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C H A P T E R 3

Probability in Communications

The previous chapter provided us with a range of insights, tools, and algorithms
for the modeling and processing of signals and systems from a purely deterministic
perspective. However, there are numerous elements within the communication
system environment that possess random characteristics, such as the digital values
of the binary data stream from an information source, the noise introduced to
a transmission when transversing a communication channel, and the sources of
interference resulting from multiple users operating within the same environment.
Whereas Chapter 2 presented a collection of useful tools for the understanding and
modeling of deterministic signals and systems, in this chapter we will introduce
a range of techniques and approaches that can be used to model and study
probabilistic signals and systems. Starting with an introduction to the concept
of both the continuous and discrete random variable, this chapter will proceed
with an explanation of time-varying random phenomena, called random processes,
followed by the modeling of various random noise channels.

3.1 Modeling Discrete Random Events in Communication Systems

A discrete random variable represents some sort of behavior occuring within the
communication system where the outcome is not absolutely known. For instance,
the next value produced by a binary information source has the possibility of
producing one of two outputs: a binary 1 or a binary 0. Although we know
that either value is possible, we do not have definite knowledge that one of these
values will be specifically be produced at the output of the information source.
Consequently, we model the output values to be produced by the binary information
source as a random variable. The reason we call this random variable a discrete
random variable is that it produces a single possible output value from a finite
number of options.

To mathematically model this discrete random varaible, suppose we define X
such that there exists a distinct set of real numbers xi that it can produce, each with
a specific probability of that value occuring:∑

i

P(X = xi) = 1, (3.1)

where P(X = xi) is the probability that the random variable will produce an output
value xi. Using the law of total probability [1], we know that

P(X ∈ B) =
∑

i:xi∈B

P(X = xi), (3.2)

87
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where the set B is composed of a collection of values xi. A specific form of discrete
random variable is the integer-valued random variable, where its output values are
the integers xi = i; that is,

P(X ∈ B) =
∑
i∈B

P(X = i). (3.3)

Since each output of the random variable X possesses a different probability of
occurrence, we usually define the probability of a specific discrete output xi being
generated by X as

pX(xi) = P(X = xi), (3.4)

where pX(xi) is referred to as the probability mass function (PMF). Note that the
values of the PMF are constrained by

0 ≤ pX(xi) ≤ 1 and
∑

i

pX(xi) = 1. (3.5)

Several frequently used PMFs are specified in Table 3.1, including uniform,
Poisson, and Bernoulli random variables. In particular, Bernoulli random variables
are used to generate random outputs for binary information sources, while Poisson
random variables are often used to model the delays of routing packets in computer
networks.

Table 3.1 Several Frequently Used Probability Mass Functions

Random
Variable

PMF Definition Graphical Representation

Uniform pX(k) =
{

1
n , k = 1, . . . , n
0, otherwise

( )Xp x

x0 1 2 3 1n n

1/ n

Poisson pX(k) = λke−λ

k! , k = 0, 1, 2, . . .

( )Xp x

x0 1 2 3

Bernoulli pX(k) =



p, k = 1
1 − p, k = 0
0, otherwise

( )Xp x

x0 1 2 3

p

1 p
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Supposed we now explore how to use these discrete random variables to model
an actual component of a communication system; namely, a binary information
source. One key characteristic that needs to be incorporated into this tool is the
percentage of ones and zeros produced by the random number generator, otherwise
referred to as an RNG. In the MATLAB script in Code 3.1, a binary RNG is
implemented where three vectors are produced. Vector b1 possesses an equal
balance of one and zero values, while vectors b2 and b3 generate ratios of 60/40
and 20/80 in terms of ones and zeros, respectively. Note that the MATLAB rand
uniform RNG function is used to produce the random values between zero and one,
which is then rounded to the nearest integer; namely, one or zero.

Code 3.1 Information Source: random_example.m

24 % Create three binary data streams of length L, each with a different
25 % percentage of 1 and 0 values
26 L = 100;
27 prob1 = 0.5; prob2 = 0.6; prob3 = 0.2; %Probability values for 1 outputs
28 b1 = round(0.5*rand(1,L)+0.5*prob1); %Even split between 1 and 0 values
29 b2 = round(0.5*rand(1,L)+0.5*prob2); %Have 60% 1 values and 40% 0 values
30 b3 = round(0.5*rand(1,L)+0.5*prob3); %Have 20% 1 values and 80% 0 values

Manipulating how the output values of the rand get rounded to either zero
or one by biasing all the values to be closer to one or the other, we can generate
binary random values with different percentages of ones and zeros, as shown in
Figure 3.1. Using the stem command, we can visualize the actual binary values
shown in Figure 3.1(a), Figure 3.1(c), and Figure 3.1(e). Although this gives us a
general observation about the behavior of these binary RNGs, it is very difficult
to distinguish the actual percentages of ones and zeros within the vector. Hence,
using a histogram and a very long sequence of randomly generated values, we
can characterize these percentages, as shown in Figure 3.1(b), Figure 3.1(d), and
Figure 3.1(f). Notice how the histograms accurately show the percentages of ones
and zeros in an outputted vector. One important caveat: Since our characterization
is dependent on the observation of a random phenomenon, you will need to observe
a very substantial amount of data in order to accurately characterize it.

3.1.1 Expectation
Since we are unable to exactly know the output values of these random phenomena
that form part of the communication system and its environment, we must instead
opt for mathematicallly characterizing the statistical behavior of these random
variables. One way to characterize a random variable is by its expected value or
mean, which can be quantitatively determined using the expression

mX = E[X] =
∑

i

xiP(X = xi), (3.6)

where the sum of each value is weighted by its probability of occurrence.
Consequently, using the definition of the PMF, we can rewrite (3.6) as

E[X] =
∑

i

xipX(xi). (3.7)
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Figure 3.1 Stem plots and histograms of three binary transmissions that each possess different
probabilities of ones and zeros being produced. (a) Binary signal (50% ones, 50% zeros),
(b) histogram (50% ones, 50% zeros), (c) binary signal (60% ones, 40% zeros), (d) histogram
(60% ones, 40% zeros), (e) binary signal (20% ones, 80% zeros), and (f) histogram (20% ones,
80% zeros).
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Suppose we have a random variable X and a real-valued function g(x) that
maps it to a new random variable Z; that is, Z = g(X). Since X is actually the
mapping of points from a sample space � to a collection of real numbers, we are
thus performing a mapping of a mapping when solving for the random variable Z;
that is, Z(ω) = g(X[ω]). Consequently, in order to compute the expectation of the
random variable Z, namely E[Z], we can employ the following expression:

E[Z] = E[g(X)] =
∑

i

g(xi)pX(xi), (3.8)

which is referred to the expectation of a function of a random variable. One of the
most important aspects of (3.8) is that the expectation of Z can be solved using
the PMF for X rather than having to determine the PMF of Z. Table 3.2 presents
several useful properties associated with the expectation operator.

Table 3.2 Several Useful Properties of Expectation

Name Definition

Linearity If a and b are deterministic constants and X and Y are random
variables, then E[aX+bY] = E[aX]+E[bY] = aE[X]+bE[Y].

Moment The nth moment (n ≥ 1) of a real-valued random variable X is
defined as the expected value of X raised to the nth power; that
is, Momentn(X) = E[Xn].

Mean The mean is the first moment of X; that is, Moment1(X) =
E[X] = µ.

Variance The second moment of X with its mean subtracted is its variance;
that is, Moment2(X − µ) = E[(X − µ)2] = var(X) = σ 2.

Central moment The generalization of the variance is the nth order central moment
of X; that is, E[(X −µ)n]. Note that the skewness and kurtosis
of X are the third-order and fourth-order central moments of
X, respectively.

Correlation The correlation between two random variables X and Y is defined
to be equal to E[XY].

Covariance The covariance between X and Y is defined as cov(X, Y) =
E[(X − µX)(Y − µY )].

Correlation
coefficient

The correlation coefficient of two random variables X and Y is
given as ρXY = E

[(
X−µX

σX

) (
Y−µY

σY

)]
.

Markov inequality If X is a nonnegative random variable, then for any a > 0 we
have P(X ≥ a) ≤ E[X]

a .
Chebyshev

inequality
For any random variable Y and any a > 0, we have P(|Y| ≥ a) ≤

E[Y2]
a2 .

Cauchy-Schwarz
inequality

The Cauchy-Schwarz inequality states that |E[XY]| ≤√
E[X2]E[Y2], which becomes an equality if and only if X and

Y are linearly related.
Independence The random variables are independent if and only if

E[h(X)k(Y)] = E[h(X)]E[k(Y)] for all functions h(x) and k(y).
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3.2 Binary Communication Channels and Conditional Probability

In a digital communication system, we can view the operations of the receiver as
attempting to guess what was sent from a particular transmitter when guessing the
value of a transmission, whose values can be modeled as a random variable X,
and once it has been observed at the receiver, whose values can be modeled by a
random variable Y. Consequently, we need some sort of decision rule to figure out
which value of X was originally transmitted. This is illustrated in Figure 3.2, where
X can output values of either 0 or 1 while Y is observed at the receiver. Notice
how the observation Y can be accidentally interpreted as a value other than the one
transmitted; that is, X �= Y.

In order to characterize and understand this random transmission environment,
we can use the definition for the conditional probability, which is mathematically
expressed as

P(X ∈ B|Y ∈ C) = P({X ∈ B}|{Y ∈ C})

= P({X ∈ B} ∩ {Y ∈ C})
P({Y ∈ C}) = P(X ∈ B, Y ∈ C)

P(Y ∈ C)
.

(3.9)

Additionally, the conditional PMF can also be used to mathematically describe
this random phenomenon:

pX|Y(xi|yj) = P(X = xi|Y = yj) = P(X = xi, Y = yj)

P(Y = yj)
= pXY(xi, yj)

pY(yj)

pY|X(yj|xi) = P(Y = yj|X = xi) = P(X = xi, Y = yj)

P(X = xi)
= pXY(xi, yj)

pX(xi)

(3.10)

which can be subsequently expressed as

pXY(xi, yj) = pX|Y(xi|yj)pY(yj) = pY|X(yj|xi)pX(xi). (3.11)

One useful mathematical tool that can be employed to help characterize
phenomena described by conditional probabilities and/or conditional PMFs is the
law of total probability. For example, suppose that Y is an arbitrary random
variable, and we take A = {Y ∈ C}, where C ⊂ R. Consequently, we can define the

Figure 3.2 An example of a binary channel where transmission values generated by the random
variable X are being observed at the receiver as the random variable Y.
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Q Derive the Markov inequality, P(X ≥ a) ≤ E[Xr]
ar , using the

definition for the expectation.

law of total probability as

P(Y ∈ C) =
∑

i

P(Y ∈ C|X = xi)P(X = xi). (3.12)

Similarly, if Y is a discrete random variable, taking on distinct values yi and
setting C = {yi}, then this yields the following law of total probability:

P(Y = yj) =
∑

i

P(Y = yj|X = xi)P(X = xi)

=
∑

i

pY|X(yj)pX(xi).
(3.13)

Q Derive the resulting expressions for the law of total probability for
expectation and the substitution law.

Returning to our binary communication channel model described by Figure 3.2,
suppose we would like to decide on what values were transmitted based on the
observation of the intercepted received signal. In this case, we would like to employ
the maximum a posteriori (MAP) decision rule, where given an observed Y = j, the
MAP rule states that we should decide on X = 1 if

P(X = 1|Y = j) ≥ P(X = 0|Y = j), (3.14)

and to decide on X = 0 otherwise. In other words, the MAP rule decides X = 1 if
the posterior probability of X = 1 given the observation Y = j is greater than the
posterior probability of X = 0 given the observation Y = j. Furthermore, we can
observe that

P(X = i|Y = j) = P(X = i, Y = j)
P(Y = j)

= P(Y = j|X = i)P(X = i)
P(Y = j)

, (3.15)

which we can then use to rewrite (3.14) as

P(Y = j|X = 1)P(X = 1)

P(Y = j)
≥ P(Y = j|X = 0)P(X = 0)

P(Y = j)

P(Y = j|X = 1)P(X = 1) ≥ P(Y = j|X = 0)P(X = 0).
(3.16)

If X = 0 and X = 1 are equally likely to occur, we can simplify this expression
such that it yields the maximum likelihood (ML) rule

P(Y = j|X = 1) ≥ P(Y = j|X = 0). (3.17)
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Code 3.2 Simulate: random_example.m

85 % Define simulation parameters
86 L = 100000; % Transmission length
87 prob00 = 0.95; % Probability zero received given zero transmitted
88 prob11 = 0.99; % Probability one received given one transmitted
89 prob4 = 0.7; % Have 40% 1 values and 60% 0 values
90
91 % Create transmitted binary data stream
92 b4 = round(0.5*rand(1,L)+0.5*prob4);

% Have 40% 1 values and 60% 0 values
93 b4hat = b4; % Initialize receive binary data stream
94
95 % Randomly select 1 and 0 values for flipping
96 ind_zero = find(b4 == 0); % Find those time instances with zero values
97 ind_one = find(b4 == 1); % Find those time instances with one values
98 ind_flip_zero = find(round(0.5*rand(1,length(ind_zero))

+0.5*(1-prob00)) == 1); % Flip zero bits to one bits
99 ind_flip_one = find(round(0.5*rand(1,length(ind_one))

+0.5*(1-prob11)) == 1); % Flip one bits to zero bits
100
101 % Corrupt received binary data stream
102 b4hat(ind_zero(ind_flip_zero)) = 1; % Flip 0 to 1
103 b4hat(ind_one(ind_flip_one)) = 0; % Flip 1 to 0
104
105 % Calculate bit error statistics
106 b4error_total = sum(abs(b4-b4hat))/L;
107 b4error_1 = sum(abs(b4(ind_one) - b4hat(ind_one)))/length(ind_one);
108 b4error_0 = sum(abs(b4(ind_zero) - b4hat(ind_zero)))/length(ind_zero);

Furthermore, in the general case, we can rearrange (3.16) such that it yields the
likelihood ratio; namely:

P(Y = j|X = 1)

P(Y = j|X = 0)
≥ P(X = 0)

P(X = 1)
(3.18)

where the right-handed side is referred to as the threshold since it does not depend
on j.

Given this mathematical formulation, let us now work with this same example
via computer simulation. Using the following MATLAB script, we can model a
binary channel where we produce L binary values with a probability of prob4
being one values and the rest being zero values. Furthermore, we assume that the
binary channel being used is not symmetric, meaning that the probability of one
values being flipped into zero values is different than the probability of zero values
being flipped into one values. Note that the flipping of bit values is considered to
be an error produced by the channel. Consequently, we define the probability of a
transmitted one value being received as a one value to be equal to prob11 while
the probability of a transmitted zero value being received as a zero value is equal
to prob00.

One of fundamental metrics for assessing the performance of any digital
communication system is the probability of bit error, or the bit error rate (BER).
The BER characterizes the amount of bit errors received relative to the total
bits transmitted. For various applications, different BER values are considered
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acceptable while others are considered intolerable. For instance, for typical wireless
data transmission applications, a BER of 10−5 is considered an acceptable amount
of error introduced into the transmission.

In the MATLAB example above involving the binary channel, we would like
to characterize the BER values to see if they conform to the parameters we defined.
In Figure 3.3, we have the BER for the overall transmission, as well as for only
the the transmissions of one values and of zero values. Notice how the BER for
the one values only corresponds to the complement of the probability prob11,
while the same can be observed for the BER of the zero values only and it being
the complement of the probability prob00. Remember that in order to obtain an
accurate statistical assessment of the BER, a very large number of binary values
need to be generated.

3.3 Modeling Continuous Random Events in Communication Systems

As we have seen earlier in this chapter, it is possible to mathematically compute the
probability of a random event occurring within a communication system described
by a discrete random variable; namely,

P(a ≤ X < b) =
b−1∑
i=a

pX(i), (3.19)

where X is the discrete random variable, and both a and b are boundaries of a subset
belonging to the sample space �. However, suppose now that X is a continuous
random variable, which can take on the entire continuum of values within the
interval (a, b). In order to compute the same probability in this case, we can start
by realizing this scenario as the summation of an infinite number of points in (a, b)

with the space between samples equal to �x.
There are numerous random elements contained within a communication

system where each can produce a continuum of possible output values. As we will
discuss later in this chapter, one of these elements represented by a continuous
random variable is the noise introduced in a transmission channel. Suppose this
noise can be represented by an infinite number of samples such that our �x becomes

1 2 3
Bit Error Rates

0

0.02

0.04

0.06

Pr
ob

ab
ili

ty

Figure 3.3 Binary channel error probabilities when the probability for a zero being received
uncorrupted is 0.95 and the probability for a one being received uncorrupted is 0.99. Note that
the transmission consists of 40% ones and 60% zeros. 1 = Total, 2 = one transmitted, 3 = zero
transmitted.
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so tiny the �x ultimately converges to dx and the summation in (3.19) becomes
an integral expression. Therefore, we can express the probability of a continuous
random variable modeling the noise producing output values ranging between a
and b using the expression

P(a ≤ X < b) =
b∫

a

f (t)dt, (3.20)

where f (t) is called the probability density function (PDF). Note that the PDF is
the continuous version of the PMF that we discussed previously in this chapter.
Moreover, generally we can express the probability of a continuous random variable
using the PDF by the expression

P(X ∈ B) =
∫
B

f (t)dt =
+∞∫

−∞
IB(t)f (t)dt, (3.21)

where IB(t) is an indicator function that produces an output of unity whenever a
value of t belongs to the set B and produces an output of zero otherwise. Note that
+∞∫
−∞

f (t)dt = 1, f (t) is nonnegative, f (t) approximately provides the probability at

a point t, and

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b), (3.22)

where the end points do not affect the resulting probability measure. Finally, a
summary of several commonly used PDFs are presented in Table 3.3, including
uniform, Gaussian, and exponential random variables. Note that Gaussian random
variables are often used to model the randomness of the noise introduced in a
communication channel, while the exponential random variable is used in medium
access protocols to help provide random back-off times in the event that two or more
wireless systems are attempting to communicate over the same wireless channel via
a contention-based framework.

Similar to the expectation of a single discrete random variable, the expectation
for a continuous random variable X with PDF f (x) can be computed using the
following expression:

E[g(X)] =
+∞∫

−∞
g(x)f (x)dx, (3.23)

where g(.) is some real function that is applied to the random variable X.
Many random variables of practical interest are not independent, where it is

often the case that the outcome of one event may depend on or be influenced by
the result of another event. Consequently, it is sometimes necessary to compute the
conditional probability and conditional expectation, especially in circumstances
where we have to deal with problems involving more than one random variable.

Unlike the conditional probability for a discrete random variable, the
conditional probability for a continuous random variable needs to defined in an
alternative manner since the probability of a single exact point occurring is zero;
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Table 3.3 Several Frequently Used Probability Density Functions

Random
Variable

PDF Definition Graphical Representation

Uniform f (x) =
{ 1

(b−a)
, a ≤ x ≤ b

0, otherwise

( )f x

x
0

1/ ( )b a

a b

Exponential f (x) =
{
λe−λx, x ≥ 0
0, x < 0

( )f x

x
0

Laplace f (x) = λ
2 e−λ|x|

( )f x

x
0

/ 2

Cauchy f (x) = λ/π

λ2+x2 , λ > 0

( )f x

x
0

1/ 2
1/

Gaussian f (x) = 1√
2πσ2

e−0.5((x−µ)/σ)2

( )f x

x
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that is, P(X = x) = 0. As a result, if we employ the definition for the conditional
probability for a discrete random variable from (3.9); namely,

P(Y ∈ C|X = x) = P(Y ∈ C, X = x)

P(X = x)
, (3.24)

we observe that the occurrence of P(X = x) = 0 would yield a divide-by-zero
scenario. Consequently, we need to determine another definition for the conditional
probability (and conditional expectation) that would work within the continuous
random variable framework.

It can be shown that in order to calculate the conditional probability, one must
employ a conditional density [1], which can be defined as

fY|X(y|x) = fXY(x, y)

fX(x)
, (3.25)

where fX(x) > 0. Thus, leveraging the conditional density, we can now compute
the conditional probability without concern of a divide-by-zero scenario by solving
for the following expression:

P(Y ∈ C|X = x) =
∫
C

fY|X(y|x)dy. (3.26)

Furthermore, we can define the law of total probability as the following:

P(Y ∈ C) =
+∞∫

−∞
P(Y ∈ C|X = x)fX(x)dx, (3.27)

where we weigh all the conditional probabilities by the PDF of X before integrating
them together to form the overall probability of the event Y ∈ C. Finally, just as
in the discrete random variable case, we can employ a form of substitution law for
continuous random variables when dealing with conditional probability, which is
defined by

P((X, Y) ∈ A|X = x) = P((x, Y) ∈ A|X = x). (3.28)

Note that if X and Y are independent, then the joint density factors, yielding
the following expression for the conditional density:

fY|X(y|x) = fXY(x, y)

fX(x)

= fX(x)fY(y)

fX(x)

= fY(y),

(3.29)

which implies that when the two random variables are independent, we do not need
to condition one event on the other.

Similarly, the conditional expectation when dealing with continuous random
variables is defined as the following expression employing the conditional density;
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namely,

E[g(Y)|X = x] =
+∞∫

−∞
g(y)fY|X(y|x)dy. (3.30)

Furthermore, the law of total probability for a conditional expectation is given as

E[g(X, Y)] =
+∞∫

−∞
E[g(X, Y)|X = x]fX(x)dx, (3.31)

and the substitution law for a conditional expectation is defined as

E[g(X, Y)|X = x] = E[g(x, Y)|X = x]. (3.32)

3.3.1 Cumulative Distribution Functions
For both PDFs and PMFs of random variables modeling random elements within
a communication system, it is sometimes important to visualize the cumulative
distribution function or CDF, especially since it provides another perspective on
how the random variable behaves probabilistically. Furthermore, the CDF can
sometimes be use to solve problems that would otherwise be difficult to access
via some other definition.

Mathematically speaking, we can define the CDF by the following expression:

FX(x) = P(X≤x) =
x∫

−∞
f (t)dt, (3.33)

which describes the probability that the outcome of an experiment described by the
random variable X is less than or equal to the dummy variable x.

As an example, suppose that we want to calculate the probability of P(a ≤ X <

b) using the PDF shown in Figure 3.4(a). One approach for quickly evaluating this
probability is to leverage the tail probabilities of this distribution; namely, P(X < a)

(shown in Figure 3.4[b]) and P(X < b) (shown in Figure 3.4[c]). Notice how the tail
probabilities are actually the CDFs of X based on (3.33), where FX(a) = P(X < a)

and FX(b) = P(X < b). Consequently, given that we are only interested in the region
of the PDF where these two tail probabilities do not intersect, we can compute the
following probability:

P(a ≤ X < b) = P(X < b) − P(X < a) = FX(b) − FX(a), (3.34)

where all we really need are the values for the CDF of X at x = a and x = b.
Several fundamental characteristics of the CDF include the fact that FX(x) is

bounded between zero and one, and that FX(x) is a nondecreasing function; that
is, FX(x1)≤FX(x2) if x1 ≤ x2. Furthermore, the PDF is the derivative of the CDF
in terms of the dummy variable x, which we can define as:

fX(x) = d
dx

FX(x). (3.35)
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( )f x ( )f x ( )f x

x
0 a b

( )P a X b

x
0 a

( )P X a P (X < b)<

x
0 b

≤ <

(a) (b) (c)

Figure 3.4 An example of how the CDF can be used to obtain the tail probabilities P(X < a) and
P(X < b) in order to quickly calculate P(a ≤ X < b). (a) The region of the PDF of the random
variable X that needs to be integrated in order to yield P(a ≤ X < b), (b) the region of the PDF of
the random variable X that needs to be integrated in order to yield P(X < a), and (c) the region of
the PDF of the random variable X that needs to be integrated in order to yield P(X < b).

i

The Q function is a convenient way to express right-tail
probabilities for Gaussian random variables, P(X > x).
Mathematically, this is equivalent to finding the complementary
CDF of X; namely [2]:

Q(x) = 1 − FX(x) = 1 − P(X ≤ x)

= P(X > x) = 1√
2π

∞∫
x

e−t2/2dt,

where FX(x) is the CDF of X.

One important use for CDFs is having them define the exact probabilistic nature
of a random element within a communication system. Noise generation, binary
outputs of an information source, and random access of a wireless channel by
multiple users can all be characterized exactly using CDFs. Consequently, when
modeling these phenomena in a computer simulation, we use a RNG that is defined
by one of these CDFs. In the MATLAB computer simulation environment, there
exists a variety of RNGs that can be used in communication systems experiments,
including those based on uniform, Gaussian (normal), and Rayleigh random
variables. These random variables can be generated in MATLAB via the rand and
randn functions, as well as their combination to create other random variables. For
example, the MATLAB code in Code 3.3 produces three vectors of random values
generated in such a way that they possess statistical characteristics equaivalent to
the uniform, Gaussian, and Rayleigh random variables. Furthermore, using the
randomly generated values using these RNGs, it is possible for us to determine the
probability densities such that we can then generate their cummulative distribution
functions as well as calculate the probability that these random variables produce
a value between 0.7 and 1.0.

To obtain values that possess uniform and Gaussian distributions in MATLAB,
one can simply use the rand and randn functions. If a very large number of these
random values are generated, it is possible to observe the uniform and Gaussian
PDFs, as shown in Figures 3.5(a) and 3.5(c). Since the cumulative distribution
function (CDF) is the progressive accumulation of the PDFs from negative infinity
to positive infinity, those can also be readily generated from the PDF data, as shown
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Code 3.3 Information Source: random_example.m

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121 % Random Variable PDFs and CDFs
122
123 % Define simulation parameters
124 L = 1000000; % Length of random samples
125 mean_normal = 1; stddev_normal = 2;

% Mean and standard deviation of normal RV values
126 res_hist = 100; % Histogram resolution
127
128 % Generate random samples for different distributions
129 b_unif = rand(1,L); % Uniform random values
130 b_normal = (stddev_normal*randn(1,L) + mean_normal);

% Normal random values
131 b_rayleigh = (sqrt(randn(1,L).ˆ2 + randn(1,L).ˆ2));

% Rayleigh random values
132
133 % Obtain cumulative distribution functions
134 [N_unif, edges_unif] = histcounts(b_unif,res_hist);
135 N_unif_cum = cumsum(N_unif)./L;
136 [N_normal, edges_normal] = histcounts(b_normal,res_hist);
137 N_normal_cum = cumsum(N_normal)./L;
138 [N_rayl, edges_rayl] = histcounts(b_rayleigh,res_hist);
139 N_rayl_cum = cumsum(N_rayl)./L;
140
141 % Calculate probability of values between 0.7 and 1
142 x_lower = 0.7;
143 x_upper = 1.0;
144 unif_ind_range = find((x_lower <= edges_unif)

& (edges_unif < x_upper));
145 normal_ind_range = find((x_lower <= edges_normal)

& (edges_normal < x_upper));
146 rayl_ind_range = find((x_lower <= edges_rayl)

& (edges_rayl < x_upper));
147 prob_unif = sum(N_unif(unif_ind_range))./L;
148 prob_normal = sum(N_normal(normal_ind_range))./L;
149 prob_rayl = sum(N_rayl(rayl_ind_range))./L;

for the uniform and Gaussian random values in Figures 3.5(b) and 3.5(d). As for the
values produced by a Rayleigh random variable, a quick way of producing these
values is to take two independently and identically distributed (i.i.d.) Gaussian
random variables, take the square of both values, sum them together, and then take
their square root. As a result of this operation, and given a very large number of
values generated, it is possible to create a PDF and a CDF of a Rayleigh random
variable as shown in Figures 3.5(e) and 3.5(f). Note that if one wants to find the
probability of a randomly generated value produced by these functions between 0.7
and 1.0, simply either sum up the density values between this range or take the CDF
values at these end points and subtract them from each other.

3.4 Time-Varying Randomness in Communication Systems

Until now we have been exploring how to model random phenomena where
these probabilistic characteristics remain the same throughout time. Although this

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 102 — #16

102 Probability in Communications

Figure 3.5 Various cumulative distribution functions and associated probability density functions.
(a) Uniform PDF, (b) uniform CDF, (c) Gaussian PDF, (d) Gaussian CDF, (e) Rayleigh PDF, and (f)
Rayleigh CDF.

simplifies the mathematical derivation of these models, this may not accurately
describe the random phenomena. For example, the binary output values from
an information source might change over time depending on the real-world data
being encoded, such as security camera footage of a dynamic urban environment

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch03_new” — 2018/3/26 — 11:43 — page 103 — #17

3.4 Time-Varying Randomness in Communication Systems 103

or the internet traffic of a human user on a computer. Consequently, it is necessary
to develop a more comprehensive mathematical representation of these random
phenomena that are also functions of time. We refer to these representations as
random processes or stochastic processes. A random process is a family of time
domain functions depending on the parameters t and ω; that is, we can define a
random process by the function:

X(t) = X(t, ω), (3.36)

where the left-handed side is the shortened representation of a random process that
implicitly assumes the existence of a mapping of an outcome ω from the sample
space � to a real-valued number. Note that the domain of ω is � while the domain
of t is either R for continuous-time random processes or Z for discrete-time random
processes. An illustration depicting how a random process consists of a family of
time domain functions is shown in Figure 3.6.

Suppose we have a random process that is noncountable infinite for each time
instant t. Given this situation, we can define its first-order distribution F(x, t) and
first-order density f (x, t) as

F(x, t) = P(X(t) ≤ x) (3.37)

and

f (x, t) = ∂F(x, t)
∂x

. (3.38)

For determining the statistical properties of a random process, knowledge from
the function F(x1, . . . , xn; t1, . . . , tn) is required. However, in most communication
system applications only certain averages are actually needed. For instance, one
of the mostly commonly used statistical characterizations for a random process is
the mean function, where the mean function µX(t) of a random process X(t, ω)

is the expectation of the random process at a specific time instant t. This can be
mathematically represented by

µX(t) = E[X(t, ω)]. (3.39)

Another useful statistical characterization tool for a random process X(t, ω)

is the autocorrelation function RXX(t1, t2), where we evaluate the amount of

Figure 3.6 Illustration of a random process X(t, ω).
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correlation that the random process X(t, ω) possesses at two different time instants
t1 and t2. We can define this mathematically by the expression

RXX(t1, t2) = E[X(t1, ω)X∗(t2, ω)]

=
+∞∫

−∞

+∞∫
−∞

x1x∗
2f (x1, x2; t1, t2)dx1dx2.

(3.40)

Note that the value of the diagonal for RXX(t1, t2) is the average power of
X(t, ω); namely,

E[|X(t, ω)|2] = RXX(t, t). (3.41)

Several other useful properties and observations about the autocorrelation
function include the following:

1. Since RXX(t1, t2) = E[X(t1, ω)X∗(t2, ω)], then RXX(t2, t1) = E[X(t2, ω)X∗
(t1, ω)] = R∗

XX(t1, t2).
2. We have RXX(t, t) = E[|X(t, ω)|2] ≥ 0.
3. A random process for which E[|X(t, ω)|2] < ∞ for all t is called a second-

order process.
4. For RXX(t, t) = E[|X(t, ω)|2] ≥ 0 and given time instants t1 and t2, we have

the following inequality:

|RXX(t1, t2)| ≤
√

E[|X(t1, ω)|2]E[|X(t2, ω)|2].
5. A normalized process occurs when X(t, ω)/

√
CXX(t, t).

An extension of the definition for the autocorrelation function is the
autocovariance function CXX(t1, t2) of X(t, ω), which is the covariance of the
random process X(t, ω) at time instants t1 and t2. Mathematically, we can represent
the autocovariance function by the expression.

CXX(t1, t2) = RXX(t1, t2) − µX(t1)µ∗
X(t2). (3.42)

Note that for t1 = t2, the autocovariance function produces the variance of
X(t, ω). Furthermore, we can sometimes represent the autocovariance function of a
random process X(t, ω) using a normalized metric called the correlation coefficient,
which we define as

ρXX(t1, t2) = CXX(t1, t2)√
CXX(t1, t1)CXX(t2, t2)

. (3.43)

3.4.1 Stationarity
Although random processes may possess a significant amount variability across
time, there does exist a subset of random processes that exhibit the same behavior
at any two time instants; that is, the random process is time-invariant. We refer
to these types of random processes as stationary processes. Two common forms of
stationary processes are strict-sense stationary (SSS) random processes and wide-
sense stationary (WSS) random processes. A random process is SSS whenever its
statistical properties are invariant to a shift of the origin; that is, the random process
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X(t, ω) and X(t+c, ω) both possess the same statistics for any time shift c. Therefore,
the nth-order density of an SSS random process would be equal to, by definition,
the following expression:

f (x1, . . . , xn; t1, . . . , tn) = f (x1, . . . , xn; t1 + c, . . . , tn + c) (3.44)

for any time shift c.
It follows that f (x; t) = f (x; t + c) for any time shift c, which means that the

first-order density of X(t, ω) is independent of the time t; namely,

f (x; t) = f (x). (3.45)

Furthermore, f (x1, x2; t1, t2) = f (x1, x2; t1 + c, t2 + c) is independent of c for
any value of c. Consequently, this means that the density becomes

f (x1, x2; t1, t2) = f (x1, x2; τ), where τ = t1 − t2. (3.46)

Thus, the joint density of the random process at time instants t and t + τ is
independent of t and is equal to f (x1, x2; τ).

Although SSS random processes can yield mathematically tractable solutions
based on their useful time-invariant property, the occurrence of SSS random
processes in actual communication systems is not very frequent. On the other hand,
the WSS random processes occur more frequently in the analyses of communication
systems. A random process X(t, ω) is considered to be WSS whenever both of the
following properties are true:

• The mean function µX(t) does not depend on time t; that is, µX(t) =
E[X(t, ω)] = µX.

• The autocorrelation function RXX(t + τ , t) only depends on the relative
difference between t and t + τ ; that is, RXX(t + τ , t) = RXX(τ ).

Several observations about WSS random processes include the following:

• The average power of a WSS random process is independent of time since
E[|X(t, ω)|2] = RXX(0).

• The autocovariance function of a WSS random process is equal to CXX(τ ) =
RXX(τ ) − |µX|2.

• The correlation coefficient of a WSS random process is given by ρXX(τ ) =
CXX(τ )/CXX(0).

• Two random processes X(t, ω) and Y(t, ω) are jointly WSS if each is WSS
and their cross-correlation depends on τ = t1 − t2.

• If the random process X(t, ω) is WSS and uncorrelated, then CXX(τ ) = qδ(τ ),
where q is some multiplicative constant.

There exists another form of stationarity characteristic that often occurs in
wireless data transmission. A cyclostationary random process Y(t) is defined by a
mean function µY(t) that is periodic across time t as well as an autocorrelation
function RYY(τ + θ , θ) that is periodic across θ for a fixed value of τ .
Consequently, a cyclostationary random process Y(t) with period T0 can be
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described mathematically by

R̄YY(τ ) = 1
T0

T0∫
0

RXX(τ + θ , θ)dθ . (3.47)

In the area of communication systems engineering, cyclostationary random
processes are often leveraged in the detection of wireless signals in noisy channel
environments, where a target wireless signal will produce a unique characteristic
function that will enable its identification assuming that multiple signals are present
within the same spatiotemporal-frequency region.

3.5 Gaussian Noise Channels

As mentioned previously, Gaussian; that is, normal, random variables have often
been used to model the noise introduced within a communication channel. In
fact, many analyses of communication systems and their performance are often
conducted assuming that the noisy channel possess Gaussian random behavior.
Consequently, this makes the Gaussian random variable one of the most frequently
used random variable in the study of communication systems.

We define the univariate Gaussian PDF as

fX(x) = 1√
2πσ 2

e−(x−µ)2/2σ2
, (3.48)

where µ is the mean of the Gaussian random variable X, and σ 2 is the variance of
X. In the case that µ = 0 and σ 2 = 1, we refer to X as a standard normal random
variable.

Although the univariate Gaussian distribution is frequently used in numerous
applications, there are several instances where we must employ the bivariate
Gaussian distribution in order to characterize a specific application involving two
Gaussian random variables possessing some degree of correlation between each
other; for example, complex baseband transmission channel with inphase and
quadrature signal components. An illustration of an example of a bivariate Gaussian
distribution is shown in Figure 3.7.

Mathematically speaking, the general definition for a bivariate Gaussian density
with parameters µX, µY , σ 2

X, σ 2
Y , and correlation coefficient ρ is given by

fXY(x, y) =
exp

(
−1

2(1−ρ2)

((
x−µX

σX

)2 − 2ρ
(

x−µX
σX

) (
y−µY

σY

)
+
(

y−µY
σY

)2
))

2πσXσY
√

1 − ρ2
, (3.49)

where the correlation coefficient is defined as

ρ = E
[(

x − µX

σX

)(
y − µY

σY

)]
. (3.50)

Suppose we would like to model a complex baseband channel where the inphase
and quadrature noise contributions are represented by bivariate Gaussian random
variables. In several instances, we would like to have the inphase and quadrature
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Figure 3.7 Density of a bivariate normal distribution with no correlation; that is, ρ = 0.

Code 3.4 Information Source: random_example.m

204 % Define simulation parameters
205 L = 1000000; % Length of data streams
206 res_hist = 100; % Histogram resolution
207 std_dev = 5; % Standard deviation of input Gaussian variables
208
209 % Create uncorrelated 2D Gaussian random variable
210 x_normal_1 = std_dev.*randn(1,L);
211 y_normal_1 = std_dev.*randn(1,L);
212
213 % Create correlated 2D Gaussian random data stream
214 x_normal_2 = x_normal_1+0.1*y_normal_1;
215 y_normal_2 = y_normal_1+0.9*x_normal_1;

components of this noise to be uncorrelated. In other situations, we might want them
to be very correlated. As a result, we need to make sure we model these bivariate
Gaussian random values accurately. The MATLAB script in Code 3.4 models these
types of bivariate Gaussian random variables representing channel noise, where we
have employed the function randn in order to generate two vectors of length L
that contain values possessing Gaussian characteristics. Since we have generated
these vectors separately, by default they are uncorrelated with each other in this
situation. Furthermore, we have made both vectors to be zero mean, and they both
possess standard deviations of std_dev. From these two vectors, we can readily
obtain an uncorrelated bivariate Gaussian distributed data as well as a correlated
bivariate Gaussian distributed data.

Based on the two-dimensional density functions shown in Figure 3.8, we
can readily observe the difference between uncorrelated and correlated bivariate
Gaussian random variables. In the uncorrelated case, the bivariate Gaussian random
variables appear to be symmetric about the x/y plane, which can be seen in
Figure 3.8(a) (3-dimensional viewpoint) and Figure 3.8(b) (top-down viewpoint).
However, once we introduce some correlation between the inphase and quadrature
components of the bivariate Gaussian random variables, this begins to warp the
shape of the density, compressing it in one direction while expanding it in another.
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Figure 3.8 Several examples of correlated and uncorrelated bivariate Gaussian densities.
(a) Uncorrelated bivariate Gaussian (3-D view), (b) uncorrelated bivariate Gaussian (top-down view),
(c) correlated bivariate Gaussian (3-D view), and (d) correlated bivariate Gaussian (top-down view).

This can be observed in Figure 3.8(c) (3-dimensional viewpoint) and Figure 3.8(d)
(top-down viewpoint).

3.5.1 Gaussian Processes
As mentioned before, situations exist where the probability characteristics of a
random phenomena representing an element of a communication system varies
over time (e.g., the properties of a noisy channel represented by a Gaussian random
variable). Consequently, we need a mathematical representation that can account
for the time-dependent randomness of these phenomena, especially for those events
modeled by Gaussian random variables. Refering to Section 3.4, we can model a
time-varying Gaussian random variable by a Gaussian process, which is a stochastic
process whose realizations consist of random values associated with every point in
a range of times (or of space) such that each such random variable has a normal
distribution. Moreover, every finite collection of those random variables has a
multivariate normal distribution.
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Gaussian processes are important in statistical modeling because of properties
inherited from the normal distribution. For example, if a random process is modeled
as a Gaussian process, the distributions of various derived quantities can be obtained
explicitly. Such quantities include the average value of the process over a range of
times and the error in estimating the average using sample values at a small set of
times.

Given the following expression:

y =
∫ T

0
g(t)X(t) dt (3.51)

we can say that X(t) is a Gaussian process if

• E(y2) is finite (i.e., does not blow up).
• Y is Gaussian-distributed for every g(t).

Note that the random variable Y has a Gaussian distribution, where its PDF is
defined as

fY(y) = 1√
2πσ 2

Y

e
−(y−µY )2

2σY
2 , (3.52)

where µY is the mean and σY
2 is the variance. Such processes are important because

they closely match the behavior of numerous physical phenomena, such as additive
white Gaussian noise (AWGN).

Q Why is an uncorrelated random process referred to as white, such
as in the case of additive white Gaussian noise?

3.6 Power Spectral Densities and LTI Systems

To analyze a communication system in the frequency domain, the power spectral
density (PSD), SXX(f ), is often used to characterize the signal, which is obtained by
taking the Fourier transform of the autocorrelation RXX(τ ) of the WSS random
process X(t). The PSD and the autocorrelation of a function, RXX(τ ), are
mathematically related by the Einstein-Wiener-Khinchin (EWK) relations; namely,

SXX(f ) =
∫ ∞

−∞
RXX(τ )e−j2π f τ dτ (3.53)

RXX(f ) =
∫ ∞

−∞
SXX(τ )e+j2π f τ df (3.54)

A very powerful consequence of the EWK relations is its usefulness when
attempting to determine the autocorrelation function or PSD of a WSS random
process that is the output of an LTI system whose input is also a WSS random
process. Specifically, suppose we denote H(f ) as the frequency response of an LTI
system h(t). We can then relate the power spectral density of input and output
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random processes by the following equation:

SYY(f ) = |H(f )|2SXX(f ), (3.55)

where SXX(f ) is the PSD of input random process and SYY(f ) is the PSD of output
random process. This very useful relationship is illustrated in Figure 3.9.

To understand the impact of an LTI system on the PSD of a random process,
we can use the MATLAB script in Code 3.5, where we have a bivariate uniform
random number generator producing inphase and quadrature values. To highlight
the impact of LTI systems on PSDs, we have designed two filters using the firls
function. One of the filters has a relatively large passband while the other filter has
a relatively small passband. The bivariate uniform random values are then filtered
by both systems and we can observe the resulting PSDs in Figure 3.10.

The three dimensional and top-down perspectives of the original bivariate
uniform random values are shown in Figures 3.10(a) and 3.10(b). We observe that
the density almost appears to be a rectangular block, which is what we are expecting
from a bivariate uniform. Once we filter this data using the filter with the narrow
passband region and observe the resulting PSD, we can readily notice the effects of
the filtering operation, with most of the PSD being filtered away at the peripherals.
This is evident in the three-dimensional and top-down perspectives of these filtered
bivariate uniform random values shown in Figures 3.10(c) and 3.10(d). When using
the filter with the relatively larger passband, we observe that the perimeter of the
PSD is not as filtered, as shown in the three-dimensional and top-down perspectives
of these filtered bivariate uniform random values in Figures 3.10(e) and 3.10(f).
Consequently, the primary take-away point from this example is that the filtering
operations of LTI systems can have a significant impact on the PSDs of random
processes.

3.7 Narrowband Noise

Now that we have a solid foundation with respect to random variables and random
processes, it is time to apply this knowledge to the application of narrowband
transmissions for wireless communication systems. In general, most transmissions
are designed to be bandlimited since there are constraints on the amount of wireless
spectrum that any one transmission can use. These constraints are necessary since
there is a limited amount of wireless spectrum available and a growing number of
wireless applications and users seeking to use this spectrum for their transmissions.

( )h t
H(f)

( )X t ( )Y t

S (f) |H(f)| S (f)YY XX= 2

S (f)YYR ( )YY τS (f)XXR ( )XX τ � �

Figure 3.9 An example of how the an LTI system h(t) can transform the PSD between the WSS
random process input X(t) and the WSS random process output Y(t).
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Code 3.5 Information Source: random_example.m

254 % Define simulation parameters
255 L = 1000000; % Length of data streams
256 res_hist = 100; % Histogram resolution
257 cutoff_freq1 = 0.2; % Small passband LPF
258 cutoff_freq2 = 0.7; % large passband LPF
259 filt_coeffs1 = firls(13,[0 cutoff_freq1 cutoff_freq1+0.02 1],

[1 1 0 0]);
260 filt_coeffs2 = firls(13,[0 cutoff_freq2 cutoff_freq2+0.02 1],

[1 1 0 0]);
261
262 % Create input 2D Gaussian random variable
263 x_in = rand(1,L);
264 y_in = rand(1,L);
265
266 % Filter input random data stream
267 filt_output1 = filter(filt_coeffs1,1,(x_in+1j.*y_in));
268 x_out1 = real(filt_output1);
269 y_out1 = imag(filt_output1);
270 filt_output2 = filter(filt_coeffs2,1,(x_in+1j.*y_in));
271 x_out2 = real(filt_output2);
272 y_out2 = imag(filt_output2);

One of the key elements of a narrowband communication system is the
narrowband filters at both the transmitter and receiver, which are designed to only
allow only the modulated signals to pass. However, these narrowband filters also
allow a portion of the noise intercepted at the receiver to pass through since it
is very difficult to separate out the noise from the modulated signals. If it turns
out that the noise is white (i.e., uncorrelated), then narrowband noise will take on
the shaped of a cosine-modulated bandpass filter response. This is due to the fact
that the white noise prior to filtering will have a PSD that is flat and spanning the
entire frequency range from negative infinity to positive infinity. When processed
by bandpass filters, the resulting narrowband noise PSD will take on the shape of
the square of the magnitude response of the bandpass filters since the convolution
of the noise with the filters in the time domain translates into the multiplication of
the noise PSD with the filter magnitude response (see Section 3.6).

In terms of setting up a convenient mathematical framework to represent
narrowband noise, there are two approaches: in-phase/quadrature representation
and envelope/phase representation. Both approaches can describe a complex value
x using the definition x = Aejφ = a + jb, where x ∈ C and the envelope A,
phase φ, inphase component a, and quadrature component b are real numbers
A, φ, a, b ∈ R. The relationships between the in-phase/quadrature representation
and the envelope/phase representation is described by the following:

A =
√

a2 + b2φ = tan−1(b/a) (3.56)

a = A cos(φ) b = A sin(φ) (3.57)

Thus, we can describe the in-phase/quadrature representation of narrowband
noise in the complex baseband domain via the equation

ñ(t) = nI(t) + jnQ(t), (3.58)
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Figure 3.10 Example of how filtering can impact the output power spectral densities of random
processes. (a) Power spectral density of input signal (3-D view), (b) power spectral density of
input signal (top-down view), (c) power spectral density of output signal using filter coefficients
1 (3-D view), (d) power spectral density of output signal using filter coefficients 1 (top-down view),
(e) power spectral density of output signal using filter coefficients 2 (3-D view), and (f) power spectral
density of output signal using filter coefficients 2 (top-down view).

which can then be expressed in the bandpass version of a narrowband noise signal as

n(t) = Real
{
ñ(t)ej2π fct

}
. (3.59)

Using Euler’s relationship; namely, ejω = cos(ω)+ j sin(ω), we get the following
expression:

n(t) = nI(t) cos(2π fct) − nQ(t) sin(2π fct). (3.60)

Several important properties of the in-phase/quadrature representation are
presented in Table 3.4.
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Table 3.4 Several Important Properties of In-phase/Quadrature Representation

Both nI(t) and nQ(t) have zero mean
If n(t) is Gaussian, so are nI(t) and nQ(t)
If n(t) is stationary, nI(t) and nQ(t) are jointly stationary

PSD of nI(t) and nQ(t) equal to SNI (f ) = SNQ (f ) =
{

SN(f − fc) + SN(f + fc), −B ≤ f ≤ B
0, otherwise

Both nI(t) and nQ(t) have the same variance as n(t)
If n(t) is Gaussian and its PSD symmetric, then nI(t) and nQ(t) are statistically independent
The cross-spectral density between nI(t) and nQ(t) is purely imaginary, and for −B ≤ f ≤ B
it is equal to (zero otherwise) SNINQ (f ) = −SNQNI (f ) = j(SN(f + fc) − SN(f − fc))

Similarly, the complex baseband version of the envelope/phase representation
of narrowband noise can be written as

n(t) = r(t) cos(2π fct + φ(t)) (3.61)

where r(t) = √
nI(t) + nQ(t) is the envelope and φ(t) = tan−1(nQ(t)/nI(t)) is the

phase.
In terms of the relationship between the in-phase/quadrature representation

and the envelope/phase representation with respect to their joint distributions, the
results are very exciting. Suppose we define the joint PDF for nI(t) and nQ(t) as a
bivariate Gaussian distribution equal to

fNINQ(nI, nQ) = 1
2πσ 2 e− n2

I +n2
Q

2σ2 . (3.62)

It turns out that by using the relationships nI = r cos(φ) and nQ = r sin(φ) as
well as a Jacobian, we obtain the following distributions:

fR(r, φ) =
{

r
2πσ2 e− r2

2σ2 , r ≥ 0 and 0 ≤ φ ≤ 2π

0, otherwise
(3.63)

which are equivalent to the combination of Rayleigh and uniform PDFs.

3.8 Application of Random Variables: Indoor Channel Model

An excellent example of where random variables are used to model a stochastic
phenomenon in the design and implementation of a communication system is
the indoor channel model proposed by Saleh and Valenzuela [3]. The premise of
this channel model is that the indoor environment generates clusters of multipath
components that result from the wireless signals reflecting off of the surrounding
environment.

Mathematically speaking, they described these reflections of the transmitted
signal intercepted at the receiver by the following expression:

h(t) =
∞∑

l=0

∞∑
k=0

βkle
jθklδ(t − Tl − τkl) (3.64)
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where βkl is the amplitude level of the kth ray of the lth multipath cluster, θkl is
the phase value of the kth ray of the lth multipath cluster, Tl is the delay of the
start of the lth multipath cluster, and τkl is the delay of the kth ray within the lth
multipath cluster. In their work, Saleh and Valenzuela used channel measurements
in order to characterize βkl as a Rayleigh random variable, θkl as a uniform random
variable, and both Tl and τkl as Poisson arrival processes with arrival rates � and
λ. Graphically, this model can be illustrated using Figure 3.11.

3.9 Chapter Summary

In this chapter, a brief introduction to some of the key mathematical tools
for analyzing and modeling random variables and random processes for
communication systems has been presented. Of particular importance, the
reader should understand how to mathematically manipulate Gaussian random
variables, Gaussian random processes, and bivariate normal distributions since
they frequently occur in digital communications and wireless data transmission
applications. Furthermore, understanding how stationarity works and how
to apply the EWK relations to situations involving random processes being
filtered by LTI systems is vitally important, especially when dealing with the
processing and treatment of received wireless signals by the communication system
receiver.

3.10 Additional Readings

Although this chapter attempts to provide the reader with an introduction to some
of the key mathematical tools needed to analyze and model random variables and
random processes that frequently occur in many digital communication systems,
the treatment of these mathematical tools is by no means rigorous or thorough.
Consequently, the interested reader is encouraged to consult some of the available
books that address this broad area in greater detail. For instance, the gold
standard for any textbook on the subject of probability and random processes is by
Papoulis and Pillai [1]. On the other hand, those individuals seeking to understand
probability and random processes theory within the context of communication
networks would potentially find the book by Leon-Garcia to be highly relevant [4].

T0 T

 

1 T2
Time

β2

1/λ

1/

eT/Γ

eτ/γ

Figure 3.11 Illustration of the Saleh and Valenzuela statistical indoor channel model.
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For individuals who are interested in activities involving physical layer digital
communication systems and digital signal processing, such as Wiener filtering,
the book by Gubner would be a decent option given that many of the examples
and problems included in this publication are related to many of the classic
problems in communication systems [5]. Regarding books that possess numerous
solved examples and explanations, those by Hsu [6] and Krishnan [7] would
serve as suitable reading material. Finally, for those individuals who are interested
in studying advanced topics and treatments of random processes, the book by
Grimmett and Stirzaker would be a suitable publication [8].
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