SECTION VIII

DSP HARDWARE

DSP HARDWARE

RISC VS. CISC VS. DSP ARCHITECTURES
RISC AND DSP APPLICATIONS

DSP PROCESSOR REQUIREMENTS

Fast Arithmetic

Zero Overhead Looping
Extended Dynamic Range
Dual Operand Fetch

Circular Buffers

ADSP-2101 MICROCOMPUTER GENERAL DESCRIPTION

ADSP-2101 ARCHITECTURE OVERVIEW

Arithmetic Logic Unit (ALU)
Muitiplier/Accumulator (MAC)
Shifter

Data Address Generators (DAGs)
Program Sequencer

Serial Ports

System Interface

DEVELOPMENT SYSTEM

SECTION VIII
DSP HARDWARE

RISC VErsus CISC ARCHITECTURES

As central processor (CPU) architectures
developed, their instruction sets became more
sophisticated. The complex-instruction-set
(CISC) computer includes instructions for
basic processor operations, plus single in-
structions that are highly sophisticated—for
example, to evaluate a high-order polyno-
mial. But CISC has a price: many of the
instructions execute via microcode in the
CPU and require numerous clock cycles—
plus silicon real estate for code storage.

RISC anp DSP APPLICATIONS

Although the RISC approach offers many
advantages in general purpose computing, it
is not well suited to DSP. For example, most
RISCs do not support single-instruction
multiplication, a very common and repetitive
operation in DSP. The DSP is optimized to
accomplish its task fast enough to maintain
real-time operation in the context of the
application, which requires single-cycle
arithmetic operations and accumulations.

DSP algorithms have unique require-
ments not found in general purpose comput-
ing such as circular buffering, pointer updat-
ing and fast looping with zero overhead, bit
reversing, barrel shifting, scaling, and data-
dependent execution branching. Each of
these should execute within the DSP instruc-
tion, and not as a separate time-consuming
instruction cycle. The computational unit
within the DSP must run efficiently, with

DSP HARDWARE

In contrast, the reduced-instruction-set
computer (RISC) recognizes that, in many
applications, basic instructions such as
LOAD and STORE—with simple addressing
schemes—are used much more frequently
than the advanced instructions, and should
not incur an execution penalty. These sim-
pler instructions are hardwired in the CPU
logic to execute in a single clock cycle, reduc-
ing execution time and CPU complexity.

data arriving from at least two separate data
memories with no time penalty for data
access. CISCs and RISCs support virtually
none of these needs.

Similarly, software programming for
RISCs and CISCs differs from that used in
DSP. RISCs and CISCs are programmed in
high-level languages to minimize software
development and hide the assembly language
from the programmer. For real-time DSP
applications, however, code optimization
(primarily of execution time, but also of
memory usage) requires that the software
engineer use assembly language to get
satisfactory performance. If the initial
results are not satisfactory after simulation,
critical sections of the program are examined
and recoded if necessary to reduce overall
execution time.

VIII-1

i B O e B R M e
MxED SIGNAL PROCESSING DESIGN SEMINAR

ARCHITECTURES
B Complex Instruction Set Computer (CISC)
B Reduced Instruction Set Computer (RISC)
B DSP Processor

Figure 8.1

DSP PROCESSOR REQUIREMENTS

Many DSP algorithms (such as digital equation shown in Figure 8.2 reveals that
filters and FFTs) rely heavily on the efficient !:her € aré some fundamen.tal properties
performance of the straight-forward sum-of- implicit in the mathematics.

products mathematics. Examining the

THE DSP KERNEL EQUATION
2 = h(0)x(0) + h(1)x(1) + h(2)x(2) + ... + h(N-1)x(N-1)
B The Equation is Based on Multiply-Accumulates (MACs)
There are N MACs - One for Each product

Each Product is Formed from 2 Values, One Value
is a Signal, x(i), the Other a Stored Coefficient, h(i)

Figure 8.2
The three algorithmic properties place function, Zh(i)x(i), and effects of finite word
specific requirements on processor architec- size arithmetic (i.e. quantization errors)
tures aimed at digital signal processing. The combine to produce five DSP architectural
fundamental properties of the DSP kernel requirements shown in Figure 8.3.

DSP ARCHITECTURE REQUIREMENTS

B Fast Arithmetic

Zero Overhead Looping
Extended Dynamic Range
Dual Operand Fetch
Circular Buffers

Figure 8.3

VIII-2

FAsT ARITHMETIC

Fast arithmetic is the simplest of these re-
quirements to understand. Since real-time
DSP applications are driven by performance,
the multiply-accumulate or MAC time is a
central requirement; faster MACs mean
potentially higher bandwidth. It is critical to
remember that MAC time alone does not
define DSP performance. This often forgot-
ten fact leads to an inadequate measure of
processor performance by simply examining
its MIPS (million instructions per second)
rating. Since most DSP and DSP-like archi-
tectures feature MACs that can execute an

ZERO OVERHEAD LOOPING

Zero overhead looping is required by the
repetitive nature of the kernel equation. The
multiply-accumulate function and the data
fetches needed are repeated N times every
time the kernel function is calculated. Tradi-
tional microprocessors implement loops that
have one instruction execution time or more

ExtENDED DynaMic RANGE

Extended dynamic range is a requirement
of finite word size arithmetic. The basic con-
volution requires repeated addition. Since
each product can be a full range value, one
accumulation of two products can cause
overflow beyond the word size of the proces-
sor. Traditional microprocessors and micro-
computers address overflow by providing an
overflow flag. The program then has the
added burden of testing the flag and condi-
tionally adjusting the results. Architectures

DuaL OreranD FETCH

Regardless of the nature of a processor,
performance limitations are generally based
on bus bandwidth. In the case of general
purpose processors, code is dominated by
single memory fetch instructions usually

DSP HARDWARE

instruction every cycle, most processors are
given a MIPS rating equal to its MAC
throughput. This does not necessarily ac-
count for the other factors that can degrade a
processors overall performance in real-world
applications. The other four criteria can
wipe out MAC gains if they are not satisfied.
In addition to the requirement for fast
arithmetic, a DSP should be able to support
other general purpose math functions and
should therefore have an appropriate arith-
metic logic unit (ALU) and a shifter function.

of overhead associated with them. DSP
architectures provide hardware support that
eliminates the need for looping instructions
within the loop body. For true DSP architec-
tures, the difference of zero overhead body
looping and programmed looping can easily
exceed 20% in available bandwidth.

designed specifically for DSP reduce this
problem by providing extended precision in
the accumulator function of the MAC. Sim-
ply adding 8 bits extends performance by
about 48dB. A further refinement of ex-
tended precision accumulation allows signed
overflow and underflow so that the interme-
diate values of the MAC can track the real-
world values that are applied with minimal
chance of loss of accuracy.

addressed as base plus offset value. This
leads architects to embed fixed data into the
instruction set so that this class of memory
access is fast and memory efficient. DSP on
the other hand is dominated by instructions

VIII-3

i S R I S s S R B RS
MIxED SIGNAL PROCESSING DESIGN SEMINAR

requiring two independent memory fetches.
This is driven by the basic form of the
convolution Xh(i)x(i). The goal of fast dual
operand fetches is to keep the MAC fully
loaded. We saw in the discussion on MACs
that the performance of a DSP is first limited
by MAC time. Assuming an adequate MAC
cycle time, two data values need to be sup-
plied at the same rate; reductions in operand
fetch bandwidth will result in corresponding
reductions in MAC bandwidth. Ideally, the
operand fetches occur simultaneously with

CIRCULAR BUFFERS

If we examine the kernel equation more
carefully, the advantages of circular buffering
in DSP applications become apparent. A
Finite Impulse Response (FIR) filter is used
to demonstrate the point. First, coefficients
or tap values for FIR filters are periodic in
nature. Second, FIR filters use the newest
real-world signal value and discard the oldest
value.

In the series of FIR filter equations, the N
coefficient locations are always accessed se-
quentially from h(0) to h(N-1). The associ-
ated data points circulate through the mem-
ory; new samples are added replacing the
oldest data each time a filter output is com-
puted. A fixed boundary RAM can be used to
achieve this circulating buffer effect. The
oldest data sample is replaced by the newest
after each convolution. A “time history” of
the N most recent samples is kept in RAM.

This delay line can be implemented in
fixed boundary RAM in a DSP chip if new
data values are written into memory, over-
writing the oldest value. To facilitate mem-
ory addressing, old data values are read from
memory starting with the value one location
after the value that was just written. In a 4-
tap FIR filter, for example, x(4) is written
into memory location 0, and data values are
then read from locations 1,2,3,and 0. This
example can be expanded to accommodate
any number of taps. By addressing data
memory locations in this manner, the ad-

VIII-4

the MAC instruction so that the combination
of the MAC and memory addressing occurs in
one cycle.

Dual operand fetch is implemented in
DSPs by providing separate buses for pro-
gram memory data and data memory data.
In addition, separate program memory
address and data memory address buses are
also provided. The MAC can therefore re-
ceive inputs from each data bus simultane-
ously. This architecture is often referred to
as the Harvard Architecture.

dress generator need only supply sequential
addresses regardless of whether the opera-
tion is a memory read or write. This data
memory buffer is called circular because
when the last location is reached, the mem-
ory pointer must be reset to the beginning of
the buffer.

The coefficients are fetched simultane-
ously with the data. Due to the addressing
scheme chosen, the oldest data sample is
fetched first. Therefore, the last coefficient
must be fetched first. The coefficients can be
stored backwards in memory: h(N-1) is the
first location, and h(0) is the last, with the
address generator providing incremental
addresses. Alternatively, coefficients can be
stored in a normal manner with the access-
ing of coefficients starting at the end of the
buffer, and the address generator being
decremented.

This allows direct support of unit delay
taps without software overhead. These data
characteristics are DSP algorithm-specific
and must be supported in hardware to
achieve the best DSP performance. Imple-
menting circular buffers in hardware allows
buffer parameters (i.e. start, length, etc.) to
be set up outside of the core instruction loop.
This eliminates the need for extra instruc-
tions within the loop body. Lack of a hard-
ware implementation for circular buffering
can significantly impact MAC performance.

SUMMARY

Any processor can accomplish any soft-
ware task, given enough time. However,
DSPs are optimized for the unique computa-
tional requirements of real-time, real-world
signal processing. Traditional computers are

DSP HARDWARE

better suited for tasks that can be performed
in non-real-time. In the following section, we
will examine the architecture of a high-
performance DSP Microcomputer, the ADSP-
2101.

ADSP-2101 MiCROCOMPUTER GENERAL DESCRIPTION

The ADSP-2101 is a single-chip microcom-
puter optimized for digital signal processing
and other high-speed numeric processing
applications. It combines the complete
ADSP-2100 core architecture (three compu-
tational units, data address generators, and
a program sequencer) with two serial ports,
a programmable timer, extensive interrupt
capabilities and on-board program and data

memory RAM. The ADSP-2101 has 1K
words of (16 bit) data memory RAM and 2K
words of (24 bit) program RAM on chip.

The ADSP-2101’s flexible architecture and
comprehensive instruction set support a high
degree of operational parallelism. In one
cycle the ADSP-2101 can perform the func-
tions shown in Figure 8.4.

ADSP-2101 SINGLE-INSTRUCTION CYCLE CAPABILITY

Update Timer

Generate the Next Program Address

Fetch the Next Instruction

Perform One or Two Data Moves

Update One or Two Data Address Pointers

Perform a Computational Operation

Receive and Transmit Data Via the Two Serial Ports

Figure 8.4

ADSP-2101 ARCHITECTURE OVERVIEW

Figure 8.5 is an overall block diagram of
the ADSP-2101. The processor contains
three independent computational units: the
ALU, the multiplier/accumulator (MAC) and
the shifter. The computational units process
16-bit data directly and have provisions to
support multiprecision computations. The
ALU performs a standard set of arithmetic
and logic operations; division primitives are
also supported. The MAC performs single-
cycle multiply, multiply/add, and multiply/

subtract operations. The shifter performs
logical and arithmetic shifts, normalization,
denormalization, and derive exponent opera-
tions. The shifter can be used to efficiently
implement numeric format control including
multiword floating-point representations.

The internal result (R) bus directly con-
nects the computational units so that the
output of any unit may be the input of any
unit on the next cycle.

VIII-5

i G D e S S P S 00
MixeDp SIGNAL PROCESSING DESIGN SEMINAR

A powerful program sequencer and two
dedicated data address generators ensure
efficient use of these computational units.
The sequencer supports conditional jumps,
subroutine calls and returns in a single cycle.
With internal loop counters and loop stacks,
the ADSP-2101 executes looped code with
zero overhead; no explicit jump instructions
are required to maintain the loop.

The data address generators (DAGs)
handle address pointer updates. Each DAG
keeps track of four address pointers. When-

ever the pointer is used to access data (indi-
rect addressing), it is post-modified by the
value of a specified modify register. Alength
value may be associated with each pointer to
implement automatic modulo addressing for
circular buffers. With two independent
DAGs, the processor can generate two ad-
dresses simultaneously for dual operand
fetches. The circular buffering feature is also
used by the serial ports for automatic data
transfers.

ADSP-2101 BLOCK DIAGRAM

INSTRUCTION
REGISTER

&

PROGRAM

=

L

DATA
ADDRESS
GENERATOR

I

DATA
ADDRESS
GENERATOR

2

m————

PROGRAM DATA
SRAM

1K X186

BOOT
ADDRESS
GENERATOR

I SEQUENCER /\ 7<

[AN [~~~ EXTERNAL
4, PMABUS ADDRESS

. 5 BUS

7 14
MUX # >
14 , DMABUS
C V4 — —— ——

24, PMD BUS \ S, EXTERNAL

— DATA

BUS

B <D

EXCHANGE 4‘1 MUX
WV ‘5/ AV
7 DMOD L
BUS
N/ AV4 A4
INPUT REGS INPUT REGS INPUT REGS COMPANDING
CIRCUITRY
TIMER

ALU MAC SHIFTER

OUTPUT REGS QUTPUT REGS OUTPUT REGS

16
Z 3
R BUS

R BUS

<

Transmil Reg

CONTROL
LOGIC

Transmit Reg

Bt

Receive Reg

Reg

SERIAL
PORT 0

¥

SERIAL
PORT 1

%

Figure 8.5

VIII-6

DSP HARDWARE

COMMON FEATURES OF ADSP-2100 FAMILY

2 Arithmetic Logic Unit

L Multiplier/Accumulator (With 40-Bit Accumulator)
B Barrel Shifter

& Two Data Address Generators

|| Program Sequencer

Figure 8.6

Efficient data transfer is achieved with
the use of five internal buses. The two
address buses (PMA and DMA) share a
single external address bus, and the two data

buses (PMD and DMD) share a single exter-
nal data bus. The BMS, DMS, and PMS
signals indicate which memory space the
external buses are being used for.

ADSP-2101 INTERNAL BUSES

Result (R) Bus

Program Memory Address (PMA) Bus
Program Memory Data (PMD) Bus
Data Memory Address (DMA) Bus
Data Memory Data (DMD) Bus

Figure 8.7

Program memory can store both instruc-
tions and data, permitting the ADSP-2101 to
fetch two data operands in a single cycle, one
from program memory and one from data
memory as well as an instruction from pro-
gram memory. Because the on-board pro-
gram memory is so fast, the ADSP-2101 can
fetch an operand from program memory and
the next instruction in the same cycle.

The memory interface supports slow
memories and memory-mapped peripherals
with programmable wait state generation.
External devices can gain control of buses
with bus request/grant signals (BR and BG).
One execution mode allows the ADSP-2101
to continue running while the buses are
granted to another master as long as an
external memory operation is not required.

The other execution mode requires the
processor to halt while the buses are granted.
The two serial ports provide a complete

serial interface with companding in hard-
ware and a wide variety of framed and
frameless data transmit and receive modes of
operation. Each port can generate an inter-
nal programmable serial clock or accept an
external serial clock.

Boot circuitry provides for loading on-chip
program memory automatically from byte-
wide external memory. After reset three wait
states are automatically generated. This
allows, for example, an 80ns ADSP-2101 to
use an external 250ns EPROM as boot
memory. Multiple programs can be selected
and loaded from the EPROM with no addi-
tional hardware.

VIII-7

e

MixED SIGNAL PROCESSING DESIGN SEMINAR

AritaMETIC Locic Unit (ALU)

The ALU is shown in Figure 8.8. The
ALU provides a standard set of arithmetic
and logic functions: add, subtract, negate,
increment, decrement, absolute value, AND,
OR, Exclusive OR and NOT. Two divide
primitives are also provided. The ALU takes
two 16-bit inputs, X and Y, and generates one
16-bit output, R. The carry-in feature en-
ables multiword computations. Six arithme-
tic status bits are generated: AZ (zero), AN
(negative), AV (overflow), AC (carry), AS
(sign), and AQ (quotient).

The X input port can be fed by either the
AX register set or any result register via the
R-bus (AR, MRO, MR1, MR2, SRO, or SR1).
The AX register set contains two registers,
AXO0 and AX1. The AX registers can be
loaded from the DMD bus. The Y input port
can be fed by either the AY register set or the
ALU feedback (AF) register. The AY register
set contains two registers, AY0 and AY1. The
AY registers can be loaded from either the
DMD bus or the PMD bus.

The register outputs are dual-ported so
that one register can provide input to the
ALU while either one simultaneously drives
the DMD bus. The ALU output can be
loaded into either the AR register or the AF
register.

The AR register has a saturation capabil-
ity; it can be automatically set to plus or
minus the maximum value if an overflow or
underflow occurs. The AR register can drive
both the R bus and the DMD bus and can be
loaded from the DMD bus.

The ALU contains a duplicate bank of
registers shown in Figure 8.8 behind the
primary registers. The secondary set con-
tains all the registers described above (AXO,
AX1, AYO0, AY1, AF, AR). Only one set is
accessible at a time. The two sets of regis-
ters allow fast context switching, such as for
interrupt servicing.

ALU BLOCK DIAGRAM

PMD BUS 24,

OMD BUS 15,

A 16 (wPpER)

AR
REGISTER

16 % /- BUS

Figure 8.8

VIII-8

DSP HAarRDWARE

ALU FEATURES

Feedback Paths
Six Status Flags
Saturation

Implements Divide Primitives
Provisions for Double Precision
Complete Set of Background Registers

Figure 8.9

EXAMPLE ALU INSTRUCTIONS

[| AR = AX0 + AYO

| AF = MR1 XOR AY1

] AR = AXO + AF

Figure 8.10

MurTIPLIER/AccUMULATOR (MAC)

The multiplier/accumulator (MAC) imple-
ments high-speed multiply, multiply/add,
and multiply/subtract operations. Ablock
diagram of the MAC section is shown in
Figure 8.11.

The multiplier takes two 16-bit inputs, X
and Y, and generates one 32-bit output, P.
The 32-bit output is routed to a 40-bit accu-
mulator which can add or subtract the P
output from the value in MR. MR is a 40-bit
register which is divided into three sections:
MRO (Bits 0-15), MR1 (Bits 16-31), and MR2
(Bits 21-29). The result of the accumulator
is either loaded into the MR register or into
the 16-bit MAC feedback (MF') register. The
multiplier accepts the X and Y inputs in
either signed or unsigned formats.

In default operation the result is shifted
one bit to the left to remove the redundant
sign bit for fractional justification; an op-
tional mode on the ADSP-2101 inhibits this
shift for integer operations. The accumula-
tor generates one status bit, MV, which is set

when the accumulator result overflows the
32-bit boundary. A saturate instruction is
available to change the contents of the MR
register to the maximum or minimum 32-bit
value if MV is set. The accumulator also has
the capability for rounding the 40-bit result
at the boundary between bit 15 and bit 16.

The MAC and ALU registers are similar.
The X input port can be fed by either the MX
register set (MX0, MX1) or any result regis-
ter via the R-bus (AR, MRO, MR1, MR2, SRO,
or SR1). The MX register set is readable and
loadable from the DMD bus and has dual-
ported outputs.

The Y input port can be fed by either the
MY register set (MY0, MY1) or the MF
register. The MY register set it readable
from the DMD bus and readable and load-
able from both the DMD and the PMD bus.
Its outputs are also dual-ported. The accu-
mulator output can be loaded into either the
MR register or the MF register. The MR
register is connected to both the R-bus and

VIII-9

MIXED SIGNAL PROCESSING DESIGN SEMINAR

MAC BLOCK DIAGRAM
PMD BUS 24,
7
DMD BUS 16, 16 (uppER)
7 A
MUX
4
i MX o
REGISTERS REGISTERS

2x 16

2x16

X Y WE
MULTIPUIER REGISTER
P

40, 32y 151

ADD ! SUBTRACT Lo v
R2 R1 RO
AR v v 7 ¥
I MUX —I i MUX j L MUX I
3// 16// 16
4 4 7

MRA2 MR1 MRO
REGISTER REGISTER REGISTER

Ixczl

o
$ 15, J;- R - BUS
7

Figure 8.11

the DMD-bus. Like the ALU section, the registers (MX0, MX1, MY0, MY1, MF, MRO
MAC section contains two complete banks of =~ MR1, MR2) to allow fast context switching.

VIII-10

MAC FEATURES

Feedback Paths

40-Bit Accumulator

Saturation

Mixed Mode Input Operands
Provisions for Multiprecision

Complete Set of Background Registers

Figure 8.12

2

DSP HARDWARE

EXAMPLE MAC INSTRUCTIONS

E MR=MXO*MYO

BE MR=0

B MF=AR*MF

HE MR=MX0*MF

B MR=MR+MX1*MYO

Figure 8.13

SHIFTER

The shifter gives the ADSP-2101 its
unique capability to handle data formatting
and numeric scaling. Figure 8.14 shows a
block diagram of the shifter.

The shifter can be divided into the follow-
ing components: the shifter array, the OR/
PASS logic, the exponent detector and the
exponent compare logic. These components
give the shifter its six basic functions: arith-
metic shift, logical shift, normalization,
denormalization, derive exponent and derive
block exponent.

The shifter array is a 16 x 32 barrel
shifter. It accepts a 16-bit input and can
place it anywhere in the 32-bit output field,
from off-scale right to off-scale left. The
shifter can perform arithmetic shifts (shifter
output is sign-extended to the left) or logical
shifts (shifter output is zero-filled to the left).
The placement of the 16-bit input is deter-
mined by the control code (C) and the HI/LLO
reference signal.

SHIFTER BLOCK DIAGRAM

OMD BUS

15

se
REGISTER

' A

Sl
REGISTER I

\

COMPARE l [

EXPONENT
DETECTOR

MuUXx
ss
—
x
l 1 X
HI/ LO- R SHIFTER

From
INSTRUCTION

A - BUS

L4 ¢ ARRAY

[o
MUX -——nié—} {:2

i OR I PASS

SE
REGISTER 7 b
NEGATE A1¢ '8

7 ¥ 4

MUX I

¥

SA1 SRO
REGISTER REGISTER
A /

16

V.7

Figure 8.14

VIII-11

Lo e) S S S S RS

MixED SIGNAL PROCESSING DESIGN SEMINAR

SHIFTER FEATURES

Arithmetic and Logical Shifts

Left and Right Shifts

True Block Floating Point

Direct Support for Double Precision
Complete Set of Background Registers

Figure 8.15

SHIFTER OPERATIONS

Normalize

Denormalize

Shift Immediate

Derive Exponent
Derive Block Exponent

Figure 8.16

EXAMPLE SHIFTER INSTRUCTIONS
B SR=ASHIFTSIBY-6

B SR=LSHIFTSRBY3
B SR=NORMMR1
Figure 8.17

Data ApDRESS GENERATORS (DAGs)

A block diagram of a data address genera-
tor is shown in Figure 8.18. The data ad-
dress generators (DAGs) provide indirect
addressing for data stored in the program
and data memory spaces. The processor
contains two independent DAGs so that two
data operands (one in program memory and
one in data memory) can be addressed simul-
taneously. The two data address generators
are identical except that DAG1 has a bit
reversal option on the output (used for FFTs)

VIII-12

and can only generate data memory ad-
dresses, while DAG2 can generate both
program and data memory addresses but has
no bit reversal capability. Both DAGs can
also be used for serial port autobuffering.
There are three register files in each DAG:
the modify (M) register file, the index (I)
register file, and the length (L) register file.
Each of these register files contains four 14-
bit registers which are readable and loadable
from the DMD bus. The I registers hold the

Jiicismrminsion oo R S R R S S i

DSP HARDWARE

DATA ADDRESS GENERATOR BLOCK DIAGRAM

DMD BUS

FROM ¥
INSTRUCTION Z‘& MUX ;
2 14 14 14y 14)y
% /] / A 7 FROM
INSTRUCTION
A % 2
L MODUL ! v
REGISTERS Log CUS REGISTERS REGISTERS
ax14 ! 4x14 4x14
T Iy
A k:
14,
Y, ADD

]

A
BIT
REVERSE DAG1 ONLY

ADDRESS

Figure 8.18

actual addresses used to access external
memory. When using the indirect addressing
mode, the selected I register content is driven
onto either the PMA or DMA bus. This value
is post-modified by adding the (signed) con-
tents of the selected M register. The modi-
fied address is passed through the modulus
logic.

Associated with each I registeris an L
register which contains the length of the

buffer addressed by the I register. The L
register and the modulus logic together
enable circular buffer addressing with auto-
matic wraparound at the buffer boundary.
Automatic wraparound is also used by the
serial ports to generate the serial port inter-
rupt when operating in autobuffering mode.
The modulus logic is disabled by setting the
L register to zero.

ADDRESS GENERATOR FEATURES

B Automatic Modulo Addressing
[| Simultaneous Address Update
B Bit-Reverser (DAG # 1

Figure 8.19

VIII-13

L

MxED SIGNAL PROCESSING DESIGN SEMINAR

EXAMPLE ADDRESSING INSTRUCTIONS
E AXO=DM (0, M3)
B MODIFY (11, M2)
H MR = MR+MX0*MYO0, MX0=DM(I0,M1), MYO=PM(I4,M4)
Figure 8.20

PRrROGRAM SEQUENCER

The program sequencer incorporates
powerful and flexible mechanisms for pro-
gram flow control such as zero-overhead
looping, single-cycle branching (both condi-
tional and unconditional), and automatic
interrupt processing. Figure 8.21 shows a
block diagram of the program sequencer.
The sequencing logic controls the flow of the
program execution. It outputs a program
memory address onto the PMA bus from one
of four sources: the PC incrementer, PC
stack, instruction register, or interrupt
controller. The next address source selector
controls which of these four sources are
selected based on the current instruction
word and the processor status. A fifth pos-
sible source for the next program memory
address is provided by DAG2 when a register
indirect jump is executed.

The program counter (PC) is a 14-bit
register which contains the address of the
currently executing instruction. The PC
output goes to the incrementer. The incre-
mented output is selected as the next pro-
gram memory address if program flow is
sequential. The PC value is pushed into the
16 x 14 PC stack when a CALL instruction is

VIII-14

executed or when an interrupt is processed.
The PC stack is popped when the return from
a subroutine or interrupt is executed. The
PC stack is also used in zero-overhead loop-
ing.

The program sequencer section contains
six status registers. These are the Arithme-
tic Status register (ASTAT), the Stack Status
register (SSTAT), the Mode Status register
(MSTAT), the Interrupt Control register
(ICNTL), the Interrupt Mask register
(IMASK) and the Interrupt Force and Clear
register (IFC).

The interrupt controller allows the proces-
sor to respond to the six possible interrupts
with a minimum of overhead. Individual
interrupt requests are logically ANDed with
the bits in IMASK; the highest priority
unmasked interrupt is then selected.

The interrupt control register, ICNTL,
allows each interrupt to be set as either edge-
or level-sensitive. Depending on Bit 4 in
ICNTL, interrupt routines can either be
nested with higher priority interrupts taking
precedence or processed sequentially with
only one interrupt service active at a time.

—
DSP HARDWARE

ADSP-2101 PROGRAM SEQUENCER

ADORESS of JUMPICALL (14
bita)

CONDITION CODE {4 FUNCTION FIELD
DMD BUS 16 blis)
ADDRESS of
LAST INSTRUCTION
in LOOP. |14 bits}
&
TERMINATION
CONDITION (4 bits)
|
e From INSTRUCTION REGISTER
4 x 14 COUNT 18
STACK
& 4
COUNTER v Siiag
4
l T
Lo 7 x 21 STATUS 1
2
STACK 8 CONDITION . Loop
& toGic COMPARATOR
ARITHMETIC
STATUS STATUS REGISTERS

{IMASK)g i

__75; INTERRUPT
CONTROLLER
PROGRAM
HO2 PC STACK COUNTER
SPORTO Tranamit 16 X 14 MUX

SPORTO Recelve

SPORT?t Trenamit or tRQY
SPORT1 Recelve or IRGQ INCREMENT L1 rom
TiMER J" FiPn
NEXT
ADDRESS
NEXT ADDRESS SOURCE
Mux SELECT

Ji PMA BUS 14

Figure 8.21

PROGRAM SEQUENCER FEATURES

Automatic Operation, Transparent to User
Full Interrupt Capabilities

Four Stacks

Single-Cycle Conditional Branch
Zero-Overhead Looping

Figure 8.22

VIII-15

—

MIixeD SIGNAL PROCESSING DESIGN SEMINAR

SERIAL PORTS

The ADSP-2101 incorporates two complete Each serial port has a 5-pin interface
serial ports (SPORTO and SPORT].) for Seﬁal consistin_g of the Signals Shown in Figure
communications and multiprocessor coordi- 8.24.

nation. Ablock diagram of one of the serial
ports is shown in Figure 8.23.

VIII-16

SERIAL PORT BLOCK DIAGRAM

DMD Bus

16

Companding

~ Txn) Hardware RXn
Transmit Data Register <:> Receive Data Register

16
16
Serial

trransmit Shift Register Contro! Receive Shift Register l
Internal
Serial
Clock
Generator
DT TFS SCLK RFS DR
Figure 8.23

- SERIAL PORT INTERFACE LINES

L SCLK Serial Clock I/0

il RFS Receive Frame Synch /O

| TFS Transmit Frame Synch /O

] DR Serial Data Receive

] DT Serial Data Transmit
Figure 8.24

DSP HARDWARE

Each SPORT has a receive and a transmit ADSP-2101 supports both of the widely used
register. Companding (a contraction of COM- algorithms for companding: A-law and p-law.
pressing and exPANDing) is the process of The type of companding can be independ-
logarithmically encoding data to reduce the ently selected for each SPORT.
number of bits that must be sent. The

SERIAL PORT FEATURES

Dual Purpose Function of Serial Port 1
Optional p-Law and A-Law Companding
Automatic Data Memory Buffering
Programmable Word Length
Multichannel Capabilities

Figure 8.25
SYSTEM INTERFACE

Figure 8.26 shows a basic system configu- grammable wait state generation allows the
ration with the ADSP-2101, two serial processor to interface easily to slow memo-
codecs, a boot EPROM and optional external ries.

Program and Data memories. Up to 15K The ADSP-2101 also provides one external
words of data memory and 16K words of interrupt and two serial ports or three exter-
program memory can be supported. Pro- nal interrupts and one serial port.

ADSP-2101 BASIC SYSTEM CONFIGURATION

Clock or Crystal
L %4

SCLK
CLKIN XTAL cLKouT v ND
L ov o © RES Serlal Device
SERIAL | TFS
—* RESET PORT 0 [* o7
—_— (Optional}
-l TRG2 OR
= ADSP-2101
58 SCLK
semiaL fe SOt A0 1 oliat Devi
v
— o MMaAP ey I TFs or GT. erlal Device
DT or FO
— [(Optionsai}
PMS R R ADDRESS DATA BM3 BWS DR or Ft
14 24
A A
o] L3
Dl.’l-l e 223-22 0'5.‘
24 8
1
e L ‘
A b C8 A b Cs A o TS
3 GE oE
800T
wE wE MEMORY
250ns
(Optional) (Optional}
©.9., EPROM
PROGRAM DATA
MEMORY 2764
MEMORY 27128
27256
PERIPHERALS
27512
Figure 8.26

VIII-17

_
MIXED SIGNAL PROCESSING DESIGN SEMINAR

DEVELOPMENT SYSTEM

The ADSP-2101 is supported by a com-
plete set of tools for software and hardware
system development. The System Builder
provides a high-level method for defining the
architecture of systems under development.
The Assembler produces the object code and

Simulator provides an interactive instruc-
tion-level simulation with a reconfigurable
user interface. APROM Splitter generates
PROM burner compatible files. The C Com-
piler generates ADSP-2101 assembly source
code. An Emulator aids in the hardware

the Linker combines object modules and

) debugging of ADSP-2101 systems.
library calls into an executable file. The

HARDWARE AND SOFTWARE DEVELOPMENT TOOLS

System Builder

C Compiler
Assembler

Linker

Simulator

Prom Splitter
Evaluation Board
In-Circuit Emulator

Figure 8.27
ANALOG DEVICES DSP PROCESSOR PORTFOLIO

) (R
FLOATING POINT

- Application Specific Functions

ADSP-21020
Floating Point
Processor

* Higher Levels of Integration

J
T)

MIXED SIGNAL
Application

_ 7~ ADSP

21msp50

(.
FIXED POINT

Larger Internal Memorles
Higher Levels of Integration

System Performance

Time

Figure 8.28

VIII-18

REFERENCES
(AVAILABLE FROM ANALOG DEVICES)

1.

10.

11.

12.

13.

14.

15.

16.

17.

ADSP-2100/ADSP-2100A Digital Signal Processor, Data Sheet
ADSP-2101 DSP Microcomputer, Data Sheet

ADSP-2105 DSP Microcomputer, Data Sheet

ADSP-2111 DSP Microcomputer with Host Port, Data Sheet
ADDS-21XX DSP Software Development Tools, Data Sheet
ADDS-21XX DSP Hardware Development Tools, Data Sheet
ADDS-2101-SW DSP Software Development Tools, Data Sheet
ADSP-2101 Emulator, Data Sheet

ADDS-2101-EZ Tools, Data Sheet

ADSP-2101 User’s Manual

ADSP-2101 Cross-Software Manual

ADSP-2101 Emulator Manual

ADSP-2101 EZ-ICE Manual

ADSP-2101 EZ-LLAB Manual

ADSP-2111 User’s Manual

Digital Signal Processing Applications Using the ADSP-2100 Family

(Applications Handbook, Volumes 1, 2, and 3)

ADSP-2100 Family Applications Handbook, Volume 4

DSP HaRDWARE

VIII-19

