
Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page i — #1

Software-Defined Radio 
for Engineers

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ii — #2

For a listing of recent titles in the Artech House
Mobile Communications, turn to the back of this book.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio 
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-457-1

Cover design by John Gomes

© 2018 Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski

All rights reserved. Printed and bound in the United States of America. No part 
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information 
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service 
marks have been appropriately capitalized. Artech House cannot attest to the 
accuracy of this information. Use of a term in this book should not be regarded 
as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page v — #5

Dedication

To my wife Lauren
—Travis Collins

To my wonderful children, Matthew, Lauren, and Isaac, and my patient wife,
Michelle—sorry I have been hiding in the basement working on this book. To
all my fantastic colleagues at Analog Devices: Dave, Michael, Lars-Peter, Andrei,
Mihai, Travis, Wyatt and many more, without whom Pluto SDR and IIO would
not exist.
—Robin Getz

To my lovely son Aidi, my husband Di, and my parents Lingzhen and Xuexun
—Di Pu

To my wife Jen
—Alexander Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vi — #6

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 327 — #1

A P P E N D I X B

Getting Started with MATLAB
and Simulink

You will be using MATLAB and Simulink for the experiments and for the open-
ended design projects in this book. This appendix serves as a brief refresher of
MATLAB, since you should have used it before. However, if you don’t have
extensive experience with Simulink, then this appendix shows you how to get
started with the tool. Please note the MATLAB portion of this appendix is mainly
based on the MATLAB documentation presented in [1] and the Simulink portion
is based on the Simulink Basics Tutorial presented in [2], but here we extract the
most important and fundamental concept so that you can quickly get started after
reading this appendix. For more information about these two products, you are
encouraged to refer to [1] and [2].

B.1 MATLAB Introduction

MATLAB is widely used in all areas of applied mathematics, in education and
research at universities, and in industry. MATLAB stands for Matrix Laboratory
and the software is built up around vectors and matrices. Consequently, this makes
the software particularly useful for solving problems in linear algebra, but also
for solving algebraic and differential equations as well as numerical integration.
MATLAB possesses a collection of graphic tools capable of producing advanced
GUI and data plots in both 2-D and 3-D. MATLAB also has several toolboxes useful
for performing communications, signal processing, image processing, optimization,
and other specialized operations.

MathWorks has created an excellent online tutorial to review basic and
advanced concepts, as well as provide instructor lead tutorials to show off
the various capabilities of MATLAB. It can be found at https://matlabacademy.
mathworks.com

B.2 Useful MATLAB Tools

This section introduces general techniques for finding errors, as well as using
automatic code analysis functions in order to detect possible areas for improvement
within the MATLAB code. In particular, the MATLAB debugger features located
within the Editor, as well as equivalent Command Window debugging functions,
will be covered.

327

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 328 — #2

328 Getting Started with MATLAB and Simulink

Debugging is the process by which you isolate and fix problems with your code.
Debugging helps to correct two kinds of errors:

• Syntax errors: For example, misspelling a function name or omitting a
parenthesis.

• Run-time errors: These errors are usually algorithmic in nature. For example,
you might modify the wrong variable or code a calculation incorrectly.
Run-time errors are usually apparent when an M-file produces unexpected
results. Run-time errors are difficult to track down because the function’s
local workspace is lost when the error forces a return to the MATLAB base
workspace.

B.2.1 Code Analysis and M-Lint Messages
MATLAB can check your code for problems and recommend modifications to
maximize the performance and maintainability through messages, sometimes
referred to as M-Lint messages. The term lint is the name given to similar tools
used with other programming languages such as C. In MATLAB, the M-Lint tool
displays a message for each line of an M-file it determines possesses the potential to
be improved. For example, a common M-Lint message is that a variable is defined
but never used in the M-file.

You can check for coding problems using three different ways, all of which
report the same messages:

• Continuously check code in the Editor while you work. View M-Lint
messages and modify your file based on the messages. The messages update
automatically and continuously so you can see if your changes addressed
the issues noted in the messages. Some messages offer extended information,
automatic code correction, or both.

• Run a report for an existing MATLAB code file: From a file in the Editor,
select Tools > Code Analyzer > Show Code Analyzer Report.

• Run a report for all files in a folder: In the Current Folder browser, click the
Actions button, then select Reports > Code Analyzer Report.

For each message, review the message and the associated code in order to make
changes to the code itself based on the message via the following process:

• Click the line number to open the M-file in the Editor/Debugger at that line.
• Review the M-Lint message in the report and change the code in the M-file

based on the message.
• Note that in some cases, you should not make any changes based on the

M-Lint messages because the M-Lint messages do not apply to that specific
situation. M-Lint does not provide perfect information about every situation.

• Save the M-file. Consider saving the file to a different name if you made
significant changes that might introduce errors. Then you can refer to the
original file as you resolve problems with the updated file.

• If you are not sure what a message means or what to change in the code as a
result, use the Help browser to look for related topics.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 329 — #3

B.2 Useful MATLAB Tools 329

You can also get M-Lint messages using the mlint function. For more information
about this function, you can type help mlint in the Command Window. Read
the online documentation [3] for more information about this tool.

B.2.2 Debugger
The MATLAB Editor, graphical debugger, and MATLAB debugging functions are
useful for correcting run-time problems. They enable access to function workspaces
and examine or change the values they contain. You can also set and clear
breakpoints, which are indicators that temporarily halt execution in a file. While
stopped at a breakpoint, you can change the workspace contexts, view the function
call stack, and execute the lines in a file one by one.

There are two important techniques in debugging: one is the breakpoint while
the other is the step. Setting breakpoints to pause the execution of a function
enables you to examine values where you think the problem might be located.
While debugging, you can also step through an M-file, pausing at points where you
want to examine values.
There are three basic types of breakpoints that you can set in the M-files:

• A standard breakpoint, which stops at a specified line in an M-file.
• A conditional breakpoint, which stops at a specified line in an M-file only

under specified conditions.
• An error breakpoint that stops in any M-file when it produces the specified

type of warning, error, or NaN or infinite value.

You cannot set breakpoints while MATLAB is busy (e.g., running an M-file, unless
that M-file is paused at a breakpoint). While the program is paused, you can view
the value of any variable currently in the workspace, thus allowing you to examine
values when you want to see whether a line of code has produced the expected result
or not. If the result is as expected, continue running or step to the next line. If the
result is not as expected, then that line, or a previous line, contains an error.

While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the program
is paused, assign a new value to the variable in the Command Window, Workspace
browser, or Array Editor. Then continue running or stepping through the program.
If the new value does not produce the expected results, the program has a different
or another problem.

Besides using the Editor, which is a graphical user interface, you can also debug
MATLAB files by using debugging functions from the Command Window, or you
can use both methods interchangeably. Read the online documentation [4] for more
information about this tool.

B.2.3 Profiler
Profiling is a way to measure the amount of time a program spends on performing
various functions. Using the MATLAB Profiler, you can identify which functions
in your code consume the most time. You can then determine why you are
calling them and look for ways to minimize their use. It is often helpful to decide
whether the number of times a particular function is called is reasonable. Since

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 330 — #4

330 Getting Started with MATLAB and Simulink

programs often have several layers, your code may not explicitly call the most time-
consuming functions. Rather, functions within your code might be calling other
time-consuming functions that can be several layers down into the code. In this
case, it is important to determine which of your functions are responsible for such
calls.

Profiling helps to uncover performance problems that you can solve by

• Avoiding unnecessary computation, which can arise from oversight.
• Changing your algorithm to avoid costly functions.
• Avoiding recomputation by storing results for future use.

When you reach the point where most of the time is spent on calls to a small
number of built-in functions, you have probably optimized the code as much as
you can expect. You can use any of the following methods to open the Profiler:

• Select Desktop → Profiler from the MATLAB desktop.
• Select Tools → Open Profiler from the menu in the MATLAB

Editor/Debugger.
• Select one or more statements in the Command History window, right-click

to view the context menu, and choose Profile Code.
• Enter the following function in the Command Window: profile viewer.

To profile an M-file or a line of code, follow these steps after you open the Profiler,
as shown in Figure B.1:

1. In the Run this code field in the Profiler, type the statement you want to run.
2. Click Start Profiling (or press Enter after typing the statement).
3. When profiling is complete, the Profile Summary report appears in the

Profiler window.

Read the online documentation [5] for more information about this tool.

B.3 System Objects

System objects are a specialization of a class in MATLAB, which define a specific
set of methods that make initialization, runtime operation, and tear-down simple.

Figure B.1 The profiler window.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 331 — #5

B.3 System Objects 331

A class itself is basically a set of functions that share a set of variables called
parameters. These parameters are defined within the class and have defined
scopes. Although many methods are implemented by system objects, the three
main methods a user should understand are setupImpl, stepImpl, and
releaseImpl. They will be written as

1 methods (Access = protected)
2 function setupImpl(obj)
3 % Set parameter
4 obj.x = 1;
5 end
6 end

setupImpl is used to initial parameters and perform calculations that are
needed for the life of the system object. stepImpl is the runtime function (method)
that is called generally multiple times and will consume or produce inputs/outputs.
Finally, releaseImpl is used to tear-down the object that will clear its memory
or perform closing actions. For example, if the object is to write data to a file it will
close the file when this method is called.

When a system object’s operator or step method is called, the initial call
will actually first call the setupImpl method. At this point the system object is
considered locked. Then the stepImpl method will be called. Successive operator
or step calls will only call the stepImpl method. To unlock the object the
releaseImpl method must be called. Once unlock the setupImpl will again
be called at the next operator or step call. We outline this process in a script here:

1 % Instantiate object
2 ss = dsp.SignalSource;
3 % setupImpl and stepImpl are called
4 data = ss();
5 % stepImpl is only called
6 data = ss();
7 % Object is unlocked
8 ss.release();
9 % setupImpl and stepImpl are called

10 data = ss.step();

System objects are extremely useful for encapsulating a large degree of
functionality and when state needs to be maintained. For example, filters require
state and are an obvious use for system objects. The toolboxes that make up
MATLAB utilize extensions for their system objects that are related to their
abbreviation. For example, system objects that are from the Communication
Systems Toolbox will have the extension comm, resulting in objects with names
such as comm.AGC, comm.CarrierSynchronizer, or comm.EVM. Examples in
the DSP Systems Toolbox are: dsp.FIRDecimator, dsp.SpectrumAnalyzer,
and dsp.SignalSource. More information about system objects can be found
in the MathWorks documentation with extensive details on their implementation
and use.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “appendix-b” — 2018/3/26 — 11:42 — page 332 — #6

332 Getting Started with MATLAB and Simulink

References

[1] The MathWorks, MATLAB Documentation, http://www.mathworks.com/help/techdoc/.
[2] University of Michigan, Simulink Basics Tutorial, http://www.engin.umich.edu/group/ctm/

working/mac/simulink_basics/.
[3] The MathWorks, Avoid Mistakes While Editing Code, http://www.mathworks.com/help/

techdoc/matlab_env/brqxeeu-151.html.
[4] The MathWorks, Debugging Process and Features, http://www.mathworks.com/help/

techdoc/matlab_env/brqxeeu-175.html.
[5] The MathWorks, Profiling for Improving Performance, http://www.mathworks.com/help/

techdoc/matlab_env/f9-17018.html

Analog Devices perpetual eBook license – Artech House copyrighted material. 


	Software-Defined Radiofor Engineers
	Contents
	APPENDIX B:Getting Started with MATLAB and Simulink
	B.1 MATLAB Introduction
	B.2 Useful MATLAB Tools
	B.2.1 Code Analysis and M-Lint Messages
	B.2.2 Debugger
	B.2.3 Profiler

	B.3 System Objects
	References





