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C H A P T E R 2

Signals and Systems

SDR is an application-specific area of signal processing, and everyone involved in
SDR development needs to not only have a solid background in signals and systems,
but also RF and analog baseband processing. This chapter covers the many aspects
of linear time-invariant (LTI) signals and systems, analog processing, and RF that
forms the fundamental basis for the latter chapters. It is not expected that the reader
will go through each topic in detail, but if any of the short topics are new, the reader
should refer to the more comprehensive books on these subjects.

2.1 Time and Frequency Domains

The time and frequency domains are alternative ways of representing the
same signals. The Fourier transform, named after its initial instigator, French
mathematician and physicist Jean-Baptiste Joseph Fourier, is the mathematical
relationship between these two representations. If a signal is modified in one domain,
it will also be changed in the other domain, although usually not in the same way.
For example, convolution in the time domain is equivalent to multiplication in the
frequency domain. Other mathematical operations, such as addition, scaling, and
shifting, also have a matching operation in the opposite domain. These relationships
are called properties of the Fourier transform, which describe how a mathematical
change in one domain results in a mathematical change in the other domain.

The Fourier transform is just a different way to describe a signal. For example,
investigating the Gibbs phenomenon, which states if you add sine waves at specific
frequency/phase/amplitude combinations you can approximate a square wave, can
be expressed mathematically as (2.1), and shown in Figure 2.1.

x(t) = sin(t) + sin(3t)
3

+ sin(5t)
5

+ ... =
n=∞∑
n=1

sin(n × t)
n

; n = odd (2.1)

When we look at the signal across the time axis that is perpendicular to the
frequency axis, we observe the time domain. We cannot see the frequency of
the sine waves easily since we are perpendicular to the frequency axis. When we
transform domains and observe phenomenon across the frequency axis, which is
perpendicular to the time axis, we observe the frequency or Fourier domain. We
can easily make out the signal magnitude and frequency, but have lost that time
aspect. Both views represents the same signal such that, they are just being observed
things from different domains via transforms.

19
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20 Signals and Systems

Figure 2.1 Gibbs phenomenon, looking left, the time domain, looking right, the Fourier domain.

Q
Investigate the Gibbs phenomenon in MATLAB by using Code 2.1
to better understand how adding sine waves with variations in
frequency/phase/amplitude affect the time domain, and frequency
domains

Code 2.1 Gibbs phenomenon: gibbs.m

2 max = 9;
3 fs = 1000;

11 for i = 1:2:max
12 % dsp.SineWave(amp,freq,phase,Name,Value);
13 wave = dsp.SineWave(1/i, i*2*pi, 0, ...
14 ’SamplesPerFrame’, 5000, ’SampleRate’, fs);
15 y = wave();
16 if i == 1
17 wavesum = y;
18 else
19 wavesum = wavesum + y;
20 end
28 scope(wavesum());
29 pause(.5);
30 % waitforbuttonpress;
31 end

2.1.1 Fourier Transform
The Fourier transform includes four members in its family: the Fourier transform,
Fourier series, discrete Fourier transform (DFT), and discrete-time Fourier
transform (DTFT). The commonly referred to FFT (fast Fourier transform) and
its inverse, the inverse FFT (IFFT), is a specific implementation of the DFT.

The Fourier transform of x(t) is defined as [1]:

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt, (2.2)

where t is the time variable in seconds across the time domain, and ω is the frequency
variable in radian per seconds across frequency domain.
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Applying the similar transform to X(ω) yields the inverse Fourier transform [1]:

x(t) =
∫ ∞

−∞
X(ω)ej2πωtdω, (2.3)

where we write x(t) as a weighted sum of complex exponentials.
The Fourier transform pair above can be denoted as [2]:

x(t)
F↔ X(ω), (2.4)

where the left-hand side of the symbol
F↔ is before Fourier transform, while the

right-hand side of the symbol
F↔ is after Fourier transform. There are several

commonly used properties of Fourier transform that are useful when studying SDR
Fourier domain, which have been summarized in Table 2.1 for your reference.

2.1.2 Periodic Nature of the DFT
Unlike the other three Fourier transforms, the DFT views both the time domain
and the frequency domain signals as periodic (they repeat forever). This can be
confusing and inconvenient since most of the signals used in many signal processing
applications are not periodic. Nevertheless, if you want to use the DFT (and its fast
implementation, the FFT), you must conform with the DFT’s view of the world.

Figure 2.2 shows two different interpretations of the time domain signal. First,
observing the upper signal, the time domain viewed as N points. This represents how
signals are typically acquired by SDRs, by a buffer of N points. For instance, these
128 samples might have been acquired by sampling some analog signal at regular
intervals of time. Sample 0 is distinct and separate from sample 127 because they
were acquired at different times. From the way this signal was formed, there is no
reason to think that the samples on the left of the signal are even related to the
samples on the right.

Unfortunately, the DFT does not see things this way. As shown in the lower part
of Figure 2.2, the DFT views these 128 points to be a single period of an infinitely
long periodic signal. This means that the left side of the acquired signal is connected
to the right side of a duplicate signal. Likewise, the right side of the acquired signal

Table 2.1 Fourier Transform Properties∗

Property Time Signal Fourier Transform Signal
Definition x(t)

∫∞
−∞ x(t)e−jωtdt

Inversion formula
∫∞
−∞ X(ω)ej2πωtdω X(ω)

Linearity
∑N

n=1 anxn(t)
∑N

n=1 anXn(ω)

Symmetry x(−t) X(−ω)

Time shift x(t − t0) X(ω)e−jωt0

Frequency shift x(t)ejω0t X(ω − ω0)

Scaling x(αt) 1
|α| X( ω

α
)

Derivative dn

dtn x(t) (jω)nX(ω)

Integration
∫∞
−∞ x(τ )dτ

X(ω)
jω + πX(0)δ(ω)

Time convolution x(t) ∗ h(t) X(ω)H(ω)

Frequency convolution x(t)h(t) 1
2π

X(ω) ∗ H(ω)
∗ based on [2]. Suppose the time signal is x(t), and its Fourier transform signal is X(ω)
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Figure 2.2 Periodicity of the DFT’s time domain signal. The time domain can be viewed as N
samples in length, shown in the upper figure, or as an infinitely long periodic signal, shown in the
lower figures [4].

is connected to the left side of an identical period. This can also be thought of as
the right side of the acquired signal wrapping around and connecting to its left side.
In this view, sample 127 occurs next to sample 0, just as sample 43 occurs next
to sample 44. This is referred to as being circular, and is identical to viewing the
signal as being periodic. This is the reason that window [3] functions need to be
preapplied to signal captures before applying an FFT function, which is multiplied
by the signal and removes the discontinuities by forcing them to zero [4].

2.1.3 Fast Fourier Transform
There are several ways to calculate the DFT, such as solving simultaneous linear
equations or correlation method. The FFT is another method for calculating the
DFT. While it produces the same result as the other approaches, it is incredibly more
efficient, often reducing the computation time by multiple orders of magnitude.
While the FFT only requires a few dozen lines of code, it is one of the more
complicated algorithms in signal processing, and its internal workings details are
left to those that specialize in such things. You can easily use existing and proven
FFT routines [4, 5] without fully understanding the internal workings as long as
you understand how it is operating.

An FFT analysis using a generalized test setup shown in Figure 2.3. The spectral
output of the FFT is a series of M

2 points in the frequency domain (M is the size of
the FFT, the number of samples stored in the buffer memory). The spacing between
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Figure 2.3 Generalized test set up for FFT analysis of ADC output [6].

the points is fs
M , and the total frequency range covered is DC to fs

2 , where fs is the
sampling rate. The width of each frequency bin (sometimes called the resolution of
the FFT) is fs

M .
Figure 2.4 shows an FFT output for an ideal 12-bit ADC using the Analog

Devices’ ADIsimADC®program. Note that the theoretical noise floor of the FFT
is equal to the theoretical signal-to-noise ratio (SNR) plus the FFT process gain
of 10log10(M

2 ). It is important to remember the value for noise used in the SNR

calculation is the noise that extends over the entire Nyquist bandwidth (DC to fs
2 ),

but the FFT acts as a narrowband spectrum analyzer with a bandwidth of fs
M that

sweeps over the spectrum. This has the effect of pushing the noise down by an
amount equal to the process gain—the same effect as narrowing the bandwidth of
an analog spectrum analyzer.

The FFT output can be used like an analog spectrum analyzer to measure the
amplitude of the various harmonics and noise components of a digitized signal. The
harmonics of the input signal can be distinguished from other distortion products
by their location in the frequency spectrum.

2.2 Sampling Theory

A continuous-time analog signal can be converted to a discrete-time digital signal
using sampling and quantization, as shown in Figure 2.5, where a continuous analog
input signal xa(t) is converted to a discrete digital output signal x[n]. Sampling
is the conversion of a continuous-time signal into a discrete-time signal obtained
by taking the samples of the continuous-time signal at discrete-time instants [1].
The quantization process converts the sample amplitude into a digital format.
Section 2.2.1 will introduce a frequently used sampling method; namely, uniform
sampling.

Similarly, a discrete-time signal can also be converted to a continuous-time
signal using reconstruction. However, reconstruction is not always successful.
Sometimes, the reconstructed signal is not the same as the original signal. Since for
a given sampled signal, it can represent an infinite number of different continuous-
time signals that can fit into the same quantized sample points. However, if the
sampling satisfies certain criterion, the signal can be reconstructed without losing
information. This criterion, called Nyquist sampling theorem, will be introduced in
Sections 2.2.3 and 2.5.1.

2.2.1 Uniform Sampling
There are many ways to perform sampling of an analog signal into a digital
representation. However, if we specify the sampling interval as a constant number
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Figure 2.4 FFT output for an ideal 12-bit ADC, fa = 2.111 MHz, fs = 82 MSPS, average of 5 FFTs,
M = 8192. Data generated from ADIsimADC® [6].

Figure 2.5 Basic parts of an analog-to-digital converter (ADC) [1]. Sampling takes place in the
sampler block. xa(t) = analog continuous time signal; fs is the digital sample rate; xa[n] is the discrete
time continuous analog signal; xq[n] is the discrete time, discrete digital signal, which may come
out as grey code; and x[n] is the output of the coder in 2s complement form [7].

Ts, we get the most widely used sampling, called uniform sampling or periodic
sampling. Using this method, we are taking samples of the continuous-time signal
every Ts seconds, which can be defined as

x[n] = x(nTs), −∞ < n < ∞, (2.5)

where x(t) is the input continuous-time signal, x[n] is the output discrete-time signal,
Ts is the sampling period, and fs = 1/Ts is the sampling frequency.

An equivalent model for the uniform sampling operation is shown in
Figure 2.6(a), where the continuous-time signal x(t) is multiplied by an impulse
train p(t) to form the sampled signal xs(t), which can be defined as

xs(t) = x(t)p(t), (2.6)

where the signal p(t) is referred to as the sampling function.
The sampling function is assumed to be a series of narrow pulses, which is

either zero or one. Thus, xs(t) = x(t) when p(t) = 1, and xs(t) = 0 when p(t) = 0.
Since p(t) = 1 only at time instants Ts, the resulting xs(t) = x(nTs) = x[n], which
proves that this is indeed an equivalent model for the uniform sampling operation.
This model will help us to obtain the frequency domain representation of uniform
sampling in Section 2.2.2.
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Figure 2.6 An equivalent model for the uniform sampling operation. (a) A continuous-time
signal x(t) is multiplied by a periodic pulse p(t) to form the sampled signal xs(t), and (b) a periodic
pulse p(t).

2.2.2 Frequency Domain Representation of Uniform Sampling
Since it is easier to derive the Nyquist sampling theorem in frequency domain, in this
section we will try to represent the uniform sampling process in frequency domain.

According to Figure 2.6(b), we can define the sampling function p(t) as

p(t) =
∞∑

k=−∞
δ(t − kTs), k = 0, 1, 2, ..., (2.7)

where at time instants kTs, we have p(t) = 1. According to [8], p(t) is a Dirac comb
constructed from Dirac delta functions.

Substitution of (2.7) into (2.6) gives

xs(t) = x(t)p(t) = x(t)
∞∑

k=−∞
δ(t − kTs). (2.8)

In order to understand the sampling process in frequency domain, we need to
take the Fourier transform of xs(t). According to frequency-domain convolution
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property in Table 2.1, multiplication in time domain will lead to convolution
in frequency domain. Therefore, multiplication of x(t) and p(t) will yield the
convolution of X(ω) and P(ω):

Xs(ω) = 1
2π

X(ω) ∗ P(ω), (2.9)

where X(ω) is the Fourier transform of x(t), and P(ω) is the Fourier transform
of p(t).

The Fourier transform of a Dirac comb is also a Dirac comb [8], namely

P(ω) =
√

2π

Ts

∞∑
k=−∞

δ(ω − k
2π

Ts
) =

√
2π

Ts

∞∑
k=−∞

δ(ω − kωs), (2.10)

where ωs = 2π fs is the sampling frequency.
Performing convolution with a collection of delta function pulses at the pulse

location, we get

Xs(ω) = 1√
2πTs

∞∑
k=−∞

X(ω − kωs). (2.11)

Equation (2.11) tells us that the uniform sampling creates images of the Fourier
transform of the input signal, and images are periodic with sampling frequency fs.

2.2.3 Nyquist Sampling Theorem
Based on (2.11), we draw the spectrum of original signal x(t) and the sampled signal
xs(t) on frequency domain, as shown in Figure 2.7. We assume the bandwidth of
the original signal is [−fh, fh], as shown in Figure 2.7(a). For now, we do not pay
attention to the signal amplitude, so we use A and As to represent them. Assuming
the sampling frequency is fs, then the sampled signal will have replicas at location
kfs. In order to reconstruct the original signal from the sampled signal, we will apply
a lowpass filter on the sampled signal, trying to extract the n = 0 term from Xs(f ),
as shown in Figure 2.7(b). Therefore, accomplishing reconstruction without error
requires that the portion of the spectrum of Xs(f ) at f = ±fs does not overlap with
the portion of the spectrum at f = 0. In other words, this requires that fs − fh > fh
or fs > 2fh, which leads to the Nyquist sampling theorem.

Nyquist sampling theorem applies for the bandlimited signal, which is a signal
x(t) that has no spectral components beyond a frequency B Hz [9]. That is,

X(ω) = 0, |ω| > 2πB. (2.12)

The Nyquist sampling theorem states that a real signal, x(t), which is
bandlimited to B Hz can be reconstructed without error from samples taken
uniformly at a rate R > 2B samples per second. This minimum sampling frequency,
Fs = 2B Hz, is called the Nyquist rate or the Nyquist frequency. The corresponding
sampling interval, T = 1

2B , is called the Nyquist interval [1]. A signal bandlimited
to B Hz, which is sampled at less than the Nyquist frequency of 2B (i.e., which was
sampled at an interval T > 1

2B ), is said to be undersampled.
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Figure 2.7 The spectrum of original signal x(t) and the sampled signal xs(t) in the frequency
domain. (a) The spectrum of original continuous-time signal x(t), with bandwidth −fh to fh, and
amplitude A. (b) The spectrum of the digitally sampled signal xs(t), fs > fh which satisfies Nyquist
sampling theorem. (c) The spectrum of the digitally sampled signal xs(t), fs < fh which does not
satisfies Nyquist sampling theorem and has aliasing.

When a signal is undersampled, its spectrum has overlapping spectral tails,
or images, where Xs(f ) no longer has complete information about the spectrum
and it is no longer possible to recover x(t) from the sampled signal. In this case,
the tailing spectrum does not go to zero, but is folded back onto the apparent
spectrum. This inversion of the tail is called spectral folding or aliasing, as shown
in Figure 2.7(c) [10].

Hands-On MATLAB Example: Let us now explain via computer simulation how
the Nyquist criteria requires that the sampling frequency be at least twice the highest
frequency contained in the signal or information about the signal will be lost.
Furthermore, in Section 2.5.1, the phenomena known as aliasing will occur and
the frequency will be folded back into the first Nyquist band. In order to describe
the implications of aliasing, we can investigate things in the time domain.

Consider the case of a time domain representation of a single tone sinewave
sampled as shown in Figure 2.8(a). In this example, the sampling frequency (fs) is
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Figure 2.8 Aliasing in the time domain. Digital samples are the same in both figures. (a) Analog
input (FA) solid line; digital sample data (circles) at (fs), and (b) digital reconstruction dashed line;
digital sample data (circles) at (fs).

not at least two times the analog input frequeny (FA), but actually slightly more
than fs. Therefore, the Nyquist criteria is violated by definition. Notice that the
pattern of the actual samples produces an aliased sinewave at a lower frequency, as
shown in Figure 2.8(b).

Code 2.2 can create similar figures as shown in Figure 2.8(a) and Figure 2.8(b),
and may be helpful to better understand how aliasing works by manipulating
Fs and Fa. Figures 2.7 and 2.25 demonstrate the same effect in the frequency
domain.

Code 2.2 Time domain aliasing: nyquist.m

2 Fs = 1000; % Sample rate (Hz)
3 Fa = 1105; % Input Frequency (Hz)
4 % Determine Nyquist zones
5 zone = 1 + floor(Fa / (Fs/2));
6 alias = mod(Fa, Fs);
7 if ˜mod(zone,2) % 2nd, 4th, 6th, ... Nyquist Zone
8 % Its not really a negative amplitude, but it is 180 degrees out
9 % of phase, which makes it harder to see on the time domain side,

10 % so we cheat to make the graphs look better.
11 alias = -(Fs - alias)/Fs;
12 else % 3rd, 5th, 7th, ... Nyquist Zone
13 alias = (alias)/Fs;
14 end
15
16 % Create the analog/time domain and digital sampling vectors
17 N = 2*1/abs(alias) + 1; % Number of Digital samples
18 points = 256; % Analog points between digital samples
19 analogIndexes = 0:1/points:N-1;
20 samplingIndexes = 1:points:length(analogIndexes);
21 wave = sin(2*pi*Fa/Fs*analogIndexes);
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2.2.4 Nyquist Zones
The Nyquist bandwidth itself is defined to be the frequency spectrum from DC to
fs
2 . However, the frequency spectrum is divided into an infinite number of Nyquist
zones, each having a width equal to 0.5 fs as shown in Figure 2.9. The frequency
spectrum does not just end because you are not interested in those frequencies.

This implies that some filtering ahead of the sampler (or ADC) is required to
remove frequency components that are outside the Nyquist bandwidth, but whose
aliased components fall inside it. The filter performance will depend on how close the
out-of-band signal is to fs

2 and the amount of attenuation required. It is important
to note that with no input filtering at the input of the ideal sampler (or ADC),
any frequency component (either signal or noise) that falls outside the Nyquist
bandwidth in any Nyquist zone will be aliased back into the first Nyquist zone.
For this reason, an analog antialiasing filter is used in almost all sampling ADC
applications to remove these unwanted signals.

Q

How do you think the relationship changes between the measured
frequency and the absolute frequency, as it goes up into the third
or fourth or higher Nyquist zones as shown in Figure 2.9? See if
you can confirm your hypothesis by modifying Code 2.2 to plot
absolute frequency on the x-axis, and measured frequency on the
y-axis.

2.2.5 Sample Rate Conversion
In real-world applications, we often would like to lower the sampling rate because
it reduces storage and computation requirements. In many cases we prefer a higher
sampling rate because it preserves fidelity. Sampling rate conversion is a general
term for the process of changing the time interval between the adjacent elements in
a sequence consisting of samples of a continuous-time function [10].

Decimation: The process of lowering the sampling rate is called decimation, which
is achieved by ignoring all but every Dth sample. In time domain, it can be defined as

y[n] = x[nD], D = 1, 2, 3, ..., (2.13)

where x[n] is the original signal, y[n] is the decimated signal, and D is the decimation
rate. According to (2.13), the sampling rates of the original signal and the decimated

Figure 2.9 Analog signal fa sampled at fs has images (aliases) at ±kFs ± Fa, k = 1, 2, 3, ....
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signal can be expressed as

Fy = Fx

D
, (2.14)

where Fx is the sampling rates of the original signal, and Fy is the sampling rates of
the decimated signal.

Since the frequency variables in radians, ωx and ωy, can be related to sampling
rate, Fx and Fy, by

ωx = 2πFTx = 2πF
Fx

, (2.15)

and

ωy = 2πFTy = 2πF
Fy

, (2.16)

it follows from the distributive property that ωx and ωy are related by

ωy = Dωx, (2.17)

which means that the frequency range of ωx is stretched into the corresponding
frequency range of ωy by a factor of D.

In order to avoid aliasing of the decimated sequence y[n], it is required that
0 ≤ |ωy| ≤ π . Based on (2.17), it implies that the spectrum of the original sequence
should satisfy 0 ≤ |ωx| ≤ π

D . Therefore, in reality, decimation is usually a two-step
process, consisting of a lowpass antialiasing filter and a downsampler, as shown in
Figure 2.10. The lowpass antialiasing filter is used to constrain the bandwidth of
the input signal to the downsampler x[n] to be 0 ≤ |ωx| ≤ π

D .
In frequency domain, the spectrum of the decimated signal, y[n], can be

expressed as [1]

Y(ωy) = 1
D

D−1∑
k=0

HD

(
ωy − 2πk

D

)
S
(

ωy − 2πk

D

)
, (2.18)

where S(ω) is the spectrum of the input signal s[n], and HD(ω) is the frequency
response of the lowpass filter hD[n]. With a properly designed filter HD(ω), the
aliasing is eliminated, and consequently, all but the first k = 0 term in (2.18)
vanish [1]. Hence, (2.18) becomes

Y(ωy) = 1
D

HD

(ωy

D

)
S
(ωy

D

)
= 1

D
S
(ωy

D

)
, (2.19)

for 0 ≤ |ωy| ≤ π . The spectra for the sequence x[n] and y[n] are illustrated in
Figure 2.11, where the frequency range of the intermediate signal is 0 ≤ |ωx| ≤ π

D ,
and the frequency range of the decimated signal is 0 ≤ |ωy| ≤ π .

Figure 2.10 The structure of decimation, consisting of a lowpass antialiasing filter and a
downsampler.
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Figure 2.11 The spectra for the sequence x[n] and y[n], where the frequency range of ωx is stretched
into the corresponding frequency range of ωy by a factor of D. (a) Spectrum of the intermediate
sequence, and (b) spectrum of the decimated sequence.

Interpolation: The process of increasing the sampling rate is called interpolation,
which can be accomplished by interpolating (stuffing zeros) I − 1 new samples
between successive values of signal. In time domain, it can be defined as

y[n] =
{

x[n/I] n = 0, ±I, ±2I, ...
0 otherwise

, I = 1, 2, 3, ..., (2.20)

where x[n] is the original signal, y[n] is the interpolated signal, and I is the
interpolation rate.

According to (2.20), the sampling rates of the original signal and the
interpolated signal can be expressed as

Fy = IFx, (2.21)

where Fx is the sampling rates of the original signal, and Fy is the sampling rates
of the interpolated signal. Since (2.15) and (2.16) also hold here, it follows that ωx
and ωy are related by

ωy = ωx

I
, (2.22)

which means that the frequency range of ωx is compressed into the corresponding
frequency range of ωy by a factor of I. Therefore, after the interpolation, there will
be I replicas of the spectrum of x[n], where each replica occupies a bandwidth of π

I .
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Since only the frequency components of y[n] in the range 0 ≤ |ωy| ≤ π
I are unique

(i.e., all the other replicas are the same as this one), the images of Y(ω) above
ωy = π

I should be rejected by passing it through a lowpass filter with the following
frequency response:

HI(ωy) =
{

C 0 ≤ |ωy| ≤ π
I

0 otherwise
, (2.23)

where C is a scale factor.
Therefore, in reality, interpolation is also a two-step process, consisting of an

upsampler and a lowpass filter, as shown in Figure 2.12. The spectrum of the output
signal z[n] is

Z(ωz) =
{

CX(ωzI) 0 ≤ |ωz| ≤ π
I

0 otherwise
, (2.24)

where X(ω) is the spectrum of the output signal x[n].
The spectra for the sequence x[n], y[n] and z[n] are illustrated in Figure 2.13,

where the frequency range of the original signal is 0 ≤ |ωx| ≤ π , and the frequency
range of the decimated signal is 0 ≤ |ωz| ≤ π

I .

Hands-On MATLAB Example: Now let us experiment with decimation and
interpolation using MATLAB. The following example will manipulate two types
of signals: a continuous wave (CW) signal (a sine wave) and a random signal.
Furthermore, we will visualize the effects of upsampling and downsampling in
the the time and frequency domains. We begin by generating these signals using
MATLAB Code 2.3, and then pass the data through a lowpass filter in Code 2.4
to band-limit them. Using these band-limited versions we will observe the effects of
correct and incorrect up and downsampling in the time and frequency domains.

When left unfiltered in Figure 2.14(a) and Figure 2.14(e), the sine wave
signal mirrors a discrete version of a sine wave function. On the other hand in
Figure 2.14(b) and Figure 2.14(f), the random binary signal consist of a string of
random ones and negative ones.

Using the least-squares linear-phase FIR filter design or MATLAB’s firls
function, we are able to quickly generate FIR filter coefficients where the cut-off
frequency is approximately at 0.21π .

After passing the data through Code 2.4, the resulting filtered discrete time
signals (sine and random binary) represented in both the time and frequency
domains are presented in Figure 2.14(c) and Figure 2.14(g). The differences between
the original sine wave shown in Figure 2.14(e) and the band-limited sine wave in
Figure 2.14(g) are negligible since the frequency of the sine wave is less than the low
pass/band-limiting filter in Code 2.4. The differences of the random data shown in
shown in Figure 2.14(b) and the band-limited in Figure 2.14(d) can been seen easily,
and the reduction of bandwidth in the frequency domain show in Figure 2.14(h) is
very noticeable compared to the orginal in Figure 2.14(f). In the time domain, we

Figure 2.12 The structure of interpolation, consisting of an upsampler and a lowpass filter.
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Figure 2.13 The spectra for the sequence x[n], y[n] and z[n], where the frequency range of ωx
is compressed into the corresponding frequency range of ωy by a factor of I. (a) Spectrum of the
original sequence, (b) spectrum of the intermediate sequence, and (c) spectrum of the interpolated
sequence.

Code 2.3 Create data sets: up-down-sample.m

19 % Create deterministic and stochastic digital data streams
20 n = 0:1/Fs1:100-(1/Fs1); % Time index vector
21 sin_wave = sin(5*n*2*pi); % Generation of sinusoidal

% signal
22 random = 2*round(rand(1,length(n)))-1; % Random string of +1 and

% -1 values
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Code 2.4 Create and apply lowpass filter to band-limit signal: up-down-sample.m

44 % Create lowpass filter and apply it to both data streams
45 % b = firls(n,f,a),
46 % n is the FIR filter order
47 % f is a vector of pairs of frequency points,
48 % a is a vector containing the desired amplitude at the points in f
49 coeffs1 = firls(taps,[0 0.2 0.22 1],[1 1 0 0]); % FIR filter

% coefficients
50 sin_bwlimited = filter(coeffs1,1,sin_wave);
51 random_bwlimited = filter(coeffs1,1,random);

Figure 2.14 Sine and random data, created by Code 2.3, then bandlimited by Code 2.4. (a)
Original sine wave: time domain, (b) original random data: time domain, (c) band-limited sine
wave: time domain, (d) band-limited random data: time domain, (e) original sine wave: Fourier
domain, (f) original random data: Fourier domain, (g) band-limited sine wave: Fourier domain, and
(h) band-limited random data: Fourier domain.
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examine the signal starting at a sample large enough to ignore the initial artifacts
of the lowpass filter, which is why we do not look at things when t = 0. In the
frequency domain, the lowpass filtering effectively limits the bandwidth of these
signals, which will make them more clearly visible in the subsequent exercises in
this section.

With the filtered sine wave and filtered random binary signals, we now want to
explore the impact of upsampling these signals by observing the resulting outcomes
in the frequency domain. Using Code 2.5, we can use the functionupsample to take
the filtered signals and upsample them by a factor of N (in this case, N=5). It should
be noted that all upsample simply inserts N-1 zeros between each original input
sample. This function is quite different than the interp interpolation function,
which combines upsampling and filtering operations.

The impact of upsampling can be clearly observed from the before-and-after
frequency responses of the signals. Specifically, we expect that the frequency
responses should be compressed by the upsampling factor of N, and also contain
N periodic replicas across the original frequency band. Referring to Figures 2.15(a)
and 2.15(b), we can observe this phenomena after upsampling our filtered sine
wave and random binary signals, which are upsampled by a factor of N=5 from
Code 2.5.

Notice the difference between Figure 2.14(g) and Figure 2.15(e) for the filtered
sine wave signal, or between Figure 2.14(h) and Figure 2.15(f) for the filtered
random data signal. In both cases, we can readily see that the spectra of these
signals have been compressed by the upsampling factor, and that we now have
periodic replicas across frequency. It is also obvious that the amplitude as changed,
as the average signal amplitude has been effected by this insertion of zeros. Although
the literature may discuss this effect as compression, it is interesting to note that
the actual signal has not changed in frequency. However, it appears in a different
location with respect to the − fs

2 to fs
2 scale. Therefore, it is important to remember

that fs in both figures are not the same (differs by a factor of 5), which is a slight
abuse of notation.

Now that we see how upsampling can compress the frequency responses of
signals and make periodic replicas across the spectrum, let us now explore how
downsampling these signals can either result in frequency expansion without any
aliasing or with substantial amounts of aliasing. Recall that the downsampling
process involves the periodic removal of M − 1 samples, which results in a
frequency response that expands by a factor of M. This frequency expansion can be
problematic when the frequency spectra begins to overlap with its periodic replicas

Code 2.5 Upsample the signals: up-down-sample.m

73 % y = upsample(x,n)
74 % increases the sampling rate of x by inserting (n 1) zeros
75 % between samples.
76 N = 5;
77 sin_up = upsample(sin_bwlimited,N);
78 random_up = upsample(random_bwlimited,N);
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Figure 2.15 Upsampled data: Code 2.5, then processed by a downsampler: Code 2.6.
(a) Upsampled, band-limited, sine wave: time domain, (b) band-limited random data: Fourier
domain, (c) incorrect, upsampled, then downsampled, band-limited, sine wave: Fourier domain,
(d) incorrect, upsampled, then downsampled, band-limited, random data: Fourier domain, (e)
upsampled, band-limited, sine wave: Fourier domain, (f) band-limited random data: Fourier domain,
(g) incorrect, upsampled, then downsampled, band-limited, sine wave: Fourier domain, and
(h) incorrect, upsampled, and then downsampled, band-limited random data: Fourier domain.

centered at every multiple of 2π (sampled signals have spectra that repeat every 2π ).
This overlapping results in the aliasing of the signal, thus distorting it and making it
very difficult to recover at the receiver. Code 2.6 will downsample the band-limited
signals and Code 2.5 will upsample the created signals by a factor of M=3. Note
that the MATLAB function downsample is different than the MATLAB function
decimate, where the latter combines the downsampling and filtering operations
to perform signal decimation.

In Code 2.6, which produces Figure 2.15(h) and Figure 2.15(g), we observed
the incorrect case in which downsampling without filtering out one of the periodic
replicas caused aliasing. Next, in Code 2.7 we will perform the necessary filtering
to remove the periodic replicas before downsampling. In this code we apply an
amplitude correct of the upsampling rate to compensate for these operations.
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Code 2.6 Downsample the signals: up-down-sample.m

101 % Attempt to downsampling by M without filtering
102 % This is incorrect, but is instructive to show what artifacts occur
103 M = 3;
104 sin_up_down = downsample(sin_up,M);
105 random_up_down = downsample(random_up,M);

Code 2.7 Lowpass filter, then downsample the data: up-down-sample.m

126 % Lowpass filtering of baseband periodic replica followed by
% downsampling

127 % (correct approach)
128 coeffs2 = firls(taps,[0 0.15 0.25 1],[N N 0 0]); % FIR filter

% coefficients
129 sin_up_filtered = filter(coeffs2,1,sin_up);
130 sin_up_filtered_down = downsample(sin_up_filtered,M);
131 random_up_filtered = filter(coeffs2,1,random_up);
132 random_up_filtered_down = downsample(random_up_filtered,M);

When the signal is upsampled, the periodic replicas generated by this process
span across the entire −π to π radians (or − fs

2 to fs
2 ) of spectra. Without adequate

filtering of these replicas before downsampling, these periodic replicas will begin
to expand into other periodic replicas and result in aliasing. This phenomena
is illustrated in Figure 2.15(d) and Figure 2.15(h), where we downsample the
upsampled filtered sine wave and random binary signals previously described. For
the downsampling of the upsampled filtered sine wave signal, we observe aliasing
in Figure 2.15(g) with the spectra from other integers of Nyquist bands. When
performed properly, we should only have one replica that is expanded by the
downsampling factor, as observed in Figure 2.16(g) and Figure 2.17(b)

Since it is difficult to observe the spectra expansion of the sine wave signal
because it is narrow, let us also observe the frequency responses of the random
binary signal shown in Figures 2.15(h) and 2.17(b). In these figures, it is clearly
evident that aliasing is occurring since the replicas from the upsampling process
were not filtered out. On the other hand, when the upsampling replicas are filtered,
we observe a clean, unaliased, frequency response of the downsampled signal shown
in Figure 2.17(b).

We can do a final comparison of the signals in the time domain and see that
the shape of the time domain signal is nearly exactly the same in amplitude and
absolute time (seconds). It just has been sample rate converted from fs to 5

3 fs adding
more samples to the same signal.

2.3 Signal Representation

Understanding how a signal is represented can greatly enhance one’s ability to
analyze and design digital communication systems. We need multiple convenient
numeric mathematical frameworks to represent actual RF, baseband, and noise
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Figure 2.16 Upsampled by N = 5, then filtered band-limited waveforms produced by Code 2.7.
You can still see the replicas of the signals, but the filter has suppressed it to very low levels. The
filtering has corrected the amplitude loss from the upsampling. (a) Upsampled, then filtered band-
limited, sine wave: Fourier domain, (b) upsampled, filtered, then downsampled, band-limited sine
wave: Fourier domain, (c) upsampled, then filtered band-limited, sine wave: Fourier domain, (d)
upsampled, filtered, then downsampled, band-limited sine wave: Fourier domain, (e) upsampled,
then filtered band-limited, random data: Fourier domain, (f) upsampled, then filtered band-limited,
random data: Fourier domain, (g) upsampled, then filtered band-limited, random Data: Fourier
domain, and (h) upsampled, filtered, then band-limited random data: Fourier domain.

signals. We usually have two: envelope/phase and in-phase/quadrature, and both
can be expressed in the time and Fourier domains.

2.3.1 Frequency Conversion
To understand how we can move signals from baseband to RF and from RF to
baseband, let us look more closely at modulators and demodulators. For example,
in Figure 2.18 we see a very classical quadrature modulator. The ADL5375 accepts
two differential baseband inputs and a single-ended LO, which generates a single-
ended output. The LO interface generates two internal LO signals in quadrature
(90◦ out of phase) and these signals are used to drive the mixers, which simply
multiply the LO signals with the input.
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Figure 2.17 Upsampled by N = 5, then filtered, and then downsampled by M = 3, band-limited
random data. A phase shift (time shift) occurs from the filtering. (a) Original band-limited random
data time domain at fs. (b) Upsampled, filtered, and the band-limited random data: time domain
at 5

3 fs.

Figure 2.18 ADL5375 broadband quadrature modular with range from 400 MHz to 6 GHz.

Mathematically, this mixing process will take the two inputs IBB and QBB,
which we will denote by I(t) and Q(t), multiply them by our LO at frequency
ωc, and add the resulting signal to form our transmitted signal r(t). The LO used
to multiply Q(t) is phase shifted by 90◦ degree to make it orthogonal with the
multiplication of the I(t) signal. Consequently, this yields in the following equation:

r(t) = I(t)cos(ωct) − Q(t)sin(ωct). (2.25)

The LO frequency is denote as ωc since it will be typically called the carrier
frequency, which exploits the phase relationship between the in-phase (I(t)cos(ωct))
and quadrature (Q(t)sin(ωct)) components. Therefore, the transmitted signal will
contain both components but will appear as a single sinusoid.

At the receiver, we will translate or down mix r(t) back into our in-phase and
quadrature baseband signals through a similar process but in reverse. By applying
the same LO with a second phase-shifted component to r(t) with a lowpass filter,
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we arrive at

Ir(t) = LPF{r(t)cos(ωct)} = LPF{(I(t)cos(ωct) − Q(t)sin(ωct))cos(ωct)} = I(t)
2

,

(2.26)

Qr(t) = LPF{r(t)sin(ωct)} = LPF{(−I(t)cos(ωct) + Q(t)sin(ωct))sin(ωct)} = Q(t)
2

.

(2.27)

In practice, there will be some phase difference between the transmitter LO and
receiver LO, which can cause rotation to r(t). However, the phase relation between
I(t) and Q(t) will alway be maintained.

2.3.2 Imaginary Signals
Discussing signals as quadrature or complex signal is taking advantage of the
mathematical constructs that Euler and others have created to make analysis easier.
We try to refer to signals as in-phase (I) and quadrature (Q) since that is actually
pedantically correct. As described in Section 2.3.1, the in-phase (I) refers to the
signal that is in the same phase as the local oscillator, and the quadrature (Q) refers
to the part of the signal that is in phase with the LO shifted by 90◦.

It is convenient to describe this as I being real and Q being imaginary since it
enables many mathematical techniques but at the end of the day is just a construct.
A prime example of this convience is frequency translation, which is performed by
the mixer. We start from the Euler relation of

ejx = cos(x) + j sin(x), (2.28)

where we can define x as target frequency plus time. Taking the conventions from
Section 2.3.1 but redefining I(t) and Q(t) as real and imaginary, we arrive at

y(t) = I(t) + jQ(t). (2.29)

Now, if we assume y(t) is a CW tone at frequency ωa for illustration purposes,
y(t) becomes

y(t) = cos(ωat) + jsin(ωat). (2.30)

Now applying (2.28) we can frequency shift y(t) by the desired frequency ωc:

y(t)ejωct = (
I(t)cos(ωct) − Q(t)sin(ωct)

)+ j
(
Q(t)cos(ωct) + I(t)sin(ωct)

)
= cos((ωc + ωa)t) + jsin((ωc + ωa)t).

(2.31)

Now our resulting signal will exist at frequency ωa + ωc through a simple
application of Euler’s identity.

Let us motivate the usefulness of a complex number representation further from
the perspective of hardware. If we consider the mixer itself as in Figure 2.18, the
IQ mixer will transmit signals with arbitrary phase and amplitude (within power
constraints). This is an example of how we encode information into the data we
transmit through differences in phase and amplitude. This is actually accomplished
through the relation of our in-phase and quadrature signal, which can be used to
create a single sinusoid with arbitrary phase and amplitude. Mathematically, we can
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produce a sinusoid with a specific envelope and phase (A,φ) with two orthogonal
components sine and cosine. This relationship is written as

A sin(ωt + φ) = (Acosφ) sin(ωt) + (Asinφ) cos(ωt). (2.32)

Therefore, by just modifying the amplitude of our sine and cosine components
over time, we can create the desired waveform from a fixed frequency and
phase LO. Alternatively, we can consider others coordinate systems to visualize
complex values. Expanding these complex numbers (rectangular coordinates) can
be translated in order to be represent a magnitude and angle (polar) or even plotted
as a vector.

The in-phase and quadrature sine waves plotted in Figure 2.19 show how things
look via a phasor plot as time increases, with the vector indicating magnitude
rotating around the axis. One can clearly see the phase shift between I and Q. In
the time domain, you can also see the differences between in-phase and magnitude,
although phase differences can be a little more subtle to notice. In a Cartesian plane,
the signal appears as a rotating circle over time. The phasor plot will always rotate
counterclockwise with time, and the Cartesian plot can rotate in either direction
depending on if the phase difference between I and Q is positive or negative. While
the time domain plot shows things moving as time changes, the phasor plot and
Cartesian plane are snapshots in time (at t = 0 on the time domain plot). Finally, the
frequency domain plot provides the spectrum of the phasor but only communicates
magnitude and loses phase information. This happens because we are only plotting
the real component of the spectrum. However, comparing the two waveforms in
Figures 2.19 and 2.20, changes in the I and Q components (amplitude and phase
relationship), will effect the other domains as well.

2.4 Signal Metrics and Visualization

Before an engineer can decide whether a project is done, he or she needs to conduct
some form of verification. However, communications systems are complex to
evaluate given their integrated nature and depth of transmit and receive chains.
As referenced in Section 1.4, communication systems may have a variety of metrics
beyond size, weight, power, and cost (SWaP-C). Performance metrics such as bit
error rate (BER), data throughput, and distance are also only top-level system
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Figure 2.19 Same continuous wave signal, plotted in multiple domains. (a) Phasor rad(t), (b) time
x(t) →, (c) Cartesian (I, Q)(t), and (d) frequency X(ω).
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Figure 2.20 Continuous wave signal differences in magnitude and phase cause shifts in various
domains. (a) Phasor rad(t), (b) time x(t) →, (c) Cartesian (I, Q)(t), and (d) frequency X(ω).

specifications. Just as we have system-level specifications for the entire system,
we have specifications and measurement techniques for other subsystems and
SDR building blocks. In this way, we know we are not over- or underdesigning
specific components. However, trade-offs should always be considered at the
system level since upstream modifications can effect downstreaming components
or implementations.

System-level specifications are met by ensuring each block in the system
will allow those specifications to be met. Making a world-class communications
system requires world-class hardware and world-class algorithmic design and
implementation. That is the issue with many aspects of engineering—quantitatively
determining when something is complete or functional and that it can be connected
to the rest of the system. It is never more true than in communications systems
that a system is only as good as the weakest link. If you have bolted everything
together, and a system-level specification like bit error rate is not meeting your
top-level specifications, unless you understand how to measure each part of the
communications system, from the RF to the SDR to the algorithmic design, you
will be lost and unable to determine what to do next.

Depending on what you are looking at, there are numerous techniques and tools
to measure almost everything. Studying communications is not for those who do
not want to be rigorous.

2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR
Six popular specifications for quantifying analog dynamic performance are found
in Table 2.2 [6]; namely, list out by using and understanding these measurements
will help you analyze your designs and make sure you are designing something to
be the most robust. Although most device and system manufacturers have adopted
the same definitions for these specifications, some exceptions still exist. Due to their
importance in comparing devices and systems, it is important not only to understand
exactly what is being specified, but the relationships between the specifications.

• Spurious free dynamic range (SFDR) is the ratio of the root mean squared
(RMS) value of the signal to the rms value of the worst spurious signal
regardless of where it falls in the frequency spectrum. The worst spur may or
may not be a harmonic of the original signal. This is normally measured over
the bandwidth of interest, which is assumed to be the Nyquist bandwidth
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Table 2.2 Six Popular Specifications

Property Definition MATLAB Function
SFDR Spurious free dynamic range sfdr
SINAD Signal-to-noise-and-distortion ratio sinad
ENOB Effective number of bits
SNR Signal-to-noise ratio snr
THD Total harmonic distortion thd
THD + N Total harmonic distortion plus noise

unless otherwise stated; DC to fs/2 (for baseband), and -fs/2 to fs/2 for
complex (RF) converters, which are found on devices like the Pluto SDR.
SFDR is an important specification in communications systems because it
represents the smallest value of signal that can be distinguished from a
large interfering signal (blocker). SFDR is generally plotted as a function of
signal amplitude and may be expressed relative to the signal amplitude (dBc)
or the ADC full-scale (dBFS) as shown in Figure 2.21. MATLAB’s sfdr
function provides results in terms of dBc. For a signal near full-scale, the
peak spectral spur is generally determined by one of the first few harmonics
of the fundamental. However, as the signal falls several dB below full-scale,
other spurs generally occur that are not direct harmonics of the input signal.
This is due to the differential nonlinearity of the systems transfer functions
normally dominates at smaller signals. Therefore, SFDR considers all sources
of distortion regardless of their origin, and is a useful tool in evaluating
various communication systems.

• Total harmonic distortion (THD) is the ratio of the rms value of the
fundamental signal to the mean value of the root-sum-square of its harmonics
(generally, only the first five harmonics are significant). THD of an ADC is
also generally specified with the input signal close to full-scale, although it
can be specified at any level.

• Total harmonic distortion plus noise (THD + N) is the ratio of the rms value
of the fundamental signal to the mean value of the root-sum-square of its
harmonics plus all noise components (excluding DC). The bandwidth over
which the noise is measured must be specified. In the case of an FFT, the
bandwidth is DC to fs

2 . (If the bandwidth of the measurement is DC to fs
2 (the

Nyquist bandwidth), THD + N is equal to SINAD).
• Signal-to-noise-and-distortion (SINAD, or S/(N + D) is the ratio of the rms

signal amplitude to the mean value of the root-sum-square (rss) of all other
spectral components, including harmonics, but excluding DC. SINAD is a
good indication of the overall dynamic performance of an analog system
because it includes all components that make up noise and distortion. SINAD
is often characterized for various input amplitudes and frequencies. For a
given input frequency and amplitude, SINAD is equal to THD + N, provided
the bandwidth for the noise measurement is the same for both (the Nyquist
bandwidth)

• Signal-to-noise ratio (SNR, or sometimes called SNR-without-harmonics) is
calculated from the FFT data the same as SINAD, except that the signal
harmonics are excluded from the calculation, leaving only the noise terms.
In practice, it is only necessary to exclude the first five harmonics, since they
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Figure 2.21 Spurious free dynamic range (SFDR) for BW DC to fs/2.

dominate. The SNR plot will degrade at high input frequencies, but generally
not as rapidly as SINAD because of the exclusion of the harmonic terms.

2.4.2 Eye Diagram
Although its obvious to state, time domain plots are used to observe changes of an
electrical signal over time. Any number of phenomena such as amplitude, frequency,
rise time, time interval, distortion, noise floor, and others can be empirically
determined, and how these characteristics change over time. In telecommunication,
an eye diagram, also known as an eye pattern, is an time domain display in which a
digital data signal from a receiver is repetitively sampled and applied to the vertical
input, while the data rate is used to trigger the horizontal sweep [9]. It is called an
eye diagram because the pattern looks like a series of eyes between a pair of rails.

Several system performance measures can be derived by analyzing the display,
especially the extent of the intersymbol-interference (ISI). As the eye closes, the ISI
increases; as the eye opens, the ISI decreases. Furthermore, if the signals are too
long, too short, poorly synchronized with the system clock, too high, too low, too
noisy, or too slow to change, or have too much undershoot or overshoot, this can
be observed from the eye diagram. For example, Figure 2.22 shows a typical eye
pattern for the noisy quadrature phase-shift keying (QPSK) signal.

Since the eye diagram conveys and measures many different types of critical
data, this can help quantify how well an algorithm or system is working. The two
key measurements are the vertical opening, which is the distance between BER
threshold points, and the eye height, which is the minimum distance between eye
levels. Larger vertical and horizontal openings in the eye are always better.

Hands-On MATLAB Example: To provide some hands-on experience with
eye diagrams, let us use the MATLAB function eyediagram, which is a very
handy way of visually analyzing a transmission regarding the amount of noise and
intersymbol interference present in the signal. Using the pulse shaped signals, we
should be able to observe any distortion present within the transmission.
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Figure 2.22 A typical eye pattern for the BPSK signal. The width of the opening indicates the time
over which sampling for detection might be performed. The optimum sampling time corresponds
to the maxmum eye opening, yielding the greatest protection against noise.

From Figure 2.23, we can see that the pulse shaped transmissions do not have
any distortion present (we know this in advance since we have intentionally omitted
any sort of noise and distortion from the transmission in the first place). When we
have eye diagrams such as those shown in Figures 2.23(a) and 2.23(b), we refer to
these situations as the eye being open. The prime indicator of having some sort of
distortion present within the transmission is when the aperture at time instant 0 is
not at its maximum.

Let us explore the scenarios when distortion is present within the transmission
and how this translates into an eye diagram. Suppose with take the y_impulse1
and y_impulse2 output signals from Code 2.8 and introduce some noise to it. In
Code 2.9, we introduced some Gaussian noise using the function randn.

We can clearly see in Figure 2.24 the impact of the additional noise on the
transmitted signals via the eye diagram. In both Figures 2.24(a) and 2.24(b), it is
observed that the eye walls of the diagram are no longer smooth when compared
with Figured 2.23(a) and 2.23(b). Although the eye is still open in both cases, we
only introduced as small amount of noise into the transmission; the impact of a
large amount of noise introduced into the transmission could potential close the
eye, meaning the desired sampling instant at time 0 could potentially be corrupted
and translate into bit errors. Later on in this book, we will explore how other forms
of distortion will affect the aperture of the eye diagram.

2.5 Receive Techniques for SDR

The study of modern communications maintains a great duality when considering
both the analog and digital domains. Both domains are manipulated efficiently
and with great speed. However, analog signals maintain a perspective of infinite
precision but will always contain some degree of randomness due to their very
nature. Digital signals, on the other hand, are exact and precisely defined, but
are limited by the boundaries of computational complexity and their fundamental
foundations. Digital communications must effectively manage both of these world
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Figure 2.23 Eye diagrams of signals filtered by a system possessing a rectangular frequency response
and a triangular frequency response. (a) Rectangular frequency response pulse filtering, and (b)
triangular frequency response pulse filtering.

to design robust links between points. Therefore, both domains are highly
dependent on one another.

Even in today’s world of abundant and cost-effective digital signal processing
(DSP) devices, an analog signal is processed, amplified, filtered, and only then
converted into binary form by an ADC. The output of the ADC is just a binary
representation of the analog signal and is processed on a number of computational
units from FPGAs to general purpose CPUs. After processing, the information
obtained from the digitized signal, it may be converted back into analog form using
a digital-to-analog converter (DAC). Signals physically recovered by a SDR start
out as a time-varying electric field, which induces a current in the receiving antenna
and resulting in a detectable voltage at the receiver. Transmission by the SDR, on
the other hand, are time-varying voltages being applied to an antenna, which causes
movement of electrons as an outwardly radiating electric field.
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Code 2.8 Eye diagram example: eye_example.m

2 % Create impulse train of period L and length len with random +/- one
3 % values
4 L = 10;
5 impulse_num = 100; % Total number of impulses in impulse train
6 len = L*impulse_num;
7 temp1 = [2*round(rand(impulse_num,1))-1 zeros(impulse_num,L-1)];
8 x_impulse = reshape(temp1.’,[1,L*impulse_num]);
9 % Create two transmit filter pulse shapes of order L

10 % Approximate rectangular frequency response --> approximate
11 % sinc(x) impulse response
12 txfilt1 = firls(L,[0 0.24 0.25 1],[4 4 0 0]);
13 % Approximate triangular frequency response --> approximate
14 % sinc(x)ˆ2 impulse response
15 txfilt2 = firls(L,[0 0.5 0.52 1],[4 0 0 0]);
16 % Pulse shape impulse train
17 y_impulse1 = filter(txfilt1,1,x_impulse);
18 y_impulse2 = filter(txfilt2,1,x_impulse);
24 % eyediagram(x,n,period,offset)
25 % creates an eye diagram for the signal x, plotting n samples in each
26 % trace horizontal axis range between -period/2 and period/2.
27 eyediagram(y_impulse1,L,L,floor(L/2));
28 eyediagram(y_impulse2,L,L,floor(L/2));

Code 2.9 Eye diagram example: eye_example.m

30 eyediagram((y_impulse1+0.1*randn(1,length(y_impulse1))),L,L,floor(L/2));
31 eyediagram((y_impulse2+0.1*randn(1,length(y_impulse2))),L,L,floor(L/2));

2.5.1 Nyquist Zones
In Section 2.2.3, we considered the case of baseband sampling (i.e., all the signals
of interest lie within the first Nyquist zone). Figure 2.25 shows such a case, where
the band of sampled signals is limited to the first Nyquist zone and images of the
original band of frequencies appear in each of the other Nyquist zones. Consider
the case shown in Figure 2.25 B, where the sampled signal band lies entirely within
the second Nyquist zone. The process of sampling a signal outside the first Nyquist
zone is often referred to as undersampling, or harmonic sampling. Note that the
image, which falls in the first Nyquist zone, contains all the information in the
original signal with the exception of its original location.

Figure 2.25 shows the sampled signal restricted to the third Nyquist zone. Note
that the image that falls into the first Nyquist zone has no frequency reversal. In
fact, the sampled signal frequencies may lie in any unique Nyquist zone, and the
image falling into the first Nyquist zone is still an accurate representation. At this
point we can clearly restate the Nyquist criteria:

A signal must be sampled at a rate equal to or greater than twice its bandwidth in
order to preserve all the signal information.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 48 — #30

48 Signals and Systems

Figure 2.24 Eye diagrams of signals filtered by a system possessing a rectangular frequency response
and a triangular frequency response with additive white Gaussian noise present. (a) Rectangular
frequency response pulse filtering, and (b) triangular frequency response pulse filtering.

Figure 2.25 Nyquist region folding.
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Notice that there is no mention of the absolute location of the band of sampled
signals within the frequency spectrum relative to the sampling frequency. The only
constraint is that the band of sampled signals be restricted to a single Nyquist zone
(i.e., the signals must not overlap any multiple of fs

2 ). In fact, this is the primary
function of the antialiasing filter. Sampling signals above the first Nyquist zone
has become popular in communications because the process is equivalent to analog
demodulation. It is becoming common practice to sample IF signals directly and
then use digital techniques to process the signal, thereby eliminating the need for
an IF demodulator and filters. However, as the IF frequencies become higher, the
dynamic performance requirements (bandwidth, linearity, distortion, etc.) on the
ADC become more critical as performance must be adequate at the second or third
Nyquist zone, rather than only baseband. This presents a problem for many ADCs
designed to process signals in the first Nyquist zone. Therefore, an ADC suitable for
undersampling applications must maintain dynamic performance into the higher-
order Nyquist zones. This is specifically important in devices like the Pluto SDR,
which includes DC correction to remove local oscillator leakage. This DC correction
can be through of a highpass filter, which is set close to DC (25 kHz). For those
modulation schemes, which do not strictly transmit information at DC, such as
QPSK and quadrature amplitude modulation (QAM), this does not matter. For
those modulation schemes that pass information at DC, this can be very difficult
to work around without using an undersampling technique as described above.
Capturing the data above DC, and then digitally moving it down can improve
performance.

2.5.2 Fixed Point Quantization
The only errors (DC or AC) associated with an ideal N-bit data converter are those
related to the sampling and quantization processes. The maximum error an ideal
converter makes when digitizing a signal is ±1

2 LSB, directly in between two digital
values. This is obvious from the transfer function of an ideal N-bit ADC, which is

Figure 2.26 Ideal N-bit ADC quantization noise.
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shown in Figure 2.26. The quantization error for any AC signal, which spans more
than a few LSBs, can be approximated by an uncorrelated sawtooth waveform
having a peak-to-peak amplitude of q, the weight of an LSB. Although this analysis
is not precise it is accurate enough for most applications.

The quantization error as a function of time is shown in Figure 2.27. Again, a
simple sawtooth waveform provides a sufficiently accurate model for analysis. The
equation of the sawtooth error is given by

e(t) = st,
−q
2s

< t <
q
2s

, (2.33)

where s is the slope of the quantized noise. The mean-square value of e(t) can be
written:

e2(t) = q
s

∫ −q
2s

q
2s

(st)2dt = q2

12
. (2.34)

The square root of (2.34), the root mean squared (RMS) noise quantization
error, is approximately Gaussian and spread more or less uniformly over the
Nyquist bandwidth of DC to fs

2 .
The theoretical SNR can now be calculated assuming a full-scale input sine

wave v(t)

v(t) = q2N

2
sin(ωt), (2.35)

by first calculating the RMS value of the input signal defined as√
v(t)2 = q2N

2
√

2
. (2.36)

Therefore, the RMS signal-to-noise ratio for an ideal N-bit converter is

SNR = 20 log10

(
RMS of full scale input

RMS of quatization noise

)
= 20 log10

( q2N

2
√

2
q√
12

)
. (2.37)

After some simplification of (2.37) we arrive at our SNR in dB:

SNR = 20 log10

(√
3
2

2N
)

= 6.02N + 1.76. (2.38)

Figure 2.27 Ideal N-bit ADC quantization noise as a function of time.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch02_new” — 2018/3/26 — 11:42 — page 51 — #33

2.5 Receive Techniques for SDR 51

Again, this is for over DC to fs
2 bandwidth. In many applications the actual signal

of interest occupies a smaller bandwidth (BW). For example, if digital filtering is
used to filter out noise components outside BW, then a correction factor (called
process gain) must be included in the equation to account for the resulting increase
in SNR. The process of sampling a signal at a rate, which is greater than twice its
bandwidth, is often referred to as oversampling. In fact oversampling in conjunction
with quantization noise shaping and digital filtering is a key concept in sigma-delta
converters, which will be discussed in Section 2.5.4.

Hands-On MATLAB Example: In Section 2.5.2 we made the following
assumptions [11]:

• The sequence of error samples e(t) is a sample sequence of a stationary
random process;

• The error sequence is uncorrelated with the sequence of exact samples, v(t);
• The random variables of the error process are uncorrelated; that is, the error

is a white-noise process;
• The probability of the errpr process is uniform over the range of quantization

error.

The underlying assumption here is that the quantization noise is uncorrelated to
the input signal. We will see in certain common trivial examples that is not true.
Under certain conditions where the sampling clock and the signal are harmonically
related, the quantization noise becomes correlated and the energy is concentrated
at the harmonics of the signal. In a practical ADC application, the quantization
error generally appears as random noise because of the random nature of the
wideband input signal and the additional fact that there is a usually a small amount
of system noise that acts as a dither signal to further randomize the quantization
error spectrum. It is important to understand the above point because single-
tone sinewave FFT testing of ADCs is one of the universally accepted methods
of performance evaluation. In order to accurately measure the harmonic distortion
of an ADC, steps must be taken to ensure that the test setup truly measures the
ADC distortion, not the artifacts due to quantization noise correlation.

We will use variations on the MATLAB code from Code 2.10 to explore the
SFDR. We will expand on this concept with regards to the precision allowed
for the computations. We begin with a double-precision floating point number

Code 2.10 SFDR test: sfdr_test.m

10 deltat = 1e-8;
11 fs = 1/deltat;
12 t = 0:deltat:1e-5-deltat;
13 fundamental = 3959297;
14 x = 10e-3*sin(2*pi*fundamental*t);
15 r = sfdr(x,fs)
17 sfdr(x,fs);
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representation (MATLAB default). To keep the signal uncorrelated, we choose a
tone at 3,959,297 Hz (a prime number).

This provides the results in Figure 3.28, where a SFDR measurement of 288.96
dBc is obtained, which is a very impressive measurement. However, a real radio
such as Pluto SDR can not accept double-precision floating-point numbers, and
thus fixed-point (12-bit) representation must be used.

The fixed-point format Pluto SDR and many other devices use is a signed format.
The MSB bit is for sign and 11 remaining bits are for the magnitude. In our MATLAB
script, we use 211 as the magnitude to maximize the dynamic range of our signal
before transmission. Therefore, we multiply to our integer value, round, and then
scale down to ±1 to normalize the amplitude.

This provides an underwhemling 45.97 dBc for the SFDR, as shown in
Figure 2.29, which is not even 8-bits of performance. This is because in the example
we scaled our signal to 10−3, and the dynamic range of a fixed-point number, does
not scale equally with a double-precision floating-point number.

To resolve the dynamic range issue, we will remove the 10−3 scaling and use
12-bit full scale. This results in Figure 2.30(a) with a respectable 86.82 dBc.

To improve this result even more, we can take advantage of a concept known
as the FFT processing gain. We simply increase the number of samples to 10, 000
by using the following code in code 2.15, which simply changes the length of t.
This provides the results in Figure 2.30(b), with an SFDR of 93.98 dBc. This is
accomplished by simply increasing the number of samples, which increases the
number of FFT bins, which in turn decreases the energy accumulated in each bin.

The example code in Code 2.10, Code 2.11, Code 2.12 and Code 2.15 utilized
an uncorrelated FA of 3, 959, 297 Hz. What happens when it is correlated? If we
simply round FA to 4 MHz in the example (see Codes 2.13 and 2.14), we can see
the results in Figure 2.31(a), which yields an SFDR of 82.58 dBc, a loss of 11.4 dB
from our previous result in Figure 2.30(b).

To regain this loss in Figure 2.31(b), we can use a technique known as dithering.
This moves the energy accumulated in the harmonics and pushes it out into the
rest of the noise floor. The noise floor is higher but the worse case spur is lower,
which is the figure of merit when calculating SFDR. This results in an SFDR of
91.68 dBc, only a 2.3-dB difference from our uncorrelated results in Figure 2.30(b).

Code 2.11 SFDR test: sfdr_test.m

41 bits=2ˆ11;
42 x = round(10e-3*bits*sin(2*pi*fundamental*t))/bits;
45 sfdr(x,fs)

Code 2.12 SFDR test: sfdr_test.m

bits=2ˆ11;
x = round(bits*sin(2*pi*fundamental*t))/bits;
sfdr(x,fs)
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Figure 2.28 SFDR for a double-precision floating-point format. (a) Time domain floating-point
representation, and (b) SFDR of double-precision floating-point, 1k points, FA of 3,959,297 Hz.
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Figure 2.29 SFDR for 12-bit, scaled number. (a) Time domain floating-point representation, and
(b) SFDR of scaled 12-bit fixed-point, 1k points, FA of 3,959,297 Hz.

Rather than rounding up or down in a repeating pattern, we randomly round
up or down by applying a ±0.5 offset to the vector before we round. This is
a very simple dither algorithm, but more complex implementations will exist in
hardware.

The effects of finite bit length and data correlation should be understood before
sending data to the hardware. The hardware will only make effects worse, not
better.
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Figure 2.30 SFDR for 12-bit, scaled number. (a) SFDR of fullscale 12-bit fixed point, 1k points, FA
of 3,959,297 Hz, and (b) SFDR of full scale 12-bit fixed point, 10k points, FA of 3,959,297 Hz.

2.5.3 Design Trade-offs for Number of Bits, Cost, Power, and So Forth
The most important aspect to remember about both receive chains (I/Q) is the effect
of quantization from the ADC itself. That is, an N-bit word represents one of 2N

possible states, and therefore an N-bit ADC (with a fixed reference) an have only
2N possible digital outputs. The resolution of data converters may be expressed in
several different ways: the weight of the least significant bit (LSB), parts per million
of full-scale (ppm FS), and millivolts (mV). Different devices, even from the same
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Figure 2.31 SFDR for 12-bit, scaled number. (a) SFDR of full scale 12-bit fixed point, 10k points,
without dithering FA of 4,000,000 Hz, and (b) SFDR of full scale 12-bit fixed point, 10k points, with
dithering FA of 4,000,000 Hz.

manufacturer, will be specified differently. Therefore, converter users must learn to
translate between the different types of specifications if they are to compare devices
successfully.

The size of the least significant bit for various resolutions for a 10 watt (20 V
peak-to-peak) input is shown in Table 2.3.
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Code 2.13 SFDR test: sfdr_test.m

98 t = 0:deltat:1e-4-deltat;
99 x = round(bits*sin(2*pi*fundamental*t))/bits;

100 r = sfdr(x,fs)
102 sfdr(x,fs);

Code 2.14 SFDR test: sfdr_test.m

126 fundamental=4000000;
127 x = round(bits*sin(2*pi*fundamental*t))/bits;
128 r = sfdr(x,fs)
130 sfdr(x,fs);

Code 2.15 SFDR test: sfdr_test.m

154 ran = rand(1,length(t)) - 0.5;
155 x = round(bits*sin(2*pi*fundamental*t) + ran)/bits;
158 sfdr(x,fs);

Table 2.3 Quantization: The Size of a Least Significant Bit

Resolution (N) 2N Voltage (20 Vpp)1 PPM FS %FS dBFS
2-bit 4 5.00 V 250,000 25 −12
4-bit 16 1.25 V 62,500 6.25 −24
6-bit 64 313 mV 15,625 1.56 −36
8-bit 256 78.1 mV 3,906 .391 −48

10-bit 1,024 19.5 mV 977 .097 −60
12-bit 4,096 4.88 mV 244 .024 −72
14-bit 16,384 1.22 mV 61.0 .0061 −84
16-bit 65,536 305 µV 15.2 .0015 −96
18-bit 262,144 76.2 µV 3.81 .00038 −108
20-bit 1,048,576 19.0 µV .953 .000095 −120
22-bit 4,194,304 4.77 µV .238 .000024 −132
24-bit 16,777,216 1.19 µV .0596 .0000060 −144
26-bit 67,108,864 298 nV 1 .0149 .0000015 −156

1 600 nV is the Johnson (thermal) noise in a 10-kHz BW of a 2.2 k� resistor at 25◦C.

While a 24-bit converter with −144 dB of performance may sound like a good
idea, it is not practical from a power or speed perspective. Althrough many 24-
bit ADCs exist, they are not wideband such as the AD7177, which is a state-
of-the-art 32-bit converter that is limited to 5 SPS to 10 kSPS output data rate
and is not suitable for SDR but is a great solution for things like temperature and
pressure measurement, chromatography, or weigh scales [12]. On the other hand,
higher-speed ADCs do exist, such as the AD9208, which is a dual-channel 14-Bit
3GSPS ADC, providing an SFDR of 70 dBFS with 9-GHz analog input full-power
bandwidth (the sixth Nyquist band). However, the AD9208 power draw is over 3W,
which exceeds the entire power consumption of the Pluto SDR while streaming data
over USB [13]. Nonetheless, a system based on the AD9208 could provide up to 12
Gbytes/second, which is more data than could be processed by software and would
require custom signal processing hardware inside a FPGA. Devices like the AD9208
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are used in 60-GHz bands RF bands, where single channels have bandwidths of over
2 GHz. These high-speed and wideband links use the same concepts and techniques
described in the remaining text, but possess higher data rates, are more power-
hungry, and are much more expensive. Nevertheless, learning the basic techniques
of digital communications can be performed in with cost-effective devices such as the
Pluto SDR in 20 MHz, or in many cases with much less of bandwidth. With regard
to the ADC, in order to enable 12-bit devices to be used for a radio applications
such as Pluto SDR, the signal chain for the AD9361 includes programmable analog
gain as shown in Figure 2.32. This allows the input to the ADC to be driven to full
scale as much as possible, which as we learned in Section 2.4.1 provides the best
possible performance.

In a brief recap from operational amplifier theory, two types of gain are
associated with amplifiers: signal gain and noise gain. We want to increase the signal
but at the same time keep the noise as as low as possible. This is accomplished by
increasing the signal in the analog domain before digitizing it with the ADC, as
shown in Figure 2.32.

2.5.4 Sigma-Delta Analog-Digital Converters
Sigma-delta (�-	) analog-digital converters (ADCs) have been known for over
50 years, but only recently has the technology (high-density digital VLSI) existed
to manufacture them as inexpensive monolithic integrated circuits. They are now
used in many applications where a low-cost, medium-bandwidth, low-power,
high-resolution ADC is required. There have been innumerable descriptions of the
architecture and theory of �-	 ADCs, but most commence with a deep description
of the math, starting at the integrals and go on from there. Since this is not an ADC
textbook, we will try to refrain from the mathematical development and explore
things based on the previous topics covered in this chapter.

There is nothing particularly difficult to understand about �-	 ADCs. The �-
	 ADC contains very simple analog electronics (a comparator, voltage reference,
a switch, and one or more integrators and analog summing circuits), and digital
computational circuitry. This circuitry consists of a filter, which is generally, but
not invariably, a lowpass filter. It is not necessary to know precisely how the filter
works to appreciate what it does. To understand how a �-	 ADC works, familiarity
with the concepts of oversampling, quantization noise shaping, digital filtering, and
decimation is required, all topics covered earlier in this chapter.

Let us consider the technique of oversampling with an analysis in the frequency
domain. Where a DC conversion has a quantization error of up to 1

2 LSB, a sampled
data system has quantization noise. A perfect classical N-bit sampling ADC has an
RMS quantization noise of q√

12
uniformly distributed within the Nyquist band of

DC to fs
2 , where q is the value of an LSB, as shown in Figure 2.33(a). Therefore,

its SNR with a full-scale sine wave input will be (6.02N + 1.76) dB. If the ADC is
less than perfect and its noise is greater than its theoretical minimum quantization
noise, then its effective resolution will be less than N-bits. Its actual resolution,
often known as its effective number of bits (ENOB), will be defined by

ENOB = SNR − 1.76dB
6.02dB

(2.39)
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Figure 2.33 Oversampling, digital filtering, noise shaping, and decimation in a �-	ADC.

Practically, ENOB is calculated from measuring signal-to-noise-and-distortion
(SINAD, or S/(N + D)), which is the ratio of the RMS signal amplitude to the mean
value of the root-sum-square (RSS) of all other spectral components, including
harmonics but excluding DC, and correcting for a nonfull-scale input signal [6].
We can modify (2.39) to take into account the full-scale amplitude AFS and the true
input amplitude AIN as

ENOB = SINAD − 1.76dB + 20log10
AFS
AIN

6.02dB
. (2.40)

If we choose a much higher sampling rate, Kfs (see Figure 2.33[b]), the RMS
quantization noise remains q√

12
but the noise is now distributed over a wider

bandwidth DC to Kfs
2 . If we then apply a digital lowpass filter (LPF) to the output,

we can remove much of the quantization noise but do not affect the wanted signal,
resulting in an improved ENOB. Therefore, we can accomplished a high-resolution
A/D conversion with a low-resolution ADC. The factor K is generally referred to
as the oversampling ratio. It should be noted at this point that oversampling has an
added benefit in that it relaxes the requirements on the analog antialiasing filter.

Since the bandwidth is reduced by the digital output filter, the output data rate
may be lower than the original sampling rate (Kfs) and still satisfy the Nyquist
criterion. This may be achieved by passing every Mth result to the output and
discarding the remainder. The process is known as decimation by a factor of
M. Decimation does not cause any loss of information (see Figure 2.33[b]) as
long as the decimation does not violate the Nyquist criterion. For a given input
frequency, higher-order analog filters offer more attenuation. The same is true of
�-	 modulators, provided certain precautions are taken. By using more than one
integration and summing stage in the �-	 modulator, we can achieve higher orders
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of quantization noise shaping and even better ENOB for a given oversampling ratio
as is shown in Figure 2.34.

The actual �-	 ADC found in the AD9363 used in the Pluto SDR is a fourth
order, as shown in Figure 2.35 and described in the Analog Devices Transceiver
Support Simulink model. As can be seen, reality is always a little more complicated
than theory or first-order approximations.

2.6 Digital Signal Processing Techniques for SDR

DSP is a field always on the edge of mathematical complexity, computational
performance, and growing mobility, influencing communications, medical
imagining, radar, entertainment, and even scientific exploration. However, all
these fields rely on the concept of translating analog information into digital
representations and by some mechanisms processing that data. To do so, engineers
and scientists rely on common tools and languages including C and Verilog, all
of which enable manipulation of digital information in an efficient and procedural
way. Regardless of the language, many important DSP software issues are specific
to hardware, such as truncation error, bit patterns, and computational speed and
efficiency of processors [14]. For now, we will mostly ignore those issues and
focus on the algorithmic issues of signal processing and discuss the commonly used
algorithms.

2.6.1 Discrete Convolution
Convolution is a mathematical tool of combining two signals to form a third signal,
and forms the foundation for all DSP. Using the strategy of impulse decomposition,
systems are described by a signal called the impulse response. Convolution is
important because it relates the three signals of interest: the input signal, the output
signal, and the impulse response.

Figure 2.36 presents the notation of convolution as applied to linear systems.
A discrete sampled input signal, x[n], enters a linear system with an impulse

Figure 2.34 �-	 modulators shape quantization noise.
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Figure 2.36 How convolution is used in DSP. The output signal from a linear system is equal to the
input signal convolved with the system’s impulse response.

response, h[n] resulting in an output signal, y[n]. Expressed in words, the input
signal convolved with the impulse response is equal to the output signal. As denoted
in (2.41), convolution is represented by the ∗ operator. It is unfortunate that most
programming languages, such as MATLAB, use the star to indicate multiplication
and use special functions like MATLAB’s conv function to indicate convolution.
A star in a computer program means multiplication, while a star here notes
convolution.

Fundamentally, the mathematics of convolution consists of several
multiplications and additions. If x[n] is an N point signal running from data sample
0 to N − 1, and h[n] is an M point signal running from 0 to M − 1, the convolution
of the two y[n] = x[n] ∗ h[n], is an N + M − 1 point signal running from 0 to
N + M − 2, given by

y[i] =
M−1∑
j=0

h[j] × x[i − j] = h[i] ∗ x[i], (2.41)

This equation is called the convolution sum. It allows each point in the output
signal to be calculated independently of all other points in the output signal. The
index, i, determines which sample in the output signal is being calculated. The use
should not be confused by the n in y[n] = x[n] ∗h[n], which is merely a placeholder
to indicate that some variable is the index into the array. An implementation of the
convolution sum of two vectors in MATLAB is shown in Code 2.16.

As used in signal processing, convolution can be understood in two separate
ways. The first looks at convolution from the viewpoint of the input signal. This
involves analyzing how each sample in the input signal contributes to many points
in the output signal. The second way looks at convolution from the viewpoint of
the output signal. This examines how each sample in the output signal has received
information from many points in the input signal. Keep in mind that these two
perspectives are different ways of thinking about the same mathematical operation.
The first viewpoint is important because it provides a conceptual understanding
of how convolution pertains to signal processing. The second viewpoint describes
the mathematics of convolution. This typifies one of the most difficult tasks
you will encounter in the signal processing field, making your conceptual
understanding fit with the jumble of mathematics used to communicate the
ideas.

Figure 2.37 shows convolution being used for lowpass and highpass filtering,
which we will cover in more detail in Section 2.6.4. The example input signal is the
sum of two components: three cycles of a sine wave (representing a high frequency),
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Code 2.16 Convolution: my_convolution.m

4 % Receive two vectors and return a vector resultant of
5 % convolution operation
6 function conv = simple_conv(f, g)
7 % Transform the vectors f and g in new vectors with the same length
8 F = [f,zeros(1,length(g))];
9 G = [g,zeros(1,length(f))];

10
11 % FOR Loop to put the result of convolution between F and G vectors
12 % in a new vector C. According to the convolution operation
13 % characteristics, the length of a resultant vector of convolution
14 % operation between two vector is the sum of vectors length minus 1
15 for i=1:length(g)+length(f)-1
16 % Create a new vector C
17 C(i) = 0;
18 % FOR Loop to walk through the vector F ang G
19 for j=1:length(f)
20 if(i-j+1>0)
21 C(i) = C(i) + F(j) * G(i-j+1);
22 end
23 end
24 end
25 out = C;
26 end
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Figure 2.37 Examples of (a) lowpass and (b) highpass filtering using convolution. In this example,
the input signal is a few cycles of a sine wave plus a slowly rising ramp. These two components are
separated by using properly selected impulse responses.

plus a slowly rising ramp (composed of low frequencies). In (a), the impulse response
for the lowpass filter is a smooth arch, resulting in only the slowly changing ramp
waveform being passed to the output. Similarly, the highpass filter, (b), allows only
the more rapidly changing sinusoid to pass.
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2.6.2 Correlation
Cross-correlation and autocorrelation are two important concepts in SDR. Cross-
correlation is a measure of similarity of two series as a function of the displacement
of one relative to the other.

The concept of correlation can best be presented with an example. Figure 2.38
shows the key elements of a radar system. A specially designed antenna transmits
a short burst of radio wave energy in a selected direction. If the propagating wave
strikes an object, such as the helicopter in this illustration, a small fraction of the
energy is reflected back toward a radio receiver located near the transmitter. The
transmitted pulse is a specific shape that we have selected, such as the triangle shown
in this example. The received signal will consist of two parts: (1) a shifted and scaled
version of the transmitted pulse, and (2) random noise, resulting from interfering
radio waves, thermal noise in the electronics, and so forth. Since radio signals travel
at a known rate, the speed of light, the shift between the transmitted and received

Figure 2.38 Key elements of a radar system. Like other echo location systems, radar transmits a
short pulse of energy that is reflected by objects being examined. This makes the received waveform
a shifted version of the transmitted waveform, plus random noise. Detection of a known waveform in
a noisy signal is the fundamental problem in echo location. The answer to this problem is correlation.
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pulse is a direct measure of the distance to the object being detected given a signal
of some known shape. The challenge is determine the best way which signal occurs
in another signal. Correlation is the solution to this problem.

Correlation is a mathematical operation that is very similar to convolution.
Just as with convolution, correlation uses two signals to produce a third signal.
This third signal is called the cross-correlation of the two input signals. If a signal
is correlated with itself, the resulting signal is instead called the autocorrelation.
The amplitude of each sample in the cross-correlation signal is a measure of how
much the received signal resembles the target signal at that location. This means
that a peak will occur in the cross-correlation signal for every target signal that is
present in the received signal. In other words, the value of the cross-correlation is
maximized when the target signal is aligned with the same features in the received
signal.

One of the optimal techniques for detecting a known waveform in random
noise is correlation. That is, the peak is higher above the noise using correlation
than can be produced by any other linear system. (To be perfectly correct, it is only
optimal for random white noise.) Using correlation to detect a known waveform is
frequently called matched filtering. More on this in Section 4.7.1.

For discrete functions f and g, the cross-correlation is defined as

(f 
 g)[n] =
∞∑

j=−∞
f ∗[m] × g[m + n], (2.42)

where h∗ denotes the complex conjugate of h. The cross-correlation of functions
f(t) and g(t) is equivalent to the convolution of f*(âˆ’t) and g(t). That is

(f 
 g)[n] = f ∗(−t) ∗ g(t) (2.43)

Do not let the mathematical similarity between convolution and correlation fool
you; they represent very different signal processing concepts. Convolution is the
relationship between a system’s input signal, output signal, and impulse response.
Correlation is a way to detect a known waveform in a noisy background. The similar
mathematics is a convenient coincidence that allows for algorithmic optimizations.

2.6.3 Z-Transform
In Section 2.1.1, we have introduced the Fourier transform, which deals with
continuous-time signals on frequency domain. Since we are focusing on digital filter
design in this section, where discrete-time signals are involved, we need to introduce
a new type of transform; namely, the z-transform.

The z-transform of a discrete-time signal x[n] is defined as the power series:

X(z) =
∞∑

n=−∞
x[n]z−n, (2.44)

where z is a complex variable [1].
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The z-transform is used to analyze discrete-time systems. Its continuous-time
counterpart is the Laplace transform, defined as following:

X(s) =
∫ ∞

−∞
x(t)e−stdt, (2.45)

where t is the time variable in seconds across the time domain and s = σ + jω is
a complex variable. When evaluated along the jω axis (i.e., σ = 0), the Laplace
transform reduces to the Fourier transform defined in (2.2). Thus, the Laplace
transform generalizes the Fourier transform from the real line (the frequency axis
jω) to the entire complex plane.

According to Section 2.2.2, we know that if a continuous-time signal x(t) is
uniformly sampled, its sampling signal xs(t) can be expressed as

xs(t) =
∞∑

n=−∞
x(nT)δ(t − nT), (2.46)

where T is the sampling interval. If we take the Laplace transform of both sides,
we will get

Xs(s) =
∫ ∞

−∞
xs(t)e−stdt =

∫ ∞

−∞

[ ∞∑
n=−∞

x(nT)δ(t − nT)

]
e−stdt. (2.47)

Since integration and summation are both linear operators, we can exchange
their order. Then, based on the sampling property of the delta function, we can
further get

Xs(s) =
∞∑

n=−∞
x(nT)

[∫ ∞

−∞
δ(t − nT)e−stdt

]
=

∞∑
n=−∞

x(nT)e−snT . (2.48)

Let z = esT , or s = 1
T ln z, then (2.48) becomes

X(z) =
∞∑

n=−∞
x(nT)z−n. (2.49)

Since T is the sampling interval, x(nT) = x[n]. The equation above can be
further written as

X(z) =
∞∑

n=−∞
x[n]z−n, (2.50)

which is exactly the definition of z-transform in (2.44). Therefore, the z-transform
and the Laplace transform can be connected by

z = esT , (2.51)

or

s = 1
T

ln(z). (2.52)

According to (2.44), we know that z-transform is the series of z−1. Actually, the
z-transform has no meaning unless the series converge. Given a limitary-amplitude
sequence x[n], the set of all the z values that makes its z-transform converge is
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called region of convergence (ROC). Based on the theory of series, these z-values
must satisfy

∞∑
n=−∞

∣∣x[n]z−n∣∣ < ∞. (2.53)

The frequently used z-transform pairs and their region of convergence are listed
in Table 2.4.

When discussing a linear time-invariant system, the z-transform of its system
impulse response can be expressed as the ratio of two polynomials:

H(z) = bmzm + bm−1zm−1 + · · · + b1z + b0

anzn + an−1zn−1 + · · · + a1z + a0
= B(z)

A(z)
, (2.54)

where the roots of A(z) = 0 are called the poles of the system and the roots of
B(z) = 0 are called the zeros of the system. It is possible that the system can have
multiple poles and zeros.

If we factorize the numerator B(z) and denominator A(z), (2.54) can be
written as:

H(z) = C
(z − z1)(z − z2) · · · (z − zm)

(z − p1)(z − p2) · · · (z − pn)
, (2.55)

where C is a constant, {pk} are all the poles, and {zk} are all the zeros. It will help
us draw the pole-zero plot of H(z).

Suppose we have a linear time-invariant system whose system impulse response
is defined as

h[n] = n2anu[n]. (2.56)

According to Table 2.4, its z-transform is as follows:

H(z) = a
z(z + a)

(z − a)3 . (2.57)

Comparing (2.57) with (2.55), we can easily get that this system has two zeros,
z1 = 0 and z2 = −a, and three poles, p1 = p2 = p3 = a. Therefore, its pole-zero
plot is shown in Figure 2.39.

Table 2.4 Z-Transform Table: Selected Pairs1

x[n] X(z) Region of Convergence
δ[n] 1 all z

anu[n] z
z−a |z| > |a|

nanu[n] az
(z−a)2 |z| > |a| > 0

n2anu[n] az(z+a)

(z−a)3 |z| > a > 0(
1
an + 1

bn

)
u[n] az

az−1 + bz
bz−1 |z| > max( 1

|a| ,
1
|b| )

anu[n] sin(ω0n) az sin ω0
z2−2az cos ω0+a2 |z| > a > 0

anu[n] cos(ω0n) z(z−a cos ω0)

z2−2az cos ω0+a2 |z| > a > 0
eanu[n] z

z−ea |z| > e−a

e−anu[n] sin(ω0n) zea sin ω0
z2e2a−2zea cos ω0+1

|z| > e−a

e−anu[n] cos(ω0n) zea(zea−cos ω0)

z2e2a−2zea cos ω0+1
|z| > e−a

1 From [15]
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Figure 2.39 Pole-zero plot of the system defined in (2.57). Poles are denoted using crossings, and
zeros are denoted using circles. The region of convergence of this system is the region outside the
circle z = |a|.

There are several properties of the z-transform that are useful when studying
signals and systems in the z-transform domain. Since these properties are very
similar to those of the Fourier transform introduced in Section 2.1.1, we list them
in Table 2.5 without further discussion.

2.6.4 Digital Filtering
When doing signal processing, we usually need to get rid of the noise and extract
the useful signal. This process is called filtering, and the device employed is called
filter, which discriminates, according to some attribute of the objects applied at its
input, what passes through. A typical filter is a frequency-selective circuit. If noise
and useful signal possess different frequency distributions and are present together
at input of the filter, then by applying this circuit, the noise will be attenuated or
even eliminated while useful signal is retained.

Filters can be classified from different aspects. For example, according to its
frequency response, filter can be classified as lowpass, highpass, bandpass and
bandstop. According to the signal it deals with, a filter can be classified as a analog
filter or a digital filter [1]. Specifically, an analog filter deals with continuous-time
signals, while a digital filter deals with discrete-time signals. This section will focus
on digital filters. The ideal magnitude response characteristics of these types of
filters are shown in Figure 2.40. According to Figure 2.40, the magnitude response
characteristics of an ideal filter can be generalized as follows: In pass-band, the
magnitude is a constant, while in stop-band, the magnitude falls to zero. However,
in reality, this type of ideal filter cannot be achieved, so a practical filter is actually
the optimum approximation of an ideal filter.

In order to perform digital filtering, input and output of a digital system must
both be discrete-time series. If the input series is x[n], the impulse response of the
filter is h[n], then the output series y[n] will be

y[n] = x[n] ∗ h[n]. (2.58)
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Table 2.5 Z-Transform Properties1

Property Time Signal Z-Transform Signal
Linearity

∑N
m=1 amxm(t)

∑N
m=1 amXm(z)

Symmetry x[−n] X(z−1)

Shifting x[n − m] z−mX(z)
Scaling anx[n] X

( z
a

)
Derivative nx[n] −z dX(z)

dz
Integration

∑n
m=−∞ x[m] z

z−1 X(z)
Time convolution x[n] ∗ h[n] X(z)H(z)
Frequency convolution x[n]h[n] 1

2π j

∫
X(v)H

( z
v

) dv
v

1 Based on [15]. Suppose the time signal is x[n], and its z-transform signal is X(z).

Figure 2.40 Ideal magnitude response characteristics of four types of filters on the frequency range
[0, 2π ]. (a) Lowpass filter, (b) highpass filter, (c) bandpass filter, where (ωc1 , ωc2 ) is passband, and
(d) bandstop filter, where (ωc1 , ωc2 ) is stopband.

According to the time convolution property in Table 2.5, on the frequency
domain, (2.58) is equivalent to

Y(z) = X(z)H(z), (2.59)

where X(z) and Y(z) are the z-transforms of the input and output series, x[n] and
y[n], and H(z) is the z-transform of h[n].

Since ideal brick wall filters are not achievable in practice, we limit our attention
to the class of linear time-invariant systems specified by the difference equation [1]:

y[n] = −
N∑

k=1

aky[n − k] +
M∑

k=0

bkx[n − k], (2.60)
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where y[n] is the current filter output, the y[n − k] are previous filter outputs, and
the x[n − k] are current or previous filter inputs. This system has the following
frequency response:

H(z) =

M∑
k=0

bke−z

1 +
N∑

k=1
ake−z

, (2.61)

where the {ak} are the filter’s feedback coefficients corresponding to the poles of
the filter, and the {bk} are the filter’s feed-forward coefficients corresponding to the
zeros of the filter, and N is the filter’s order.

The basic digital filter design problem is to approximate any of the
ideal frequency response characteristics with a system that has the frequency
response (2.61), by properly selecting the coefficients {ak} and {bk} [1].

There are two basic types of digital filters, finite impulse response (FIR)
and infinite impulse response (IIR) filters. When excited by an unit sample δ[n],
the impulse response h[n] of a system may last a finite duration, as shown
in Figure 2.41(a), or forever even before the input is applied, as shown in
Figure 2.41(b). In the former case, the system is finite impulse response, and in
the latter case, the system is infinite impulse response.

An FIR filter of length M with input x[n] and output y[n] can be described by
the difference equation [1]:

y[n] = b0x[n] + b1x[n − 1] + · · · + bM−1x[n − M + 1] =
M−1∑
k=0

bkx[n − k], (2.62)

where the filter has no feedback coefficients {ak}, so H(z) has only zeros.
IIR filter has been defined in (2.60), which has one or more nonzero feedback

coefficients {ak}. Therefore, once the filter has been excited with an impulse, there
is always an output.

2.6.4.1 Case Study: Cascaded Integrator-Comb Filters
Cascaded integrator-comb filters (CIC filters) play an important role in the SDR
hardware. They were invented by Eugene B. Hogenauer and are a class of FIR filters
used in multirate signal processing. The CIC filter finds applications in interpolation
and decimation. However, unlike most FIR filters, it has a decimator or interpolator
built into the architecture [16].

Figure 2.41 The impulse responses of an FIR filter and an IIR filter. (a) The impulse response of an
FIR filter, and (b) the impulse response of an IIR filter.
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A CIC filter consists of one or more integrator and comb filter pairs. In the
case of a decimating CIC, the input signal is fed through one or more cascaded
integrators, and then a downsampler, followed by one or more comb sections,
whose number equals to the number of integrators. An interpolating CIC is simply
the reverse of this architecture, with the downsampler replaced with a upsampler,
as shown in Figure 2.42.

To illustrate a simple form of a comb filter, consider a moving average FIR filter
described by the difference equation:

y[n] = 1
M + 1

M∑
k=0

x[n − k]. (2.63)

The system function of this FIR filter is

H(z) = 1
M + 1

M∑
k=0

z−k = 1
M + 1

[1 − z−(M+1)]
(1 − z−1)

. (2.64)

Suppose we replace z by zL, where L is a positive integer; then the resulting
comb filter has the system function:

HL(z) = 1
M + 1

[1 − z−L(M+1)]
(1 − z−L)

, (2.65)

where L is decimation or interpolation ratio, M is number of samples per stage,
usually 1 or 2.

This filter has zeros on the unit circle at

zk = ej2πk/L(M+1), (2.66)

for all integer value of k except k = 0, L, 2L, ..., ML, as shown in Figure 2.43.
The common form of the CIC filter usually consists of several stages, then the

system function for the composite CIC filter is

H(z) = HL(z)N =
(

1
M + 1

1 − z−L(M+1)

1 − z−L

)N

, (2.67)

where N is number of stages in the composite filter.

Figure 2.42 The structure of an interpolating cascaded integrator-comb filter [17], with input signal
x[n] and output signal y[n]. This filter consists of a comb and integrator filter pair, and an upsampler
with interpolation ratio L.
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Figure 2.43 The zeros of a CIC filter defined in (2.65), where all the zeros are on the unit circle.

Characteristics of CIC filters include linear phase response and utilizing only
delay and addition and subtraction. In other words, it requires no multiplication
operations, thus making it suitable for hardware implementation.

2.6.4.2 Case Study: FIR Halfband Filter
FIR halfband filters are also widely used in multirate signal processing applications
when interpolating/decimating. Halfband filters are implemented efficiently in
polyphase form because approximately half of its coefficients are equal to zero.
Halfband filters have two important characteristics, the passband and stopband
ripples must be the same, and the passband-edge and stopband-edge frequencies
are equidistant from the halfband frequency fs

4 .
For example the Pluto SDR has multiple programmable halfband filters in the

receive and transmit chains. The RX HB3/DEC3 provides the choice between two
different fixed-coefficient decimating filters, decimating by a factor of 2, 3, or 1
(bypassed). The input to the filter (the output of the ADC) is 24, or 16 values.

When the RX HB3 filter is used, the decimation factor is set to 2, and the
following coefficients are used : [1, 4, 6, 4, 1]. Note that the full- scale range for the
RX HB3 filter is 16 (24). When the RX DEC3 filter is used, the decimation factor
is set to 3. and the following coefficients: [55, 83, 0, -393, -580, 0, 1914, 4041,
5120, 4041, 1914, 0, -580, -393, 0, 83, 55]. The full-scale range for the RX DEC3
filter is 16384 (214).

2.7 Transmit Techniques for SDR

In Section 2.2, it was described how an analog signal is converted to a digital
signal using an ADC, as illustrated in Figure 2.5. Although these digital signals,
which consist of 0 and 1, can be processed with various digital signal processing
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techniques, these digital signals cannot be directly used for transmission. These
signals must be first conditioned then converted back into an analog signal DAC.

It can be seen from this that the extra decimation will allow bit growth and
extra fidelity to gain in the system.

In Figure 2.44(a) a continuous analog sine wave is shown, which has been
sampled at sample rate fs. These samples goes through a quantizer, described in
Section 2.2, which provides the output as shown in Figure 2.44(b). In this example,

Figure 2.44 Time domain. (a) Continuous analog sine wave: time domain, and (b) quanitized
analog sine wave: time domain.
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a 4-bit converter is used, which only provides 16 states (to make things easier to
visualize). It is natural that many people want to connect the samples with smooth
lines. However, the true waveform does have multiple discrete steps between the
samples, as shown in Figure 2.44(b). Those values between samples are ignored and
are not passed out of the ADC.

What comes out the ADC and is processed by the digital signal processing
algorithms and eventually the digital to analog converter have no need for
waveforms to be smooth. Therefore, they experience what is shown in
Figure 2.45(a). Signals are not continuous and are not smooth. This is adequate
as long as the topics described in Section 2.2.3 are understood and do not violate
the Nyquist sampling theorem. The only time this is a problem is when we want
to actually convert the sampled data back into the continuous analog domain. The
bandwidth of the continuous analog domain is infinite and does not stop at fs

2 , as
shown in Figure 2.45(b). When the time domain data is consider beyond the digital
limits, aliases of signals are still visible.

This is why we traditionally have two filters in the transmit portion of a SDR,
a digital transmit or pulse-shaping filter, which changes each symbol in the digital
message into a digital pulse stream for the DAC. This is followed by an analog
reconstruction filter, which removes aliasing caused by the DAC [9]. This process
is shown in Figure 2.46.

2.7.1 Analog Reconstruction Filters
In Section 2.5.4, it was discussed how oversampling can ease the requirements on
the antialiasing filter and how a sigma-delta ADC has this inherent advantage. In
a DAC-based system, the concept of interpolation can be used in a similar manner
with the analog reconstruction filter. This is common in digital audio CD players,
where the basic update rate of the data from the CD is about 44.1 kSPS. As described
in Section 2.2.5, zeros are inserted into the data, which is passed through a digital
filter thereby increasing the effective sample update rate to four times, eight times,
or sixteen times the original rate. The high oversampling rate moves the image
frequencies higher, allowing a less complex filter with a wider transition band.

The same concept can be applied to a high-speed DAC. Suppose that a
traditional DAC is driven at an input word rate of 30 MSPS, as shown in
Figure 2.47 A; the DAC output frequency fs is 10 MHz. The image frequency
component at 20 MHz must be attenuated by the analog reconstruction filter, and
the transition band of the filter is 10 to 20 MHz. The image frequency must be
attenuated by 60 dB. Therefore, the filter must cover a passband of 10 MHz with
60-dB stopband attenuation over the transition band lying between 10 and 20 MHz
(one octave). An analog Butterworth filter design gives 6 dB attenuation per octave
for each pole. Therefore, a minimum of 10 poles are required to provide the desired
attenuation. The necessary filter becomes even more complex as the transition band
becomes narrower.

Next, let us assume that we increase the DAC update rate to 60 MSPS and
interpolate the original data samples by 2, resulting in a data stream at 60 MSPS.
The response of the DAC relative to the two-times oversampling frequency is shown
in Figure 2.47 B. The analog reconstruction filter transition zone is now 10 to
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Figure 2.45 (a) Upsampled, band-limited, sine wave: time domain, and (b) band-limited random
data: fourier domain.

50 MHz (the first image occurs at 2fc − fo = 60 − 10 = 50 MHz). This transition
zone is now larger than two octaves, implying that a five- or six-pole Butterworth
filter is sufficient, which is much easier to design and build.

2.7.2 DACs
In theory, the simplest method for digital-to-analog conversion is to pull the samples
from memory and convert them into an impulse train. Similar to the sampling
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Figure 2.46 On the transmitter side, the DAC converts the digital symbols into an analog signal
for transmission.

Figure 2.47 Analog reconstruction filter requirements for fo = 10 MHz, with fs = 30 MSPS, and
fs = 60 MSPS [18].

function in Section 2.2.2, the impulse modulator can be defined as

p(t) =
∞∑

k=−∞
δ(t − kT), (2.68)

where p(t) = 1 for t = kT, and p(t) = 0 for all the other time instants. Therefore,
the analog pulse train after the impulse modulator is

sa(t) = s[n]p(t) =
∞∑

k=−∞
s(kT)δ(t − kT) =

{
s(kT) t = kT
0 t �= kT

, (2.69)

where each digital symbol s[n] initiates an analog pulse that is scaled by the value of
the symbol. The original analog signal can be reconstructed by passing this impulse
train through a lowpass filter, with the cutoff frequency equal to one-half of the
sampling rate.
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Although this method is mathematically pure, it is difficult to generate the
required infinitively narrow impulse pulses even in modern in electronics. To get
around this, nearly all DACs operate by holding the last value until another sample
is received. This is called a zeroth-order hold, which is the DAC equivalent of the
sample-and-hold used during ADC. The zeroth-order hold produces the staircase
appearance in the time domain, as shown in Figure 2.44(b).

In the frequency domain, the zeroth-order hold results in the spectrum of the
impulse train being multiplied by sinc function, given by the equation

H(f ) =
∣∣∣∣sin(π f /fs)

π f /fs

∣∣∣∣ . (2.70)

If you already have a background in this material, the zeroth-order hold can
be understood as the convolution of the impulse train with a rectangular pulse,
having a width equal to the sampling period. This results in the frequency domain
being multiplied by the Fourier transform of the rectangular pulse, that is, the sinc
function. The dashed line in Figure 2.47 shows the sinc function of the 30 MHz and
60 MHz DACs. It can be seen from Figure 2.47 that the sinc function attenuates
signals in the passband. However, something in the system needs to compensate
for this effect by the reciprocal of the zeroth-order hold’s effect, 1

sinc(x)
, or simply

accept this nonideality. Many ignore this problem, but it is very trivial to do with
the Pluto SDR. Allowing a user to easily transmit with a very flat passband.

2.7.3 Digital Pulse-Shaping Filters
To understand why we need to include digital pulse-shaping filters in all radio
designs, a short example will be shown. Phase-shift keying (PSK) is a simple but
common digital modulation scheme that transmits data by changing the phase of
a reference signal. This is shown in Figures 2.48(a) and 2.48(d), where the time
and frequency domain for the carrier is shown. The frequency is very narrow and
should be easy to transmit.

The alternating bitstream of ones and zeros shown in Figures 2.48(b) and 2.48(e)
causes the problem. Examining this, we observe that the square wave has infinite
frequency information, which is something very difficult to transmit in a practical
consideration.

When we multiply the carrier in Figure 2.48(a) with the bitstream in
Figure 2.48(b) to attempt to transmit this data out the antenna, it results in
Figures 2.48(c) and 2.48(f), which is a signal with infinite bandwidth in the
continuous time analog domain. Not only will we have difficulty transmitting things,
our nearest neighbors in adjacent RF channels will not like either.

Going back to our mathematical model of impulses, (2.70) indicates that
without a digital pulse-shaping filter, these pulses sa(t) will be transmitted through
the channel right away. In theory, given infinite bandwidth on the receiver side,
we should be able to get the same pulse train although with some delay. However,
in reality we actually cannot recover such a signal due to finite bandwidth and
interference between adjacent symbols.

There are two situations when adjacent symbols may interfere with each other:
when the pulse shape is wider than a single symbol interval T, and when there is a
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Figure 2.48 Phase-shift keyed modulated signal, carrier, data, and resulting modulated waveform,
time and fourier domain. (a) Carrier: time domain, (b) PSK data: time domain, (c) PSK modulation:
time domain, (d) carrier: Fourier domain, (e) PSK data: Fourier domain, and (f) PSK modulation:
Fourier domain.

nonunity channel that smears nearby pulses, causing them to overlap. Both of these
situations are called intersymbol interference (ISI) [9].

In order to solve these problems, pulse-shaping filters are introduced to
bandlimit the transmit waveform.

2.7.4 Nyquist Pulse-Shaping Theory
In a communication system, there are normally two pulse-shaping filters, one on the
transmitter side, and the other on the receiver side, as shown in Figure 2.49, where
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Figure 2.49 The equivalent channel of a communication system, which consists of the transmit
filter, the channel, and the receive filter.

we use hT(t) and hR(t) to denote the impulse response of the transmit filter and
receive filter. For simplicity, when considering the Nyquist pulse-shaping theory, we
usually use the concept of equivalent channel, which not only includes the channel
itself, but also the two pulse-shaping filters. Therefore, the impulse response of the
equivalent channel is

h(t) = hT(t) ∗ hC(t) ∗ hR(t). (2.71)

Now, let us consider under which condition we can assure that there is no
intersymbol interference between symbols. The input to the equivalent channel,
sa(t), has been defined in (2.70). As mentioned before, each analog pulse is scaled
by the value of the symbol, so we can express sa(t) in another way:

sa(t) =
∑

akδ(t − kT), (2.72)

where ak is the value of the kth symbol. It yields the output to the equivalent channel,
y(t), which is

y(t) = sa(t) ∗ h(t) =
∑

ak[δ(t − kT) ∗ h(t)] =
∑

akh(t − kT). (2.73)

Therefore, given a specific time instant, for example, t = mT, where m is a
constant, the input sa(t) is

sa(mT) =
∑

akδ(mT − kT) = am. (2.74)

Consequently, the output y(t) becomes

y(mT) =
∑

akh(mT − kT) = a0h(mT) + a1h(mT − T) + ... + amh(mT − mT).
(2.75)

Since we do not want the interference from the other symbols, we would like
the output to contain only the am term, which is

y(mT) = amh(mT − mT). (2.76)

Moreover, it means at a time instant t = mT, we need to have

h(mt − kT) =
{

C k = m
0 k �= m

, (2.77)

where C is some nonzero constant.
If we generalize (2.77) to any time instant t, we can get the Nyquist pulse-

shaping theory as below. The condition that one pulse does not interfere with other
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pulses at subsequent T-spaced sample instants is formalized by saying that h(t) is a
Nyquist pulse if it satisfies

h(t) = h(kT) =
{

C k = 0
0 k �= 0

, (2.78)

for all integers k.

2.7.5 Two Nyquist Pulses
In this section, we will introduce two important Nyquist pulses; namely, sinc pulse
and raised cosine pulse. When considering (2.78), the most straightforward pulse
we can think of is a rectangular pulse with time width less than T, or any pulse
shape that is less than T wide. However, the bandwidth of the rectangular pulse
(and other narrow pulse shapes) may be too wide. Narrow pulse shapes do not
utilize the spectrum efficiently, but wide pulse shapes may cause ISI, so what is
needed is a signal that is wide in time (and narrow in frequency) that also fulfills
the Nyquist condition in (2.78) [9].

In mathematics, the sinc function is defined as

sinc(x) = sin(πx)

πx
, (2.79)

and is shown in Figure 2.50, when variable x takes an integer value k, the value of
the sinc function will be

sinc(k) =
{

1 k = 0
0 k �= 0

. (2.80)

In other words, zero crossings of the normalized sinc function occur at nonzero
integer values.

Another important property of sinc function is that sinc pulse is the inverse
Fourier transform of a rectangular signal, as shown in Figure 2.51(a). Suppose the

Figure 2.50 The plot of sinc function as defined in (2.79). The x-axis is x, and the y-axis is sinc(x).
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Figure 2.51 The sinc pulse on time domain and its Fourier transform, rectangular pulse, on
frequency domain. (a) The rectangular pulse on frequency domain, defined in (2.81), and (b) the
sinc pulse defined in (2.84). The x-axis is k, where k = t

T , and the y-axis is sinc(k).

rectangular signal is defined as [19]:

H(ω) =
{

T |ω| < 1
2T

0 otherwise
. (2.81)

Taking the inverse Fourier transform of the rectangular signal will yield the sinc
signal as

h(t) = sinc
(

t
T

)
. (2.82)

Change the variable t = kT in (2.82) yields

h(t) = h(kT) = sinc
(

kT
T

)
= sinc(k). (2.83)
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Since k is an integer here, according to (2.80), we can continue writing (2.83) as

h(t) = h(kT) = sinc
(

kT
T

)
= sinc(k) =

{
1 k = 0
0 k �= 0

. (2.84)

Comparing (2.84) with (2.78), we can easily find that if we make t = kT,
the sinc pulse exactly satisfies Nyquist pulse-shaping theory in Section 2.7.4. In
other words, by choosing sampling time at kT (sampling frequency equals 1

T ), our
sampling instants are located at the equally spaced zero crossings, as shown in
Figure 2.51(b), so there will be no intersymbol interference.

Recall the Nyquist sampling theorem in Section 2.2.3 states that a real signal,
x(t), which is bandlimited to B Hz can be reconstructed without error using a
minimum sampling frequency of Fs = 2B Hz. In this case, the minimum sampling
frequency is Fs = 1

T Hz. Therefore, the corresponding minimum bandwidth is

B = Fs

2
= 1

2T
, (2.85)

which is exactly the bandwidth of the rectangular signal defined in (2.81). Based on
the discussion above, this choice of sinc pulse h(t) yields the minimum bandwidth
B = Bmin = 1

2T , so it is called the Nyquist-I Pulse [20].
Sinc pulses are a very attractive option because they are wide in time and narrow

in frequency, which means they have the advantages of both spectrum efficiency and
no ISI. However, sinc pulses are not practical since they have ISI sensitivity due to
timing errors. For instance, for large t, the sinc pulse defined in (2.82) has the
following approximation:

h(t) ∼ 1
t

, (2.86)

so it is obvious that timing error can cause large ISI. We must also note that sinc
pulse are infinite in time, making them unrealizable.

Consequentially, we need to introduce Nyquist-II pulses, which have a larger
bandwidth B > Bmin, but with less ISI sensitivity. Since this type of pulse is more
practical, it is much more widely used in practice.

The raised cosine pulse is one of the most important type of Nyquist-II pulses,
which has the frequency transfer function defined as

HRC(f ) =




T 0 ≤ |f | ≤ 1−β
2T

T
2

(
1 + cos

(
πT
β

(|f | − 1−β
2T )

))
1−β
2T ≤ |f | ≤ 1+β

2T

0 |f | ≥ 1+β
2T

, (2.87)

where β is the rolloff factor, which takes value from 0 to 1, and β
2T is the excess

bandwidth.
The spectrum of raised cosine pulse is shown in Figure 2.52. In general, it has

the bandwidth B ≥ 1/(2T). When β = 0, the bandwidth B = 1/(2T), and there is
no excess bandwidth, which is actually a rectangular pulse. On the other end, when
β = 1, it reaches the maximum bandwidth B = 1/T.
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Figure 2.52 Spectrum of a raised cosine pulse defined in (2.87), which varies by the rolloff factor
β. The x-axis is the normalized frequency f0. The actual frequency can be obtained by f0/T.

By taking the inverse Fourier transform of HRC(f ), we can obtain the impulse
response of raised cosine pulse, defined as

hRC(t) =
cos

(
π

βt
T

)
1 −

(
2βt

T

)2 sinc
(

π t
T

)
. (2.88)

Nyquist-II pulses do not have an ISI sensitivity because its peak distortion, the
tail of hRC(t), converges quickly, which can be expressed as

Dp =
∞∑

n=−∞
|hRC(ε′ + (n − k))| ∼ 1

n3 . (2.89)

Therefore, when timing error occurs, the distortion will not accumulate to infinity
in a similar fashion related to Nyquist-I pulses [20].

Actually, in many practical communications systems, root raised cosine filters
are usually used [21]. If we consider the communication channel as an ideal channel
and we assume that the transmit filter and the receive filter are identical, we can
use root raised cosine filters for both of them, and their net response must equal to
HRC(f ) defined in (2.87). Since the impulse response of the equivalent channel can
be expressed as

h(t) = hT(t) ∗ hC(t) ∗ hR(t), (2.90)

where hC(t) is the impulse response of the communication channel, and hT(t) and
hR(t) are the impulse responses of the transmit filter and the receive filter, it means
on frequency domain, we have

HRC(f ) = HT(f )HR(f ). (2.91)
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Figure 2.53 Internal AD9361 Tx signal path.

Figure 2.54 Internal AD9361 Rx signal path.

Therefore, the frequency response of root raised cosine filter must satisfy

|HT(f )| = |HR(f )| =
√

|HRC(f )|. (2.92)

2.8 Chapter Summary

SDR experimentation requires both strong computer skills and extensive knowledge
of digital signal processing. This chapter lists some useful topics including sampling,
pulse shaping, and filtering. The purpose of this chapter is to help the readers
to get prepared for the experimentation chapters, especially for the Pluto SDR
hardware. For example, on the Pluto SDR transmit path (see Figure 2.53), there is
a programmable 128-tap FIR filter, interpolating halfband filters, a DAC, followed
by two lowpass analog reconstruction filters (LPF). In order to understand how
these work together and properly configure things, you need to understand sampling
theory.

On the Pluto SDR receive path (see Figure 2.54), the signal flows through
an antialiasing filter, the ADC, through digital decimating half band filters, and
eventually a 128-tap programmable FIR, where the filtering knowledge is useful.
This 128-tap programmable FIR can be used to compensate for the loss in the
passband because of the antialiasing filter.

In addition, when you build a real communication system, you will need
additional transmit and receive filters, which requires expertise in pulse shaping.
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