is that we are
assuming the noise is AWGN, since Q functions apply specifically to Gaussian
random variables. Therefore, the complete expression for Pe can be expressed as

Q

(
d2

min

2N0

)
≤ Pe ≤ Q

(
d2

1j

2N0

)
+ . . . + Q

(
d2

Mj

2N0

)
, i �= j, (4.51)

where the second half of the relationship is the summation of every single pairwise
error probability.

Hands-On MATLAB Example: We have previously observed the impact of a
noisy channel on a received signal constellation, where the signal constellation
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points corresponding to specific symbols of the modulation scheme are potentially
shifted to other nearby signal constellation points and risk being incorrectly decoded
at the receiver. In the following MATLAB script, we will translate these shifts of
signal constellation points into actual BER values in order to quantify the actual
severity of the noise being introduced by the channel. The code below employs a
nearest neighbor approach for decoding symbols at the receiver, where a received
signal constellation point that has been corrupted by noise is decoded by mapping it
to the nearest originally transmitted signal constellation point. Using the Euclidean
distance, we can calculate the distance between a received signal constellation point
with all possible signal constellation point options, map it to the one with the
shortest Euclidean distance, and then decode the symbol into the corresponding
binary word.

Using this MATLAB script and the Euclidean distance approach for deciding
on the nearest neighbors, we can decode the received messages sent across the
noisy channel. However, since there are instances where the noise is significant
enough that it can move a symbol much closer to another signal constellation
point, we should anticipate that there might be several symbols that have been
incorrectly decoded. Figure 4.15 presents the BER results for our nearest neighbor
decoding scheme for 4-PAM, 4-QAM, and QPSK modulation. Although the first
two modulation schemes do not possess a substantial amount of error, the QPSK
modulation scheme possesses a large amount of incorrect decisions. This is due
to the fact of how the signal constellation points are spaced out, with the QPSK
signal constellation points being closer together relative to the other two modulation
schemes. As a result, for the same amount of noise, the QPSK modulation will
perform noticeably worse compared to the other two schemes.

4.3.1 Error Bounding
Computing each pairwise error probability is not always practical. It is possible to
create an upper and lower bound on Pe by computing only the pairwise errors of
points that are within one degree of the point of interest. Consider the behavior
of the Q function Q(.). As the input to Q(.) increases, the resulting output of
the Q function approaches zero. You will find that computing the pairwise error
probability of points farther away yields negligible contributions to the total Pe, but
can save a significant amount of time as well as cycles. Thus, an accurate estimate
of P(e) can be computed from the following bounds.

These upper and lower bounds can be expressed as

Q

(
d2

min

2N0

)
≤ P (e) ≤

∑
i∈I

Q

(
d2

ij

2N0

)
, (4.52)

where I is the set of all signal waveforms within the signal constellation that are
immediately adjacent to the signal waveform j. In order to accurately assess the
performance of a communications system, it must be simulated until a certain
number of symbol errors are confirmed [3]. In most cases, 100 errors will give
a 95% confidence interval, which should be employed later on in this book in
order to characterize the bit error rate of any digital communication system under
evaluation.
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Code 4.6 Decode Messages from Previous Example Using Euclidean Distance: chapter4.m

290 % Go through every received waveform and determine Euclidean distance
291 % between received waveform and the available waveforms
292 eucl_dist_4pam = zeros(4,len);
293 eucl_dist_4qam = zeros(4,len);
294 eucl_dist_qpsk = zeros(4,len);
295 for ind = 1:1:4,
296 eucl_dist_4pam(ind,1:1:len) = abs(symb_4pam(ind).*ones(1,len)

- rx_wavefm_4pam);
297 eucl_dist_4qam(ind,1:1:len) = abs(symb_4qam(ind).*ones(1,len)

- rx_wavefm_4qam);
298 eucl_dist_qpsk(ind,1:1:len) = abs(symb_qpsk(ind).*ones(1,len)

- rx_wavefm_qpsk);
299 end;
300
301 % Select shortest Euclidean distances
302 [mdist_4pam,min_ind_4pam] = min(eucl_dist_4pam);
303 [mdist_4qam,min_ind_4qam] = min(eucl_dist_4qam);
304 [mdist_qpsk,min_ind_qpsk] = min(eucl_dist_qpsk);
305
306 % Decode into estimated binary streams
307 bin_str_est_4pam = dec2bin(min_ind_4pam-ones(1,len)).’;
308 bin_str_est_4qam = dec2bin(min_ind_4qam-ones(1,len)).’;
309 bin_str_est_qpsk = dec2bin(min_ind_qpsk-ones(1,len)).’;
310
311 % Calculate bit error rate
312 ber_4pam = sum([abs((bin_str_est_4pam(1,:)-’0’) - bin_str2) ...
313 abs((bin_str_est_4pam(2,:)-’0’) - bin_str1)])/(2*len);
314 ber_4qam = sum([abs((bin_str_est_4qam(1,:)-’0’) - bin_str2) ...
315 abs((bin_str_est_4qam(2,:)-’0’) - bin_str1)])/(2*len);
316 ber_qpsk = sum([abs((bin_str_est_qpsk(1,:)-’0’) - bin_str2) ...
317 abs((bin_str_est_qpsk(2,:)-’0’) - bin_str1)])/(2*len);

Figure 4.15 Impact of noise on modulation scheme performance.

Hands-On MATLAB Example: We have previosly observed the performance of
three simple communication systems using different modulation schemes operating
in a noisy environment. Although the results displayed in Figure 4.15 were
insightful, we often want to observe how a communication system performs across
a broad range of conditions, especially as the intensity of noise varies. In this
MATLAB script, we examine the performance of a simple binary communication
system across a range of different channel environments possessing varying degrees
of noise.
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Code 4.7 Create Waterfall Curves for the Bit Error Rate of a Communication System via
Monte Carlo: chapter4.m

336 % Define parameters
337 len = 1000; % Length of individual data transmission
338 N_snr = 9; % Number of SNR values to evaluation
339 N_tx = 100; % Number of transmissions per SNR
340 nvar = [(10.ˆ((1:1:N_snr)/10)).ˆ(-1)]; % Noise variance values
341
342 ber_data = zeros(N_snr,N_tx);
343 for ind = 1:1:N_snr, % Different SNR values
344 for ind1 = 1:1:N_tx, % Different transmissions for same SNR value
345
346 % Generate BPSK waveform (we will keep this the same for each
347 % SNR value for now)
348 tx_sig = 2*round(rand(1,len))-1;
349
350 % Create additive noise
351 noise_sig = sqrt(nvar(ind))*randn(1,len);
352
353 % Create received (noisy) signal
354 rx_sig = tx_sig + noise_sig;
355
356 % Decode received signal back to binary
357 decode_bin_str = zeros(1,len);
358 decode_bin_str(find(rx_sig >= 0)) = 1;
359
360 % Determine and store bit error rate
361 ber_data(ind,ind1) = sum(abs(decode_bin_str - (tx_sig+1)/2))/len;
362 end;
363 end;
364
365 % Calculate mean bit error rate and its standard deviation
366 mean_ber = mean(ber_data,2).’;
367 std_ber = std(ber_data,’’,2).’;

The end result of this analysis, which explores transmission reliability when
operating across an AWGN channel, is something referred to as a waterfall curve,
as shown in Figure 4.16. Waterfall curves are extensively used by researchers and
designers in the digital communications community as a way of characterizing the
error robustness of a communication system operating in a noisy environment.
The reason why we call these plots waterfall curves is due to the shape they make
whenever we generate them using either theoretical analyses or via experimentation
(computer simulation or hardware testing). The x-axis describes the SNR of the
operating environment and is a gauge of how much noise is present in the channel.
The y-axis describes the probability of bit error as a ratio of corrupted bits versus
total number of bits transmitted. In Figure 4.16, we not only show the mean
BER curve but also the standard deviation above and below the mean in order
to establish the degree of confidence we have with respect to the technique we used
to generate these curves. Since we are using Monte Carlo techniques for generating
the transmission and then corrupting the bits with additive noise, we need to make
sure that we conduct this experiment long enough such that the performance results
we obtain are reliable (e.g., running an experiment and only obtaining one bit error
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Figure 4.16 Example of waterfall curves for the bit error rate of a communication system employing
binary phase shift keying via Monte Carlo simulation techniques.

is not statistically adequate with respect to an accurate assessment of the BER for
that communication system). Thus, having the standard deviation curves close to
the mean BER curve shows that an adequate number of bits have been used in the
experiment, and that a sufficient number of errors have been obtained. Note that
for different SNR values, the amount of errors obtained might be different for the
same total number of bits transmitted. Consequently, we often have to transmit
more bits at higher SNR values in order to obtain an adequate number of bit errors.

4.4 Signal Space Concept

Until this point we have studied digital communication systems from a
signal waveform perspective. Leveraging this perspective, we have developed
mathematical tools for analyzing the power efficiency and BER of different
modulation schemes. However, there are several instances where the use of a signal
waveform framework can be tedious or somewhat cumbersome. In this section, we
will introduce another perspective on how to characterize and analyze modulation
scheme using a different mathematics representation: signal vectors.

Suppose we define φj(t) as an orthonormal set of functions over the time interval
[0, T] such that

T∫
0

φi(t)φj(t)dt =
{

1 i = j
0 otherwise

Given that si(t) is the ith signal waveform, we would like to represent this
waveform as a sum of several orthonormal functions; that is,

si(t) =
N∑

k=1

sikφk(t), (4.53)

which can be equivalently represented by the vector

si = (si1, si2, si3, . . . siN), (4.54)
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where the elements of the vector si define the amplitude scaling of each orthonormal
function used to represent the waveform. An illustration of a signal waveform
represented by three orthonormal functions is shown in Figure 4.17. Consequently,
given this relationship between the signal waveform and the orthonormal functions,
where the former can be represented as the weighted sum of the latter, we can readily
describe the signal waveform as a simple vector, which we will see next possesses
the advantage of enabling us to employ relatively straightforward mathematical
operations based on linear algebra.

In order to find the vector elements, sil, we need to solve the expression

T∫
0

si(t)φl(t)dt =
N∑

k=1

sik

T∫
0

φk(t)φl(t)dt = sil, (4.55)

which is essentially a dot product or projection of the signal waveform si(t) on the
orthonormal function φl(t). At the same time, if we perform the vector dot product
between the signal waveforms si(t) and sj(t), we get a correlation operation that is
equal to

T∫
0

si(t)sj(t)dt = si · sj = ρij, (4.56)

while the energy of a signal si(t) is equal to

Esi =
T∫

0

s2
i (t)dt = si · si = ||si||2. (4.57)

All of these mathematical operations will be employed when determining the
power efficiency of a modulation scheme or deriving the optimal decision rule for
a receiver.

Figure 4.17 Sample vector representation of si(t) in three-dimensional space using basis functions
φ1(t), φ2(t), and φ3(t).
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Suppose we would like to compute the power efficiency for a modulation scheme
using a signal vector approach rather than a signal waveform approach. The first
step would be to calculate the minimum Euclidean distance, which can be solved
using the following:

d2
min =

T∫
0

�s2
ij(t)dt =

T∫
0

(si(t) − sj(t))2dt

= ||si − sj||2 = (si − sj) · (si − sj)

= Esi + Esj − 2ρij

where the correlation term between signal waveforms si(t) and sj(t) is given by

ρij =
T∫

0

si(t)sj(t)dt = si · sj. (4.58)

In order to solve for the power efficiency, we choose a set of orthonormal basis
functions φi(t), i = 1, 2, . . . , k, where k is the dimension of the signal vector space.
Given this set of functions, we can now represent the vector si, i = 1, 2, . . . , M
where si = (si1, si2, . . . sik) and

sij =
T∫

0

si(t)φj(t)dt. (4.59)

Consequently, using the vector representations for the signals and the
orthonormal functions, we can calculate the minimum Euclidean distance:

d2
min = min

i �=j
||si − sj||2, (4.60)

the average symbol and bit energy values:

Ēs = 1
M

M∑
i=1

||si||2

Ēb = Ēs/ log2(M),

(4.61)

and the power efficiency:
εp = d2

min/Ēb. (4.62)

4.5 Gram-Schmidt Orthogonalization

In mathematics, particularly linear algebra and numerical analysis, the Gram-
Schmidt orthogonalization process is a method for creating an orthonormal
set of functions in an inner product space such as the Euclidean space
Rn. The Gram-Schmidt orthogonalization process takes a finite set of signal
waveforms {s1(t), . . . , sM(t)} and generates from it an orthogonal set of functions
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{φ1(t), . . . , φi(t)} that spans the space Rn. Note that an orthonormal function
possesses the following property:

T∫
0

φi(t)φj(t)dt =
{

1 i = j
0 otherwise

.

Furthermore, it is possible to represent a signal waveform si(t) as the weighted
sum of these orthonormal basis functions; that is,

si(t) =
N∑

k=1

sikφk(t). (4.63)

However, what we need now is an approach to generate the set of orthonormal
basis functions {φj(t)}.

To derive a set of orthogonal basis functions {φ1(t), . . . , φi(t)} from a set of
signal waveforms denoted by {s1(t), . . . , sM(t)}, let us first start with s1(t) and
normalize it:

φ1(t) = s1(t)√
Es1

where Es1 is the energy of the signal s1(t). This normalized version of the signal
waveform s1(t) will serve as our first orthonormal basis function from which we
will construct the rest of our orthonormal basis function set. In other words, we are
effectively bootstrapping a set of orthonormal basis functions based on the existing
signal waveforms of the modulation scheme to be used. Note that we can represent
s1(t) as

s1(t) = √
Es1φ1(t) = s11φ1(t)

where the coefficient s11 = √
Es1 and the orthonormal function φ1(t) satisfy the

unit energy constraint as required.
Next, we would like to create the second orthonormal function, φ2(t). In order

to accomplish this task, we use the signal waveform s2(t) as a starting point.
However, s2(t) may contain elements of φ1(t), and thus we need to remove this
component before normalizing it in order to transform this waveform into φ2(t).
To achieve this, we first determine how much of φ1(t) is contained within s2(t) by
taking the dot product between these two functions and determining how much
s2(t) projects onto φ1(t); that is,

s21 =
T∫

0

s2(t)φ1(t)dt.

To help in getting the basis function φ2(t), we define the intermediate function:

g2(t) = s2(t) − s21φ1(t),

which is orthogonal to φ1(t) over the interval 0 ≤ t ≤ T by virtual of the fact that
we have removed the φ1(t) component from s2(t). Finally, normalizing g2(t) yields
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the basis function φ2(t):

φ2(t) = g2(t)√
T∫
0

g2
2(t)dt

(4.64)

which can be expanded to

φ2(t) = s2(t) − s21φ1(t)√
Es2 − s2

21

(4.65)

where Es2 is the energy of the signal s2(t). A quick sanity check clearly shows that
the orthonormal basis function φ2(t) satisfies the constraint

T∫
0

φ2
2(t)dt = 1 and

T∫
0

φ1(t)φ2(t)dt = 0

In general, we can define the following functions that can be employed in an
iterative procedure for generating a set of orthonormal basis functions:

gi(t) = si(t) −
i−1∑
j=1

sijφj(t)

sij =
T∫

0

si(t)φj(t)dt, j = 1, 2, . . . , i − 1

φi(t) = gi(t)√
T∫
0

g2
i (t)dt

, i = 1, 2, . . . , N.

(4.66)

We will now work out an example that deals with the Gram-Schmidt
orthogonalization process.

An Example: Suppose we want to perform the Gram-Schmidt orthogonalization
procedure of the signals shown in Figure 4.18 in the order s3(t), s1(t), s4(t), s2(t)
and obtain a set of orthonormal functions {φm(t)}. Note that the order in which the
signal waveforms are employed to generate the orthonormal basis functions is very
important, since each ordering of signal waveforms can yield a potentially different
set of orthonormal basis functions.

Starting with s3(t), we get

φ1(t) = s3(t)√
Es3

= s3(t)√
3

. (4.67)
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Figure 4.18 Example signal waveforms.

Then, leveraging the result for φ1(t), we then derive the orthonormal basis
function φ2(t) using s1(t):

g2(t) = s1(t) − s12φ1(t) = s1(t) − 2
3

s3(t) =



1/3, 0 ≤ t < 2
2/3, 2 ≤ t < 3
0, t ≥ 3

∴ φ2(t) = g2(t)√
T∫
0

g2
2(t)dt

=



1/
√

6, 0 ≤ t < 2
2/

√
6, 2 ≤ t < 3

0, t ≥ 3
.

(4.68)

We subsequently repeat this operation for s4(t):

g3(t) = s4(t) −
2∑

j=1

s4jφj(t) = 0

∴ φ3(t) = 0,

(4.69)

but we notice the resulting φ3(t) is equal to zero. This implies that the signal
waveform s4(t) can be entirely characterized by only φ1(t) and φ2(t). Finally, for
s2(t), we get the following:

g4(t) = s2(t) −
3∑

j=1

s2jφj(t) = 0

∴ φ4(t) = g4(t)√
T∫
0

g2
4(t)dt

= s2(t)√
2

.
(4.70)
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Consequently, with the orthonormal basis functions {φ1(t), φ2(t), φ4(t)}
defined, we can now express the four signal waveforms as

• s1 = (2/
√

3,
√

6/3, 0),
• s2 = (0, 0,

√
2),

• s3 = (
√

3, 0, 0),
• s4 = (−1/

√
3, −4/

√
6, 0).

Now let us implement these waveforms via the orthonormal basis functions
using the following MATLAB script. In this script, we assume that there are N_samp
sampling instants per unit time. Consequently, since each waveform is of a duration
of 3 seconds, each waveform representation in this MATLAB model is 3*N_samp
long.

Code 4.8 Gram-Schmidt Orthogonalization and Vectorization: chapter4.m

437 % Define parameters
438 N_samp = 1000; % Number of samples per time unit
439
440 % Create orthonormal basis functions
441 phi1 = [( 1/sqrt(3))*ones(1,N_samp) ...
442 ( 1/sqrt(3))*ones(1,N_samp) ...
443 (-1/sqrt(3))*ones(1,N_samp)];
444 phi2 = [( 1/sqrt(6))*ones(1,N_samp) ...
445 ( 1/sqrt(6))*ones(1,N_samp) ...
446 ( 2/sqrt(6))*ones(1,N_samp)];
447 phi3 = [0*ones(1,N_samp) 0*ones(1,N_samp) 0*ones(1,N_samp)];
448 phi4 = [( 1/sqrt(2))*ones(1,N_samp) ...
449 (-1/sqrt(2))*ones(1,N_samp) ...
450 0*ones(1,N_samp)];
451
452 % Based on these orthonormal basis functions, create the four symbol

% waveforms
453 sig_s1 = (2/sqrt(3))*phi1 + (sqrt(6)/3)*phi2 + 0*phi3 + 0*phi4;
454 sig_s2 = 0*phi1 + 0*phi2 + 0*phi3 + sqrt(2)*phi4;
455 sig_s3 = (sqrt(3))*phi1 + 0*phi2 + 0*phi3 + 0*phi4;
456 sig_s4 = (-1/sqrt(3))*phi1 + (-4/sqrt(6))*phi2 + 0*phi3 + 0*phi4;

Using these orthonormal basis functions, and the results of the Gram-Schmidt
orthogonalization process, we are able to produce the same waveforms shown in
Figure 4.18 using this MATLAB script, as shown in Figure 4.19.

4.6 Optimal Detection

Detection theory, or signal detection theory, is used in order to discern between
signal and noise [2]. Using this theory, we can explain how changing the decision
threshold will affect the ability to discern between two or more scenarios, often
exposing how adapted the system is to the task, purpose, or goal at which it is
aimed.
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Figure 4.19 Creation of the waveforms (a) s1(n), (b) s2(n), (c) s3(n), and (d) s4(n) from a collection
of orthonormal basis functions.

4.6.1 Signal Vector Framework
Let us assume a simple digital transceiver model as shown in Figure 4.20. As
mentioned previously, the receiver only observes the corrupted version of si(t)
by the noise signal n(t); namely, r(t). The noise signal n(t) usually represents the
culmination of all noise sources into a single variable. Therefore, our detection
problem in this situation can be summarized as follows: Given r(t) for 0 ≤ t ≤
T, determine which si(t), i = 1, 2, . . . , M, is present in the intercepted signal
r(t).s1(n).

Suppose we decompose the waveforms si(t), n(t), and r(t) into a collection of
weights applied to a set of orthonormal basis functions; namely,

si(t) =
N∑

k=1

sikφk(t), r(t) =
N∑

k=1

rkφk(t), n(t) =
N∑

k=1

nkφk(t).

Given that all of these signal waveforreliablems use the same orthonormal basis
functions, we can rewrite the waveform model expression r(t) = si(t) + n(t) into

N∑
k=1

rkφk(t) =
N∑

k=1

sikφk(t) +
N∑

k=1

nkφk(t)

r = si + n.

Since r consists of a combination of the deterministic waveform si and
probabilistic signal n, our attention now turns to mathematically characterizing
n. Since the noise signal n(t) is assumed to be a Gaussian random variable, we need
to determine how the characteristics of this random variable translates into a signal
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Figure 4.20 Simple digital transceiver model.

vector representation. We know that the noise vector element nk is equal to

nk =
T∫

0

n(t)φk(t)dt, (4.71)

which is the projection of the noise signal waveform on the orthonormal basis
function φk(t). Since the noise signal n(t) is a Gaussian random variable and the
integration process is a linear operation, this means that nk is a Gaussian random
variable as well. Thus, the noise signal vector n is a Gaussian vector. Let us now
proceed with determining the statistical characteristics of n in order to employ this
knowledge in signal waveform detection.

First, we would like to calculate the mean of these vector elements. Thus, by
applying the definition for the expectation, this yields

E{nk} = E




T∫
0

n(t)φk(t)dt




=
T∫

0

E{n(t)}φk(t)dt

= 0

(4.72)

since E{n(t)} = 0, which ultimately means that the mean of the noise signal vector
is Ereliable{n} = 0.

The next step is to calculate the variance of these vector elements. Suppose we
let (nnT)kl = nknl be equal to the (k, l)th element of nnT . Therefore, in order to
determine E{nknl}, where nk and nl are defined by

nk =
T∫

0

n(t)φk(t)dt, nl =
T∫

0

n(ρ)φl(ρ)dρ,

we can apply the definition for E{nknl}, which yields

E{nknl} = E




 T∫

0

n(t)φk(t)dt




 T∫

0

n(ρ)φl(ρ)dρ






= E




T∫
0

T∫
0

n(t)n(ρ)φk(t)φl(t)dtdρ



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Solving E{nknl} yields

E{nknl} =
T∫

0

T∫
0

E{n(t)n(ρ)}φk(t)φl(t)dtdρ

=
T∫

0

T∫
0

N0

2
δ(t − ρ)φk(t)φl(t)dtdρ

= N0

2

T∫
0

φk(t)φl(t)dt

= N0

2
δ(k − l),

(4.73)

where the integration of the product of the two orthonormal functions φk(t) and
φl(t) yields a delta function since only when k = l do these two functions project
onto each other. As a result, the matrix equivalent of this outcome is equal to

E{nnT} = N0

2
IN×N . (4.74)

Given the vector representation of the Gaussian random variable obtained in
(4.74), we need to define the joint probability density function of this representation
in order to characterize the individual elements of this vector. Leveraging the
assumption that the noise elements are independent to each other, we can express
the joint probability density function as the product of the individual probability
density functions for each element, yielding

p(n) = p(n1, n2, . . . , nN) = 1
(2πσ 2)N/2

N∏
i=1

e−n2
i /2σ2

= p(n1)p(n2) . . . p(nN)

where p(ni) = 1
σ
√

2π
e−n2

i /2σ2
is the probability density function for the vector

element ni. Since we know that E{nknl} = N0
2 δ(k − l), we can then solve E{n2

k} =
N0
2 = σ 2. Additionally, we know that the dot product of a vector can be written as

the summation of the squared elements; namely,

N∑
i=1

n2
i = ||n||2, (4.75)

which can then be used to yield the following expression for the joint probability
density function:

p(n) = p(n1, n2, . . . , nN) = 1
(2πσ 2)N/2 e−||n||2/2σ2

. (4.76)
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4.6.2 Decision Rules
With the formulation of the joint probability density function derived in (4.76), we
can now define a rule for the receiver that can be used to determine which signal
waveform is being intercepted given the presence of some noise introduced by the
channel. Suppose we define the following criterion for the receiver as

Minimize P(error) → P(m̂i �= mi)

Maximize P(correct) → P(m̂i = mi),
(4.77)

where the probability of error is P(e) = P(error), the probability of correct reception
is P(c) = P(correct), and P(e) = 1 − P(c) is the complementary relationship
between these two probabilities. Then, using the law of total probability, the overall
probability of correct detection is equal to

P(c) =
∫
V

P(c|r = ρ)p(ρ)dρ, (4.78)

where P(c|r = ρ) ≥ 0 and p(ρ) ≥ 0. Therefore, we observe that when P(c) attains
a maximum value, this occurs when P(c|r = ρ) also possesses a maximum value.

In order to maximize P(c|r = ρ), we use the following decision rule at the
receiver:

P(sk|ρ) ≥ P(si|ρ), for i = 1, 2, . . . , M and i �= k, (4.79)

for i = 1, 2, . . . , M and i �= k. Note that for this decision rule we are assuming that
sk is present in ρ such that

ρ = sk + n → m̂ = mk. (4.80)

Employing a mixed form of Bayes rule that is composed of probability density
functions and probabilities; namely,

P(si|r = ρ) = p(ρ|si)P(si)

p(ρ)
, (4.81)

we would like to manipulate this decision rule into a formulation that can be
employed by a receiver. Specifically, recall how we wanted to maximize P(c|r = ρ)

earlier in this section. By employing the mixed Bayes rule formulation, the optimal
detector can be rewritten such that it is equal to

max
si

P(si|r = ρ) = max
si

p(ρ|si)P(si)

p(ρ)
, (4.82)

for i = 1, 2, . . . , M. Since p(ρ) does not depend on si, we can simplify the optimal
detector expression such that

max
si

p(ρ|si)P(si), (4.83)

for i = 1, 2, . . . , M
Based on our result in (4.83), two types of detectors can be derived based on

this expression. The first type of detector is referred to as MAP detector, which can
be expressed as

P(si|r = ρ) = max
si

p(ρ|si)P(si), (4.84)
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for i = 1, 2, . . . , M. However, in the event that P(si) = 1
M , which implies

that P(si) does not depend on si, we can omit the P(si) term from the optimal
detector expression, yielding the second type of detector, referred to as a maximum
likelihood (ML) detector:

P(si|r = ρ) = max
si

p(ρ|si), (4.85)

for i = 1, 2, . . . , M. In the next section, we will mathematically derive the maximum
likelihood detector given the optimal decision rule for data transmissions being
performed across AWGN channels.

4.6.3 Maximum Likelihood Detection in an AWGN Channel
Maximum likelihood detection is a popular statistical method employed for fitting
a statistical model to data, and for identifying model parameters. In general, for a
fixed set of data and underlying probability model, a maximum likelihood approach
selects values of the model parameters that produce the distribution that are most
likely to have resulted in the observed data (i.e., the parameters that maximize the
likelihood function).

Suppose that a data transmission is operating across an AWGN channel prior
to interception by the receiver. Recall that the transmission model for this scenario
is given by

r = si + n, (4.86)

where si is the ith signal waveform sent by the transmitter, n is the noise introduced
to the data transmission by the AWGN channel, and r is the intercepted signal
waveform by the receiver. Given that si is a deterministic quantity, and n is a random
entity that has just been characterized by a joint probability density function,
what is needed now is a characterization of r, which can be derived from the
characterization of n coupled with the deterministic properties of si.

Suppose we consider the conditional probability of a single element of the
received vector r = ρ, say the kth element, given that the signal waveform si was
assumed to be transmitted:

p(ρk|sik) = 1√
2πσ 2

e−(ρk−sik)2/2σ2
, (4.87)

where the kth element of the noise vector is equal to nk = ρk − sik. Since we assume
that the AWGN vector elements are uncorrelated (i.e., independent), we can rewrite
this conditional probability expression as

p(ρ|si) =
N∏

k=1

p(ρk|sik), for i = 1, 2, . . . , M. (4.88)

Consequently, this product of multiple elemental probability density functions
will ultimately yield the following expression:

p(ρ|si) = 1
(2πσ 2)N/2 e−||ρ−si||2/2σ2

. (4.89)
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Notice how we now have a formulation for the conditional probability that
is entirely represented in terms of si, ρ, and their respective elements. Leveraging
this expression, we can proceed with mathematically determining the maximum
likelihood detector.

Since we would like to solve for max
si

p(ρ|si), suppose we take the expression

for p(ρ|si), apply it to the detector, and take the natural logarithm of the resulting
expression. Performing these operations would yield the following:

ln(p(ρ|si)) = N
2

ln
(

1
2πσ 2

)
− ||ρ − si||2

2σ 2 . (4.90)

Note that the natural logarithm was employed in order to get rid of the
exponential base in the expression, thus yielding a linear expression for the optimal
decision rule. Furthermore, since natural logarithms are monotonic functions (i.e.,
if x2 ≥ x1 then ln(x2) ≥ ln(x1)), the decision rule would still remain valid when the
inequality is employed.

Solving for this linear decision rule and given the monotonic behavior of the
natural logarithm, we can derive the following:

max
si

ln(p(ρ|si)) = max
si

(
N
2

ln
(

1
2πσ 2

)
− ||ρ − si||2

2σ 2

)

= max
si

(
−||ρ − si||2

2σ 2

)

= max
si

(
−||ρ − si||2

)
= min

si
||ρ − si||.

(4.91)

Since we are interested in the choice of si that yields the maximum value for the
decision rule, we can rewrite this decision rule as

sk = arg min
si

||ρ − si|| → m̂ = m. (4.92)

Note that one of the advantages of employing a vector representation for these
decision rules is that the entire scenario can be interpreted in terms of distance.
Specifically, the term ||ρ − si|| actually represents the distance between the heads
of two vectors, ρ and si, whose tails are located at the origin. Thus, a maximum
likelihood detector is the equivalent of a minimum distance detector.

4.7 Basic Receiver Realizations

The fundamental challenge of digital communications is recovering what was
transmitted after it has passed through a channel and been corrupted by noise.
The first receiver structure we will examine is based on filtering the received signal
with a static filter that maximizes the SNR of the channel, which will subsequently
minimize the bit error rate. However, one of the disadvantages of a matched filtering
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Q

Referring to the signal constellation diagram shown in Figure 4.21,
implement a simple QPSK transceiver operating in an AWGN
channel and implement a maximum likelihood detector. Does this
decision rule match the decision regions in Figure 4.21? Does this
decision rule adequately declare si as the transmitted signal based
on which quadrant ρ appears in? What is the impact of the AWGN
channel for different values for the variance given that the noise is
zero-mean?

Figure 4.21 Decision regions for QPSK signal constellation.

approach is that it requires a priori knowledge of all the possible signal waveforms
sent by the transmitter.

4.7.1 Matched Filter Realization
When designing a receiver, we are interested in a decision rule where the receiver
yields the correct result more often than any other decision rule that can be employed
by the receiver. In other words, we are interested in detecting a pulse transmitted
over a channel corrupted by noise.

Suppose we employ the following transmission model:

x(t) = g(t) + w(t), 0 ≤ t ≤ T, (4.93)

where g(t) is a pulse signal, w(t) is a white noise process with mean µ = 0 and power
spectral density equal to N0

2 , and x(t) is the observed received signal. Assuming the
receiver knows all the possible waveforms of g(t) produced by the transmitter, the
objective of the receiver is to detect the pulse signal g(t) in an optimum manner
based on an observed received signal x(t). Note that the signal g(t) may represent
a “1” or a “0” in a digital communication system

In order to enable the receiver to successfully detect the pulse signal g(t) in an
optimal manner given the observed received signal x(t), let us filter x(t) the effects of
the noise are minimized in some statistical sense such that the probability of correct
detection is enhanced. Suppose we filter x(t) using h(t) such that the output of this
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process yields
y(t) = g0(t) + n(t), (4.94)

where n(t) is the result of the noise signal w(t) filtered by h(t) and g0(t) is the filtered
version of g(t) by h(t). The transmission model and filtering operation by h(t) is
illustrated in Figure 4.22.

Let us rewrite this filtering operation in the frequency domain, where the time
domain convolution operations become frequency domain products. Thus, taking
the inverse Fourier transform of H(f )G(f ), which is equivalent to a convolution of
h(t) and g(t), we get the following expression for the filtered version of g(t):

g0(t) =
∫ ∞

−∞
H(f )G(f )ej2π ft df , (4.95)

where the inverse Fourier transform returns the filtering operation back to the time
domain.

Let us now calculate the instantaneous reliable power of the filtered signal g0(t),
which is given as:

|g0(t)|2 = |
∫ ∞

−∞
H(f )G(f )ej2π ft df |2. (4.96)

In order to determine a quantitative metric that would indicate when we have
achieved the goal of maximizing g0(t) relative to n(t), let us employ the peak pulse
SNR, which is defined as

η = |g0(T)|2
E{n2(t)} , (4.97)

where |g0(T)|2 is the instantaneous power of the output signal at sampling instant
T, and E{n2(t)} is the average power of the output noise. Thus, goal of this matched
filter realization is to maximize g0(t) with respect to n(t) using the peak pulse SNR
metric, which can be achieved by designing a filter h(t) that can yield the largest
possible value for η.

In order to design h(t), we need to mathematically solve for h(t), which consists
of evaluating the expression

|g0(t)|2 =
∣∣∣∣∣∣

∞∫
−∞

H(f )G(f )ej2π ftdf

∣∣∣∣∣∣
2

, (4.98)

which is the magnitude squared of the inverse Fourier transform of H(f )G(f ) =
F{h(t) ∗ g(t)}. Since w(t) is a white Gaussian process with power spectral density
N0
2 , we know from the EWK theorem that the power spectral density of the filtered

noise signal n(t) is equal to SN(f ) = N0
2 |H(f )|2. Therefore, applying the definition

Figure 4.22 Filtering process for detecting g(t).
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for η and including these expressions will yield

η = | ∫∞
−∞ H(f )G(f )ej2π fTdf |2

N0
2

∫∞
−∞ |H(f )|2df

. (4.99)

From this resulting expression, we see that we need to solve for frequency
response H(f ) such that it yields the largest possible value for the peak pulse SNR
η. In order to obtain a closed-form solution, let us employ Schwarz’s inequality.
Suppose that we have two complex functions, say φ1(x) and φ2(x), such that:

∞∫
−∞

|φ1(x)|2dx < ∞ and

∞∫
−∞

|φ2(x)|2dx < ∞. (4.100)

Then, by Schwarz’s inequality we can rewrite the following integral expression
as an inequality:

∣∣∣∣∣∣
∞∫

−∞
φ1(x)φ2(x)dx

∣∣∣∣∣∣
2

≤

 ∞∫

−∞
|φ1(x)|2dx


 ·


 ∞∫

−∞
|φ1(x)|2dx


 , (4.101)

with this expression becoming an equality when φ1(x) = K · φ∗
2(x).

Therefore, leveraging Schwarz’s inequality in our expression for the peak pulse
SNR, it can be shown that the numerator of (4.99) can be rewritten as:

∣∣∣∣∣∣
∞∫

−∞
H(f )G(f )ej2π ftdf

∣∣∣∣∣∣
2

≤

 ∞∫

−∞
|H(f )|2df


 ·


 ∞∫

−∞
|G(f )|2df


 , (4.102)

which then yields the following inequality for η:

η ≤ 2
N0

∞∫
−∞

|G(f )|2df . (4.103)

Thus, in order to make this expression an equality, the optimal value for H(f )

should be equal to

Hopt(f ) = K · G∗(f )e−j2π fT , (4.104)

whose time domain representation can be mathematically determined using the
inverse Fourier transform:

hopt(t) = K ·
∞∫

−∞
G∗(f )e−j2π fTe−j2π ftdf = K · g(T − t). (4.105)

Notice that when we are performing a matched filtering operation, we are
convolving the time-flipped and time-shifted version of the transmitted pulse with
the transmitted pulse itself in order to maximize the SNR.
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i

The reason why we call these filters matched filters is due to
the fact that when we convolve the time-flipped and time-shifted
version of the transmitted pulse signal with itself, the process
is SNR maximizing. Consequently, if a receiver intercepts some
unknown noise-corrupted signal, it can readily identify which one
was sent by a transmitter by matching this intercepted signal to
all the available signal waveforms known at the receiver using an
implementation illustrated in Figure 4.23.

Q
Referring to Figure 4.24, suppose we have a signal g(t). Show that
h(t) and g0(t) are the corresponding matched filter and filtered
output signals.

4.7.2 Correlator Realization
Recall that a matched filter realization assumes some sort of knowledge regarding
the transmitted data. However, if the receiver possesses this information about the
reliable transmitter and its signal characteristics, it is also possible to employ a more
statistical approach for determining which signal waveforms have been sent, even
in the presence of a noisy, corruption-inducing channel. Specifically, we can employ
the concept of correlation such that we only need to assume knowledge about the
waveforms themselves.1

Suppose we start with the decision rule derived at the beginning of this section
and expand it such that

min
si

||ρ − si||2 = min
si

(ρ − si) · (ρ − si)

= ρ · ρ − 2ρ · si + si · si.
(4.106)

Since ρ ·ρ is common to all the decision metrics for different values of the signal
waveforms si, we can conveniently omit it from the expression, thus yielding

min
si

(−2ρ · si + si · si) = max
si

(2ρ · si − si · si) , (4.107)

where ρ · si and si · si are defined by

ρ · si =
T∫

0

ρ(t)si(t)dt si · si =
T∫

0

s2
i (t)dt = Esi .

We can observe that the waveform representation of ρ · si is equal to the
correlation of r(t) = ρ(t) with respect to si(t). Thus, when sk(t) is present in r(t),

1. For a matched filtering implementation, knowledge of both the transmission signal waveforms and the
statistical characteristics of the noise introduced by the channel is needed by the receiver.
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Figure 4.23 Schematic of matched filter realization of receiver structure.

Figure 4.24 An example of the time domain input and output signal waveforms processed by a
matched filter. (a) Time domain representation of the input signal to the matched filter, (b) time
domain impulse response of the matched filter, (c) time domain representation of the output signal
of the matched filter.

the optimal detector is equal to

reliablesk = arg max
i


 T∫

0

ρ(t)si(t)dt − Esi

2


 . (4.108)

Based on this result, we can design a receiver structure that leverages correlation
in order to decide on which signal waveform was sent by the transmitter based on
the observed intercepted signal at the receiver. An schematic of a correlation-based
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implementation is shown in Figure 4.25. Given r(t) = si(t) + n(t) and we observe
only r(t) = ρ(t) at the input to the receiver, we first correlate r(t) with si(t) across all
i. Next, we normalize the correlation result by the corresponding signal energy Esi

in order to facilitate a fair comparison. Note that if all energy values are the same
for each possible signal waveform, we can dispense with the energy normalization
process since this will have no impact on the decision making. Finally, the resulting
decision values for each of the branches are compared against each other and the
branch with the largest resulting value is selected.

Hands-On MATLAB Example: To highlight the how a correlator receiver
structure would work in decoding the intercepted waveforms and translating them
in the corrsponding binary output, the following MATLAB script can be used,
where we begin by generating a stream of random waveforms consisting of symbols
s1(n), s2(n), s3(n), and s4(n). These waveforms are obtained from the
MATLAB script shown in Section 4.5. Once this stream of waveforms has been
generated, the next step is to vectorize the waveforms into a three-dimensional signal
constellation space. Once vectorized, we use the correlation receiver approach in
order to find out the Euclidean distance between the received vectorized waveforms
and the available signal vectors. Once these distances have been calculated per
received waveform, a decision-making process is performed in order to find out the
closest match between the received and available symbol vectors.

The result of this waveform vectorization and correlator-based receiver design
for these examples is shown in Figure 4.26. We can see that both the orignally
transmitted and the decoded waveforms are a perfect match. However, in this model
we did not include any forms of distortion such as noise. Consequently, it is a perfect
exercise to observe how the correlator-based receiver performs when additive white
Gaussian noise introduced to the received signal.

4.8 Chapter Summary

A deep and thorough understanding of digital communication theory is vitally
essential when designing and evaluating software-defined radio implementations.
In this chapter, an overview of several useful topics, including several different types
of modulation schemes, the derivation of the probability of error, Gram-Schmidt

( 1)
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k T

kT

dt

( 1)

(.)
k T

kT

dt

( 1)

(.)
k T

kT

dt

( )r t
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2 ( )s t
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1sE

2sE

sME

ˆ ( )m t

Figure 4.25 Correlator realization of a receiver structure assuming perfect synchronization.
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Code 4.9 Correlator-Based Receiver Implementation Using Gram-Schmidt: chapter4.m

500 % Define parameters

501 N_symb = 10; % Number of symbols contained within intercepted signal

502

503 % Randomly generate intercepted waveform consisting of s1(n), s2(n),

% s3(n), and s4(n)

504 rx_sig = [];

505 orig_msg = [];

506 for ind = 1:1:N_symb,

507 rnd_val = rand(1,1);

508 if (rnd_val < 0.25) % Add s1(n) waveform

509 rx_sig = [rx_sig sig_s1];

510 orig_msg = [orig_msg 1];

511 elseif ((rnd_val >= 0.25)&&(rnd_val < 0.5)) % Add s2(n) waveform

512 rx_sig = [rx_sig sig_s2];

513 orig_msg = [orig_msg 2];

514 elseif ((rnd_val >= 0.5)&&(rnd_val < 0.75)) % Add s3(n) waveform

515 rx_sig = [rx_sig sig_s3];

516 orig_msg = [orig_msg 3];

517 else % Add s4(n) waveform

518 rx_sig = [rx_sig sig_s4];

519 orig_msg = [orig_msg 4];

520 end;

521 end;

522

523 % Vectorize the intercepted signal

524 dim1_comp = [];

525 dim2_comp = [];

526 dim4_comp = [];

527 for ind = 1:1:N_symb,

528 dim1_comp = [dim1_comp sum(rx_sig(((ind-1)*3*N_samp+1):1:

(ind*3*N_samp)).*phi1)];

529 dim2_comp = [dim2_comp sum(rx_sig(((ind-1)*3*N_samp+1):1:

(ind*3*N_samp)).*phi2)];

530 dim4_comp = [dim4_comp sum(rx_sig(((ind-1)*3*N_samp+1):1:

(ind*3*N_samp)).*phi4)];

531 end;

532 dim1_comp = dim1_comp/N_samp;

533 dim2_comp = dim2_comp/N_samp;

534 dim4_comp = dim4_comp/N_samp;

535

536 % Using the correlator receiver approach, we determine the closest

537 % symbol vector to each vectorized waveform based on Euclidean distance

538 s1vec = [(2/sqrt(3)) (sqrt(6)/3) 0 0];

539 s2vec = [0 0 0 sqrt(2)];

540 s3vec = [(sqrt(3)) 0 0 0];

541 s4vec = [(-1/sqrt(3)) (-4/sqrt(6)) 0 0];

542 est_msg = [];

543 for ind = 1:1:N_symb,

544 [val,symb_ind] = min([ ...

545 sum((s1vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

546 sum((s2vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

547 sum((s3vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

548 sum((s4vec - [dim1_comp(ind) dim2_comp(ind) 0 dim4_comp(ind)]).ˆ2) ...

549 ]);

550 est_msg = [est_msg symb_ind];

551 end;
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Figure 4.26 Matching correlator receiver output with original transmission.

orthogonalization, formulation of the optimal decision rule, and the presentation
of two receiver structures were studied in order to provide the reader with the
fundamentals needed in order to master these versatile yet complex systems. In the
subsequent chapters, the fundamental knowledge obtained in this chapter, as well as
the two previous chapters, will be leveraged extensively when implementing digital
communication systems and networks based on software-defined radio technology.

4.9 Additional Readings

Given the introductory nature of this chapter with respect to the topic of digital
communications, the interested reader is definitely encouraged to explore the
numerous books that provide a substantially more detailed and advanced treatment
of this topic. For instance, the latest edition of the seminal digital communications
book by Proakis and Salehi [4] provides a rigorous, mathematical treatment of
many of the concepts covered in this chapter, in addition to many other topics not
presented such as spread spectrum technologies, equalization, and RAKE receiver
implementations. To complement this mathematically terse document, the authors
also published a companion book that treats digital communications from a more
applied perspective, including examples in MATLAB and Simulink [5].

As for introductory textbooks on digital communications, Sklar wrote an
excellent document that provides the reader with a balance of mathematical
rigor, detailed explanations, and several well-crafted examples [6]. The book by
Couch is also in the same category as Sklar, but it treats both analog and digital
communications [7], which is well suited for individuals that do not possess a
background in the communications field. Rice wrote his introductory book on
digital communications from a discrete-time perspective, which is suited for an
individual possessing a background in discrete-time signal and systems [8]. The book
also provides numerous end-of-chapter problems as well as MATLAB examples
available online, providing the reader with many opportunities to practice the
theoretical concepts covered within this text.

The classic digital communications book by Barry, Messerschmitt, and Lee [9]
is an excellent reference for those individuals who possess some understanding
about digital communications but need convenient and immediate access to detailed
information. Similarly, the books by Madhow [10] and Pursley [11] both provide
readers with a more advanced treatment of digital communication theory. Finally,
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the book by Hsu [12] is an excellent reference that mostly consists of a popular
collection of solved problems.
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