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Funection Fitting

Chapter 1

Function fitting, in general, is the translation of a mathematical or
empirical relationship (between a dependent variable —output—
and one or more independent variables —inputs) from one medium,
such as a table, a mathematical formula, or a set of curves, to
another medium, usually a physically-realizable device or system
having an output and one or more inputs. A function may be fit
by an “exact” relationship, or it may be approximated.

There are two basic steps in function fitting (Figure 1). The first is
the establishment of a close-enough approximation in terms of
ideal building blocks, that is, a conceptual model. The second is
the successful employment of actual devices to embody the func-
tion within an acceptable set of constraints, such as range, scale
factor, accuracy, drift, response time, complexity, cost, etc.

In this chapter, we shall consider functions that can be realized by
circuits which embody “instantaneous dc” relationships between
sets of voltages having a limited (not infinite) dynamic range of
variation. For the most part, we consider single-valued functions,
ie., each set of input values creates a unique value of output,
independent of history. (Through switching, or hysteresis, though,
single-valued functions can become multi-valued.) We omit, to a
great extent, the fitting of dynamic response rélationships, such as
linear transfer functions, or filter characteristics, whether in the
frequency domain or the time domain, since the circuit theorists
and filter designers have explored that area with great enthusiasm
and have produced a profuse output of published material.

We also assume that the functions to be fit by analog techniques
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are statistically satisfactory. That is, we do not consider the class of
problem in which the data points characterizing a relationship are
scattered. Any necessary statistical smoothing has already been
accomplished. However, it is possible to use random noise multi-
plicatively to simulate operators having appreciable stochastic fluc-
tuation.
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Figure 1. Analog function fitting

The limitations of space and time do not permit as thorough a
coverage of the subject as it deserves, but we do hope to leave the
reader with the outlines of analog function-fitting techniques
(both as a bag of tricks and a guide to further thinking), some
pointers for successful application, and a few examples.

WHY ANALOG FUNCTION FITTING?

We indicated in the introductory chapter that measurements of
phenomena that one might wish to obtain linearly often come out
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nonlinearly. For example, a thermocouple is a cheap and simple
(but low-level) means of measuring temperature differences. It can
consist of as little as three segments of wire, with two thermal
junctions at different temperatures. But its output voltage departs
significantly from a linear function of temperature, depending on
the materials it is made of, and the temperature range under
consideration. Other examples might include the Wheatstone
bridge, a simple way of measuring resistance deviation, but non-
linear for large deviations, and the deflection of an oscilloscope’s
spot, a nonlinear function that depends on the electron gun, the
shape of the tube face, and the voltages applied to the X and Y
axes.

It is possible to linearize these measurements (i.e., obtain an output
reading that linearly represents the desired indication) by using
nonlinearity to either compensate for or obtain the inverse of a
nonlinear transducer function. The use of function-fitting techni-
ques for such applications is discussed in Chapters 2-3 and 2-5.

Other applications of analog function fitting include calibration,
simulation of nonlinear relationships in analog computers and
computer-based instruments, translating indirect measurements
into useful form economically, and generating time functions of
arbitrary shape.

Nonlinear function fitting can also be performed digitally by read-
only memories (ROM’s) —often in conjunction with A/D and
D/A converters— and by combinations of hardware and software.
Decreasing costs and wide availability of digital hardware, plus an
ever-increasing library of algorithms would appear to make this
approach seem increasingly tempting, despite its inflexibility and
complexity. But the cost of analog IC’s and modules (both op
amps and functional operators) has also decreased dramatically;
analog approaches are still a “‘best buy” for simple relationships,
and lower cost (for improved accuracy and increased circuit
sophistication) makes them more competitive for increasingly-
complex relationships.

RATIONAL FUNCTIONS
The simplest functions to fit, in concept, are those that can be
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expressed “‘exactly” by an equation involving basic operations:
squaring, rooting, multiplication, addition, logarithms, and arbitrary
power and roots. The basic operators mentioned in the introduc-
tory chapter can of course be used to fit functional relationships
that are identical to the operations they perform.

They can also be combined to fit a wide range of explicit func—
tions of 1 or more variables, such as

u=1+03w? 6}
u=vQ@—-w) 2
u=v"+wt 3)

pow
=— G

¢ 1+wk
u=@+m)w+n) %)
u=rv ©6)

2

where u, v, and w may be variables, and the other terms fixed or
adjustable constants. The summation operations are often per-
formed with op amps.

In some cases, equations can be rewritten for embodiment in
several ways. For example, equation (2) can also be written
u = v+ — v-w (Figure 2). If 1 is a constant, either equation can be
embodied with a single multiplier and a single subtractor. In general,
one tends to choose the equation that will give the best compromise
of error vs. cost. In this instance, if w is always small in magnitude
compared to r, the configuration of Figure 2b is probably a better
choice, because the more-important term can be handled with
linear circuit elements, and errors of the v-w term will be of lower
order. On the other hand, if w can be comparable to r in magnitude,
it is probably better to take the difference of two large numbers
before performing a nonlinear operation; therefore one would use
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the configuration of Figure 2a. The underlying assumption here
(nearly always justified) is that accurate linear operations are
cheaper than nonlinear operations of comparable accuracy.

1 1
- O=——AAN AN
{const.)

wo—‘\}\/\r-—;b —w
+ | X p—ou
= |

vO
a. u =v (r - wj, r = constant, preferred when vr and vw are
of comparable magnitude

e x e o

b. u=vr-vw, r = constant, preferred when vr >> vw, as
when fitting a function that is essentially linear, with a
small deviation.

Figure 2. The way an equation is written affects both circuit
configuration and performance

For more-complicated functions, range and error analyses of all
the available alternatives should always be performed, either
analytically or empirically (if one happens to have “worst-case™
‘components on hand).

SCALE FACTORS

Having optimized the circuit and chosen a set of devices likely to
implement it economically, one is confronted by the scaling
problem, i.e., determining the exact relationship between the
electrical circuit and the function it fits, including constants (gains
and biases) and the ranges of all voltages.

Every accessible voltage or current in the analog circuit corresponds
to a variable in the original functional operation. If it is an impor-
tant term, requiring good accuracy, its range should be close to
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full scale of the device producing (or accepting) it; but it should
not appreciably exceed the full-scale range, for any combination of
inputs or outputs (unless it happens to be a Bounds function).
Input and output ranges are usually predetermined by other
elements of the overall system, but ranges at intermediate locations
are somewhat flexible and can be tailored for optimum dynamic
range.

Since the ranges are determined by the configuration, scale factors
(i.e., electrical coefficients or ‘“‘gains.”) should be chosen after the
configuration has been adopted. It should be noted, though, that
availability of appropriate scale factors may be a factor in the
choice of configuration.

The experienced instrumenter can usually derive scale factors
directly from the equation to be implemented, based partly on
intuition, partly on common sense, and partly on a set of well-
learned but perhaps unverbalized rules. Others may benefit by
observing the following principles:

1. The original equation should be dimensionally correct.

2. If not already in dimensionless form, it can be normalized by
multiplying and dividing each variable by a multiple of its range,
usually 100%. Consider this example: for

y=Axsind +K (Figure 3a) N

Yoy~ = AXagsind +K ®)

R (AR

Figure 3a. Block diagram and electrical schematic for linear
scaling example
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where Y, X, are the full-range values of x and y. Defining the
ratio-to-its-range as the dimensionless variable, and dividing both
sides of the equation by Y, the equation becomes, in terms of
dimensionless variables, ' and x’

¥ = A?X—’“— X' sind ©

m mn

3. Write the equation of the analogous electrical circuit (Figure
3a), using (unknown) coefficients A’ and K’ to relate the various
voltages, and including any known electrical scale factors (such as
those inherent in multipliers and log devices).

E,= A'V, sind + K'Vg, (10)
4, To determine the unknown constants, multiply and divide by
the expected maximum values of voltage, to normalize the electri-

cal equation:

X

ym Eym xm me
400
E. V. V,
y p_ Xm X Km
=A sin + K'—=—
Eym E!r’m me Eym

. The normalized equations, 9 and 11, must be identical, therefore

v Vim . Xy , o Xm Vim
A By =A Y’ therefore A'= A Yo By
and
v :
K Eim_ =§;K—, therefore K’ =-Yl<- %‘l
ym m m ‘Km

5. The electrical constants are now substitutedAin the electrical
system equation (10). The process is by no means as formidable
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as it may appear at first glance, because usually, V,,, = Eyy =
Vigm = 10V;s0

r o p K
A=A and K =<

m m

The scaling, as described in this example, has (so far) applied to an
essentially linear circuit, corresponding to the case in which sin 8
is a dimensionless gain (e.g., a potentiometer setting). The process
differs somewhat if the sine function is the output voltage of a
sine operator (Figure 3b), and must be multiplied by V,

—_ AT Vx - om ’
Ey= A’ Vi singg Vg +K'Vig (13)

where V_ is the multiplier’s scale constant. The equation normalizes
to

F V. V.V 0 V
Yy y ' Xm x.'sm . m r "Km
=A sin Vp +K 14
Eym Eym Vim Vr V@m 0 Eym (19

Again, recognizing that equations 9 and 14 are identical,

Vim V. X XuBm V,
AR S AT and A = A o o
Eym Vl‘ Ym YmmeVsm
If Vi =B =V, =V =10V,
X K
A=A and K =<
Ym Ym



21 FUNCTION FITTING 37

A
V,
" |

A==
. A 1)
e ol S [V S VS N B WY

| PR | H
| SRS |
4
Vp -~ sin — A
| 1 vV,
| S| o
m
V, =V,, sin Vg

Vom

Figure 3b. Electrical block diagram of nonlinear version,
showing possible Jocations for scale factor

It is important to note that the scale factor A’, when associated
with a multiplication, can be applied at any one of the three
terminals, or distributed among two or more of them, if necessary
to optimize the dynamic range for both inputs and the output.
For example, if Vg, = 5VandV, = V,, = E,;, = 10V, A will
be doubled. Most likely, a factor of 2 should be applied between
the output of the sine operator and its input to the multiplier, if it
is desired to make full use of the multiplier’s input range.

After the scale factors have been computed, they should be
checked, by considering various extremes of input and output
signals; any indicated modifications should be made. While the
approach suggested here works, it is no better than the assump-
tions. Awkward assumptions will lead to awkward dynamic ranges.

5. Note that the assignment of a “maximum” value E,, to E;
does not automatically guarantee that V, will not exceed full
scale, unless the set of normalizing voltages is fully consistent. With
practice, one will develop a near-intuitive feeling for proper scale
factors and will find much of the above procedure unnecessary to
plow through in detail. Incidentally, time-dependent devices may
also be scaled in this manner. Where time appears in an equation,
it is multiplied and divided by a nominal “unit value,” usually 1
second, but often the characteristic time of the slowest integra-
tion, in high-speed analog computing devices or systems. (T % =Tt)

In chapter 2-3, it is shown how one might develop and scale a
thermocouple-compensation circuit.

INVERSE FUNCTIONS
If u = f(»), the inverse function, v = f~1 (1), may be obtained (in
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concept) by the use of f(¥) in a high-gain negative feedback circuit
(Figures 4 and 5a). This is already widely exploited in:

(a) the generation of logarithmic operations. The exponential
I-V relationship of a diode in the feedback path of an operational
amplifier matches the input current, enforcing a logarithmic out-
put voltage (see Figure 4c and 4d),

I A
x - fly) A 0
) A X z = ) y=11 (x)
—— -
) y =f(x)
a. Function. Arrow -inside block ) A\
indicates causality / HIGH
N ]
o b. Inverse function
Vot  G( ) Vy =-iR
=-RG(Vy)

i ‘

¢. Direct function, transconductance
and op amp

d. Inverse function, with op amp

Figure 4. Direct and inverse functional operations

(b) the use of multipliers for division. The product of one input
and the output is made to equal the second input, therefore the
output is proportional to their ratio,

(c) the use of squarer-connected multipliers for square-rooting.
The product of the output multiplied by itself is made to equal
the input, hence the output is the square-root of the input
(Figure 6a).

Such schemes can be applied to combined functional operations
for generating operators that are more easily obtainable in the
inverse form. For example, if y = x + log x, there is no closed-form
solution to this transcendental equation if one desires x. One
configuration for obtaining x, given y, is a high-gain feedback loop
around x + log x, as shown in Figure 5a.
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There are a number of evident restrictions to the use of this
technique:
1. The net incremental feedback must be negative over the range
of interest.

2. Instabilities resulting in oscillation or ‘“latchup” should be
ruled out. Stabilizing and range-limiting circuitry may be necessary,
with possible restriction of range, bandwidth, or accuracy. Loop
gain and phase shift must be examined under all conditions.
Adjustably-offset random noise may be employed as an input to
detect sensitive frequency and amplitude bands.

3. In general the functions should be single-valued and monotonic
in the range of interest. For example, sin” 1 (x) should be limited to
within a range of £90°.

y-x-logx DIFFERENCE

; y AMPLIFIER
+ X
¥ o—t- E N — X A=1
l ~ A= 00
t . log
x=y-logx B
e
log . . .
y-x-logx=" b. Implicit solution of y = x + log x
A
j = DIFFERENCE
a. Inverse solution of y x+ log x , DIFFERENC
log? -0 x
~ A=1
x=log” (y-x)

¢. Another implicit solution of y = x + log x

Figure 5. Inverse and implicit solutions. Note that (a) can be
implemented identically to (b), in this case, but (b) is con-
ceptually simpler.

IMPLICIT SOLUTIONS (x = f{x, y,...})

A powerful feedback technique for solving for any variable that
can be made to appear twice in an equation (by non-redundant
summation, factoring, or other trickery) is the implicit use of the
variable in solving for itself, without necessitating the explicit use
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of high gain to enforce the feedback constraints. Figure 5b shows
an implicit solution as an alternative to the inverse for obtaining
x in y = x + log x. Here are a few additional examples of this use
of algebraic analog computing.

1. Square rooting (Figure 6b) Any divider may be used as a
square-rooter; non-feedback types tend to be the most successful.
If the input, x, is divided by the output, y, to obtain y,

y =§-, ory? =x (15)
and
y=x (16)

x-y?=
y=/x

»[<

X

Figure 6a. Square root as an inverse function, using a squarer
in a high-gain feedback loop

X O———*
@

- oy

y2

y

y=vx_

Figure 6b. Square root as an implicit function. If the divider
uses a multiplier fed back with high gain, the configuration is
identical to 6a. But a device specifically designed for division
will retain low error over a much wider dynamic range.

2. Root mean-square (see page 17) A multiplier-divider (uv/w)
may be used, followed by an averaging filter, to compute the
average:

y = ave. (x2[y) an

For stationary waveforms, and using a filter having a sufficiently
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long time constant, y will be constant, and

y = Vave. (x?) (18)

3. Vector sum and difference (see page 21) If w =, /u2 +v?,
one can compute w as follows, using a multiplier-divider

wz—-u2=v2=(w+u)(w—u) 19
Dividing by (w +u)
2
syl U 20)
and
2
w=u+ ey Q2n

Additional variables may be embraced simply by adding terms;
2

for example, to compute w = \/ W+ +x?+ y2,

2 2 2

y X y
=y + + +
WERT Yy T wru wtu 22

Given w and u, the vector difference v = w? - u? may be com-

puted by dividing equation 19 by v, whence (Figure 7a)

y= (w+ uzl(w = u) (23)

4. Bridge linearization The output of a Wheatstone bridge
configuration with one leg variable is of the form

X
YT T+x 29

This response is linear only for small values of the deviation, x.
It can be linearized by solving implicitly for x (Figure 7b)

xX=y+xy 25
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Since the deviations are usually small, a multiplier with very
modest specifications may be used, provided that the signals are
scaled to use near-full-scale capability, and that drift of the second

(i.e., correction) term is low.
XY ov
a. Vector difference v =/w? - u*

. + w+u
wo wrulfw-u)
| v -
+
_-J—- z
w-u
BRIDGE (AND PREAMP)

L+ 5~ L

(3
coef. = ——e +

X P -

a

— AV, E, =V, + Ve VB
Vi =2 A

1+% -%AV,

b. Linearizing a Wheatstone-bridge output

Figure 7. Applications of implicit feedback

There are three principal reasons for using implicit solutions, when
they are appropriate:

a. To simplify the block diagram. In the case of vector summa-
tion, a u-v/w multiplier and two operational amplifiers replace
two squarers, a square-rooter, and a summing amplifier.

b. To avoid expansion of dynamic range. Squaring a signal with
100:1 dynamic range results in a signal with 10,000:1 dynamic
range. Noise, drifts, and reduced bandwidth can impair overall
accuracy. The u-v/w operation, on the other hand, remains net
first order.

¢. To provide an improved fit with few additional components.
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Figure 14 and the appendix to this chapter show the great improve-
ment in fitting sin x due to using modified equations involving an
additional feedback term.

Like inverse functions, implicit functions must be single-valued.
Unlike inverse functions, they need not always be monotonic. For
example, sin x can be approximated from -# to +r with greatly
improved accuracy, using feedback.

FITTING ARBITRARY FUNCTIONS

For the purpose of this section, “arbitrary functions” are defined
to include all functions that cannot be fit “‘exactly” by acon-
ceptual closed-formm equation, whether explicit or implicit. In
other words, there is almost always a residual theoretical error,
which must be considered along with the device errors to deter-
mine the overall closeness of fit. '

Besides such obviously arbitrary functions as empirically-deter-
mined circuit and system nonlinearities requiring calibration
curves, “‘arbitrary functions,” by the above definition, include
such analytic but non-rational functions as sin 4, tan ™! x,and a
whole host of functions characterizable by infinite series.

In general, to be fittable by more-or-less simple analog circuits, a
functional operation must be bounded (i.e., defined within a finite
range of all variables involved), single-valued in terms of inputs,
and free from singularities (except where they can be satisfactorily
fit by diode breakpoints, switching, or comparator “jump’ func-
tions). To be practical for analog circuit elements, there is the
additional constraint that circuit complexity (consequently the
cost) must be competitive with digital function generation (ROM’s
alone, or ROM’s plus digital processing, plus at least one step of
conversion).

Relationships are smoothly fit using logarithmic, exponential, or
power-law elements, or they may be fit more-or-less directly with
a set of straight-line segments produced by diode breakpoints
(Figure 8). The former technique requires more-sophisticated
mathematics and error analysis, but the output is differentiable,
and the error function is satisfyingly smooth. The latter technique
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is well-suited to quick, empirical fitting of functions of one variable,
but the error consists of a series of cusps that can be troublesome
if differentiation is used or if the function is employed within a
feedback loop. Also, arbitrary functions of 2 or more variables
(which are difficult to fit, in any event) run into structural limita-
tions, due to the sheer number of “piecewise-planar” elements;
the influence of each faceted element also poses tricky visualization
problems. Smooth functions, in linear, or nonlinear combinations
—on the other hand— pose no interpolation problems. Any point is
readily calculable, though not necessarily an accurate fit.

FUNCTION FUNCTION
TO BE TO BE
AT FIT

RATIONAL

APPROXIMATION { STRAIGHT-
LINE

SEGMENTS

ERROR
{MAGNIFIED)

ERROR
(MAGNI FIEDV\ '

Figure 8. Smooth fit vs. piecewise-linear fit

SMOOTH APPROXIMATIONS

Although these approaches require more mathematics than do
piecewise-linear approximations, the manipulations are of a kind
that is not difficult if one is armed with a mechanized calculating
device, such as an HP-35 pocket calculator. For mechanized opti-
mization of the fit, a programmable engineering calculator, or
access to computers, is helpful (but not essential unless one has
the job of fitting many similar-but-different functions, or it is
necessary to solve a large number of simultaneous equations to
obtain a high-accuracy, high-order fit).

The ready availability of large amounts of calculating power, com-
bined with the ready availability (at low cost) of today’s multi-
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pliers, dividers, power-and-root devices, and logarithmic elements,
makes smooth analog approximations (with errors typically varying
from 0.1% to 1%) far more practical now than they have ever
been.

The approach to fitting a function y = f(x, A, B, C,...), where x
and y are variables, and A, B, C,... are constants, to the desired
prototype shape, involves the following steps.

1. It is helpful to start with the data in normalized form.
2. Postulate a function that is likely to have the “right shape.”

3. Write the equation for as many specific points as there are
constants to be solved-for in the approximating function. The fit
will be exact at those points.

4. Solve the set of simultaneous equations for the constants.
Plug them into the equation, and check, by substituting the
specific values chosen for “‘exact fit” into the equation.

5. Try out the equation at other intermediate values of x. Selve
each for y and subtract the expected value of y to obtain the
error. It may be helpful to plot an error curve.

6. If the errors are of reasonable magnitude, but are greater
between one pair of calculated points than another, new inter-
mediate points may be selected, and the equations written, solved,
and tried-out for the new points. This process may be repeated as
often as necessary to give (for example) equal maximum errors
in all ranges. (Interpolation formulas may be used to shorten the
process.)

If the errors are obviously too large, a different function may be
tried. The reader will recognize that both experience and creativity
will be of great help in proposing a function that has small inherent
errors for a given shape. Here are some suggestions that those
unfamiliar with the process may try as a starter:

e Try to find a “natural law” (e.g., logarithmic response)

® Try to fit deviations from linearity or from simple functional
relationships, having a somewhat similar shape to the curve in
question, such as log x, 1/x, e, x™, etc.
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Try truncated power series (A + Bx + Ccx? +Dx3 , etc)
Try series involving non-integral exponents, e.g., A + Bx + Cx™

Try implicit functions, e.g.,¥ = (A — ) x™ = Ax™ /(1 + Ax™).
While the two expressions are identical, the first uses fewer
elements.

e Try the “Hoerl equation” y = Ax®¢® =Aln™! BInx +Cx)

e Try a more-easily-fit complementary function, such as
cos x =sin(n /2 - x)

I
—IX =

+A

y=v, +Ax + Bx®

Figure 9. 2nd-degree polynomial using single multiplier.
Op-amp configuration depends on polarity of constants
in this figure and those that follow.

: N S
X T

e I
| X "Z’IZX»Z—»v
2 | B‘ A

Y=y, + Ax +Bx? + (Cx + Dx?)x?
y=y°+Ax+sz +Cx3 + Dx*

Figure 10. Odd-function 3rd-degree polynomial and generalized
4th-degree polynomial, using 2 multipliers. For complete gen-

erality, the origin may be offset along the X-axis by an amount
h by adding a bias to the input. The x’s then become x’=x - h.
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POLYNOMIALS AND POWER SERIES

Polynemials can be meodeled with multipliersr and operational
amplifiers. The minimum number of multipliers required to fit
truncated power series of various degrees are:

2nd degree (involves ¥ ...1 (Figure 9)
4th degree (involves x* and lesser powers) ....2 (Figure 10)
8th degree (involves x® and lesser powers) ... 3 (Figure 11)

However, if implicit feedback is used, any of these truncated
series may be converted into an infinite series, convergent over a
limited (but adequate) range (Figures 12 and 13). The resulting
enrichment can greatly improve the theoretical fit.

For example, a cubic (¥ = Ax + Cx>) can fit sin x to within +0.6%
of full scale, from #/2 to -#/2, or within +13.2%, from 7 to
-#. But with the simple addition of a feedback term
W =Ax +Cx? +Ex2y), the theoretical error becomes less than
£0.01% (=/2 > x > -=/2); and over the wider range of angle

- (= to -x), the error is still less than £1.2%. The following example
shows how dimensionless coefficients are derived, and the appendix
to this chapter provides comparative details of a variety of sine-
function-fitting schemes.

Cx + D@ &3 +Dx* *

icl‘
A s BT s F s -

r LE/C r 144 4

y-y°+Ax+Bx2+Cx3+Dx‘+(§x2+FCx3+FDx‘)(Cx3+Dx')

=y, +Ax+Bx? + 0 + Dx* +Exs+(Fcz+§D)x°+2FCDx7+Fsz8

Ty +a; X+ 3,2 +3,0° +a,X% +a5x5 +2,x8 +3,%7 +3,x8

Figure 11. Generalized 8th-degree polynomial, using 3 multi-
pliers. This configuration obtains its relative simplicity at the
cost of 2 degrees of freedom (a4 and ag are functions of a3,
as, as, ag, and ag is not independent of as, 24, as).



48 NONLINEAR CIRCUITS HANDBOOK

T i
T X HERE{=
B il
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Ax +Bx2

1-Cx

Y=Yo +Ax+ (B+ACIX2 +C(B+ACIK3 +C2 (B+AC) xS +...

¥-Yo=Ax+x (Bx+Cly-y,] )=

a. Second-degree polynomial with implicit feedback
produces infinite series, convergent for Cx <1, has three
degrees of freedom.

yc

fZﬁX*% -

T

y=Ax+{(Bx+Cy) (Dx+y)=

Ax + BD x?
1-{(B+CD)x-Cy

b. Second-degree polynomial in both x and y has

four degrees of freedom, but coefficients are derived with
greatly-increased difficulty. If y(0) # 0, y,, is added outside
the loop, as in 12a.

Figure 12. Implicit approximations with a single multiplier.

c *E Y,

“"{XXZDZ ><——Z,-,Z
— a5

2

Y-VYo=Ax+Bx?+x2 (Cx+Dx2 +Ely-vyol )

JAx+B +Cx% +Dx*
1-Ex?
V=Yoo +Ax+Bx‘ +{C+AENC + (D+BEX* + E(C+AENE +E(D+BEKE +...

Figure 13. Fourth-degree polynomial using 2 multipliers with
implicit feedback produces infinite series, convergent for Ex?
<1, has up to five degrees of freedom. For odd function, B =
D = 0; for even function, A=C=0.
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Earlier in this chapter, we have mentioned the practical limita-
tions to the degree of fit; device cost and performance, and circuit
complexity. To these must be added the difficulty (even in simple,
low-cost configurations) of coping with the many degrees of free-
dom as the number of coefficients is increased. Three coefficients
is a reasonable maximum for an engineer with a hand calculator,
unless he is of a mathematical bent and enjoys solving this kind of
problem. If mechanized stored-program calculators and computers
are at hand, the device cost and performance limitations become
more significant.

ANEXAMPLE:  y=f(x) ~sinx (0SxS<%5)

The appendix to this chapter, as mentioned, shows a number of
equations and configurations that provide theoretical fits (of sin x)
to varying degrees of accuracy and suitability. We will derive here,
as an example of the function-fitting process, the simplest of the
approximations, a quadratic polynomial, using a single multiplier,

y=Ax+Bx? [y(0)=0] 26)

and compare it with a more-accurate version, still using a single
multiplier, but adding an implicit feedback

_ Ax +Bx?

Y= TCx =Ax +x(Bx + Cy) @7

To obtain a trial set of coefficients in (26), substitute y and x (in
radians) at two points. Let us use the end point, x = n/2, and an
experimental intermediate point, x = 1 rad = 57.296°:

sinm/2=1 =A@/2)+B @/2)? (28)
sin1=0.8415=A+B (29)

Solving simultaneously for A and B, we find that B = -0.3589
and A = 1.2004; hence, y = 1.2004x - 0.3589x2.
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In testing this approximation over the range of angles 0 to «n/2,*
maximum error (¥ - sin x) appears at 21.6° (error < 3.4% F.S.)
and at 74.5° (error = - 0.96% F.S.) The error is zero at 0, 1 radian,
and = /2 radians.

By choosing a different value of angle for intermediate zero error
in (29) and solving for new coefficients, testing them, repeating,
etc., it is possible to arrive at a “best™ fit, with symmetrical maxi-
mum errors of about +2.1%. This approximation is

y=1.155x — 0.33x2 (30)

Intermediate zero-error occurs at about 42.2°. The maximum.
errors occur at 17.4° and 68.6°. Error plots appear in Figure 14.

The block diagram of a configuration that would produce this
approximation is shown in Figure 9. By adding an implicit feed-

FIRST TRY
¥ = 1.2004x - 0.3589x2

OPTIMIZED QUADRATIC

& ¥ =1.155x - 0.33x¢
'S +2
®
3
E +1
=4
w
Z
g o
=
w
5 A
2 OPTIMIZED ~ L,
=, QUADRATIC USING Sal e
- IMPLICIT FEEDBACK ~-
-3 o 1.0488x - 0.4278x x IN RADIANS

1-0.2618x

Figure 14. ﬁrrom of quadratic approximation to y = sin x
O<x< - ). Percent error = 100 (f(x) - sin x).

*Maximum eiror can be determined by an error plot, or by differentiating the error
equation (f(x) — sin x) and solving for the values of x at which the derivative is zero,
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back, the configuration of Figure 12a, characterized by equation
27, is achieved, resulting in a reduction of the errors to less than
£0.5% (Figure 14).

The coefficients of equation (27) can be calculated by a similar
process to that outlined above. However, the additional degree of
freedom provided by C requires that two intermediate zero-error
angles be determined, and we can expect three error maxima. The
solution of three simultaneous equations makes the process some-
what more arduous, but still manageable, and the results are
rewarding, since a fourfold reduction of error is obtained, at the
cost of one additional op amp. The new equation, with optimized
coefficients, is

_ 1.0468x — 0.4278x
1-0.2618x

0<x<7/2

=1.0468x — x(0.4278x + 0.2618y) (€2))

Maximum theoretical errors occur at 11.5° (0.42% F.S.), 47.1°
(-0.44% F.S.), and 80.4° (0.44% F.S.), with zero error at 0°,
28°, 65.5°, and 90°,

It should be noted here that some reduction of maximum error
could be obtained by allowing non-zero error at the end points.

In theory, this is tenable, though it necessitates an additional
constant (and hence an additional simultaneous equation), but
in practice it can be disastrous, since it makes calibration more
difficult, and magnifies sensitivity to variations in device tolerances.

It should also be noted that errors discussed here are expressed in
percentage of full-scale, rather than percent of the ideal value of
sin x. To convert the plotted errors to the latter form, they should
be divided by sin x. The ratio errors will be found to be larger, the
error maxima will occur at different values of angle, and they will
no longer be equal in magnitude. To test the approximations with
the aim of minimizing ratio-to-ideal-value errors, the error func-
tion is f(x)/sinx — 1.

A much better theoretical fit can be obtained, using two multi-
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pliers, with the additional bonus that it can be made to work in
two quadrants (i.e., -7 /2 < x < n/2). The simple cubic (Figure 10)
gives +0.6% maximum error, but with implicit feedback, the
theoretical error can be reduced to less than +0.01%, which
probably represents greater accuracy than might be expected from
any of the devices currently available to implement the approxi-
mation at reasonable cost. That is, the error is limited by the
devices, rather than the approximation. For single-quadrant fitting,
a single U-V™ device (such as Model 433), with m set at 2.0, can
replace the two multipliers.

Finally, using a #-v™ device in the same configuration, but with
m set at a non-integral value, the maximum theoretical error can
be reduced to +0.15% F.S. open-loop, and +0.004% with implicit
feedback. The above approximations are all included in the appen-
dix to this chapter.

PIECEWISE-LINEAR FUNCTION FITTING
(A Brief Introduction)

As Figure 15 shows, a nonlinear relationship is fit by summing
gain segments (S;, AS,, AS;, etc.) that have zero contribution
until a threshold is crossed. Beyond the threshold, the output
of a given segment contributes linearly. The nature of the ideal
contribution (and the errors, too) is determined by both the
location of the thresholds and the incremental gains attributed
to the segments, as well as the means of implementation.

The simplest “diode function generators,” or DFG’s, as such
devices are commonly termed, use segments that provide either
zero or linear response (from the threshold to full-range input), as
shown. Since the contributions accumulate, sharp reversals require
a large amount of gain to overcome the accumulated gain of
earlier segments. Circuits have been built using truncated segments
to avoid the accumulation of gain, but they tend to lead to an
unwieldy amount of circuitry; in addition, they require careful
matching of break points to avoid “glitches” where one segment
leaves off and another starts.

The conceptually-simplest segment is obtained with a biased diode
and a precision resistor, but its temperature sensitivity leaves much
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to be desired. Chapter 3-5 discusses several more-practical
approaches to individual segments. “Ideal-diode™ op-amp circuits
are an obvious possibility, because of their stable thresholds, sharp
corners, and precise gains, as well as the low cost of operational
amplifiers.

Y 12 vy2)
[ ’
L4

APPROXIMATION %/ Smy; (v,q)
T
— FUNCTION TO BE FIT

- Yy (Vyq)

V;12 Vam
V,
% (Xea) As3>\

_}4

.COEFFICIENT,

BIAS , “Vx12 CLIP SUM-DIFFERENCE
! s+
25,
Vx E i —F —: E — V/,

V23 -
i N
NEGATIVE IN

THE ABOVE
= o EXAMPLE)

Figure 15. Basic 3-segment piecewise-linear function fitter.

Positive or negative contributions from individual segments are
obtained by the use of a subtractive output circuit, usually
consisting of an inverting output amplifier and an intermediate
current inverter. For special-purpose function fitting (which com-
prises the great majority of applications), gains and thresholds may
be computed, and fixed resistance values —with minor “tweaks”—
are used. For general-purpose function fitting, potentiometers
typically are used for setting each threshold (bias) and gain. To
obtain the gamut of positive-to-negative gains, potentiometers
straddle the positive and negative summing buses (Figure 16).
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SUMMING
BUSSES

NEGATIVE POSITIVE
. »

-
Vi —MN—— g}
R g ! Er R,
s A AA
Ry =2t ~ov
s, CURRENT
| INVERTER
Ry <Y
Ry Z e
G——ANN—
—
=t Re
—— a .
~0V Bk

= s,xn.[zl*-zr] +-§—°- v,

FOR GENERAL-PURPOSE
‘FUNCTION FITTING,
POTENTIOMETERS

ALLOW ADJUSTMENT
OF 25y OVER THE RANGE
oL <y <Rt
‘™M

Rm

=V =-Vy2 (Rg2/R) Ry

T e

Figure 16. Piecewise-linear function fitter. For adjustable
thresholds, typically the Rp’s = R and Vg = Vxj, adjusted by
individual potentiometers connected to a stable reference
source.

Fitting functions using the piecewise-linear approach is, to begin
with, a paper exercise. It can be done graphically or numerically.
The graphic approach simply involves a large normalized plot of
the function to be simulated. Draw the minimum number of con-
nected straight.lines to fit the curve to the required accuracy.
(Figure 15). This fixes the break points, X;,, X33, X34,... The
straight lines are all extended to the ordinate corresponding to the
maximum value of x, X,. This permits the incremental gains
to be computed accurately, even for short segments. The incre-
mental gains, S;, AS,, AS;, for the example shown are

Yl Y2 _ Yl Y3 - Y2

— (32
Xn’Xpn-Xpp* Xy - Xy )
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When the circuit has been assembled, final setting of the coef-
ficients of the function*®

Vy= Vyo+ 8i(Vy = Ve + A8,V - Ve )+ 483V~ V) (33)

can be simply done as follows:

1. Set the thresholds, Vx12 , Vx23, etc.

2. With V, = Vg, and all gains at zero, set the output bias
I/y = VYO'

?. With V,, = Ve, 2}djust Sq for V,= VY1’ A$2 for Vy=.Vy2, et.c.,
in that order, keeping all gains at zero until the previous gains
have been set. Use overall output attenuation (temporarily-reduced
Rg), if necessary to keep V), within reasonable limits.

Because all the adjustments are made with V, = V., there is a
tendency for cumulative gain errors to be reduced. The function
can now be checked at the intermediate points. If the breakpoints
are not sharp, this factor should be taken into account on the paper
plot before establishing the values of VY1’ V;,, etc. The fit can be
refined, if necessary, by minor adjustments to the thresholds, and
repeating step 3.

A WORD ABOUT SUMMING-AMPLIFIER CONFIGURATIONS

Sum-and-difference amplifiers are well-kknown, having been dis--
cussed in just about every textbook and tutorial article on the basic
applications of differential op amps.

In function-fitting applications, there is usually an amplifier that
bears the brunt of summing a number of arbitrary inputs with a
variety of gains of either polarity. The choice is usually between a
differential amplifier and two inverting op amps in a subtracting
configuration.

FOR SMOOTH APPROXIMATIONS, the inputs are usually taken
from either op amps or nonlinear modules (or IC’s), which have
low-impedance operational-amplifier outputs. For these applica-

*
ASj=0fo:Vx—Vx 0

ij=
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tions, either the differential subtractor or the inverting subtractor
of Figure 16 may be used. Because the inverting subtractor operates
at ground level, it is more suitable for applications where gains
must be adjustable, and the impedance changes associated with a
specific gain adjustment must not disturb the other gains. However,
if the gains are fixed, the differential subtractor is somewhat less
costly; resistance ratios are easy to compute if the basic rule
associated with Figure 17b is observed. See also Electronics, June
12, 1975, pp 125-126. :

POTENTIOMETERS
OR RESISTIVE

DIVIDERS GAIN-SETTING
{OR BOTH) / RESISTOR
x—/
A
+ ¥ =y, + G (Ax - Bx?)
—_ R
x2
B Yo

1

Figure 17a. Use of fixed-gain differential amplifier for 2-
variable system with coefficients of opposing polarities

{see Figure 9).
Rt _Ray
Vi1 ——AAA- APA
H
Vi1 == MAr—0
Rt
A CONNECT AN APPROPRIATE
S S o VALUE OF EITHER Rga TO A
l R' vy :’ E OR Rgg TO B TO BALANCE
= GA B THIS EQUATION
“ ORRge
R10 ROD
v —-wv—-—-‘vw—_l "
* Razo &:1+i.“.°‘= Ecm»,z: Roo
V2o A —¢ Rga Ry Res Ri
=1 =1

: -
V, —Wv—j
" THEN,

Rno

Roo

Rno

Roo Rao
E, = Vip + =2 Vao +...
° R " Rz

R, R,
Vo = =2 Vg —.oo =2

V,
Rn By "

Figure 17b. Use of differential op amp for summing and dif-
ferencing an arbitrary number of inputs with arbitrary fixed-
gains.

FOR PIECEWISE-LINEAR APPROXIMATIONS, the source im-
pedance of the additive terms is usually nonlinear, being low in the
conducting state and high in the open state. Thus, the isolation



2-1 FUNCTION FITTING 57

afforded by the summing-point of an inverting amplifier is not
only desirable, but necessary, to avoid interaction.

A close Iook at Figure 16 will disclose the interesting fact that the
positive input of A4, instead of being grounded, is connected to
the summing-point of AS5. In this connection, A4 serves as a
current inverter or reflector, rather than as a voltage inverter. The
purpose becomes clear if one considers that the summing point of
A5 is loaded by the high output impedance of a current source
rather than the usually-low resistance R;, thus minimizing the
closed-loop gain of A5, increasing bandwidth, and reducing the
amplification of drift and noise.

PRACTICAL MATTERS

We have dealt with an “ideal building-block™ approach to func-
tion-fitting, while appearing to ignore the practical characteristics
of the building blocks that are to be used. The purpose was to
avoid interjecting issues that, while highly appropriate, would
tend to serve as digressions and dilute the main course of the
argument. Also, each case must be analyzed in terms of the specific
functional operations, their configuration, and the allowable
ranges of input and output. Since the variety of permutations and
combinations is broad, it is virtually impossible even to begin to
cover them all in the detail they deserve in the available space.
Nevertheless, this chapter would be incomplete if it didn’t provide
some guidance toward practical implementation of the ideas.

Practical considerations include scaling, component choice, errors
(and their sensitivity to parameter variation and drift), response
speed, and (for feedback configurations) stability.

If the reader is mathematically gifted, he will have little difficulty
determining the scaling, the sensitivity to parameter tolerance
(within the limits specified for the real devices and passive elements),
or computing the approximate speed of response. While stability
may be investigated theoretically, it is perhaps better to explore
it experimentally.

More typically, the reader will have sufficient mathematical facility
to compute the constants and perform the scaling (an example is
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given in the appendix), but may have difficulty with the mathe-
matical formulations involved in error and stability analysis. In that
case, as regards error analysis, he should perform a series of “brute
force™ calculations involving changes in the constants to find out
which are the most tolerant and those that are the most sensitive.
One approach is to make (say) a 0.1% change in a given constant,
and determine the effect (magnitude and direction) on the maxi-
mum error. Another is to make (say) a 0.1% change in an input
variable, and determine its effect on the output error.

It may be useful, in this day of calculators, to perform the compu-
tations of theoretical constants to many significant digits, then to
round off, one digit at a time, until a significant effect on the error
is seen. The theoretical examples given in this chapter and its
appendix have all been worked out to an excessive number of
places for the accuracy involved. '

In any case, the reader should study the chapters in Part 3 that
pertain to the devices to be used, and those in Part 4 that pertain
to their application in the specific operations to be used (e.g.,
multiplication, division, logs, etc.). Naturally, familiarity with the
data sheets for the devices actually to-be-chosen is essential, to be
sure that they are physically and electrically compatible with the
rest of the system and that there are no unpleasant surprises in the
list of specifications.

Performance should always be checked on a “breadboard™ that
includes a facility for investigating response, stability, and the
effects of parameter variations in those portions of the circuit
that analysis (or intuition) suggests are most sensitive.

The resistors can be chosen at the nextdower (for example)
standard values, with appropriate tolerances, temperature-sensi-
tivity, and cost; the effects of parameter variations can be studied
experimentally by “tweaking” incremental resistances connected
in series.

Dynamic responses and stability are best studied experimentally,
using large and small sine and square waves (and perhaps noise)
biased at various levels. Response can often be improved, especially
where subtraction is involved, by seeking to match the approximate
responses of branches being summed by delaying the faster using
an R-C lag circuit.
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X-Y plots on the oscilloscope screen (input horizontal, output
vertical), using sine- or triangular waves, can be quite helpful in
observing the shape of the curve(s), determining that there have
been no gross errors of fit, finding amplitude-sensitive instabilities,
and (by frequency adjustment) determining simultaneously both
amplitude and “phase” response. Not only the output behavior can
be observed; one can also observe behavior at intermediate stages.

If the function involves a deviation from linearity, errors can be
more-sensitively explored by subtracting the output from a signal
proportional to the input, and observing just the deviation, plotted
against the input.

Errors can also be determined point-by-point, using voltage sources
and precise digital voltmeters, or by comparing X-Y plots on a
chart recorder with hand-plotted curves. Where large numbers of
identical functions are to be monitored, or trimmed, computer-test
techniques can be brought into play in various ways, for example,
by programming the input, and comparing the output with the
stored “correct” values, either digitally (go-no), or with an analog
readout established by computer graphics.

CONCLUSION

This chapter has sought to introduce the reader to the basic ideas
and techniques relating to analog function fitting, and to encourage
the increased application of low-cost nonlinear analog devices in
calibration, compensation, and measurement. Some of these ideas
will reappear, perhaps in amplified form, in subsequent chapters.
The concentration in this chapter has been on the development of
conceptual models. The following chapters will utilize some of
these ideas in the context of their applications.
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APPENDIX TO CHAPTER 2-1

Analog Approximations for sin x with Ideal Devices

1. Quadratic, one-quadrant, single-multiplier
A.Explicit function: y = 1.155 x-0.33 x2
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2. Cubic, two-quadrant, 2-multiplier, or one-quadrant UV?

A.Explicit function: y = 0.98252 x - 0.14019 x3

r
x 1
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B. Implicit function:
y =1.00042 x -x? (0.111382 x + 0.056646 y)
_1.00042x-0.111382 x3
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3. Non-integral exponent, one-quadrant, single UV™®
A.Explicit function: y = 1.0095 x - 0.169 x27525
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B. Implicit function:
y =0.999642 x - x*U2  (0.1073254 x + 0.0604426 y)
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4. Extended angular range -
A.Implicit cubic, 4-quadrant -7 < x < +x, 2 multiplications
_ 1.0287 x - 0.10423 x3
1 +0.0904 x?
= 1.0287 x - x2 (0.10423 x + 0.0904 y)
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, Circuit similar to 2(B)
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B. Implicit non-integral exponent, 2 quadrant, 0<x <7,
single UV
0.9790 x - 0.0657 x3-36
y =

1+ 0.0814 x236
=0.9790 x - x230 (0.0657 x + 0.0814 y)
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SCALING EXAMPLE
To demonstrate the application of the scaling principles discussed
in the chapter, electrical coefficients for example 2B will be derived,
using the following assumptions:

1. 10V full-scale input corresponds to /2 radians.

2. 10V full-scale output corresponds to sin 7/2.

3. Multiplier transfer functions are V; V,/10=Egyt

, Circuit similar to 3(B)
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where - A=1.00042
B=0.111382
C=0.056646

Since the maximum value of y is 1, y is already normalized. How-
ever, though x is dimensionless (radians), it is not normatized. To
normalize x to its maximum value, w/2, multiply and divide by
7/2, wherever x appears.

TR ONCHNLE A0

If we let A’, B, and C’ be the (unknown) coefficients of the elec-
trical equation, the following equation describes the ideal perfor-
mance of the electrical equivalent, taking into account the mul-
tiplier transfer functions.

Vy>  BVy+CE,

=AIV - x -
Ey * 10 10
Nomaling, By _y Ve (V' [y Ve o By ]
10 10 10 10 10
Because the normalized equations must be identical,
A" = A@/2) = 1571456
B’ .= Bw/2)® = 0.431693
C’ =C@/2)* = 0.139768

A circuit that embodies these coefficients, using ideal multipliers,
op amps, and resistors, is:

Rg =R/B" R¢ =R/C
Vi O—e—AM——MWW

VWA —b— A | A
_L(1.7499R) 10v R

=A-1

ey
-

{1.7499R}

— ] X
2
Vx R R
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Tov =

Rg =2.31646R, R = 7.15471R, R, = 0.636353R



Time—Function
Generation

Chanpter 2

Two products that revolutionized electronic instrumentation in the
“30’s and ‘40’s were the oscilloscope and the sine-wave generator.
The latter applied stimuli to systems or devices under test; the
former permitted observation and time-domain measurement of the
response. Since then, time-function generators as instruments
have become greatly sophisticated; today, digitally-programmed
sine- and square-wave, pulse, triangular, and even ROM-determined
arbitrary function generators are available, in speeds from mHz to
MHz.

As the uses of general-purpose function generators spread, the
possibilities for low-cost, compact, in-house-designed special-pur-
pose function generators for use in specialized equipment became
apparent. The availability of operational amplifiers at low cost
enabled some of these possibilities to become realities, and now the
collateral availability of low-cost circuit elements with controlled,
predictable nonlinearity should stimulate the greatly-increased use
of function generators in OEM equipment.

A few examples of applications for function generation include
establishing “profiles” (temperature, flow, velocity) in control
systems, adjusting programmed parameters in test and instrumen-
tation systems, and providing time bases of special form (e.g.,
logarithmic) in chart-recorder and oscilloscopic readout devices.
Other applications for nonlinearity include variable-frequency
polyphase oscillators, voltage-controlled filters, and low-cost signal
generation with precise control of amplitude, frequency, and/or
phase. These last include, of course, the classical sine-, square-, and
triangular-wave generators, variable duty-cycle pulse generators, and
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one-shots, as well as the famous phase-locked loop. Also, one
should not forget random-noise generators.

In this chapter, we discuss some of the principles of function
generation and suggest ways of accomplishing a few basic func-
tions with available standard building blocks. There exists, of
course, a voluminous body of publications describing a gamut
from simple circuits—involving transistors and passive elements—to
the catalogues of manufacturers devoted to test instrumentation.
Our aim is to neither replace nor surpass these efforts. Rather, it is
to provide the designer with a modest indication of the range of
roles that controlled nonlinearity can play in function generation,
with the thought that it will form a respectable complement to his
bag of design tools, tricks, and ideas.

FUNCTION GENERATORS ARE MULTI-FACETED

It is possible to conceive of an extremely-wide range of function
generators, classified in many different ways. What is common to
them all is the use of nonlinearity: it is quite difficult to imagine a
means of independently generating time functions, starting with a
dc power source, without in some purposeful way involving non-
linear devices.

While this chapter deals with only a few specific examples of
function generation, the following inclusive inventory of function-
generator properties may be helpful to the reader who is seeking
insight into remote (as well as better-known) aspects of this all-
embracing field.

1. PERIODICITY: Aperiodic (single-shot), Stationary, Modulated,
Random. Although the familiar connotation of “single-shot” is a
pulse generator that delivers a single pulse in response to a stimulus,
the term also should suggest such possibilities as a single half-sine,
or a damped exponential train, or an arbitrary velocity or torque
profile for a dynamometer test. Stationary waveforms are those
having statistical properties that do not change with time. In prac-
tice, if a determinate waveform’s amplitude, frequency, phase, or
shape, or a random waveform’s mean, variance, amplitude, distribu-
tion, and frequency spectrum are constant over a lengthy period
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before, during, and after a measurement it is involved in, it may be
considered stationary. Modulated refers to the variation of some
property of the waveform during any observation interval (or from
interval to interval) in response to a signal, for example, amplitude,
phase, frequency, pulse-width, pulse position, presence or absence.
It specifically includes voltage-to-frequency conversion, which can
be viewed either as generation of a signal having a voltage-deter-
mined frequency, or modulating a signal about a fixed frequency.

2. SPEED: Very Low (fractions of 1Hz), Low, Audio, High,
Video (& 1MHz). These distinctions are largely qualitative, but
they are important insofar as they affect the choice of components
or approach, the criticality of design, the limitations of accurate
behavior, and the difficulty of use and measurement. The easiest
portions of the spectrum to design for are in the middle, from
about 1Hz to 30kHz. Suitable passive elements are small and cheap,
and active devices have low drift and noise, as well as reasonable
bandwidths. Thermal effects, that plague the low end, and stray
capacitance and inductance, that complicate life at the high end,
are rather manageable in the middle. Since this is not a complete
text on the design of function generators, most of the specific
circuits suggested have their best performance in the low-to-audio
range of speeds and frequencies.

3. SHAPING: Simple vs. Complex. Simple functions are those
that Nature allows to be achieved (in concept) with a minimum
of basic hardware. They include sine-waves, as produced by
resonant elements, square waves (produced by switching), tri-
angular waves (often a by-product of square waves, or vice
versa), exponential waves (also a by-product of square waves), and
pulse trains. Complex functions involve operations on simpler
functions, including modulation, filtering, and nonlinear function
fitting (analog or digital) applied to simple waveforms. Analog
function fitting involves ramps and function fitters; digital involves
pulse trains, read-only memories (ROM’s), and D/A converters with
appropriately-filtered output; both can be combined to advantage
(see Figure 11, this chapter). Most of today’s commercial sine-
square-triangle generators obtain the sine in a complex fashion: a
triangular wave is applied to a fitted sine operator (Figure 1).



68 NONLINEAR CIRCUITS HANDBOOK

Random noise can be generated simply (for example, by amplify-
ing resistor or junction noise) or in complex fashion (by generating
a pseudo-random waveform having sufficiently-low autocorrelation,
using a pulse train, tapped shift-register, exclusive-or’d feedback,
D/A conversion, and filtering).
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Figure 1. Generating a sine wave by function fitting

4. CONTROLLED PARAMETERS: Amplitude, Frequency, Phase,
Mark/Space Ratio, Ranges, Shape, Measure. These parameters are
affected by the manner of function generation; their fidelity to
the desired behavior comprises the basic performance specifications
of the function generator. Mark-space ratio takes on a broader
meaning than just pulse on-off time: as a measure of symmetry, it
also refers to a ratio between up-going and down-going intervals of
ramps and sweeps. Departure from specified shape may be speci-
fied as “distortion.” Measure indicates a form of average measure-
ment that may be used instead of, or in addition to, amplitude, to
characterize the waveform; for example, RMS or mean absolute-
value. Crest factor is the ratio of peak amplitude to RMS. (With
random noise, it is easier to measure RMS repeatably, than to
observe peak amplitudes; the probabilities of various crest factors
are a function of the noise distribution.)
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5. FORM OF PARAMETER VARIATION: Fixed, Manually
Adjustable (Continuously, or continuously, in ranges), Discretely,
Digitally-Programmed, Auto-Ranged, Continuously Variable (modu-
lated). This is entirely determined by the application, but it has
profound effect on the design. Depending on this choice, for
example, a parameter may be set by a resistor, by a pot (and
switched fixed-resistors), by resistance-decade switches, by a
D/A converter, or by an analog multiplier.

6. PARAMETRIC ACCURACY CLASS: 0.01%, 0.1%, 1%, Exter-
nally-Calibrated. This category is a catchall that includes such terms
as ‘“‘absolute accuracy,” relative accuracy, precision, repeatability,
stability. The above numbers represent orders of magnitude of
error and each of these desirable characteristics is generally speci-
fied by a small number that represents the deviation from perfec-
tion. A function generator designed for a given application may
have parameters that differ widely in error magnitudes; for example,
frequency may be held to within parts-per-million, but amplitude
variations and shape distortion may be of the order of 10%. The
widespread availability of low-cost multipliers and D/A converters
has made it possible for test-systems to be built that depend, not
on costly fixed calibration of every generator used, but rather on
a single programmed reference against which all generators are
automatically calibrated and computer-adjusted to the desired
settings before each measurement for which each is used.

7. INDEPENDENCE: Free-Running, Synchronized, Slaved. A free-
running function generator depends for its accuracy and timing
entirely upon its own internal reference sources, and to some
extent (usually minimized) on the supply voltage. A synchronized
device is allowed to free-run most of the time, but is from time-
to-time brought “up-to-speed.” A slaved device follows its speed
reference, cycle by cycle.

8. FREQUENCY-DETERMINING ELEMENT: Resonant, Level-
Controlied, External. Function generators that use internal crystal
oscillators, Wien bridge, phase-shift or integrator-loop oscillators
are resonant. Those that switch phase when a threshold has been
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crossed are level-controlled. Though level-controlled types (multi-
vibrators, one-shots, etc.) can be low in cost, their timing usually
depends on an RC time constant, a reference supply, and a com-
parator; resonant types depend only on linear parameters, such as
RC time constant. All types must of course take into account
amplifier phase shifts and parasitic reactances. The amplitude-
control arrangements for resonant types affect the damping, and
may thereby marginally affect the frequency.

BASIC TRIANGULAR/SQUARE-WAVE GENERATOR

Figure 2 shows the configuration common to many varieties of
level-controlled oscillators. It consists of a hysteretic comparator
and an integrator. The output of the hysteresis element has two
stable states, E , and E,_; it switches to E_, when the input
exceeds V., and it remains in that state until the input is less than
V;-, whereupon it switches to E__. It remains in that state until
the input once again exceeds V4.

Suppose that the output has just switched to E_, ; it is applied to
the integrator input. The integrator’s output, starting from Vises
decreases linearly with time at a rate E_,/RC. At the end of the
interval

V1+ - Vl—

At;=RC——

E,. >0 6}

the output of the integrator is V;_, and the output of the hyster-
etic comparator switches to E__. The integrator’s output now
increases linearly with time at the rate -Eo./RC, until the output
of the integrator is once again V., which occurs at the end of the
interval

_ V1+ - Vl‘
At, = RC———1 -Eo- >0 )

-Eo.

The period is

Vi - Voo E
T = At, +At, =RC ( e 1><1—E°+> 3)
ot o—
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The frequency is

1 Ey.
f=r=7"E. )
| (1 -E—) (V1+ - Vl_) RC
o-
The mark-space ratio of the square-wave is
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Figure 2. Basic triangular/square-wave generator

The peak-to-peak amplitudes of the triangular wave and the square
wave are (V44 - V;_) and (E, - E,_), respectively. For amplitude
symmetry of the triangular wave, Vy, =- V,;_; For amplitude
symmetry of the square wave, E;, =- E .

If a symmetrical square wave is desired with a mark/space ratio
other than unity, a suitable bias Vy, may be added to the integrator
input. This bias is added to both E,, and E,_ for computing the
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periods and mark/space ratios. However, the output levels of the
hysteretic comparator are unaffected. For example, if E ., =- E =
+10V, and a mark/space ratio of 2:1 is desired,

=By *+Vy) _ 10-V,

2=E,, TV, 104V, (©)

Solving, V;, = - 10/3 volts, or - E,/3. In general,

Vy, _ -Ey /By - M/S
Ey 1+M/S ™

For symmetrical square waves,

Vo _ 1-M/S
E. - 1+M/S @

¢

Another commonly-used expression, related to mark/space ratio,
isduty cycle, n,

__ M
" =T+ M/S ©)

Equation (8), rewritten in terms of duty cycle, is

Vb
=2 = 1- 20, or Vy = E,- 2nE, (10)

]

If the bias voltage added at the integrator input is a constant, E,
less a variable, V, = 29E,,, the duty-cycle will be a linear function
of V., (linear pulse-width modulation). Unfortunately, the fre-
quency will not remain constant; it will be a function of V.

An additive bias at the integrator input may also be used to
obtain time symmetry (M/S = 1) if the comparator has asym-
metrical output levels. An additive bias is essential to meet the
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constraints of (1) and (2) if the comparator has unipolar output,
e.g., if its outputs are in the TTL logic range (say, SV & 0.5V).

If the output is symmetrical, the frequency can be linearly
controlled by introducing a multiplication between the comparator
output and the integrator input (Figure 3). For manual control,
the “multiplier” can be a potentiometer; for voltage-control, it
can be a multiplier; and for digital control, it can be a multiplying
D/A converter. If a multiplier with a 10V scale constant is used,
the frequency is

_ Von 1

f= . (1n
20RC Vi, - Vi _
V,
! FREQUENCY CONTROL SY-:\-‘F:V,I,E,TRY Vs = -—;(E.,. +Eo.)
X s
2 (X Vel nEe)
2a womenen (27 e
17 MULTIPLYING DAC)
N¢
, =t
+
i AN\

Figure 3. Controlling the oscillator frequency'

OPERATIONAL AMPLIFIER AS HYSTERETIC COMPARATOR

Figure 4 shows a simple operational amplifier circuit, using positive
feedback to develop hysteresis. Amplifiers that limit “hard”,
within a volt or so of the power supply, are especially useful for
these circuits. For greater stability, a temperature-compensated
zener diode regulator circuit could be used. This stabilizes, not
only the amplitude of E_, but also the frequency and mark/space
ratio, and the triangular-wave amplitude, all of which depend on
E

To illustrate how it works, consider that the output has just
switched to E.,, as V; reached the threshold Vy,, V; then
decreases linearly and will continue to do so until the voltage

0°



74 NONLINEAR CIRCUITS HANDBOOK

at the amplifier’s positive input terminal goes negative. That
occurs when V; reaches Vy_ '

{ Ry \ _ Ry
-Vi- (R—l_'i'_R—) =En (F‘_E> (12

The output switches to E -, the integrator’s output starts back
up, and continues to climb until the amplifier’s input terminal
goes positive (when V; reaches V)

f R _ R
Vi .(__R1+R2) =-Eo- (—R1 +R2> 3)

Thus, the output switches at V4, and V;_, when

R R '
v, 2 —-ﬁET and when V; £ -T;‘ Eo 14)

The theoretical frequency of the oscillator of Figure 2, using the
hysteretic comparator of Figure 4 is

EO‘F
_Rz 1 —EO—
f=x, "RC < EO+>2 s
I-x
—

The triangular-wave amplitude is

(Vie - Vi) =-§—;(Eo+ - E,- (16)

The frequency may be controlled independently of the triangular
of square-wave amplitudes, by adjusting RC, or by placing a gain
adjustment in the feedback path to the integrator input. Symmetry
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of the triangular-wave amplitude may be controlled by introducing
a bias current at the hysteresis summing point, via resistor Rg, con-
nected to a voltage source of appropriate polarity. For fine trim, if
the comparator output is nearly symmetrical, the adjustment may
be connected between the supplies, with R, fairly large. If, on the
other hand, a large offset must be dealt with (as when the com-
parator output swings between 0.5 and 5V), the adjustment may be
a variable resistance in series with a fixed resistance.

For that case, if V, is a negative voltage, at symmetry,

E, +E,.
—i=%—< 0+Rz 0> an

The biasing of the triangular wave doesn’t affect its amplitude,
frequency, or mark/space ratio.

Vs ADJUSTED

INPUT g R2 FOR INPUT ‘
V1 O—AAAp——yg SYMMETRY
1 ; \ [ Eor
! 1
RO, ) Ry
Vs O—AAA- v + 1 |/V1¢"-ﬁ;'5o-
(SYMMETRY _oEo
TRIM) B\,
§
PROTECTIVE - 1
DIODES = E,-
(IF NECESSARY) H Ry
== Vi.=-—L1E,

- Rz

Figure 4. Operational amplifier as hysteretic comparator

A PRACTICAL OSCILLATOR CIRCUIT! (Figure 5)

This circuit, using low-cost components, provides square waves
of about 14V, with near-unity mark/space ratio, and triangular
waves of about +10V, with reasonable symmetry, at about 100Hz,
for the values given. Frequency, triangular-wave amplitude, sym-
metry, and mark/space ratio may all be adjusted, by the means
discussed above. Because Al is a FET-input amplifier, frequencies
as low as 0.1Hz and less are feasible, using large values for C and R

1“Triangu1ar and square-wave generator has wide range,” by R.S. Burwen, EDN
Magazine, December 1, 1972,
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(10MQ for 0.1Hz) and/or an attenuator ahead of R. Bias current
and offset voltage in Al act in the same way as an external bias of
Vos T IR, producing a slight modification of the mark/space ratio.
Square-wave rise time is about 1.5us, and fall time is about 0.5us.

The frequency is affected by the saturation voltages of A2, and by
the power-supply voltages. However, as equation (15) can show,
sensitivity to symmetrical power-supply variations is quite small,
and even individual variations as large as 20% cause no more than
a couple-of-percent change. If stable passive components are used,
a frequency stability of £0.02%/°C is attainable. Capacitor C is
preferably a polycarbonate type for stability, and also to ensure
linearity of the triangular wave.

Although frequency stability is excellent, amplitude stability
depends on the power supplies, the output-transistor saturation
voltages, and the load (and their variations with temperature). For
most applications, however, the outputs would be followed by
adjustable-gain circuits. When amplitude stability is of critical
importance, E; and E_ . should be determined by temperature-
compensated zener diodes with fixed load, or —for variability—
by a precision bound circuit (see Part 1).

20V
0-33F . ] VL"‘\\//\\,
Vb % "A"' c l( 5% A Rz. A

R Polycarbonate 10k
VWA - R1 1% 14V
10k2 Al 4% -+ E,
+ - 69802 A2 —0
Al 1% —
= _L_ AD301A

Figure 5. Practical oscillator circuit

Besides the inherent square-wave and triangular wave, and the
variety of pulse widths, other functions, including sine waves, may
be generated by feeding the output of the triangular-wave
generator into one of the many varieties of function fitter des-
cribed in Chapter 2-1. Trapezoidal waves may be generated by
feeding the triangular-wave output into a set of bounds. Tri-
angular pulses may be produced by feeding the triangular wave
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into a dead zone (Figure 6). Exponential responses are obtained
with simple high- or low-pass filters.

A FUNCTION )
\/ FITTER 7

AN al
VEAAVAN v

//\v/\\ - —A A

Figure 6. Shaped triangular waves: arbitrary, trapezoid, tri-
angular pulses

ONE-SHOT (Figure 7)

The circuit of Figure 5 may be slightly modified to obtain a one-
shot. A diode across the feedback capacitor prevents the output of
Al from ever becoming sufficiently negative to switch the output
of A2 to E,-. A capacitively-coupled positive-going logic pulse,
applied to the negative amplifier input, starts the cycle by switch-
ing the output to E,_. The integrator output ramps upward until
it reaches V,, switching the output of A2 to E_,. The integrator
then ramps back through zero and stops at one negative diode-drop.
The circuit is then ready for the next start pulse. The driving rate
should be slow enough to allow each cycle to be completed, and
the pulses should be narrow, compared to the cycle time.

Figure 7. One-shot function generator
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The ramp output may be used as an input to a functional opera-
tor to generate arbitrary functions of time that occur but once.
The diode drop can be biased out in the input stages of the
associated circuitry. If the descending ramp is not desired, the
change-of-state of A2 can operate a switch to disconnect the out-
put of Al. (The change back, with the start pulse, can reconnect
it.) '

SINE-WAVE OSCILLATOR

We have already noted that a triangular wave can be shaped to a
low-distortion sinusoid, using function-fitting techniques. Some of
the smooth-function techniques of Chapter 2-1 may yield con-
siderably more-faithful sinusoids than the conventional piecewise-
. linear diode shaping networks. It has also been noted that the
frequency (and symmietry) of such oscillators is dependent on
voltage thresholds, as well as RC time constants.

For some purposes (for example, if the waveform is to be differ-
entiable, with low distortion), an oscillator that relies solely on
passive components for frequency control may be more desirable.
The class of oscillator that uses RC networks includes the Wien
bridge, phase-shift oscillators, twin-T oscillators, and state-variable
oscillators.

This last type is an analog-computer equivalent to an L-C circuit.
It consists of two integrators in a negative-feed-back loop, with
- damping appropriate to maintain amplitude control (Figure 8).
It has some interesting features: first, since integrators have a fixed
90° phase shift, with unity gain at the frequency of oscillation, it
is inherently a two-phase oscillator, producing both sin wt and
cos wt; second, two analog multipliers or dividers will allow a
voltage to set (or modulate) the coefficients that determine fre-
quency or period (respectively); third, the system can either free-
run or be started at any arbitrary point in the cycle, determined by
preset initial conditions; fourth, the damping can be set to produce
exponentially-decreasing or increasing waveforms.

For the free-running case (stationary amplitude), a slight amount
of regenerative damping ensures that the oscillation will build up.
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When one of the outputs reaches a level established by comparison
with an amplitude reference, degenerative damping is applied at
the peaks, reducing the last increment of buildup, and maintaining
successive peaks at the same amplitude. While this introduces some
distortion, it is integrated (smoothed) before appearing at one of
the outputs and is integrated again before appearing at the other
output.

FREQUENCY CONTROL —0 Ex
\/] @

dE, —‘ T
T o, ; & 1 /
V; ot = . 10 1
! 3 X de: det —OE,

10 K
DAMPING 8
- —
)

Figure 8. Block diagram of variable-frequency 2-phase sinusoidal
oscillator. For fixed frequency, replace multipliers by coeffi-
cients. If not free running, apply initial conditions to integrators
in SET. If driven from summing-point as 2nd-order filter, u>0,
Ey, is low-pass output, Ex is band-pass, and output of Z is
high-pass.

A PRACTICAL 2-PHASE SINE-WAVE OSCILLATOR

Low-cost, high-performance complete-on-a-single-chip IC multi-
pliers, such as the ADS533, make it feasible to build oscillators
having two-phase sine-wave output, with frequency controllable
by a voltage. The frequency may be varied over a wide range,
depending on the dynamic range of the multiplier, for frequency-
sweep applications, or it may be centred about a fixed frequency |
for highly-linear frequency modulation. While an IC multiplier is
used for the example of Figure 9 because of its low cost, there is
no inherent barrier to using a wideband multiplier, such as the
429, for increased bandwidth, or a high-accuracy multiplier for
increased low-frequency accuracy and resolution, or even multi-
plying D/A converters, for digital control of frequency.
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The oscillator shown in Figure 92 delivers a 2-phase sine-wave out-
put tuneable over a 10:1 frequency range by means of the DC
control voltage. The output amplitude is stabilized by zener refer-
ence diodes at about 7Vrms and maintained constant within 1dB
over the range of frequencies. '

The oscillator system consists of two integrators, Al and A2, and
a unity-gain inverter, A3, forming a negative feedback loop. The
effective time constants (T = a RC) of the integrators are varied by
a pair of multipliers, M1 and M2, which serve to (in effect) increase
the conductance of R1 and R2 as the control voltage is increased,
thus decreasing the time constant and increasing the natural fre-
quency. Viewed in terms of gain and phase, at frequency
f, = 1/27aRC), with a = 1, (V¢= 10V, a = V,/10V =10/10) both
integrators have 90° phase lag and unity gain, the multipliers also
have. unity gain, and there are three sign inversions, all of which
looks like a loop gain of 1/0° at f, (and only at f,).

FREQUENCY CONTROL, +1 t0 +10V
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AMPLITUDE CONTROL

Figure 9. Practical version of configuration shown in Figure 8

To ensure sufficient regeneration to start and maintain the oscilla-
tion, a small amount of positive feedback is fed from the output of
Al through R5 to the input of A3. This causes the oscillation to
build up until one or both of the zener diodes CR1, CR2, begin to

2“Frequency Modulator” by R.S, Burwen, Analog Dialogue, Volume 5, No. 5.
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conduct at the tips of the waveform and produce increased negative
feedback via the positive input of A3. The positive feedback must
be kept small enough to provide buildup at a reasonable rate with-
out requiring a large amount of negative feedback to keep the
amplitude under control, since the zener diodes introduce some
distortion. (Fortunately, this small distortion is integrated once in
Al and again in A2, so that the output of A2 is quite clean, and
that of A] is “oscilloscope-clean.”) '

With the values shown, the oscillator can be tuned from 100Hz to
1kHz. Distortion at the cosine output was measured at 0.74% at
100Hz and 0.46% at 1kHz. At the sine output, distortion was
0.64% at 100Hz and 0.18% at 1kHz. Distortion, especially at the
lower end of the tuning range, is somewhat affected by the non-
linear feedthrough in the multipliers.* Multiplier nonlinearity and
drift (using low-cost IC’s) placed a limit on the useful tuning
range.

It is easy to modify this design to operate with frequency modula-
tion about a fixed frequency. For example, to operate at 1kHz,
with +10% frequency variation linearly controlled by V; (x10V
range), change R1 and R2 to 100k, and add 10k resistors
between the output of A3 and the input of Al, and between the
output of Al and the input of A2.

SWEEP CIRCUITS

Linear sweeps, like the output of a triangular-wave generator, are
usually produced by an integrator within a feedback loop; but
instead of a linear retrace, a fast return is obtained by “dumping”
the capacitor charge through a switch. The retrace is blanked
(oscilloscope) or the pen lifted (recorder) during the retrace
interval.

Nonlinear sweeps are desirable for some purposes. For example,
in swept-frequency measurements, either the sweep may be loga-
rithmic, or the frequency may be varied exponentially by applying
an exponential input to control a variable-frequency oscillator.

*This distortion can be reduced by use of the “cross-feeding” technique for improving
multiplier linearity, as discussed in Chapter 3-2.
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(An ordinary linear display sweep may be used, since equal incre-
ments of time will represent equal ratios of frequency.) Starting at
the high-frequency end, such a sweep can be obtained by passing a
step through a simple RC coupling element (Figure 10). The out-
put is Ve YRC_1f it is used to control a frequency, the frequency
will decrease by equal ratios in equal intervals of time.
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& Vi=E, e °©
t
l _'\_ N DISPLAY
STEP/RAMP f=f.e Re rd

CENERATOR AMPLITUDE RESPONSE |°§ . B e e
STEP NIC  ViisINEwavE {7 | SYSTEM T

UNDER
S 7 - OSCILLATOR e VW
- ] 1
TN RAMP B RAGEE N N A

starT

-
SWEEP

Figure 10. Use of logarithmic sweep for frequency-response
measurements,

In this example, and throughout the chapter, it is tacitly considered
that the rate of variation of “frequency” is so slow compared to
variations af the frequency being controlled that there is little
difficulty with the assumption that the waveform is stationary.
Since this chapter deals with techniques rather than analysis, it
must be assumed that for clearly interactive situations, in which
frequency must be defined incrementally, the reader has an under-
standing of the mathematical implications and can deal with their
consequences. The circuits, little caring about the complexity of
the mathematics that describes their behavior, will perform never-
theless.

MARRYING ANALOG AND DIGITAL CIRCUITS

It is possible to generate linear sweeps of precisely-maintained
amplitude and frequency, with arbitrary resolution, independent
of the properties of capacitors and analog comparators, by driving
a D/A converter with a counter that is itself driven by a train
of pulses from a clock generator. The clock may bé crystal-
controlled, with frequency adjusted by counting down or a binary-
rate multiplier, or it may be a simpler circuit.



2-2 TIME-FUNCTION GENERATION 83

Frequency depends only on the ratio of the clock rate to the
total number of counts used, and amplitude can be scaled at the
output of the converter. If the converter is a multiplying type,
the sweep amplitude can be scaled by a voltage. The upper limit
on speed is determined by the maximum clock rate, resolution,
and settling-time of the converter. The converter circuitry should
be “glitch-free,” that is, there should be no large spikes at major-
carry transition points (e.g., from01111tc10000).

A digitally-generated sweep, of appropriate resolution, with (or
without) filtering may be applied to an analog function-fitter cir-
cuit (Chapter 2-1) to generate waveforms of any shape, in the same
way that a purely-analog sweep might be applied (Figure 11). This
isoften a good deal less costly and more versatile than using a read-
only memory (ROM) for shaping. Yet, like a ROM, it has the added
possible benefit of being completely under the time control of the
system. Not only is it slaved to the clock frequency— it can be
started, stopped, held indefinitely, and reset, with simple logic
circuitry. This would appear to be a happy combination of the
best of analog and digital technology, characterized by simplicity,
low cost, and versatility.

FILTER, IF
v, = REQUIRED

ANALOG
BINARY D/A l */\/
CLOCK [~ FUNCTION
COUNTER CONVERTER FILTER
r ARBITRARY
TIME
L PARALLEL FUNCTION
PULSES BINARY

CODE STAIRCASE 10 BITS —=-1024 LEVELS {0.1% RESOLUTION)
SWEEP

12 BITS—==4096 LEVELS (0.024% RESOLUTION)
74 BITS ——2=16384 LEVELS (0.006% RESOLUTION)

Figure 11. Arbitrary analog waveforms synchronized to
digital clock

VOLTAGE-TO-FREQUENCY CONVERSION

The circuits of Figure 3 and Figure 5 are, in a sense, voltage-to-
frequency converter circuits, but they have several limitations.
Perhaps the most seriousis that the range of continuous variation is
limited, at best, to about 100:1. Also, they cannot be easily
synchronized without some means of “dumping” capacitor charge.
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Figure 12 shows a more-sophisticated circuit that is capable of
1:10,000 resolution and nonlinearity, gain stability (with external
reference) to within 10ppm/°C, and practically negligible sensi-
tivity to the dc power supplies. It is operated by a 100kHz clock,
to which the output is synchronized. For an input variation of O
to - 10V, the output frequency varies proportionally from O to
50kHz. A synchronized 50kHz pulse train is also available, as a
frequency reference.

V.
- 4 Vin
f=5%X 10 (‘V) (18)

I

The AD301A amplifier operates in the linear mode; that is, the
negative input terminal tracks the voltage at the positive input.
Therefore, the current through R, equal to Vi, /R, flows toward
the capacitor. QlA is a switching transistor that either has zero
collector current, or a current equal to V, /%2R, flowing away from
the capacitor. When Q1A turns on, the capacitor is charged by the
net current (2V, + V;;)/R; When Q2 turns off, the capacitor
discharges at ~V;,/R. Thus, to maintain equilibrium, for each
time Q1 charges, the number of equal intervals spent discharging
must be 2V, + V)~ Vi, =-2V,/V;, - 1. If each interval is 10us,
the total time per charge-discharge cycle is 10us (1 - 2V,/Vj,- 1) =
-20V,/V;pus. If, now, each charge-discharge cycle produces a
pulse, the number of pulses per second will be 5 X 104(-V;,/V)),
as noted in (18).

When output Q of the flip-flop is low, the emitter voltage of Q2
is less than the base voltage, and it is turned off. Since the bases of
Q1A and Q1B are driven together, and the emitter circuitry is iden-
tical, their collector currents should track rather precisely. Thus,
the collector current of Q1A should be equal to 2V,/R. When out-
put Q of the flip-flop is high, Q2 is able to conduct; it furnishes
enough current through the emitter resistor to raise the emitter
voltage of Q1 above the base line, turning off the collector current.

Whenever the output of Al is slightly below the threshold of the
D input of the flip-flop, the next pulse causes Q (the output of the
circuit) to go high. It also causes current to flow through QIA,



2-2 TIME-FUNCTION GENERATION - 8b

and a large increment of charge to raise the output of Al by
AV, =1; At/C (where I; = (2V, +V,;)/R). The next clock pulse
finds the output of Al high, Q goes low, and Q goes high, cutting
off the flow of current through QlA. The decrease of charge
during this interval is AV, =1, At/C, (where I, =-V, /R). At the
next clock pulse, unless V;;, =-10V, the output of Al is still high,
Q remains low, and Q remains high, allowing a further decrease of
charge. This process is repeated until the output of Al is again
slightly below the threshold of the D input, a cycle has been com-
pleted, and a new cycle begins.

When V;, =-10V, the charge and discharge periods are e¢qual in
number, and the output is at a S0kHz rate. The second half of the
flip-flop counts down by 2, so that the reference pulse train is
also at 50kHz.

£, = 100kHz
o

AD3MA
{FEEDFORWARD CONN.) A LoP
Vin Al 7474 || cLock
01010V D1 €K 100
a7V kHz
M 4700pF L >l ck D2
il G @
+15V
o 1 R v o fa = 50kHz
_Vin
R
‘ fOUTPUT
= Y °v
iN
2N4250 '/I Natag S 2MmA sx ot I:'VR]HZ
% AD%‘.“;\{ ‘\ﬂ 5 MATCHED
[o%]:1 v, -
%ADS1 2— # TOR
EADEZ | o R ao7ar -5 g B
b MATCHED. 523
ma {347 V=
A VS 1k Tk =
2mA Vp O +10v

=15V
Figure 12. High-accuracy synchronized voltage-to-frequency
converter

CONCLUSION

This chapter has sought to give an overview of function generators
in general, and to provide details of a few useful circuits in parti-
cular. The objective is to arouse interest in special-purpose func-
tion generation, with particular emphasis on the cooperative
roles of linear and nonlinear analog devices and the possibilities of
their fruitful collaboration with digital circuits.
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Instruments
& Data Acquisition

Chapter 3

The design of instruments and “front-end” circuitry for data-acqui-
sition systems is perhaps the area of greatest prospective payoff to
users of nonlinear computational devices.

The circuits discussed in this chapter produce analog information
that may be either directly read out by a human operator, or
digitized and transmitted from a remote location to a control
center, without requiring further interpretation. The analog data-
reduction circuits covered here are simple and more-or-less univer-
sally applicable. The closely-related treatment of measurement and
control circuits in Chapter 2-5 complements (and to some extent
overlaps) the material presented here, and is somewhat similar in
basic form; but it tends to include more-ramified analog computa-
tion, applied to situations that are more specialized.

ANALOG DATA REDUCTION

The primary goal of the configurations discussed here is to reduce
data by analog techniques. To reduce data, as used here, means to
extract significant information from one or more analog inputs,
and transmit it —either to the human eye or to an interface— as
meaningful, compact, well-paced data.

For a single variable, data-reduction can consist of extracting the
peak, average, RMS, mean-square, or some other measure that is
consistent in the presence of large numbers of individual data
points. If the process is stationary, it may involve an average; if
one-shot, it may call for a peak, integral, or final-value. If the
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measurement is nonlinear, it may call for linearization; if wide-
ranging, it may call for compression.

If the measured data comprises many variables, further combina-
tion may be in order: summing and differencing (linear, vector, or
root-square), ratios or products (linear, log, or otherwise), multi-
plexing.

The reduced data may be read out via analog or digital panel
meters. Of it may be digitized (perhaps by a digital panel meter,
that also provides a readout) and transmitted in digital form, to a
remote control station (for further processing or remote printout
on a teletypewriter or CRT terminal) via some compatible system,
such as SERDEX¥*.

Figure 1 shows a single-channel data-acquisition subsystem, typical
of those encountered in the Arnalog-Digital Conversion Hand-
book.! Whereas much space is given, in that volume, to pre-
amplification, grounding, conversion, sample-hold, and analog
multiplexing, this chapter (and related chapters) will be concerned
with the blocks in which analog data is transformed into more-
useful (but still analog) forms to meet specific needs.

PHENOMENON DISPLAY
TEMPERATURE
PRESSURE OTHER INPUTS ["lefe[s]
DEFLECTION i
ETC.
I3 REMOTE
DATA REDUCTION COMMANDS
INPUT DEMOD., eARIZE DISPLAY | —#] INTER- v
TRANSDUCER PREAMP. [—sf OIS | —»{ CONVERT [ FACE A
SCALE TRANSMIT [a) (SERDEX)
COMPRESS — SErlaL COMPUTER
MULTIPLEX DATA L

PARALLEL
DIGITAL
DATA

Figure 1. Typical data-acquisition channel

*SERDEX: SERial Data EXchange (Analog Devices trade-name), a means of simply con-
trolling conversion processes, and transmitting data and commands in serial ASCII format
under control of a teletype keyboard (or a computer programmed in a high-level language,
such as BASIC) via an isolated current loop employmg a simple twisted-pair of wires.
While not strictly within the scope of this volume, it is nevertheless of great potential
usefulness to the hardware-oriented analog-digital system demgner Complete data and
applications information is available from Analog Devices, Inc.

1Analog—Digital Conversion Handbook, edited by D.H. Sheingold, Analog Devices, Inc,,
1972, 402pp.
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LINEARIZING

The system designer must strike an economic balance between
convenience of measurement and convenience of dealing with the
measured information. The simplest and most convenient trans-
ducers frequently have a nonlinear relationship between the vari-
able being measured and the electrical output. Linear transducers,
if available, often turn out to be less sensitive, more costly, or
difficult to implement. Linearization can make it possible to
obtain greater sensitivity by using nonlinear regions that are
usually shunned.

For example, the simple Wheatstone bridge, a 4-terminal device
used in a wide variety of pressure, force, strain, and electrical
measurements, has an inherent nonlinearity (Figure 2a), which
increases with sensitivity (e.g., it is 50% at K = 1, o = -1). By
opening one leg, and using a readout operational amplifier to drive
a portion of the bridge, one can obtain linear response (Figure 2b).

E Loy R{t+a) R
3 REF | M+KIR+aR  (1+KIR

R{tta)

PREAMPLIFIER K __1'_{
\\_ GAIN =6 ¥
+ *Vaer - 3¢ Po
T+K
apszo  Ee IFK=1,
605
E a/2
603 == T =
3 G ~VREF TR Vaer 5330

a. Nonlinear response of Wheatstone bridge

S5-TERMINAL
OPEN-ENDED BRIDGE

R{1+a)

° Vaer * T van VR Y A as
E, =-aVaer
E.
-0

{i[t
2Vaer __L

b. Linear version of bridge using operational amplifier

Figure 2. Nonlinear and linear bridge circuits
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However, there are a number of significant costs: First, 'an ampli-
fier must be used (whereas a Wheatstone bridge can be read out
with a passive analog meter); also, five terminals are necessary, and
the cable connecting the amplifier with the transducer affects loop
stability; in addition, if gain is needed, an extra amplifier is needed;
finally, 4-terminal bridges are cheap, widely available, and standard
in many transducers —which leaves the designer with no alternative
at the transducer level.

Fortunately, bridge nonlinearity is described by a simple mathe-
matical relationship, and it can be compensated for completely by
the use of a multiplier and an operational amplifier, as we have
indicated in Chapter 2-1. The simplest approach is to use the con-
figuration of Figure 3a, where implicit feedback is used to obtain
the inverse of the bridge nonlinearity function. It has the benefit
of summing a purely-linear term with a correction term. It is also
possible to compute the inverse directly, using division (Figure
3b). Although this approach makes good use of a divider (the
maximum dynamic range of the denominator is only 3:1), it
relies on the inherent linearity of the divider over the whole range
of variation. Since, at full s¢ale (=1, K = 1), the correction term
is 50% of the output (Figure 3¢), multiplier nonlinearities in the
circuit of Figure 3a are in effect attenuated by 50%, while the
divider nonlinearities are not attenuated. On the other hand, if
VREF (in the denominator) is the actual bridge-reference voltage,
the divider circuit will also compensate for reference-voltage
variations.

The correction terms should be scaled to represent the portion of
the range of resistance variation represented by «. Usually, a
transducer is chosen to operate over the most linear portion of the
bridge’s range (small o and large K or large a and small K) to
avoid the need for linearization. But this means throwing away
sensitivity and signal-to-noise ratio for the sake of linearity, since
the output is in either event a small fraction of the supply voltage.
A major advantage of linearization is the prospect of using a more
sensitive (albeit grossly nonlinear) bridge, in which the variable
arm can conceivably go from zero to more than 200% of the fixed
resistance, to deliver outputs comparable in magnitude to the
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Lo
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b. Bridge Linearizer using divider. Note that gain of this ratio-
metric circuit can be made independent of Vpgp
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¢. Tabulation and plot of bridge linearization function
Figure 3. Bridge linearization circuits
bridge-supply voltage. ‘

It is evident that, for a high-level signal, a preamplifier is unneeded.
If the bridge supply is floating, the multiplier and summing ampli-
fier can be single-ended. If the bridge supply is returned to system
ground, one can use amplifiers and multipliers that have differential
inputs.

But bridge linearization alone may not be enough. The tacit
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assumption has been that the resistance variation, R, is propor-
tional to the primary variable that causes the resistance to vary.
But what if the resistance variation, ¢, is itself a nonlinear function
of the primary variable? The designer has two choices: to linearize
the bridge and resistance functions separately, or to linearize the
overall response (Figure 4). The former has advantages of using
standard circuitry and eliminating immediately a predictable source
of nonlinearity (usually the major one); the latter has the advantage
of possibly simpler and less-costly circuitry (but perhaps involves
greater setup cost). With either approach, the designer can use a
function fitter (Chapter 2-1) that émploys either a smooth or a
piecewise-linear approximation to the inverse of the function to be
linearized.

a ' } VHEF -
z
B =Vaee 77g . o= F 00 >< Z ' (a) 1 (a) =KW
2
[—————— LINEARIZE
LINEARIZE PRIMARY
BRIDGE RELATIONSHIP
a
Z
E = Vier

z L4
2
—_— Y (E) [ g1 ( ) = KW

LINEARIZE OVERALL
RELATIONSHIP

Figure 4. Two ways of linearizing a bridge-transducer measure-
ment when the deviation is a nonlinear function of the primary
variable (W)

LINEARIZATION EXAMPLE: THERMOCOUPLE

Figure 5 includes a tabulation of the relationship2 between temper-
ature and output voltage of a nickel-chromium X copper-nickel
(Chromel-Constantan) thermocouple, with 0°C reference junction,
over the range from 0° to 661.1°C (0 to 50mV). From the plot, it
can be seen that the output is linear within *1°C from about
340°C to beyond 650°C. The deviation from linearity increases at
lower temperatures to about 40°C at zero.
2The figures in the table are based on a tabulation in The Omega Temperature Measure-

ment Handbook (1973), page A-9, published by Omega Engineering, Inc., Stamford,
Connecticut 06907, based on 1971 figures from the National Bureau of Standards.
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Figure 5. Nonlinear thermocouple response and theoretical residual
errors, using two different linearizing functions

If, for any reason, it is necessary to obtain linear temperature
measurement within £1°C over the indicated temperature range,
using this device, a linearizing circuit must be used to obtain an
output voltage proportional to temperature, given the millivolt
output (mV) of the thermocouple. Following preamplification,
two approaches may be used to compensate for the nonlinearity
at the lower end: a smooth fit, or a piecewise-linear fit. Examples
of the errors experienced with a smooth cubic fit, and with a 5-
segment piecewise-linear approximation, are shown in Figure 5.

In both cases, the desired response is fit by an operation of the
form

°C= (slope)(m V) + (intercept) — f(mV, —m¥) )

linear portion correction

For values of mV greater than the threshold, mV,, the correction



94 NONLINEAR CIRCUITS HANDBOOK

term is zero. In both cases, a ““breakpoint” enforces this condi-
tion. For the specific case considered here, the correction functions
providing the theoretical error plots in Figure 5 are:

£=0.2391(28.943 — m¥) +[0.09464(28.943 — m¥)] *12 (2)
and
=0.6356(23 —mV) +1.021(13.419 — mV)
+1.473(6.317 — mV) + 1.17(1.495 — m¥) (3)

In both equations, the coefficients of the bracketed terms are
positive if the bracketed terms are positive, and zero if they are
negative. A circuit corresponding to (2) is shown in Figure 6, and
one corresponding to (3) is shown in Figure 7. The fitting

8
SUM AND " .
ZERO-BOUND |
50mv 9%, -x) -A
£, —b PREAMP Z : N E : -
P | 1 Y
uy
f v| -0
X, .
[T AN
Y =Mx+B-A (X, -x)-D X, -x}* (W) J’(X1 X
gIX, ~x)=X, -x, (X, -x}>=0 1Aw e
g (X, -x) =9, X, -x)<8

R (1v/65°C) OR
0.65R (1v/100°C)

+10V

Figure 6. Block diagram and circuit for linearizing, using
smooth approximation
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process is aided by using slightly different coefficients for the
linear portion: (12.395) (mV) + 41.35 for the exponential case,
to reduce error, and (12.424) (mV) + 39.88 for the piece-wise-
linear case, to reduce the number of breakpoints.

AA

Wr i 0.65R (1V/100°C)
200x 10484R R (1V/65°C)
‘v‘v‘v J""'
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v,
v [ 605 R 20.45R ¢ °
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Lsls+ASe o
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Figure 7. Circuit for linearizing using piecewise-linear approximation

The values calculated for the plots were carried out to a sufficient
number of places to make the computational errors negligible for
the idealized configuration. However, it should be evident that,
for a practical circuit, the tolerances can in most cases be consider-
ably looser than the numbers in (2) and (3) imply. The functions
were fitted using the techniques discussed in Chapter 2-1. Then,
as noted there, the next steps are to derive electrical scaling,
nominal circuit values, and allowable device tolerances.

Equations (4) and (5) are electrically-scaled equations for the two
cases, assuming that a gain-of-200 preamplifier is used, providing
1V/5mV at the input of the linearizer. The output scale factor is
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1V/65°C. *The resistance values in Figures 6 and 7 are the nominal
values required to provide the needed gain relationships. The
table following equation (4) lists the tolerances necessary to
embody that equation with less than 0.13°C (i.e., 2mV) error
contribution by each term. Vy is the scaled output voltage, and
Vr is the scaled thermocouple voltage.

Vg =0.9535V1 +0.6362 — 0.01226(8.6835 — 1.5V¢)

8.6835 — 1.5V |3-512
— (0.087) (10) 10 (4)1’

The tolerances of the terms in (4), determined by differentiation,
(0V/0A; = S;), setting AV = 2mV, solving for AA;/A; = 2/AsS; .
and rounding down, are:

0.9535 0.02%
0.6362 0.3%
0.01226 1.5%
8.6835 0.1%
1.5 0.3%
0.87 0.35%
10 (denom) 0.1%
3.512 0.8%

The “ideal-diode™ limiting circuit in Figure 6 ensures that the
bracketed terms have no contribution when negative.

Equation 5 is the scaled equation for the piecewise-linear case.
Though the error is “lumpier” than that of the exponential
approximation, and there are more circuit details to attend to,
the circuitry is repetitive, and the tolerances are somewhat looser.

*This scaling was chosen to obtain the benefits of using the full output range. Though
not making use of the full-scale range, a scale-factor of 100°/1V would permit direct
readout of temperature on a 3 or 4-digit panel meter. It can be obtained without
further modification by appropriately attenuating the output.

tThis equation is derived from equation (2) by normalizing it, then setting the normalized
equation equal to a normalized electrical equation, thus arriving at the constant voltages
and coefficients. A further step was to recognize that it would be advantagedus to use the
major portion of the full-scale range of nonlinear devices. To do so, the difference terms
were multiplied and divided by 1.5, resulting in larger input voltages and smaller overall
coefficients. The constants in the exponent term were manipulated to provide the 10V
denominator and 10V input multiplier desirable for a Y(Z/X)™ device, in an application
where Z is the only active input.
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Vo =0.9557V; +0.6135 —0.0489(4.6 — V1) — 0.0785(2.684 — V)

—0.1133(1.263 — V1) —0.09(0.299 — V1) &)
The tolerances of the terms in equation (5) are:

0.9557 +0.02%
0.6135 +0.3%
0.0489 +0.75%
4.6 +0.8%
0.0785 +0.9%
2.684 +0.9%
0.1133 +1.2%
1.263 +1.2%
0.09 *5%
0.299 5%

for less than *2mV error from any term, or 6.3mV (0.41°C) root-
sum-of-squares error (allowing for +0.6°C of theoretical error).
Tolerances, as applied to circuit elements, should take into account
resistance-ratio mismatch, and the drift variations of amplifiers,
resistances, and references, with time and ambient temperature,
as well as scale factor, drift errors, and shape errors of the expon-
entiating device (e.g., the Model 433, if applied as the Y(Z/X)™
in Figure 6).

It is interesting to note, as an exercise in function fitting, the
value of plotting a curve. While it would appear natural to fit a
function by seeking the best numerical fit, starting with a linear
slope from the origin, this case proves the contrary. From the plot,
it is immediately obvious that the departure from linearity is
greatest at the origin, and that the most rewarding approach is to
offset and reverse the “origin of nonlinearity.”

AMPLITUDE COMPRESSION

If the result of an analog measurement, having a modest frequency
content and a wide range of variation, must be made available at
some distance, with an intervening noisy medium that is likely to
result in pickup and loss of amplitude information, the designer
has a number of possible options. Popular ones include:

1. Transmission as a frequency-modulated signal
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2. Conversion to digital form and transmission either serially
or in parallel

3. Logarithmic compression and analog transmission
4. Logarithmic compression and digital transmission

Some general comments can be made about these options:

1. Frequency modulation calls for wide bandwidth, depending
on the dynamic range and frequency content of the signal, and
highly-linear modulation and demodulation. If the DC level is
important, a precise phase or frequency reference must be made
available.

2. A/D conversion requires adequate resolution (16 bits for less
than 30% error for the smallest signal in a 10,000:1 dynamic
range). Adequate sampling rate and bandwidth, and a stable clock
are necessary for serial (2+ wires) transmission; many wires are
required for parallel transmission. All alternatives are costly, but
SERDEX (see Page 88) is more convenient than most, if its bit-
rate is adequate.

3. Logarithmic compression can be implemented at low cost
(Figure 8). The signal-to-noise ratio of a compressed signal depends
only on the noise level and the choice of log scaling; it is essentially
independent of the signal level over a wide dynamic range. Band-
width requirements are those of the analog signal, in its compressed
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Figure 8. Log compression used for improving dynamic range
of transmitted signal ’
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form. Though suitable for transmitting small or large signals impar-
tially, the compression process is inherently insensitive to small
signal components riding on larger signals. That is, the signal-to-
noise ratio, even when mediocre, is independent of amplitude.

4. Logarithmic compression, combined with digital transmission
(Figure 9), results in greatly-increased signal-to-noise, as long as
the induced noise is below the logic thresholds. A further advantage
of compression is the reduction of the required digital resolution:
a 10,000:1 dynamic range can be comfortably resolved to within
1% of the actual value at any level using a 12-bit converter (cf. 2
above). Besides the obvious cost savings, there is also a slight
reduction of the number of wires (parallel transmission) or an
improvement in speed (serial transmission).

WIDE-RANGE
INPUT SIGNAL COMPRESSED

{10V TO 10mV OUTPUT
WITH 10uV MATCHED TO
RESOLUTION ADC INPUT
AT LOW END) RANGE ' V ' CONTROL
‘ COMMANDS
SAMPLE el SERIAL e
11-12 BIT ot TTY
Vs O LOG | . noo | L n ] DATA mc oR
COMPRESSION 0.05% |—m-{ EXCHANGE
>ov) T00.01% converTer [ BCRENSE [ —— COMPUTER
INTERFACE | SERIAL DATA

I

Figure 9. Log compression allows signal having wide dynamic
range to be converted to digital at moderate resolution, and
transmitted digitally via standard twisted-pair 20mA current
loop with high noise immunity

The logarithmic compression process involves a logarithmic opera-
tor, such as the Model 755N, which computes —Klog,, (V/V,),
where K may be 1V or 2V (per decade), and V= 0.1V. If the
signal is transmitted in this logarithmic form (K = 2), a span of
10,000:1 of V, is translated to a span of 8V at the compression
output. An input swing of 1-10V will produce a 2V output change;
so will an input swing of 1mV to 10mV. Thus, high-level signals
are attenuated (average gain = 2/9 = 0.22) and low-level signals
are amplified (average gain = 2/0.009 = 222). Noise picked up or
induced in transmission will add to the logarithmic version of the
signal. That signal-to-noise ratio can be greatly improved for small
signals should be evident.
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At the receiving end, the Model 755N isused as an antilog operator
(a difference “instrumentation” amplifier may be used to reject
common-mode errors, if appropriate), producing the inverse opera-
tion: V; (1 O)Vin/ K Table 1 shows what happens to an instantaneous
voltage V; —assuming ideal (or matched) log conformance, that the
V;’s are matched, and that the K’s are adjusted for net unity gain—
in the presence of a spurious instantaneous ‘““noise” voltage, V. The
“signal-to-noise” ratio with logarithmic compression is compared to
what it would be without compression.

It can be easily seen that the signal-to-noise ratio depends only on
the noise level, and that 10mV of noise is rejected in the same
ratio, whether the signal is 1mV or 10V. While linear transmission
does a much better job at high levels, it is virtually useless at low
levels. Table 2, which is extracted (and interpolated) from Table 1,
shows the comparable dynamic range available at different choices
of signal-to-noise level.

TABLE 1. RESPONSE IN THE PRESENCE OF NOISE

V, -Kiog(V/V) V, V,+Vy E, lE,—V] S/N S/N

sig. Ve error log lin.

Tmv +4V — 1mV +3.999v 1.001mV 1.15uV 868 1
—10mV +399V  1.012mV 116 uv 8 0.1

+100mV +4.1V 0.89TmV 0.11mV 9.2 -
—100mV +3.9V 1.12 mv 0.122mV 8.2 -

+ 1V +5V 0.32mV 0.7mVv 15 -
- 1V 43V 3.16mVv 2.2mV 0.5 -
10mV +2Vv — 1mV +1.99%V 10.01mV 11.5uv 868 10
— 10mV +1.98V 10.12mV 116 uv 86 1
-100mV +1.9v  11.22mV 1.22mv 8.2 0.1
- 1V +Vv 31.6mV 22mV 0.5 -
100mV ov - 1mV -0.001V 0.1001V 115 uv 8638 100
- 10mV -0.01V 0.101V 1.16mV 86 10
-100mV -0.1V  0.112V 12.2mV 8.2 1
- 1V -1V 0.316V 0.22v 0.5 -
v -2V -~ 1mV -2.001V 1.001V 1.15mV 868 103
- 10mV -2,01V 1.012V 11.6mV 86 10%
-100mV -2.1V 1.122v 122mv 8.2 10
- 1V -3V 3.16V 2.2V 0.5 1
iov -4V -~ 1mV -4.001V 10.01V 11.6mV 868 104
- 10mV -4.01v 10.12V 116mV 86 103
~-100mV ~-41V  11.22Vv 1.22v 8.2 10?

- 1V  -bV 31.6Vil 21.6V 05 10
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TABLE 2. DYNAMIC RANGE VS. SIGNAL-TO-NOISE RATIO

Dynamic Range

|Noise| Log Channel Linear Channel
A. S/N>865 imV 10V:imV 10V:865mV
10mV - 10V:8.65V
B. S/N>85 1imV 10V:imV 10V:85mV
10mV 10V:imV 10Vv:850mV
100mVv - 10V:8.5V
C. S/IN>85 imV 0V:1mV 10V:8.6mV
10mV 10V:imV 10V:85mV
100mV 10V:imV 10V:850mV
v - 10V:8.5V

To determine the effects of errors in the log devices (especially
variations of the coefficients with temperature), the complete
relationship may be used:

[
<

v KKz

y (6)

If K; and K, are equal and track one another, andif V,, and V;, are
equal and tracking, E, = V; - 107Vn/K , giving the results in column 5
of Table 1. If they differ, equation (6) provides a means of explor-
ing the errors. Errors of log conformance can be treated as additive
values of V,,.

Since a logarithmic function is inherently unipolar (the logarithm
is real only for positive values of the argument —positive signals
require a 755N, negative signals a 755P), it is far from ideal for
signals that are inherently zero-centered. While it may be useful
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to bias some types of input signals into a single polarity, functions
that demand symmetrical treatment may be badly distorted by the
wide variation, in both resolution and speed, between zero and
full-scale input. Such functions would profit by a type of precise
compression that is symmetrical about zero. An example of an
easily-obtained formis a sinh? function (Figure 10), which involves
two complementary antilog transconductors (752P and 752N) in
the feedback path of an operational amplifier. The resulting func-
tion is logarithmic for larger values of input, but it passes through
zero essentially linearly.

+2V
e K=-2V
K=V o 752N
Nee—+1V
N .
0} \0.1v~ 0.5V Vv
3 = VN
Y -0.5v -0\ ININS kv
SV
752P N n._K=2v
&V SINA FUNCTION:
[ve|=0v |

OUTPUT VS. INPUT-LINEAR PLOT

25K

W ADJ. IR

iN=Ig (10-VO/K
——2

v R/2

Vo/K

RN
ip =-IRIO)VO/K

V)
z—F“= iN+ip = IR {10)-VO/K -Ig(10}+VO/K

Vi _e23V0O/K_e23Vo/K Vo
wR - 2z sinh (23—k~ )

-k v
-Vo 2303 Sioh ‘[—IRT]

Figure 10. Bipolar signal compression using complementary
logarithmic transconductors to synthesize sink™1 function
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Used in the forward path, the pair provides an inverse tunction,
proportional to the hyperbolic sine. Assuming appropriate sym-
metry, matching, and tracking, the overall response, in the pre-
sence of an added noise voltage, is (instant by instant)

: Vs (10
E, =V, sinh sinhlvr— = |Va (7
If the magnitudes of V and K are, respectively, 0.1V and 2V,
E, = 0.1 sinh(sinh? 10V, — 1.1513V,) (8)

A table similar to Table 1 may be derived to compare signal-to-
noise and dynamic ranges

TABLE 3. IDEAL RESPONSE OF BIPOLAR COMPRESSION/EXPANSION
IN THE PRESENCE OF A NOISE VOLTAGE

vV, sinh~110v, Vv, E, E,2—V, S/N SN
signal “noise™ output error nonlin. linear
magnitude
+10V 5.2983 -0.001V 10.0121v  o.0121v ‘ 827 10,000
-0.01 10.1164 0.116 86 1,000
-0.1 11.221 1.221 8.2 100
+Vv 2.9982 -0.001Vv 1.00123v 0.00123V 810 1,000
-0.01 1.0117 0.0117 85 100
-0.1 1.123 0.123 8.2 10
+0.1V 0.8814 -0.001V 0.10017V  0.00017V 600 100
-0.01 0.10164 0.0016 61 10
-0.1 0.117 0.017 59 1
+0.01v 0.08983 -0.001Vv 0.01012 0.00017 85 10
-0.01 0.01116 0.0012 8.6 1
-0.1 0.0217 0.012 0.9 -
+0.001V 0.010 -0.001v 0.00112 0.00012 8.7 1
-0.01vV 0.0022 0.0012 0.9 -
-0.1v 0.0125 0.012 - -

While not quite as impressive as the logarithmic function, because
of limited gain through the origin, the hyperbolic compression/
expansion can be improved by extending the logarithmic portion
of the range. If, for example, V, is reduced to 0.01V, the signal-to-
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noise ratio for V; =V, = 0.01V, isincreased to 60. The penalty that
is paid is in the maximum speed through zero, since the effective
feedback resistance and gain in the vicinity of zero are multiplied
tenfold. :

A final word: The sinh™® function can also be used as a high-accuracy
tapered null meter with calibrated (approximately-equal) intervals
off-null for equal ratios of change. It has great sensitivity at null,
wide dynamic range, and continuous indication of direction of
approach to the null.

EXTRACTING A MEASURE

We have seen how nonlinear analog-computing circuits may be
used to compensate for transducer nonlinearity and to reduce the
effects of noise in transmitting data. A historically important
factor in data reduction (especially in the days before the use of
oscilloscopes), still in widespread use, and likely to remain so
forever, is the use of the meter (i.e., measure) to “boil down”
information to a simple reading or trend of readings that can be
interpreted by the human eye instantly, and serve as the basis for
a decision. Metering is also used in computer-control and measur-
ing systems, where the computer seeks to reduce a large number
of measurements to a few significant indications of the present
status and trend of an element or a process, as ingredients of a
series of decisions.

There is a large universe of computational meters, and it would be
presumptuous in these pages to seek to accomplish more than to
skim the surface lightly, picking out those operations that have
great usefulness, universal validity, and specific appropriateness
to the devices under discussion here. These include, to begin with,

Mean

Mean Absolute Value
Root Mean-Square
Peak (or Valley)

While one ordinarily thinks of free-running devices, with fixed
averaging times, it might be profitable to at least consider, in addi-
tion, single-shot measurements and variable-period measurements.
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In addition, there are a number of measurements that involve two
or more variables. A few interesting and popular ones include

- Power (instantaneous, peak, and average)
Energy and energy-per-cycle
Power factor (and phase angle)
Vector Sum (Root-sum-of squares)
Ratio and log ratio (dB)

The circuitry that produces these functions will usually operate
on the input after it has been preamplified and scaled, and perhaps
linearized, but quite often it can be implemented with devices
having sufficient stability, input impedance, common-mode rejec-
tion, or what-have-you, to operate directly on the transducer
output.

MEAN AND MEAN ABSOLUTE-VALUE

Figure 11a shows the usual circuit employed for a running average,
a simple unit-lag. In Figure 11b, an inverting version is shown; the
averaging time-constant can be increased, without resorting to
high-value resistors, by employing “T>* networks (Figure 11¢) at
the cost of increased voltage drift because of the attenuation-
and gain. This circuit is adequate for determining averages of
signals having high-frequency fluctuations and relatively-slow mean
variations. The settling time for a step change is 4.61RC to 1%,
6.91RC to 0.1%, and 9.21RC to 0.01%. High-frequency attenua-
tion is modest: 3db at f, = 1/2aRC, 20dB at 10f,, 40dB at 100f,,
etc.

If the average must respond more quickly to changes of non-
stationary functions, one needs a filter having a response contin-
uously approximating the ideal average response over a period 7,

1 [t 1-em
E =— v(¢)d¢, or operationally - ®
° 7 7/
t-7
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A reasonable approximation is the transfer function

_eg 1 +R_Cp2 (10)
% (1+1.2RCp +1.6RCp?) (1 +2RCp)

(where p is the Heaviside derivative operator). It can be stably
embodied with a unit-lag and a second-order state-variable (inte-
grator-loop) band-reject filter or, less stably but more compactly,
with a single operational amplifier, 8 precision resistors and 6
precision capacitors.3

FAAHHE
AR

R D—OEe

c E =1 * —_—
g ® RC (Vin —Eo)dt =Viy

a. Non-inverting unit lag

Vin

Vin —AM——4¢

1t —
Eo"‘ﬁé‘ (Vin -EoMdt=-Viy

Inn

b. Inverting unit lag

1€
AN
KR4 R R KRy

O—M—— W\ A A -0
<<< R, <<<R 1 t
Rq R 1 Eq =~ mf (Vin - Eoldt
+

¢. Long-period unit-lag, using T-network to avoid
extremely-large R and C values

Figure 11. Classical unit-lag running-average circuits.

3<«The Lightning Empiricist,” Vol. 13, 1965.
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Another kind of “‘running average” is the average over each cycle
of a train of events having differing periods, for example, the
blood pressure averaged over each heartbeat, or the volume of
CO, averaged over each breath. This can be accomplished with two
integrators, a divider, and a sample-hold (Figure 12). At the begin-
ning of each cycle (determined independently), the two integra-
tors (signal and period) are gated to run. At the conclusion of the
cycle, the integrators are momentarily placed in hold, the divider
output (accumulated signal divided by period) is sampled, and
the integrators are then dumped in preparation for the next cycle,
which may start immediately (or after a wait of arbitrary dura-
tion). Meanwhile, the sample-hold retains the last average reading

RESET

g Hoo c

(__0 T CONTROL
1 FOR S/H
-V, —- | Vsigdt=V; AND
sie i. L RC J o INTEGRATORS
= [
RESET 10V - ry —pe S/H B
R HOLD

~Vrer
(CONST.)-E:

SIGNAL

1 T
“RC f Vgee dt=V2
2]

——— INTEGRAL (V)
/'/ \( !

e

AND ITS o
INTEGRAL [~ Fepme== If‘ SIGNAL 1§ Dﬂ\ —
 — = L] 3 [_|—
PERIOD
INTEGRATOR TIME (V)
OUTPUT o T /
| ]
RUN RUN
r HOLD—r‘ | \';ESET
DIVIDER RATIO
OUTPUT AR
STORED PREVIOUS RATIO SANIPLE NEW RATIO
SAMPLE-HOLD HOLD
1]
}‘ S/H HOLD )l S/H HOLD
SAMPLE
T p—
== Vsic
P AL LA L RN Vs'°l (INDEPENDENT OF T)
vz T v Vrer T
—R_c REF

Figure 12. Averaging signals over variable periods
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and holds it until updated. The divider-and-sample-hold could be
a fast variable-reference A/D converter, especially desirable if long
intervals are required between integrations.

Although averaging usually is considered to be a linear, or time-
varying process (except where ratios are involved, as above), it has
a place in the discussion of applying nonlinear devices in data
reduction and measurement, because averaging is one of the most
universally-used forms of data reduction.

The average, or mean, is not always directly appropriate, as a
measure of a signal. For example, AC measurements seek to ignore
the DC level (or mean), and instead concern themselves with the
mean absclute deviation (from the mean). This is done by first
establishing a ‘“‘zero” level, usually the mean, then rectifying and
averaging. Though there-are many ways of accomplishing this, a
widely used op-amp approach, involving “ideal diodes™, is shown
in Figure 13.

BLOCKING R AVERAGING
CAPACITOR 1z © CAPACITOR
AAA
WA i<
2¢ N R 2] R/2 R
"A'A' ™ A'A'A' <> A'A'A' “ A h'_d )—-—( )

/I
E,

o § o

% << LOWEST FREQUENCY OF INTEREST

Figure 13. Circuit for computing mean absolute deviation at
low frequencies. For wider bandwidth, external input follower
and output averager will permit higher currents through diodes
and greater RC’s using reasonable capacitance. If input average
is zero or can be zeroed, coupling capacitor is unnecessary.

ROOT MEAN-SQUARE

For many applications, particularly where voltage or current
measurements provide information about the average energy gen-
erated, transmitted, or dissipated, the root-mean-square (rms) is a
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more useful measure. Straightforwardly, it involves squaring an
input, taking the average, and obtaining the square root.

an

Classically, it has been measured by meters sensitive to the heating
effect of an rms level. Electronically, because of the difficulty of
tailoring a general-purpose instrument to fit the characteristics of
a given thermal device, most “rms” meters for many years didn’t

RMS CREST
WAVEFORM RMS MAD MAD FACTOR
V, Vo 2 V, E]
0 5 SINE WAVE vz T " Z7E= VZ=1414
0.707 Vyp 0.637 Vi
Vi SYMMETRICAL
I ] SQUARE WAVE Ve Vm 1 1
Ym TRIANGULAR WAVE Vi v, 2
m
OR SAWTOOTH V3 7 g =ss V3 =1732
GAUSSIAN NOISE oF. | a
¥ RMS
2V CREST FACTOR IS VZams| VT ; =
\ THEORETICALLY - 3 2 4.6%
E SR UNLIMITED. q IS -0798 3 0.37%
o THE FRACTION OF .798 RMS| 1253 33 | 0%
how == TIME DURING WHICH 39 001%
25 P GREATER PEAKS CAN 4 63ppm
og BE EXPECTED TO 44 | 10ppm
- L D! 1 occur 49 1ppm
7 5 3 A ps 20e
logq
T — PULSE TRAIN ’ ;
. Va 7 |MARK/SPACE| V.7 Va7 e =
v ; = Vo | Ve : .
025 03333 0.5V, 0.25V,, 2 2
n: “DUTY CYCLE" 00625 | 0.0667 025V, 0.0625V 4 4
00156 | 0.0159 0.125V,, | 0.0156V,, 8 8
0.01 0.0101 0.1V, 0.01V, 10 10

Figure 14. RMS, MAD, and crest factor of some common
waveforms. See also Table 1, Chapter 3-7, for additional
waveforms.
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measure rms at all. They measured the mean absolute deviation
(“‘ac average’) but indicated it on an “rms’ scale calibrated to the
ratio of rms-to-mean for sine waves. This was all right as long as
sine waves were being measured (if they weren’t badly distorted).
It was even acceptable if signals having a more-or-less constant
ratio of rms/mad, such as symmetrical square waves, Gaussian
noise, or symmetrical triangular waves, were being measured, so
long as a calibration was provided (see Figure 14). But, for unpre-
dictable waveforms, variable-width pulse trains, and SCR’d sine
waves, average-measuring rms meters were useless.

Accurate, wide-range ‘‘true-rms” circuits are made possible at
reasonable cost by the availability of transconductance multiplier/
dividers (XY/Z), such as the AD531, and by stable log-antilog
circuits, such as the 433, and (more recently) by the 440 rms
module. Examples of practical rms circuits can be seen in Chapter
3-7. The basic scheme is shown in Figure 15. It employs squaring,
averaging, and implicit square-rooting. The crucial dynamic-range
characteristic of rms devices is crest factor, the ratio of peak input
to the rms value of the waveform. For example, an input signal
having a dynamic range of rms of 20:1 and a crest factor of 5, calls
for a device having substantially greater-than-100:1 dynamic
range.

Straightforward open-loop schemes —square, average, root— call
for excessive dynamic range internally; for example, a 100:1 ratio
of maximum to minimum input, when squared, becomes 10,000:1,
placing near-impossible demands on an open-loop square-rooter.
When a transconductance-type multiplier-divider is connected for
implicit square-rooting, the squarer’s gain is controlled by the out-
put, reducing the dynamic range, in the steady state, to first-order.
Types employing logarithmic circuitry are even more effective, if
slower, because they can reduce wide dynamic ranges to equal
per-decade internal voltage swings.

For simplicity, filters are almost always first-order unit-lags. How-
ever, it is not unfeasible to specify filters having a more-nearly
ideal “running-average’ response.
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X o
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Eo = v/Vin? 1) TYPICAL ERRORS: <%% @ F.S,,

" 10mV *0.3% OF READING
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20k 2) 4 = 100kHz, L.F. DEPENDS ON
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POTENTIOMETERS: 20 TURN CERMET

Figure 15. Block diagram of rms circuit and a practical circuit
employing an 1.C. multiplier-divider. See also Chapter 3-7.

PEAK AND VALLEY

For some purposes, averaging-type measurements do not provide
adequate information about a waveform. Examples include periodic
signals with rapidly-changing amplitudes, signals with variable
crest factors, and amplitude-modulated waveforms. There are also
applications in which it is necessary to determine the largest peak
(or valley, or p-p spread) of a waveform over a given time interval.

Peak-detection-and-measurement circuits are numerous, and the
choice (and cost) depends on the characteristics to be optimized.
Such characteristics include accuracy, speed, leakage rate, sensi-
tivity, and complexity. For free-running applications, a built-in
leak is necessary; for one-shot applications, very long hold time
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(with little or no degradation) plus a reset circuit may be required.
For noisy signals, the very definition of a “peak™ may be in ques-
tion, requiring either preliminary filtering, a hysteretic response

. (that ignores small fluctuations), or slow response (ignoring fast
“blips™).

The basic peak-measurement circuit consists of a comparator and
a switched storage element. Figure 16 shows a simple circuit
embodying the function. Operational amplifier Al serves as the
comparator. When the input voltage exceeds the charge stored on
the capacitor, the amplifier acts as a unity-gain follower, causing
the charge (supplied via the diode) to follow the input. When the
input voltage drops back from the peak, the feedback loop is
opened, and the capacitor retains its charge. Amplifier A2 unloads
the capacitor and makes its voltage available at low output
impedance. If low leakage is necessary, Al and A2 must both
have low-leakage inputs (e.g., FET’s). A1 must be capable of fast
recovery from the open-loop condition, it must have large phase
margin, the ability to drive a capacitive load stably, and high
input impedance in the open-loop condition (i.e., internal “protec-
tion’ should be unnecessary).

+15V -15v

TYPICALLY, C = 1000pF TO 0.1uF,
DEPENDING ON DESIRED RISE
TIME AND “DROQP” RATE

AD540K
+
>~°e~

Figure 16. Peak-follower circuit

The capacitor determines both the charging rate and the “droop:”
dEy/dt = I/C. If 10mA are available for charging the capacitor
(1000pF), the slewing rate is 1072/1072 = 10V/us. If the total leak-
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age current is 100pA, the droop rate will be 107191072 = 0.1V/s. If
the capacitance is increased to O.1uF, the droop rate will be
reduced to 1mV/s, and the maximum charging rate will be 0.1V/us.
If the circuit is to free-run, a leak must be provided to allow down-
ward variations of the peak level to be followed. A resistor will
provide exponential decay (proportional to the last peak), and a
current sink will provide linear decay at a fixed rate. The output of
the peak follower may be averaged to determine the average
variation of the peaks. If, on the other hand, the circuit is to pro-
vide a one-shot measurement of the highest of a series of peaks, a
reset switch must be provided to discharge the capacitor before
the next series of readings.

The negative-going edge at the output of Al can be used to indi-
cate that a peak has just occurred. If fast following and long Aold
are necessary to ““‘catch™ a single fast peak, two of these circuits
may be cascaded, the first using a small capacitor (paralleled by a
reverse-biased diode to the negative supply to ensure a small down-
ward leak), and the second using a large capacitor for leisurely
acquisition and long sold.

The “valley” follower is essentially the same circuit, but the
diodes are reversed. It will track negative-going voltages that are
below the stored level, and /0ld the lowest level experienced. For
peak-to-peak measurements, the outputs of the followers can feed
a simple subtractor-connected op amp. Alternatively, the Al-diode-
capacitor portions of a peak and a valley circuit may be used, with
the capacitor voltages applied to the inputs of a differential instru-
mentation amplifier, such as the AD520, the 603, or the 605. If
the peak-to-peak circuit requires a leakage path to enable it to
follow an envelope, the capacitors can feed directly a subtractor-
connected FET input op amp, with resistors of appropriate magni-
tude for the desired leakage rate. As an added bonus, capacitors may
be connected across the feedback resistors to filter out the cyclical
swings of the peak measurements.

Usually, peaks are above ground, and valleys are below ground.
However, if it is desired to measure peaks or valleys of widely-
ranging signals anywhere in the range, this can be done by con-
necting the capacitor and the leak resistor (or the reser switch)
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to a voltage lower than the lowest peak (peaks) or higher than the
highest valley (valleys), instead of to ground; typically, the nega-
tive and positive supply voltages serve the purpose. The reset
switch should, of course, always have resistance in series for
protection.

As indicated earlier, there are many circuits for peak-following.
They include single op amps with diode-capacitor inputs (outside
the feedback loop), multiple-op-amp loops, sample-holds with
comparators (input is compared with the S/H output, and the
comparator operates the S/H control logic, often in synchronism
with a clock to avoid oscillation), and A/D converters.

Converters used for peak-following are typically the counter-DAC-
comparator type. A D/A converter continuously provides an out-
put voltage proportional to the state of a digital counter. The
converter output is compared with the signal input. If the input is
the lesser, the comparator continuously inhibits the count. If the
input is the greater, the counter accumulates clock pulses until
the comparator threshold is crossed, and the count is again
inhibited with the next clock pulse. Though slow, the A/D con-
verter types have the advantage of essentially ““infinite” hold
times, since retention of data does not depend on the charge
stored in a capacitor. The A/D converter is an ideal second stage
of a two-stage peak follower (note that the DAC output, corres-
ponding to the digital count, is an analog quantity). It is also
obvious that if the reduced data must be converted to digital
form, thisis an ideal way to “kill two birds with one stone”, if peak
information is a suitable measure of the input.

POWER MEASUREMENT (Figure 17)

Analog multipliers are well-suited to the accurate measurement of
instantaneous power (e-i). Their outputs can be averaged to obtain
average power, applied to peak-detectors to obtain peak power,
- and integrated to obtain energy. Furthermore, the energy output
can be computed and divided by the period, in the manner indi-
cated in Figure 12, to obtain energy per cycle.

When power is measured, voltage can be picked off, differentially,
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Figure 17. Power and energy measurement

if necessary, by a differential or isolation amplifier, and scaled to
the multiplier input. Current can be measured by a differential
pickoff across a shunt. If the passively-scaled voltage and current
happen to fall within the common-mode and amplitude limita-
tions of available analog multipliers, it is worthwhile to consider
the use of differential-input multipliers, such as the low-cost
monolithic AD532.
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Commercially-available complete multipliers are available with
bandwidths as high as 10MHz. For the measurement of average
power, it is well to consider the input and output response of the
multiplier separately. At high frequencies, the phase relationships
of instantaneous power start to deteriorate significantly at fre-
quencies as low as 1/50 of the “-3dB frequency,” principally
because of lags in the output stages. However, the average power,
which depends critically on the input phase relationships, can be
computed accurately at frequencies up to 1/10 of the -3dB fre-
quency in transconductance multipliers. (The output undergoes
averaging in any case.)

“Power factor,” the ratio of average power to average volt-amperes,
equal to the cosine of the phase angle (for sinusoids), can be
determined by fairly simple analog circuitry. Figure 18 shows a
scheme for performing such measurements. By phase-shifting one
of the inputs by 90°, the sine of the phase angle may be computed;
for small angles, it is approximately equal to the angle. For larger
angles (< 7/2), an arc-sine function fitter may be used, if a direct

1sin (w7 + p)
W=E I sin wtsin (wt+¢) /"“\_/ E sin wr A
El 7 ~. 2
= o - 2eot + N g
5 [cos ¢ - cos (2wt +¢}] _’_ﬂég \_.A
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=W _coso _’I ¢ \ 7
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e w % cos ¢
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j ] . FILTER 6
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2
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= () 10
2c, M~ 10 - K cos¢
R
R

Figure 18. Power-factor measurement
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measurement of the angle is required.

Impedance (magnitude) may be measured by computing the scaled
ratio of the average or rms voltage to the average or rms current,
using a divider (Figure 19). It is important not to fall into the
trap of seeking to take the ratio of two ac quantities by an instan-
taneous measurement. Conceptually, the measurement will not be
finite for zero denominator unless the two signals are n# apart in
phase (n = 0 or any integer). As a practical matter, analog dividers
call for unipolar denominators; with the added complication of
polarity-switching, bipolar denominators may be handled, but the
vicinity of zero is ordinarily forbidden.

RECTIFIER

Vg =V, $in Wt~ FILTER
Ve
‘E%]"‘ b
V=V, sin (@t+ ¢ —m RECTIFIER

FILTER

Figure 19. Impedance-magnitude measurement

VECTOR SUM

The vector sum of any number of mutually orthogonal voltages
may be obtained by a circuit that solves the equation

E, = JV12+V22+V3,2+...V,12 (12)

As noted in the introductory chapter, and confirmed elsewhere,*
the straightforward approach (squaring each input, summing, then
taking the square-root of the sum) can be expensive, and may lead
to poor results over wide dynamic ranges of E,, because of the expan-
sion of dynamic range inherent in the squaring operation.

An implicit approach, using a ZY /X device, such as the 433, solving
the equation
B v, + —L
=Vy+ —— 13
‘0 2 Eo + V2 13)

43ee Analog Dialogue, Vol. 6, No. 3, page 3.
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for two variables, and, in general

V12 V22 V32
E, =V, + + + +... (14
E, +V, E,+V, E,+V,

is far more satisfactory, because each nonlinear term, Vi2/(Eo + Vo),
is net first order, with no external manifestation of square-law
dynamic range (Figure 20).
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5k 20k
ol oW
433
Z

10 mll X
w0 v (Z)
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Vo =Vg+ Va2 Vorve + 10k A
¢ BT Ve +Vg ¢ A1
_m AD741 mk—:] 10k

a. Preferred circuit to compute\/V 4* + Vg*

Vi fe)

2 (n
\Z X
t
|v. logse] S
? Vs | aax R vi?
Z x YWYE T E,=Va

* Eo + Vi
by
|z

| o o—

>—0 V¢

E

TYPICALLY,
R = 10kQ

b. Extension of the technique to n input signals

Figure 20. Square-root of sum of squares

Performance, adjustment, and choice of components are straight-
forward. An important consideration, not immediately obvious,
is the need to scale down inputs and outputs to avoid overdriving
amplifier Al or the 433’s. If all inputs can have the same maximum
value simultaneously, for the maximum output of Al to be less than
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an arbitrary level, E ., the maximum input value, V;=E__ /(1 +\/71).
For E,,, = 10V, the corresponding values of n and V. are:

V,

n max

2 4.14V
3 3.66V
4 3.33V
S 3.09vV

Ifn=2,and Al canswing to 12.1V, V., is SV.

Ve
VVg? +Va? —m- v,
vA
L) vV,
3 Vs
tan Va e S
m=1.2125
g K L ve 1218
o [vmer - i) -
C BA
UNITY 432
|| ©
X
ol
433: (10/VR) Y (Z/X)™
2 Vo, Vo | WoNanaE
x VA © Vger 7+ (Vg/Va)12155
Basic Circuit for Approximating the
Arctangent of a Ratio.
L
g - ALIPY
z 4y
-3 VAR — L (
SN
El / \ S
a|2 ® =
= \\ - -1
g S =
E R ‘_-’\ V_B
Va <t
-
LIN.
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0.1 0.01 { -]
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Figure 21. Arctangent circuit, with error plot
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Magnitude is one aspect of vector composition, but not the whole
story. In addition to magnitude, phase-angle is often desired. If the
phase angle, 6, is equal to the arctangent of the ratio Vg /V,, it
can be approximated by function fitting. An excellent first-
quadrant fit (V,V, > 0) can be obtained simply, to within 0.75%
(theoretically), using a single 433 and an operational amplifier,
in an implicit feedback circuit. It maintains its accuracy over an
extremely wide range of ratios, because the ratioc never appears
explicitly — only as a difference of logarithms within the 433.
The circuit of Figure 21, which embodies the approximation,
solves the normalized equation:

Vp
= tan~l — (15)

Va 2 - Vi 1.2125 v,
Va

v, | 12128
[ 0:| [VB]1.2125 T [VA

with a maximum theoretical error less than 0.75% % (or 0.68°). If
V3 is negative (IVth quadrant), its absolute value is applied as the
input to the tan™! circuit. Its polarity, determined by a comparator,
operates a sign/magnitude circuit, to furnish the proper polarity
of the angle. With suitable logic (to add or subtract #/2), ranges
of angle up to +7 can be made available.

RATIO AND LOG RATIO, dB ( Figure 22)

Dividers can be used for direct readout of such ratios as efficiencies,
losses or gains, % distortion, impedance magnitudes, elasticity
(stress/strain). Ratios may be taken of instantaneous, average, rms,
or peak quantities. Furthermore, in conjunction with sample/hold
devices, ratios may be taken of any of these measurements at
different instants of time.

Ratiometric measurements are by no means new, but the low
(and still-decreasing) cost of analog dividers (and of variable-
reference A/D converters) should serve as an encouragement to
designers to consider employment of the technique as a realistic
alternative (or adjunct) to tightly-regulated reference supplies for



2-3 INSTRUMENTS & DATA ACQUISITION 121

measurements, ultra-stable light sources, etc.

To eliminate the effects of a common parameter, whether physical
or electrical, many measurements can profitably involve the use of
ratio techniques. For example, in bridge measurements, variations
of the power supply directly affect the scale factor. But if the
output is divided by the bridge-supply voltage, the scale-factor
stability depends only on the stability of the divider. This scheme
can be combined with linearization, as shown in Figure 3b.
Naturally, the divider should be at least as stable as the bridge-
reference voltage if the ratiometric compensation is to be useful.

Compensation for reference-voltage variations is an example of
reducing the effects of a common electrical parameter. However,
ratios can also be used to eliminate the effects of a common
physical parameter. For example, in light-transmission measure-
ments, it is common to compensate for variations in light intensity
by transmitting two beams, one through a reference medium,
the other through the medium being measured, and to take the
ratio of the two measurements.

) e CP
Ve efficiency

fractional loss or gain

] READ % distortion or error
— —
[ ouT impedance magnitude
stress/strain

} normalized measurement

Vz
23.3
K log 2
v, Loa ~Klog Va log gain
o dB above or below a reference

Va RATIO light absorbance

Figure 22. Ratio and log-ratio measurements

Often, logarithmic ratios are more useful than linear ratios. There
are two broad categories of such measurements. The first is the
measurement of phenomena covering a wide dynamic range, with
reference to a normalized level, with log-compression, and either
the display of the results on a limited-range meter scale, or the
transmission of the measurement through a noisy medium. The
second category consists of those measurements that are per-
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formed linearly but are normally characterized (or thought about)
in terms of logarithmic ratios. One example is light transmission
measurements. For another, electrical gain or attenuation may be
measured as a ratio of output to input; by the use of a log ratio
device, such as Model 756, a direct measurement of the log ratio,

or “dB,”* may be performed.

CONCLUSION

In this chapter, we have suggested a number of uses of analog
nonlinearities in the reduction of data for display or transmission.
It is not unlikely that the thoughtful reader’s experience and needs
will suggest many more.

*The decibel, one-tenth of a bel (B), is the logarithm of an electrical power ratio of
1.259. The number of dB corresponding to a power ratio is 10 logyg (P2/P1). If resis-
tance is constant, the number of dB also is equal to 20 logyg(V2/V1) or 20 logg o(I2/11),
since power is proportional to the square of voltage or current. The term has been widely
corrupted to express log ratios of any two quantities (even engineers’ salaries), by the
definition dB = 20 log] 0{Q2/Q1). Though confusing (some would say deplorable), itis
almost universally understood.
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Communications

& Signal Processing

Chapter 4

Nonlinear devices have always been used in audio signal communi-
cations to stabilize or modulate oscillator amplitude and frequency,
achieve automatic gain control, and demodulate the received signal.
Classically, diode, transistor, and thermionic-device characteristics
have been used. Effectiveness and stability of such operations have
generally depended on the designer’s skill and ingenuity in circuit
design and on the availability of components having suitable
stability, parameter match, “linearity” (i.e., parametric confor-
mance), and low cost.

Now with the availability of operational amplifiers, multiplier-
dividers, and logarithmic elements, with their tightly-specified
(guaranteed) parameters, convenient (modular or black-box) pack-
ages, and low (or decreasing) cost, the designer has a set of new
options to make his job easier and more fruitful. In addition to
standard signal-processing circuits, he can now consider new
approaches to waveform synthesis and control, and the design and
uses of such tools as voltage-controlled amplifiers, filters, and
oscillators (VCA, VCF, VCO) with uniform behavior and predict-
able characteristics. Combining these operations with some of the
“hybrid” techniques described in Chapters I-4 and I-5B of the
Analog-Digital Conversion Handbook, one becomes aware of a
formidable arsenal of signal-manipulating possibilities, virtually
at one’s fingertips.

Just a few additional examples of the applications of nonlinear
analog devices in signal-handling include compression and expan-
sion, phase-sensitive detectors, phasemeters, phase-locked loops,
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low-noise recording systems, correlators, spectrum analyzers,
speech and music synthesizers, and so on.

AUTOMATIC GAIN CONTROL

An analog multiplier or divider is inherently a gain controller
(Figure 1a) since the signal applied to one of its inputs can be
considered a dependent variable, either multiplied or divided by a
second input that controls its gain (or attenuation). Since the
gain-setting voltage can be derived from any source, there is a wide
range of possible applications. For example, a DC voltage applied
from a remote manually-adjustable source can cause the multi-
plier to act as a potentiometer with a “long shaft.” The control
voltage can be derived as a measure of one or more other voltages
in a system and used to control the gain in response to their
variation. A useful special case isautomatic gain control (Figure 1b).

The circuit of Figure Ic is a practical example illustrating the
application of the low-cost AD531 L.C. multiplier-divider in an
AGC application. It maintains 3V peak-to-peak output for inputs
ranging from 0.1Vp-p to more than 12Vp-p, with better than 2%
regulation from 0.4Vp-p to 6Vp-p, and distortion well below 1%.
Input frequency can range from 30Hz to 400kHz (- 3dB). The set
point is adjustable either manually or by an external DC reference
voltage. The input signal can be either single-ended or differential.

The feedback circuit works in a straightforward manner: if the
mput signal increases, the output will tend to increase. Its negative
peaks, as recognized by the diode and stored on the 1uF capacitor,
tend to increase, causing the output of the mnverting integrator to
increase. This, in turn, causes the denominator to increase, reduc-
ing the gain of the AD531 multiplier-divider (an XY/I device),
and tending to keep the output level constant.

In the steady state, the average voltage at point A must be ideally
equal to ¥2Vy, but of opposite polarity, making the net input to the
integrator equal to zero, and holding the output of the integrator
at whatever constant level is necessary to keep the loop in balance.
In that state, the negative peak value of E,; is approximately one

diode-drop below V, , so ]Ec,u,c (peak)l = %V + diode drop
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In practice, the ser level potentiometer would be adjusted empiri-
cally to calibrate the output at the desired level.

In the simple practical example given here, to illustrate the prin-
ciple, an unembellished half-wave diode-and-capacitor circuit reads
the peak level of the waveform. Naturally, other measures of the
waveform, such as mean absolute-value or RMS, might be used;
in addition, somewhat more-sophisticated temperature-compen-
sated rectification circuitry might be used, depending on the needs
of the application.

The control voltage (V,) at the output of the amplifier ranges from
about -2V (lowest AD531 gain) to the amplifier’s lower limit,
-13.5V (to handle the smallest input signals). Linearity of V, is not
important, since it is a mampulated variable inside the loop.

COMPRESSION AND EXPANSION

In Chapter 2-3, the possibilities of logarithmic compression and
expansion in transmitting small voltages safely through a noisy
medium were touched upon. Though it operates instant-by-instant,
a drawback of the scheme is that the logarithmic gains must be
matched to ensure linear overall response. Another approach, that
can be applied to quasi-stationary waveforms, is to divide the signal
by a voltage that is a measure of some property, such as squared-
peak, transmit the modified signal through the medium, then
multiply the received signal by its squared peak-value (Figure 2a).
Since the control voltage varies more slowly than the signal (essen-
tially DC), it does not affect the signal’s shape, only its amplitude.
The high gain for small signals and low gain for large signals
produces a predictable compression function. At the receiving end,
the inverse function is applied, and the output amplitude varia-
tion is recovered. Mismatches affect only the overall gain, without
introducing distortion.

An example of a typical application of this technique is in high-
fidelity tape recording systems. The Burwen Laboratories Model
2000, outlined in Figure 2b,1 hasa 110dB-dynamic range when used
with a 15ips tape-recorder.

1“Design of a Noise Eliminator System,” by R.S. Burwen, Audio Engineering Society
Preprint No. 838(B-8), October, 1971,
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Figure 2a. Gain compression-expansion. Gain function is
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without distortion. Small signals are greatly amplified
before transmission. Noise is either suppressed by squaring
or masked by high signal levels.
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SIGNAL GENERATION

A number of schemes for signal generation are discussed in
Chapter 2-2, including a variable-frequency two-phase oscillator.
As mnoted there, monlinear elements can be used to control fre-
guency, phase, amplitude, etc. As a further example, Figure 3 is
a schematic diagram of a very low distortion (0.01%) fixed-
frequency (1kHz) single-phase phase-shift sine-wave oscillator. Its
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amplitude (about 7Vrms) is controlled by an AGC loop that applies
linear damping in greater or lesser degree without affecting the
waveform.

Amplifier Al is connected as a non-inverting amplifier with a gain
of +3. The band-pass filter R1, C1, R5, C2, tuned to 1kHz, provides
frequency-selective positive feedback, causing the circuit to oscillate
atf, = (27RC)™L.

C10.014F
R115.9k 1% Ry = Ry =R

P___‘l%————-] C;=Cz=C
1%

c2 1
= T o 01,.F<E RS159k  fo=o—e
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R2 ADS40J
9.76k R4 20k
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R3 301k
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R
+15V 499k 1% * C33.3uF
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: CR2
CR1 | S s
1N4148 RG NGB CRo

100k 1% — AD741C 10k

Figure 3. Low-distortion oscillator

The output amplitude is measured via diode CR1 and compared
with a reference current through R7. The error is accumulated by
the integrator (A2) and, applied to one of the multiplier inputs,
increases or decreases the negative feedback around Al, appro-
priately affecting its gain and the damping of the oscillator. In the
steady state, the net input to the integrator is zero, its output is
constant, and R4 is in effect paralleled by a large trim resistance
of exactly the right magnitude to keep the oscillation stable at
a constant amplitude.

Since the multiplier output is essentially linear and is attenuated
to provide a “vernier” gain adjustment on the oscillator amplifier,
its distortion has a negligible effect on the output. The distortion
is affected primarily by the nonlinearity of operational amplifier
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Al at the frequency of oscillation. The AD540J FET-input op
amp provides distortion in the neighborhood of 0.01%. If distor-
tion of 0.04% is tolerable, an AD741C may be used.

Capacitors C1 and C2 may be changed to obtain other frequencies
of oscillation. The amplitude reference (the +15V supply in Figure
3) can be provided by a zener reference diode (for a 9V diode,
reduce R7 to 301k£2).

MODULATION

The terms “multiplier” and ““modulator” are closely related. The
modulation process almost invariably either uses or creates a multi
plication operation. To illustrate this, Figure 4a shows that the
“balanced modulator” is simply an analog multiplier; Figure 4b
shows the block diagram of a ‘“pulse-height-pulse-width” multi-
plier—one variable modulates the amplitude, the other modulates
the duty cycle, and the area (measured by an averager) is propor-
tional to the product of the two inputs. Historically, modulation
was used in the design of multipliers far more frequently than
multipliers were used for modulation. But now, with the coming
of low-cost IC transconductance multipliers, the pendulum is
swinging the other way. Analog multipliers are considered for a
variety of modulation applications, from amplitude modulators
(Figure 5) to frequency-modulated triangular, square, and sine
waves (Chapter 2-2, Figures 3, 8, and 9).

Ve (t} - ) £ = VeV () sin @t
o
Vesinwt g— "

a. Multiplier as balanced modulator
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b. Pulse-height, pulse-width-modulation multiplier, first quadrant

Figure 4. Modulation and multiplication
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Figure 5, Multiplier as amplitude modulator

Voltage-symmetrical (but not necessarily time-symmetrical) tri-
angular waves may be used to produce duty-cycle-modulated
square pulse trains by biasing the triangular waves with the modu-
lating waveform and detecting zero crossings with a precision
comparator (Figure 6).
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Figure 6. Duty-cycle-modulated triangular wave

FREQUENCY DOUBLING AND n-TUPLING

A multiplier, connected as a squarer, can be used to obtain low-
distortion sine waves of twice the frequency of an input sine wave.
The DC component of the output can be removed with a high-pass
filter (Figure 7a). Alternatively, one of the inputs can be phase-
shifted by 90°, using either an integrator or an all-pass filter
(Figure 7b). This alternative has the advantage that amplitude
variations do not result in large transient “bounces’ at the output;
however, its performance is somewhat sensitive to frequency,
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whereas that of Figure 7a is wideband for frequencies well above
the filter’s crossover. Typically, phase error of the double-frequency
signal becomes significant at 1/100 of the multiplier’s —3dB fre-
quency, and the envelope amplitude loses accuracy above 1/10 of
the -3dB frequency.

Frequencies of triangular waves can be doubled by the use of an
absolute-value circuit (Figure 7c¢). If amplitude is constant, the dc
level can be biased out. Otherwise, ac coupling can be used, with a
cutoff frequency well below the fundamental (phase shift does not
affect the shape of a sine wave, but it does distort triangular
waves).

Square-wave and triangular waves can be tripled in frequency, or
in general multiplied by any whole aumber, using a piecewise-
linear voltage sawtooth operator (Figure 7d). Factors much larger
than 3 tend to become impractical because of sensitivity to break-
point drift and incremental gain settings. It is worth noting that
the output of a tripled triangular wave can be shaped into sinu-
soidal form, if desired, using a function fitter (Chapter 2-1).

DEMODULATION

We have touched on peak, average, and RMS measurements in
Chapter 2-3. Similar techniques are used for demodulating ampli-
tude-modulated signals. Figure 8 shows two “ideal diode” high-
accuracy full-wave rectifier circuits that are perhaps less well-known
than Figure 13 of Chapter 2-3. The circuit of Figure 8a uses 5 equal
resistors to obtain unity gain and has only a single path from the
input source. The circuit of Figure 8b has high input impedance,
an especially useful feature if the signal source must be unloaded
or if ac coupling with long time constants is necessary. A possible
disadvantage in both cases is that the output-averaging filtering
must be performed in a separate stage. These circuits may be
followed by a peak-reading circuit, if desired.

If the waveform contains polarity information, synchronous-detec-
tion may be useful. In the scheme shown in Figure 9, a square-
wave reference signal multiplies the alternate half-cycles by posi-
tive and negative constant voltages. If signal and reference are in
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phase, the full-wave-rectified output is positive; if they are in
opposite phase, the output is negative. If the signal and reference
are sinusoidal, the average value of the output will be equal to
(Vom Vi /20) cosf, where 0 is the phase angle and V,;;, and V,, are
the reference and signal amplitudes.?2 Small phase shifts do not
greatly affect detection accuracy; for example, 0.8° gives 0.01%
error, 2.56° gives 0.1%, 8° gives 1%, and 18° gives 5%. If the signal
and reference are 180° out of phase, the average output will be
negative, with the same ideal phase tolerances.

If, on the other hand, it is desired to measure small phase devia-
tions, one of the inputs can be shifted 90°; the average output
will then be proportional to the sine of the phase angie. The
following brief table outlines the theoretical error inherent in the
assumption that sin 6 = 6.

Fractional
Angle Sine Error (% 1rad)

04 6° sin 0 [sin@ — 6,44l
0.084 4.813 0.0839 <0.01%
0.180 10.31 0.1790 <0.1%
0.390 . 2235 0.380 <1.%
0.490 28.1 0.471 <2%
0.670 384 0.621 <5.%

Function-fitting techniques can be used to reduce the error if the
range of angle is too large for the desired accuracy.

Greatly-improved linearity can be obtained by combining sine and
cosine demodulation with an implicit feedback loop to obtain
“tan-lock” demodulation®. A tan-lock demodulator solves the
equation

-Eg=—————=Bsind + AE; cosd = K6 ¢y

2See Figure 18, Chapter 2-3.

3«yUse this Tan-Lock Demodulator,” by R.P. Hennick, Electronic Design No. 25,
December 6, 1970, pp74-75.



24 COMMUNICATIONS & SIGNAL PROCESSING 135

as shown in Figure 10. In addition to the improved linearity over a
wide range of angle, as shown in the error plot, with its attendant
reduction of distortion, one might expect to realize improvements
in noise threshold, hold-in range, and pull-out frequency (see dis-
cussion below). '
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Figure 710. “Tan-lock” demodulator circuit, scaling, and
theoretical error

Phase demodulators are often preceded by AGC or limiting cir-
cuits to ensure constant ac input amplitude and avoid amplitude
modulation of the output. Wideband multipliers, such as the 429,
have less than 1° of differential phase shift at 1MHz. The output
double-frequency phase shift of about 24° @1 MHz is unimportant,
since only the dc component of the output is used; the dc level
depends critically only on the input frequency characteristics.
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PHASE-LOCKED LOOPS

A phase detector may be used as the ‘“‘summing point” of a feed-
back loop that generates a frequency that is compared with the
average input frequency and ‘“locked in” to that frequency with
a fixed (e.g., 90°) phase relationship (in the steady state, ideally,
for sine waves, cos 8 = 0). Phase error is usually in the form of a
dc voltage that drives the local frequency generator (a voltage-
controlled oscillator) through a high-gain amplifier. Thus, the loop,
if stable, seeks to maintain the phase error at zero (Figure 11).

To anyone familiar with the principles of feedback (and today,
that includes anyone who uses op amps creatively and successfully),
the phase-locked loop would appear analogous to an operational
amplifier, except that phase is the input variable and frequency
(rate-of-change of phase) is fed back. The “loop gain of a phase-
locked loop is expressed in terms of %Af/radian.

The basic elements of a phase-locked loop, as mentioned above, are
the phase detector, a filter-amplifier (fo remove ac components
from the dc voltage that represents the phase error and to amplify
the error signal), and a voltage-controlled oscillator (VCO).
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Figure 11. Phase-locked loop, or phase follower, with response
to sinusoidal signals.
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Applications of phase-locked loops are in two basic classes: fre-
quency re-creation and multiplication, and narrow-band filtering,
based on the ability to respond to an input frequency; and
frequency modulation and demodulation, based on the ability of a
well-designed phase detector and VCO to respond accurately,
stably, and linearly to a dc voltage.

In the first class, a received signal may be noisy, distorted, and
actually jittering in frequency. The job of the phase-locked loop
is to generate a clean waveform of appropriate shape that is locked-
in to the average signal frequency. The filter prevents the output
frequency from responding to rapid fluctuations of phase; it tends
to null out the average phase error. The VCO need not be very
linear (the same may be said for the phase detector), but the
range of frequencies, or phase, within which the loop is captured
(i.e., under control) must be sufficiently wide to embrace the
expected fluctuations, either at the signal frequency or a harmonic
(if the job of the loop is frequency multiplication).

In the second class, the VCO and/or the phase detector should have
a linear relationship over a dynamic range corresponding to the
maximum deviation present in the modulated signal. The filter
should be slow enough to filter out carrier, but fast enough to
follow the modulation. If the loop is acting as a demodulator for
a frequency-modulated signal, the output of the VCO will track
the modulation, and the “dc¢” input of the VCO will be the
demodulated output voltage. If the loop is acting as a modulator,
the modulating signal is added at a voltage summing point after
the phase detector. The output frequency will change to the degree
necessary to create a phase-error voltage that will continuously
balance out the disturbance caused by the modulating signal, while
remaining locked-in to the input frequency.

An intermediate class is “frequency-shift keying” (FSK), in which
the modulating signal is a step change of voltage (such as a change
of binary logic levels), which produces a step-change of frequency,
On the receiving end, the loop responds to a step-change of fre-
quency with a step-change of voltage. This form of operation is
often referred to as “modem” (modulate-demodulate). A linear
relationship is not required, but the phase-voltage-frequency band
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should be adequate.

Signals and VCO outputs may have any waveshape, as long as one
can ensure that the loop will not lock in on a harmonic (unless so
desired). Since a phase-locked loop is an active closed-loop system,
it must be designed not to be dynamically unstable (i.e., to run
away or oscillate, rather than behaving as desired). Two ranges of
frequency are usually important in governing lock-in: capture
(pull-in) range, the band of frequencies within which a lock-in
condition can be acquired, and lock (dropout) ramge (tracking
or holding), the band of frequencies within which lock-in can be
maintained, always wider than the capture range.

Some ideas about VCO design may be found in Chapter 2-2 (and
in many other places in the literature). The low cost of modular
and IC multipliers makes high-performance medium-frequency
phase-locked loops quite practical today. For the future, one may
expect to find integrated-circuit phase-locked loops that transcend
in performance today’s elementary IC devices, requiring consider-
ably fewer external components, and more suitable for high-preci-
sion applications.

VOLTAGE-CONTROLLED FILTERS

A “‘state-variable’ active filter is one in which an analog-computing
feedback loop (or loops), involving one or more integrators, is
used to simulate the desired transfer function. Though less compact
than the usual active-filter circuit, in terms of the number of op
amps required to obtain a transfer function characterized by an
n-degree polynomial, it has an important advantage: If an integra-
tor is preceded (or followed) by an analog multiplier (or divider),
the overall characteristic frequency w, (or characteristic time T,)
will be directly proportional to the multiplying or dividing input
voltage. This makes it possible to build filters in which the capacitors
are, in effect, adjustable, either directly or inversely, by a control
voltage. For a filter that does not involve inductors, is thus possible
ideally to manipulate the frequency scale of a filter by means of a
single voltage, without affecting any other parameters. The cost
is one multiplier per capacitor, formerly impractical, but now quite
feasible, because of the low price of multiplier/dividers.
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Figure 12 shows how a multiplier (a) or a divider (b) can be used
to adjust the “break” frequency or time constant of a first-order
lead or lag (for a lead-lag (c), the outputs are summed in an exter-
nal adder-subtractor with appropriate polarities and coefficients).
Note that the multiplier is used ahead of the integrator, with
passive summation at its input, while the divider follows the
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Figure 12. First-order variable filters using multipliers or dividers
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integrator. The reason for this can be seen if one considers the
consequences of, for example, using the multiplier following the
integrator. If the multiplier’s output is 10V, then for any value of
V. Iess than 10V, the integrator output must be greater than 10V.
Placing the multiplier ahead of the integrator solves the out-of-
range problem, because the integrator output, in the closed loop,
can never be greater than the input to the circuit (multiplied by
R,/R;), and the multiplier output can never be greater than 10V
because of its inherent V;V,/10 scaling. In like fashion, out-of-range
problems are avoided for this case if the divider follows the integra-
tor.

If the divider is a conventional multiplier in a feedback config-
uration, requiring a negative denominator voltage, the configura-
tion of Figure 12b makes available both the output (low-pass) and
its derivative Chigh-pass). If the divider has positive gain, the invert-
ing summing amplifier may be omitted (low-pass only) or replaced
by a non-inverting summer (high pass and lead-lag).

Multiplier-integrator elements can be combined to form higher-
order state-variable filters. For example, Figure 13 shows a second-
order filter (note the similarity to the oscillator circuit of Fig. 9,
Chapter 2-2). Depending on which output or combination of out-
puts is used, it can serve as a high-pass, low-pass, band-pass, band-
reject, all-pass, etc. Again, it is important to note that, for ideal
circuit elements, the control voltage V, affects only the frequency
scale; damping and coefficient weightings, normalized frequency-
response characteristics, and normalized time response are all
unaffected.

This feature is especially useful when first- and second-order filter
responses are cascaded to obtain nth order Butterworth, Chebyshev,
Bessel, or other response characteristics. Variation of V, to adjust
cutoff frequency does not affect the coefficient weightings, once
the relative-frequency-and-damping relationships have been set.

Where digital control is desired, the multiplier blocks could be
embodied by multiplying D/A converters, such as the IC AD7520.

Variable time-constant integrators, and the tunable filter networks
that they make possible, can be usefully and profitably employed
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using two multipliers. If desired, damping could also be
controlled via a multiplier

in a number of ways. Examples include adaptive control (adjust-
ment of time constants to achieve an automatically-minimized
control-loop error function), spectrum analysis (variable-frequency
sweeps to obtain amplitude spectra of stationary waveforms),
variable analog delay lines, variable-bandwidth systems for audio
“hiss” and ‘“‘rumble” noise reduction, tunable-carrier transmitters
and receivers for narrow-band signals, programmable filters, etc.
If the filter is controlling an oscillator frequency, it may be used
in FM detection with a phase-locked loop, where the input to the
filter is the phase-detector output voltage required for tracking,
proportional to the modulating signal.

SPECTRUM ANALYZERS

There are many ways of analyzing and plotting a signal spectrur

A few that are relevant to the techniques and devices described in
these pages are “spot”™ measurements (or frequency “combs”),
band measurements, and swept measurements. The first two types
can be achieved either with fixed-frequency (narrow-band or
bandpass) filters in parallel or with a single stepped (narrow-band
or bandpass) filter (Figure 14). If many frequencies or bands are
to be measured, the serially-stepped-filter approach is considerably
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FIXED E {f,) MEASURE
(| FREQUENCY RMS, PEAK, [——2-
OR BAND ETC.
PARALLEL OUTPUTS
TO MULTIPLEXER
FIXED E(fy) MEASURE )
Vi FREQUENCY RMS, PEAK, {—m= - - fL-f
OR BAND ETC. BAND
f f, f3 fa
FIXED E (f3) MEASURE SPOT
L] FREQUENCY RMS, PEAK, f—tr A A
OR BAND ETC. f % 6 T
a. Filters in parallel
FREQUENCY CONTROL=
RAMP OR STAIRCASE
vc—__;
VARIABLE-
FREQUENCY | E (P MEASURE
Vin————al F O RMS, PEAK, [ Eq ()
STATIONARY FILTER ETe.
INPUT

b. Single variable-frequency filter
Figure 14. Spectrum analyzers

more economical in terms of equipment, but consumes more time
for the measurement. The swept filter may provide a continuous
“spot” measurement; however, the sweep must be slow enough to
not introduce substantial errors as a result of its rate of variation.
The dc measure can be obtained in terms of rms, peak, average, or
““one-shot-per-step” integral measurement.

MUSIC SYNTHESIZERS

These versatile instruments serve as a tonal palette embracing an
extremely wide range of audio waveforms and sounds for the
ministrations of the musical composer, performing artist, and
special-effects creator. They permit a wide range of pitches, tones,
attack-decay-sustain-release sequences, amplitudes, and combina-
tions, both linear, and nonlinear. They tend to use the whole gamut
of waveform processing trickery, including voltage-controlled ampli-
fiers, voltage-controlled oscillators, voltage-controlled filters, modu-
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lators and demodulators, phase-locked loops, sample-holds, noise
generators, and pressure-sensitive transducers. Both analog and
digital (ROM) functions are used. Figure 15 shows the control
panel of a typical commercially-produced moderately-priced
keyboard instrument, the ARP Odyssey.

CONCLUSION

This chapter has sought to touch briefly and suggestively on a
number of techniques used in audio communications and signal-
processing, and on the possible contributions of today’s low-cost,
compact, comprehensively-specified modular and IC nonlinear
devices. It is hoped that the reader will consider omissions and
elisions (due to the pressures of space and time) as a challenge to
creativity.



Computing
& Control
Chapter 5

In this final chapter of the Applications section, we discuss a few
ways that nonlinear analog computing techniques are used in
industry, suggest a few additional ones, review further applications
of ideas suggested earlier, and, in effect, present a modest list of
topics that, possibly landing in fertile ground, may be fruitful in
terms of the ideas that are inspired in thoughtful readers. It is
always important to bear in mind that improvements in device
performance, reductions in cost and size, and ready availability from
multiple sources, have brought many of these ideas from the status
of “merely interesting” to feasibility as everyday tools of the
designer.

FILTER-FREE THREE-PHASE POWER MEASUREMENT

Figure 1 shows the block diagram of a simple scheme for
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X
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Figure 1. Three-phase average-power measurement
without filters
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computing the average power in a three-phase system.! Voltages
proportional to the phase voltages and the corresponding line
currents are multiplied individually in three multipliers, and the
outputs are summed. The output is ripple-free for a balanced
system, with the three average levels averaged and the double-
frequency ac components cancelled.

Since low-pass filtering, with its essential delays, is not needed,
rapid measurement or detection of the power level is made
possible. If one input of each multiplier is phase-shifted by 90°,
the output will be a continuous measurement of reactive power,
KVy I sing. The 90° phase shift can be obtained by measuring the
line-to-line voltages, and absorbing the stray /3 factor in the
analog circuitry.

The improved speed of response makes possible faster-responding,
more-stable control loops, and clean, easily-metered monitoring
signals. An interesting application is in the excitation control of
synchronous motors.

Besides real and reactive power, other useful output signals may be
obtained by combining the real and reactive power measurements
in various ways. For example, the square-root of the sum of the
squares (Figure 20, chapter 2-3) may be used to compute total
volt-amperes. The ratio of the power to volt-amperes is the power
factor (cos¢), while the ratio of reactive power to volt-amperes is a
good approximation to the phase angle for small angles. The ratio
of real power to reactive power, tang, a nonlinear function of the
power factor, is particularly useful as a control signal because of
its high sensitivity.

Finally, it is often useful to control the excitation of a
synchronous motor so that it is overexcited at low loads, with
reduced excitation as load increases, to avoid exceeding the
normal current limitations of the motor at full load. The control
criteria for this operation can be established by setting a simple
linear combination of the reactive and real power equal to a
constant, .

1“Detection and Measurement of Three-Phase Power, Reactive Power, and Power

Factor, with Minimum Time Delay,” by I. R. Smith and L. A. Snyder, Proc. IEEE,
November, 1970, p. 1866.
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RATIOMETRIC MEASUREMENTS — LIGHT TRANSMISSION

Figure 2 shows a scheme commonly employed to measure
transmittance or absorbance of light by an unknown medium,
independently of variations of the light-source level. The light is
transmitted through a reference medium (which might be air or
vacuum) and through an unknown. Both samples are transduced
to current by a pair of matched photosensitive detectors. The 756
log-ratio module converts the output currents (at essentially zero
input impedance) to an output voltage proportional to the
logarithm of their ratio.

Since the measurement is ratiometric, it is independent of the
source intensity. Since it is logarithmic, it can deal accurately with
a wide range (4 decades) of unknowns, and furthermore it can be
read out directly in logarithmic absorbance or transmittance units.

Always useful, ratiometric measurements (with analog dividers) in
general, and logratio measurements in particular, are becoming
increasingly feasible and accessible for an ever-wider variety of
applications as cost decreases and availability and performance
increase.

MATCHED PHOTOSENSITIVE
DETECTORS (PHOTODIODES,
PHOTOTRANSISTORS, PM TUBES, ETC.)

UNKNOWN

756 1
I, LOG ——-Eo = Klog -

. RATIO
\\
N ﬁ
REFERENCE > J
MEDIUM = In

Figure 2. Measuring light transmission independently of light-
source variations. Log-ratio gives direct reading of relative
transmittance or absorbance

EXPONENTIAL DECAY TIME-CONSTANT

Figure 3 shows a circuit that can be used to rapidly measure,
compute, and display continuously the time constant of an
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exponential decay. For example, a 10-minute time constant can be
measured within seconds.

The operating principle is simple: the time-derivative of et is
equal to -(1 /'r)e't/ 7. Therefore, if we divide the argument by the
negative of its time-derivative, the result is the time constant 7,
available immediately after the startup transient has died away.

In order that the differentiator be stable and not have excessive
noise at high frequencies, it has a second-order rolloff (R,C and
RC,). Naturally, these time constants should be short compared to
the shortest time constants being measured, but they should be no
shorter than is necessary on that account.
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Figure 3. Circuit for determining time constant of exponen-
tial decay

The divider should be capable of dealing with signals having a wide
dynamic range, if the range of time constants to-be-measured is
substantial. It may be a log-ratio device if log 7 is acceptable.

Applications include calibration and capacitor measurements. It is
especially suitable for obtaining rapid measurements of slowly-
varying phenomena, such as battery discharge and capacitor-
dielectric “soakage.” By recording the measurement continuously,
or sampling the waveform from time-to-time, the “quality” of the
time constant can be investigated (e.g., is the response truly
exponential?). The differentiator must not introduce substantial
errors; therefore, though the initial tolerance is not critical, the
capacitor should be the highest grade available (polystyrene,
teflon, polycarbonate, etc.), and the amplifier should have low
leakage current and low noise.
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MASS GAS FLOW COMPUTATION

This is an example of the use of low-cost nonlinear analog circuit
elements in the conditioning of transducer outputs to obtain an
essentially direct measurement of a quantity that depends on a
number of variables.

The measurement of gas flow through a resistive element, such as a
nozzle, venturi, or an orifice, requires that we know the absolute
pressure, the absolute temperature, and the pressure-drop. An
equation typically used to relate the gas flow to these variables is*

F= Kl(l K2 VPAP (1)

If AP is small compared to P, this expression simplifies to the
frequently-used

F=K E— (1a)

Figure 4a shows how a divider and a multiplier-divider can be used
to compute equation (l1a). For a fixed value of K, the electrical
inputs are scaled in the preceding preamplifiers so as to utilize the
full . output range (E;), and as much of the input ranges as is
consistent with the various combinations that produce full output.
If the input divider is a multiplier-divider, the third input can be a
constant voltage with the effect of adjusting K2.

Figure 4¢ shows how logarithmic circuits can be used to embody
equation (1a). If all three variables can vary widely, the logarithmic
approach is the more useful, because it allows the scaling to be
flexible, without fear of overranging, as long as the output is
propetly scaled.

If equation (1) is used, it can be embodied by feeding the output
of equation (la) into the circuit of Figure 4b. It amounts to
subtracting from E, a correction term proportional to E; V ,p/Vp,

*NASA Tech Brief 71-10407, Lewis Research Center, J. Watson, D. Noga, J. Dolce, and
J. Gaby, Jr., “Low-Cost Logarithmic Mass Flow Computer”
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with a coefficient K,, determined by the resistor ratio R; /R, .*
The output of the flow circuit can be integrated to determine the
total mass transferred over a period of time, or it can be averaged
by a unit-lag or other averaging filter.
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Figure 4. Mass gas flow configurations

*The subtractor configuration of Figure 4b may be found useful for implementing many
of the circuits in this book (and elsewhere) that call for differences of the form
(x - Ay). The gain or attentuation, -A, is determined by R/R5, and the gain at the plus
input will be unity if the resistor ratio is matched as shown.
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OXYGEN CONCENTRATION WITH ANTILOGS

Electrical measurements of ion concentrations are logarithmic. For
solutions at 29°C, a relative concentration change of one decade
(i.e., X10 or X0.1) produces a 60mV change, of appropriate
polarity, at the measuring electrode.

If it is desired to measure the actual (relative) concentration, the
output of the detector is preamplified and applied to the input of
an antilog circuit. A circuit for performing this job is shown in
Figure 5.2

ANTILOG CONFIGURATION
10k 200k Ipes = 1002A

W m 100k
A AA
A-A 4

- K =06V

10k | 752P | Lo
Yin Qe AAA -+ ~MODEL 40 N A

0, DETECTOR OUTPUT ;-
%!
v 10% Eo= -1OV( °“)
-60mV 1% 0%
~320mV 8.1%
=180mV 0.01% -0V & Eg < -10mV

{PROPORTIONAL TO LOG CONCENTRATION)

Figure 5. Linearizer for oxygen detector (see Chapter 4-3)

TRANSIENT-FREE RANGING PICOAMMETER

The conventional electrometer circuit using an inverting opera-
tional amplifier requires large-value feedback resistors to convert
the input current to an output voltage. If the input covers a wide
range, either manual or automatic range-switching may be needed,
involving several large-value resistors.

There are a number of discomforting factors to consider when
designing such circuits. First of all, resistances in the 10kMQ2
region, and greater, are difficult to obtain with tight tolerances
and good stability vs. time and temperature. Stray capacitance
tends to make the response of these circuits quite slow. Range
switches tend to have leakage and capacitance; besides the
inherent steady-state errors, the settling time after switching can

2See also Chapter 4-3.
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be of the order of many seconds, certainly inappropriate for
autoranging. In addition, there are all the inherent problems of
low-level current measurement by any means: cable problems,
straygcfpacitance and leakage, and amplifier input-circuit prob-
lems.”>

A workable answer to this problem (Figure 6) involves the use of
log-antilog circuitry, similar to that employed in the Model 434
multiplier-divider, but with one of the inputs designed specifically
for electrometer-level current-handling. The input current is
“logged” in the feedback circuit of Al, and referred to an input
IREF. The ratio IN/IREF is multiplied by adding the log of a volt-
age reference, VR, and antilogged in the circuitry associated with
A4. As equation (2) shows, ’

Ry, Iy
° Ry Iggr

Vr 2)

the output scale factor may be adjusted in a number of ways,
separately or concurrently: by the resistor ratio, R,/R;, by a
reference voltage, Vi, or by a reference current, Iz gg. Igpp, in
turn, may be determined by a stable low-current source.

Since the scale factor is proportional to Vg, the gain may be set
directly by a voltage, without the need for switch circuitry in
automatic ranging. The saturation current of the log transistors is
quite low, typically well below 10"13A at 25°C. Since the
saturation currents of the two transistors in each pair are
monolithically matched, temperature affects the ratio negligibly.
Because the monolithic dual transistors are essentially at the same
temperature (in close proximity), the kT/q terms cancel, and the
performance of the circuit is essentially independent of tempera-
ture. When ranges are switched, the circuit recovers quickly (from
milliseconds to microseconds), because the switching is remote
from the picoampere-level circuitry.

3See “The World of fA—Op Amps as Electrometers,” Analog Dialogue, Volume 5, No. 2.

4“H1gh Performance Flame-Tonization Detector System for Gas Chromatography »
Hewlett-Packard Journal, Volume 24, No. 7.
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Irer

Figure 6. Temperature-compensated wide-range picoammeter
with normal resistance values, non-interactive range scaling
and voltage-adjustable scale factor

CORRELATION AND CONVOLUTION

These topics involve equations of the typical form

T
F(n) = / £(t) - g(r — t)dt 3

0

While there is simply not enough space available in the present
volume even to touch (however inadequately) on these topics,
they must nevertheless be mentioned, because the high speed and
low cost of multipliers and multiplying D/A converters, and their
small space requirement, makes analog or partially-analog ap-
proaches more competitive with digital techniques than has been
the case in the past. A typical circuit that embodies (3) is shown in
Figure 7. ”

Correlation is used as a means of recovering information in the
presence of noise or unrelated signals. If the information is
sinusoidal, and the “noise” is an out-of-phase component at the
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same frequency, equation (3) can be recognized as a phase-
sensitive detector, where 7 is the delay corresponding to the
phase-shift ¢. For signal waveshapes having less-predictable proper-
ties, 7 is the delay of an adjustable delay line. The integration is
performed a number of times (depending on the desired resolu-
tion), for various values of 7 up to the full period, and each
integration reconstructs one point on the correlation function.
Adjustable delay lines are available, for short delays, in analog
form (e.g., “bucket-brigade” types), and for arbitrary delays, in
digital form.> The most-popular forms of correlation are auto-
correlation and cross-correlation, determined by the relationship
between the functions f( ) and g( ).

RESET

£t)
l_. R HOLD I ?‘
X —AM— I¢ 0 o

glt-7)

19

.
1
-Eg = ToRC j(; (1) olr — thdt

Figure 7. Basic analog correlation circuit

Convolution of time functions corresponds to multiplication of
their transforms in the s or jow domains. Multiplying the transform
of an analog signal by the transform of the indicial (step, pulse,
etc.) response of a linear circuit (i.e., its complex transfer
function) provides the transform of the time response of the
circuit to the analog signal. It is therefore possible to model the
time response of a circuit to a time waveform without actually
building the circuit by a series of convolutions of the input
waveform with an independently-generated waveform that has
been fitted* to conform to the desired indicial time response. This
is an especially useful technique if the desired indicial response
requires an unreasonable or not-physically-attainable transfer
function. ‘

SAnalog-Dz'gz'tal Conversion Handbook, Analog Devices, Inc., 1972
*See chapters 2-1 and 2-2 on function fitting and function generation.
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ALARM CIRCUITS

In a system, there are usually a number of variables the
magnitudes of which are unimportant from the standpoint of their
contribution to the equations of the performance or efficiency of
the on-going process, but must nevertheless be maintained within
given tolerances. While it is possible to convert and record or
observe these variables, it is usually cheaper and simpler to take
note of them only when they have deviated beyond one or more
sets of thresholds.

Figure 8 shows three circuits that can be used to activate alarms if

Vin < Vry ACTIVATES
/ ALARM: FLAG, LIGHT,

COMPARATOR SWITCH, RECORDING, ETC.
Vin -
Vi + P ee— . R Al
[}
a) Threshold
COMPARATORS WITH
TTL-COMPATIBLE
Vi OUTPUTS Vin <Vz2 OR Viy >V
DROPS OUTPUT TO ZERO,
ACTIVATING ALARM
Vin =< / /
V2 oo v, Vin
V2
b) Window
1 1 T (Vin ~Vrer) >a Vgep
8: (Viy ~Vaes)<aV
Vin ' Y w - VRer REF
VY L A HIGH
Nm -VRer
/ 9 (Viy - Veer) <-a Viep
1 1 @: (Vin ~Vaer) >-a Veer
Vage v AAA
v A A s B LowW
+
GVREF
Nvas; 1 1 -aVaer BOPERATES A OPERATES
/ / Vin “LOW” Vin “HIGH"”
Vaer AND Vin - Vaer
aCAN BE + -aVREF +aVres
SET DIGITALLY BY
MULTIPLYING DAC’s
- (Vin = Vgrer)

¢) Fractional deviation (+*aV ggg) from preset reference (VRgF)
Figure 8. Alarm circuits
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the input exceeds or falls below a preset threshold (a), if the input
departs from a prescribed range of operation (b), or if the input
departs from a reference value by more than a prescribed
percentage (c).

These are the simplest kinds of deviations requiring alarm. Most
others can be constructed using them as basic elements. Using the
Serdex system (see page 88), it is possible to obtain remote
information on the state of both alarm-only and measured
variables at the same time via the same twisted-pair, in the form of
a coded printout.

Naturally, these same alarm functions can be recognized as key
elements of tolerance control in automated production operations
of all sorts: machining parts, adjusting precision resistances,
keeping machine speed within limits, etc.

CLASSIFICATION

For processes that must measure certain properties of objects
(size, current-gain, resistance, brightness) and identify those units
falling into specific classifications, the circuit of Figure 9 may be
found useful.

COMPARATORS

OR HIGH-GAIN

AMPLIFIERS

[———— 1 V; <V

1: Vin >Vy
Vin O— ¥ 0: Viy <V4
Vi o - 1 Vo <Viy <V,

TO LIGHT-SWITCHES,
0: Viy >V, TRAPDOORS, ETC.
1 Viy <V3

1 Va<Vig < Va

1 Vi > V3
0: Vin <V

0: Viy >V,
- 1 Viy <V,
Vq + )y

Figure 9. Classification circuit. Latching-type comparators and/or
hysteresis may be used to reduce ambiguities and “cycling” due
to noise

1 Vo<V <V3

1 Vin <V,
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The input voltage, corresponding to the measurement of the
property of interest, is compared with a series of graduated
reference levels. The outputs of the comparators are processed by
simple logical operations, the outputs of which indicate uniquely
into which grade the object whose property is being measured
should be placed. These outputs activate the appropriate trapdoor,
indicator light, etc.

MEDIAN CIRCUIT

An analog signal may be transmitted along several redundant paths

to improve reliability or reduce noise. While simple summation of

the outputs will reduce uncorrelated noise, the output may be

greatly in error if one path has failed in a saturation mode. One

means of combination that secures both noise reduction and
<

é 1
ll, =5l

(1N5297)
AD7413

E,, 1N914 VvV,  1N914

—B—o———9

Vi

AD741

Va = GREATER (£, E;)
l2 D
1N5305

- Eo —0O Eo

V2

V LEAST (Va, Vg, Ve) =V, ORV, OR Vs

{DIODE DROPS IGNORED, SINCE THEY

Vg =GREATER (E,, E3) WILL BE CANCELLED BY RISE IN

iz CONDUCTING CHANNEL)
-V
= P
View ’
Va V.
Va2 3
- Es Ve ‘/ ~—
ot il Vs Vi Vz
‘l3 + L § ™~ B
bt

Ve = GREATER (E3, E;) ? 2

Figure 10. Median circuit continuously selects middle value
among three inputs for noise reduction or improved reliability
through redundant circuitry
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protects against failure of one path involves computing the median
signal. That is, the output is always the signal the value of which is
between the other two signals.

Figure 10 shows one form of circuit that can compute the median
of three input signals V;, V,, and V3. It computes the greater of
each pair (V,,V,), (V,,V3), (V5,V,), and then follows the least
of the three “greaters.” It will therefore follow continuously the
signal which is neither the greatest nor the least, irrespective of
which one it happens to be at a given instant.

It has been claimed possible, using similar circuitry, to design a cir-
cuit that will follow the mth in magnitude among # input signals.®

TRIGONOMETRIC FUNCTIONS AND COMBINATIONS

Rectangular-to-polar conversion involves computations of the
form (vector composition)

r=y/x2+y2 }

0 = tan'! (y/x)

4

and polar-to-rectangular (vector resolution) involves the inverse

operation,

y=r1sin 6

)
X =rcos 0

Chapter 2-1 has discussed in great detail the manner of fitting
sin 0. Since the cosine of an angle # is the sine of (90° — 6),
circuits that fit sin @ can also be used to fit cos § (Figure 11).
Usually, two sine-function-fitters are needed per angle, but if the
signal varies slowly, multiplexing may be used to allow one
function fitter to share sine and cosine (of a number of different
angles, if necessary).

6“Analog Sorting Network Ranks Inputs by Amplitude and Allows Selection,”

Electronic Design 2, January 18,1973, and sequel, Electronic Design 17, August 16, 1973,
p-7. )
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ABSOLUTE ’
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(X 1/2) +90

¢. Cosine approximation — 4 quadrants

i

Figure 11. Cosine approximations using sine function fitters

Vector composition (4) is discussed in the text that accompames
Figures 20 and 21 in Chapter 2-3.

If it is necessary to compute the tangent of an angle, the two
schemes outlined in Figure 12 may be of interest. The first, based
on the arctangent scheme, is the simpler but somewhat less
accurate (within 1.4% of tan 45° up to 50°, within 2.5% of ideal
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value up to 80°, within 2% of 10 (i.e., tan 84.3°) up to 86°. A
more-accurate scheme, involving squaring and division, is shown in
12b.7

m =0.82474
z 1
v'

V. @
I beTr)
l—> Eg =KVy | %
X 433 Vo - Vs
Voo —AAN— Y Y @xe
L l CONSTANT, DEPENDING

ON DESIRED QUTPUT
SCALING

a. Tangent approximation based on arctan circuit of
Figure 21, Chapter 2-3

281065 g 2.81065 6" - 62
A | KN I RATIO = {87065 0.81065 6 - '
-0.81065 Z |1 =1nd

1.81065

b. Tangent approximation with multiplication, division, and
summing. Theoretical absolute error less than 0.0001 to 63°,
relative error less than 0.1% to 72°, less than 0.5% to 81°,
less than 1.2% for all values of § < 90°.

Figure 12. Approximations to the tangent
Figure 13 is a circuit for computing the difference between two

orthogonal quantities, using an XY/Z device (e.g., the AD531
multiplier-divider) for implicit square-rooting:

E, =v Va2 - Vb2 = (Va +Vp) (Va _Vb)/Eo (6)

To minimize the use of external amplifiers, the sum-term is
obtained passively and the difference is inherently available at the
TThe equation that this scheme embodies is similar to that used (in a different guise) ina

patented digital-to-synchro converter designed by F. H. Fish, of the U.S. Naval Avionics
Facility, Indianapolis, Indiana.
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differential “x™ inputs. The AD7417J feedback amplifier converts
the output voltage to a current. When properly calibrated, and
adjusted for less than 100mYV error at full-scale, the output of this
circuit will differ from the theoretical value by less than 100mV
for any pair of input voltages over an output dynamic range
between 10V:0.3V and 10V/0.1V. Bandwidth is dc to 100kHz for
best accuracy and 600kHz for -3dB error.

15V +15V
Va (o] o
Eg 42k 20k
r‘\N\I——V‘ ;\r———'ﬂx BAL
= 20k
MYy Y BAL
Vb 20k
AN Eg BAL
Eg = +/ (V3 + Vp) (V, - V)
o x|, 3 9 12 1 1 \ =+/V,Z -Vp? 0.1V
Va IN ~X "
8 AD531K 2 OEo
AV
10k 5 1
0.1% I
CAL OPERATE
O—<
Vp IN 0K
0.1% st
CONSTRAINTS:
47k
IVa]Z>Vp| 3
47k 20k
IF V, AND Vi, ARE 2 4.7 MEG < GAIN
OF OPPOSITE POLARITY, 0% o
Wal+[Vp <10V = _—
¢ LOW-END ERROR
AAA
20k L
CALIBRATING THE CIRCUIT
Step Condition Adjust For
1 CAL,V, =V, =0V Eo BAL Eo =0V
2. CAL, V, = 20Vp-p, 10Hz, Vy = 0V
Pin 13 (AD531) grounded Y BAL Min. E,swing
Scope sensitivity 50mV/cm(V), 100ms/cm{H)
3. CAL,V, =V =0, 20Vp-p to pin 13 XBAL Min. Eg swing
Scope sensitivity as in (2)
4. OPERATE, V,_ = 10.00V, Vi, = 0V GAIN Eo=10.00V
5. OPERATE, V, = 1.00V, V, = 0V “Lowend” Eg=1.00V
6. OPERATE, V, = V=0V Eqo BAL Ep=0V

Figure 13. Vector-difference circuit using AD5317
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ADAPTIVE CONTROL (Figure 14)

It has been noted, in Chapter 2-4, that the multiplier is essentially
a remotely-operated gain control. Because it is free from the
reliability and speed problems of servoed potentiometers, and is
several orders-of-magnitude lower in cost, it is a natural choice for
variable gains in adaptive control systems. If the gain criteria are
determined by analog computation, analog multipliers (or di-
viders) are used; if they are determined digitally, multiplying D/A
converters, such as the monolithic AD7520, are used.

REGULATED MANIPULATED
VARIABLE VARIABLE
< PROCESS
SET ERROR X
POINT. 2 : CONTROLLER
LOCAL
CONDITIONS
I... & LOCAL LOCAL -
PARAMETER- SET-POINT | GAIN
DETER
EXTERNAL —¢i COMPUTER —a OTHER GAINS
CRITERIA % & AND SET-POINTS

Figure 14. Adaptive control loop: multiplier as loop-
gain adjuster

LINEARIZATION

Besides transducer linearization (discussed at length in Chapter
2-3), another interesting applications area for nonlinear devices,
especially high-speed multipliers, lies in linearizing inherently
nonlinear displays. For example, aside from other sources of
nonlinearity and error, the spot-position on the face of a
non-spherical cathode-ray tube is subject to “pincushion™ distor-
tion and defocusing as a consequence of the inherent geometrical
relationships.

As a result of such distortion, the x-coordinate, the y-coordinate,
and the spot width are multiplied by a.factor of the form

Va0 +(apy)? +1 %)
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where x and y are the deflection voltages.

In order to correct for this distortion, the deflection voltages
must, in effect, be divided by this term. Although it is feasible,
speed and accuracy limitations make it preferable to use an
approach in which a correction term (usually small) is added to
the deflection voltages at the deflection amplifier. In this way,
introduction of additional nonlinearity is minimized, and addi-
tional delay through the correction circuit applies only to a small
correction rather than the entire deflection signal.

The choice of a suitable additive function is not a matter agreed
upon by all designers. Examples of functions that have been
employed are:

kX = AV, +BV,(CV, +DV,2 +EV,V,) 88

kX =AV, +BV,(V,2 +V,?) 9y

KX =AV, +BV, +CV,\/V,2+V,2+D  (10)1°

The X-correction is shown in the above examples, but the
Y-correction is similar in form, as is the focus correction.

Vy  LINEAR X TERM

| X
DEFLECTION |—o
>< X CORRECTION AMPLIFIER

YOKE

DRIVE
LINEARITY
CORRECTION FOCUS CORRECTION
CIRCUIT
Y CORRECTION
\
DEFLECTION [t
Vy LINEAR Y TERM AMPLIFIER

Figure 15. Linearity correction for cathode-ray tubes

84 inearize Your CRT Displays,” Electronic Design 17, August 16, 1970.

91c Op Amps Straighten Out CRT Graphic Displays,” Electronics, January 4, 1971.

pistortion Correction in Precision Cathode-Ray Tube Display Systems, Intronics,

Inc., 1970.
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CONCLUSION

We have shown in these chapters many of the ways that
nonlinearity can be, is being, and will be used by system designers
to do jobs in a practical, economical, and (often) uncomplicated
manner. We have considered function fitting, function generation,
instrumentation and measurement, signal-processing, and sundry
other applications, as examples of the near-universality of the
analog approach.

In the next section, we shall inspect the devices that are used for
these applications more closely, with an eye to learning more
about how they are designed and understanding their important
properties, characteristics, and specifications.





