

# Measuring SpO<sub>2</sub> and Heart Rate Using the MAX32664C – A Quick Start Guide

UG6924: Rev 4: 1/20

#### **Abstract**

The MAX32664C is a variant of the MAX32664 sensor-hub family, which is specifically targeted for measurement of  $\mathrm{SpO}_2$  and heart rate. Combined with the MAX86141/MAXM86161 optical sensor and a 3-axis accelerometer, it provides the sensor's raw data, as well as calculated  $\mathrm{SpO}_2$  and heart-rate data, to a host device through its I²C slave interface. This document provides step-by-step instructions that enable a user to communicate with the MAX32664C and to calibrate, configure, and receive measurement and monitoring data.

Maxim Integrated Page 1 of 29

# **Table of Contents**

| Introduction                                                                                                                                     | 4  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1 Architecture                                                                                                                                   | 5  |
| 1.1 Communicating with the MAX32664C                                                                                                             | 7  |
| 1.2 Power-Saving Considerations                                                                                                                  | 8  |
| 1.2.1 Report Rate                                                                                                                                | 8  |
| 1.2.2 Polling Period                                                                                                                             | 8  |
| 1.2.3 Report Content                                                                                                                             | 8  |
| 1.3 Accelerometer                                                                                                                                | 8  |
| 2 SpO <sub>2</sub> Calibration                                                                                                                   | 10 |
| 3 Measuring SpO <sub>2</sub> and Heart Rate on Wrist—SpO <sub>2</sub> and WHRM                                                                   | 13 |
| 3.1 Raw Data Collection Mode                                                                                                                     | 13 |
| 3.2 AGC Mode                                                                                                                                     | 14 |
| 3.3 AEC Mode                                                                                                                                     | 20 |
| 3.4 Power-Saving Mode                                                                                                                            | 21 |
| 4 Configurations and Settings                                                                                                                    | 21 |
| 5 Using SCD State and Motion Detection for Power Saving                                                                                          | 25 |
| 6 Power Consumption Estimate                                                                                                                     | 28 |
| Revision History                                                                                                                                 | 29 |
| List of Figures                                                                                                                                  |    |
| Figure 1. Architecture diagram for health-sensing applications using an SPI interface to communicate with the sensor (such as the MAX86141)      | 6  |
| Figure 2. Architecture diagram for health-sensing applications using an $I^2C$ interface to communicate with the sensor (such as the MAXM86161). | 6  |
| Figure 3. Host interface signaling.                                                                                                              | 7  |

# **List of Tables**

| Table 1. Read Status Byte Value                                                                                           | 7  |
|---------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Host-Side Accelerometer—Sending Data to the MAX32664C                                                            | 9  |
| Table 3. Host Commands—SpO <sub>2</sub> in Calibration Mode                                                               | 11 |
| Table 4. Format of Received Samples—SpO <sub>2</sub> in Calibration Mode                                                  | 12 |
| Table 5. Host Commands—Raw Data Mode                                                                                      | 13 |
| Table 6. Format of Received Samples—Raw Data Mode                                                                         | 14 |
| Table 7. Host Commands—AGC Mode                                                                                           | 15 |
| Table 8. Format of Received Samples—Normal Algorithm Report                                                               | 16 |
| Table 9. Format of Received Samples—Extended Algorithm Report                                                             | 17 |
| Table 10. Host Commands—AEC Mode                                                                                          | 20 |
| Table 11. Algorithm Configuration and Settings                                                                            | 21 |
| Table 12. Frequently Used Sensor Hub Settings and Commands                                                                | 24 |
| Table 13. Host Commands to Enable/Disable Wake Up on Motion Configuration of Sensor H<br>Accelerometer for Off-Skin State |    |
| Table 14. Comparison of Active and Deep Sleep Power—Single Supply ( $V_{\text{DD}}$ Only)                                 | 28 |
| Table 15. Comparison of Active and Deep Sleep Power—Dual Supply ( $V_{\text{DD}}$ and $V_{\text{CORE}}$ )                 | 28 |
| Table 16. Estimated Power Consumption for the MAX32664C                                                                   | 28 |
|                                                                                                                           |    |

Maxim Integrated Page 3 of 29

#### Introduction

The MAX32664C is a variant of the MAX32664 sensor-hub family that enables users to capture raw data, as well as calculated SpO<sub>2</sub> and heart-rate data. The firmware includes the drivers and algorithm that are required to interface with a sensor device, such as the MAX86141, through the SPI port, or the MAXM86161 through first I<sup>2</sup>C port as master. The second I<sup>2</sup>C interface is slave and dedicated to establishing communication with a host microcontroller.

In order to properly capture and calculate the data, this solution requires an accelerometer. The MAX32664C firmware includes the required drivers for the Kionix® KX122 accelerometer, which is wired together with the sensor to the same SPI or I²C port. Alternatively, a host-side accelerometer can be used. In this case, the sampled accelerometer data must be periodically reported to the MAX32664C by the host microcontroller using commands described in this application note.

This document provides the instructions necessary to create a solution with the MAX32664C based on the MAXREFDES102# reference design.

NOTE: The instructions in this document are compatible with the MAX32664C firmware version 30.9.x (MAX86141), or 32.9.x (MAXM86161) and later. If you are using older firmware, make sure to upgrade the firmware.

Kionix is a registered trademark of Kionix, Inc.

Maxim Integrated Page 4 of 29

#### 1 Architecture

A typical health-sensing design includes a host microcontroller that communicates with the MAX32664C through the I<sup>2</sup>C bus. Two GPIO pins are needed to control the reset and the startup in Application or Bootloader mode through the RSTN and multifunction input/output (MFIO) pins.

To enter Bootloader mode:

- Set the RSTN pin to low for 10ms.
- While RSTN is low, set the MFIO pin to low. (The MFIO pin should be set to low at least 1ms before the RSTN pin is set to high.)
- After the 10ms has elapsed, set the RSTN pin to high.
- After an additional 50ms has elapsed, the MAX32664 is in Bootloader mode.

#### To enter Application mode:

- Set the RSTN pin to low for 10ms.
- While RSTN is low, set the MFIO pin to high.
- After the 10ms has elapsed, set the RSTN pin to high. (The MFIO pin should be set to high at least 1ms before the RSTN pin is set to high.)
- After an additional 50ms has elapsed, the MAX32664 is in Application mode and the application performs its initialization of the application software.
- After approximately 1 second from when the RSTN pin was set to high, the application completes the initialization and the device is ready to accept I<sup>2</sup>C commands.

The MFIO pin (normally set to high) is used in Application mode to wake up the MAX32664C from its Deep Sleep mode prior to any I<sup>2</sup>C communication. The MAX32664C interfaces to the optical sensor through either the SPI bus (such as the MAX86141), or I<sup>2</sup>C bus (such as the MAXM86161), subject to firmware support of the sensor.

An accelerometer is mandatory for heart-rate monitoring. A KX122 accelerometer can be connected directly to the MAX32664C. The interrupt line of the accelerometer is recommended to be connected to the MAX32664C to support motion detection power saving. Alternatively, an external 3-axis host-side accelerometer can be used. In this case, the host needs to periodically provide accelerometer readings to the sensor hub using the commands provided in this document. For more information, see the **MAX32664 User Guide**.

The optical sensor utilizes green and/or red and infrared (IR) LEDs to transmit pulses and one or more photodiodes (PD) to collect reflected or residual light. By default, the heart-rate monitoring algorithm uses a green LED (LED1) and two PDs (PD1 and PD2). The SpO<sub>2</sub> employs one IR LED (LED2) and one red LED (LED3) with one PD (PD1).

Note: If a configuration other than default is used, the user should change the LED and PD configuration for heart-rate and SpO<sub>2</sub> algorithms using the provided commands (see **Table 11**) prior to enabling the algorithm.

Maxim Integrated Page 5 of 29

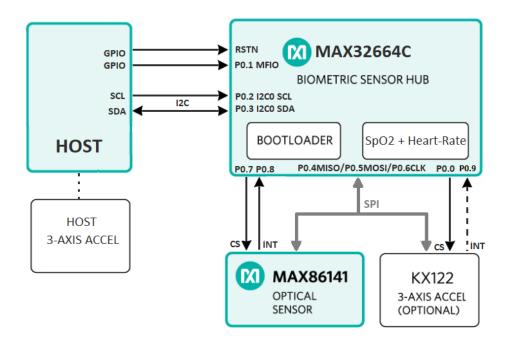



Figure 1. Architecture diagram for health-sensing applications using an SPI interface to communicate with the sensor (such as the MAX86141).

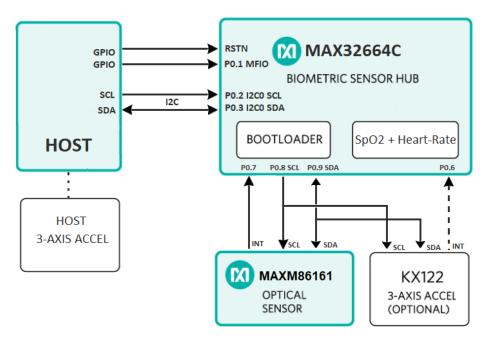



Figure 2. Architecture diagram for health-sensing applications using an I<sup>2</sup>C interface to communicate with the sensor (such as the MAXM86161).

Maxim Integrated Page 6 of 29

### 1.1 Communicating with the MAX32664C

A host uses the I<sup>2</sup>C bus to communicate with the MAX32664C (slave) using a series of commands. A generic write command includes the following fields:

```
Slave_WriteAddress(1 byte)|Command_Family(1 byte)|Command_Index(1
byte)|Value(multiple bytes)
```

A generic response includes the following fields:

```
Slave ReadAddress(1 byte)|Status(1 byte)|Value (multiple bytes)
```

Slave WriteAddress and Slave ReadAddress are set to 0xAA and 0xAB, respectively.

The read status byte is an indicator of success (0x00) or failure, as shown in **Table 1**.

**Table 1. Read Status Byte Value** 

| STATUS BYTE VALUE | DESCRIPTION                                                                   |
|-------------------|-------------------------------------------------------------------------------|
| 0x00              | The write transaction was successful.                                         |
| 0x01              | Illegal Family Byte and/or Command Byte was used.                             |
| 0x02              | This function is not implemented.                                             |
| 0x03              | Incorrect number of bytes sent for the requested Family Byte.                 |
| 0x04              | Illegal configuration value was attempted to be set.                          |
| 0x05              | Incorrect mode specified. (In bootloader: Device is busy. Try again)          |
| 0x80              | General error while receiving/flashing a page during the bootloader sequence. |
| 0x81              | Checksum error while decrypting/checking page data.                           |
| 0x82              | Authorization error.                                                          |
| 0x83              | Application not valid.                                                        |
| 0xFE              | Device is busy. Try again.                                                    |
| 0xFF              | Unknown error.                                                                |

Normally, when MAX32664C is idle, it switches to Deep Sleep mode to save power. An external interrupt-like sensor, host MFIO, or RTC alarm forces the MAX32664C to wake up.

In particular, the host is required to wake up the MAX32664C prior to any I<sup>2</sup>C communication by:

- Setting the MFIO pin to low at least 250µs before the beginning of an I<sup>2</sup>C transaction to make sure the MAX32664C is awake.
- Keeping the MFIO pin low during the I<sup>2</sup>C transaction to make sure the MAX32664C will not switch to Deep Sleep mode.
- Setting MFIO to high after the end of I<sup>2</sup>C communication to allow the MAX32664C to switch back to Deep Sleep mode.

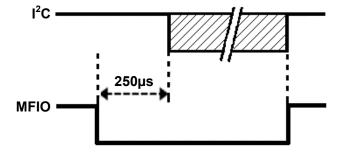



Figure 3. Host interface signaling.

Maxim Integrated Page 7 of 29

This document provides examples of commands for establishing communication with the MAX32664C. For a complete list of commands and instructions for the I<sup>2</sup>C interface, see the **MAX32664 User Guide**.

#### 1.2 Power-Saving Considerations

#### 1.2.1 Report Rate

The MAX32664C goes into deep sleep in Idle mode and wakes up on internal or external interrupts. To maximize the benefits of low power, the host may configure the report period of the algorithm to a longer time. In this case, the report is generated less frequently.

This report rate is configured through an I2C command, as shown in **Table 12**.

#### 1.2.2 Polling Period

The host is required to regularly poll the MAX32664C to read available measurement data. The polling period depends on the rate that the MAX32664C report is generated. By reducing the report period, polling is needed less often and hence the number of wake-up events will be reduced significantly.

The polling period can be set four to five times the length of the report period to avoid FIFO overflow. In this case, several samples will be read in each polling.

By default, the report rate is set to one per sample, which translates to 40ms. In this case, a 200ms polling period is suggested.

## 1.2.3 Report Content

If the sensor data such as accelerometer and photoplethysmogram (PPG) signals are not required, the host may choose to request only algorithm data. This reduces the I<sup>2</sup>C communication time and affects power consumption. This is performed by configuring the output mode to Algorithm Only.

This output mode is configured through an I2C command, as shown in **Table 12**.

#### 1.3 Accelerometer

The MAX32664C requires accelerometer data to function properly. In particular, an accelerometer is mandatory for a heart-rate monitor to be able to compensate for the user's motion. Otherwise, the reported heart rate will not be correct during movement.

 $SpO_2$  calculation requires a resting condition, and the algorithm uses accelerometer data to detect excessive motion. In such a condition, computation is paused, and the user is informed with a motion flag.

A sensor hub accelerometer can be integrated through the SPI port of the MAX32664C. In this case, the required driver for KX122 is already included. The user only needs to follow the reference schematics to connect the accelerometer and enable it before starting the algorithm, as described later in this document. Normally, the accelerometer is polled to collect samples. The interrupt line is only needed if the SCD-based power saving procedure is implemented in the host.

Alternatively, a host-side accelerometer can be used. However, this option requires strict timing synchronization between the sampled accelerometer data and PPG samples of ±40ms or less. In order to use the host-side accelerometer:

Maxim Integrated Page 8 of 29

- 1. The host should start the accelerometer just before enabling the algorithm to maximize the initial synchronization between the PPG and accelerometer samples. However, accelerometer samples collected prior to receiving the confirmation of the algorithm enable I2C command should be discarded.
- 2. The host is required to use a 3-axis accelerometer at a 25Hz sampling rate. If a higher sampling rate is chosen, samples should be decimated to be synchronized with a 40ms PPG sampling time.
- 3. The host must queue five accelerometer samples and feed them at the same time to the MAX32664C using the commands shown in **Table 2**. The period of feeding samples should be 200ms. This is the longest delay that the MAX32664C can tolerate to receive accelerometer samples.

Because the sensor and the host accelerometer use different clock sources, exact synchronization between them is not possible. The MAX32664C internally decimates or interpolates accelerometer samples as needed to compensate a drift.

Table 2. Host-Side Accelerometer—Sending Data to the MAX32664C

| HOST COMMAND<br>(HEX)                        | DESCRIPTION                                                                                                                 | MAX32664<br>RESPONSE<br>(HEX) | DESCRIPTION                                                 |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|
| AA 44 04 01 01                               | Enable the host accelerometer.                                                                                              | AB 00                         | Success                                                     |
| AA 13 00 04                                  | Read the sensor sample size for the accelerometer (optional).                                                               | AB 00 06                      | Success; 6 is the<br>number of bytes per<br>samples in FIFO |
| The following should be                      | e executed periodically at 200ms                                                                                            | S:                            |                                                             |
| AA 14 00 [Sample 1 values] [Sample N values] | Write data to the input FIFO of the sensor hub. Each sample has three 2-byte integer values for X, Y, and Z in milli-g. N=5 | AB 00                         | Success                                                     |
| AA 00 00                                     | Read the sensor hub status.                                                                                                 | AB 00 00                      | Success; sensor hub not busy                                |

Maxim Integrated Page 9 of 29

## 2 SpO<sub>2</sub> Calibration

Due to variations in the physical design and optical shield of the final product, a calibration procedure for  $SpO_2$  is required to be performed once in a controlled environment. This procedure is important to ensure the quality of the  $SpO_2$  calculation. This step is typically performed in a standard lab with a reference  $SpO_2$  device to determine three calibration coefficients: a, b, and c. The details of the calibration procedure are described in the **Guidelines for SpO2 Measurement Using the Maxim MAX32664 Sensor Hub** application note.

Once three calibrations coefficients are obtained, they need to be loaded to the MAX32664C every time prior to starting the algorithm. But first, they are required to be converted to a 32-bit integer format using the following:

- $A_{int32}$  = round (10<sup>5</sup> x a)
- $B_{int32}$  = round (10<sup>5</sup> x b)
- $C_{int32}$  = round (10<sup>5</sup> x c)

For example, the default measured calibration coefficients are:

- a = -16.666666
- b = 8.3333333
- c = 100

They are sent to the MAX32664C in integer format after conversion:

- $A_{int32}$  = round (10<sup>5</sup> x a) = 0xFFE69196
- $B_{int32}$  = round (10<sup>5</sup> x b) = 0x000CB735
- $C_{int32}$  = round (10<sup>5</sup> x c) = 0x00989680

The calibration coefficients may be stored in the host flash separately and loaded to the MAX32664C after every reset.

**Table 3** shows the sequence of commands for the calibration process. **Table 4** shows the format of received samples. Typically, R values are needed for the calibration process, as described in the **Guidelines for SpO2 Measurement Using the Maxim MAX32664 Sensor Hub** application note.

Maxim Integrated Page 10 of 29

Table 3. Host Commands—SpO<sub>2</sub> in Calibration Mode

| # HOST COMMAND (HEX) COMMAND DESCRIPTION                                                                                                                                                                                                                                                                              | RESPONSE<br>(HEX)                   |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Host initializes the MAX32664C in calibration mode and starts the algorithm using following commands:                                                                                                                                                                                                                 |                                     |  |  |  |  |  |
| 1.1 AA 10 00 03* Set the output mode to sensor + algorithm data (streamed data will include PPG accelerometer a algorithm data).*                                                                                                                                                                                     |                                     |  |  |  |  |  |
| 王 1.2 AA 10 01 01 Set the sensor hub interrupt threshold.                                                                                                                                                                                                                                                             | AB 00                               |  |  |  |  |  |
| 1.3 AA 10 02 01* Set the report rate to be one report per every ser sample.*                                                                                                                                                                                                                                          | nsor AB 00                          |  |  |  |  |  |
| AA 10 01 01   Set the sensor hub interrupt threshold.                                                                                                                                                                                                                                                                 | d by                                |  |  |  |  |  |
| 1.5 AA 50 07 0A 06 Set the mode to SpO <sub>2</sub> Calibration.                                                                                                                                                                                                                                                      | AB 00                               |  |  |  |  |  |
| 7 1.6 Optional: Any command to change the algorithm settings and configurate default setting should appear here BEFORE enabling the algorithm.                                                                                                                                                                        | ations ( <b>Table 11</b> ) from the |  |  |  |  |  |
| 1.7 AA 52 07 01 Enable the algorithm; the analog front-end (AFE) sensor hub accelerometer will be enabled autom                                                                                                                                                                                                       |                                     |  |  |  |  |  |
| Host reads samples periodically (repeated as needed):                                                                                                                                                                                                                                                                 | ·                                   |  |  |  |  |  |
| 2.1 AA 00 00 Read the sensor hub status byte: Bit 0: Sensor comm error                                                                                                                                                                                                                                                | AB 00 08                            |  |  |  |  |  |
| Bits 1 and 2: Reserved                                                                                                                                                                                                                                                                                                |                                     |  |  |  |  |  |
| Bit 3: FIFO filled to threshold (DataRdyInt)                                                                                                                                                                                                                                                                          |                                     |  |  |  |  |  |
| Bit 4: Output FIFO overflow (FifoOutOvrInt)                                                                                                                                                                                                                                                                           |                                     |  |  |  |  |  |
| Bit 5: Input FIFO overflow (FifoInOverInt)                                                                                                                                                                                                                                                                            |                                     |  |  |  |  |  |
| Bit 6: Sensor hub busy (DevBusy)                                                                                                                                                                                                                                                                                      |                                     |  |  |  |  |  |
| Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt) Bit 6: Sensor hub busy (DevBusy) Bit 7: Reserved If DataRdyInt is set, proceed to the next step.  2.2 AA 12 00 Get the number of samples (nn) in the FIFO. |                                     |  |  |  |  |  |
| 2.2 AA 12 00 Get the number of samples (nn) in the FIFO.                                                                                                                                                                                                                                                              | AB 00 nn                            |  |  |  |  |  |
| 2.3 AA 12 01 Read the data stored in the FIFO; nn samples wi                                                                                                                                                                                                                                                          |                                     |  |  |  |  |  |
| included. The format of the samples is shown in                                                                                                                                                                                                                                                                       |                                     |  |  |  |  |  |
| Host ends the procedure:                                                                                                                                                                                                                                                                                              |                                     |  |  |  |  |  |
| 3.1 AA 44 00** 00 Disable the AFE (e.g., the MAX86141).** 3.2 AA 44 04 00 Disable the accelerometer.                                                                                                                                                                                                                  | AB 00                               |  |  |  |  |  |
| 3.2 AA 44 04 00 Disable the accelerometer.                                                                                                                                                                                                                                                                            | AB 00                               |  |  |  |  |  |
| 3.3 AA 52 07 00 Disable the algorithm.                                                                                                                                                                                                                                                                                | AB 00                               |  |  |  |  |  |

<sup>\*</sup>The host is required to poll the MAX32664C for an available report. A report is available per every sensor sample. Since the effective sample rate is 25Hz, this means the report will be ready every 40ms. Depending on the output mode, the report may include algorithm and/or sensor data (see **section 1.2** and **Table 12**).

Maxim Integrated Page 11 of 29

<sup>\*\*</sup>Provided indexes are examples for sensors such as the MAX86141 or MAXM86161.

Table 4. Format of Received Samples—SpO<sub>2</sub> in Calibration Mode

|                                |               | Received Sair                                                               |                           | <sub>2</sub> in Calibration Mode                                                                                                                                                                                                                                                  |
|--------------------------------|---------------|-----------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA<br>SOURCE                 | BYTE<br>INDEX | DATA ITEM                                                                   | # OF BYTES<br>(MSB FIRST) | DESCRIPTION                                                                                                                                                                                                                                                                       |
|                                | 0             | PPG1                                                                        | 3                         | N/A                                                                                                                                                                                                                                                                               |
| MAX86141                       | 3             | PPG2                                                                        | 3                         | N/A                                                                                                                                                                                                                                                                               |
| PPG Data                       | 6             | PPG3                                                                        | 3                         | N/A                                                                                                                                                                                                                                                                               |
| (18 Bytes)*                    | 9             | PPG4                                                                        | 3                         | N/A                                                                                                                                                                                                                                                                               |
| (10 Dytes)                     | 12            | PPG5                                                                        | 3                         | IR LED counter                                                                                                                                                                                                                                                                    |
|                                | 15            | PPG6                                                                        | 3                         | Red LED counter                                                                                                                                                                                                                                                                   |
| Accelerometer                  | 18            | accelX                                                                      | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                                                    |
| (6 Bytes)*                     | 20            | accelY                                                                      | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                                                    |
| (O Dytes)                      | 22            | accelZ                                                                      | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                                                    |
|                                | 24            | Op mode                                                                     | 1                         | Current operation mode: 0: Continuous Heart-Rate Monitor (HRM) and Continuous SpO <sub>2</sub> 1: Continuous HRM and One-Shot SpO <sub>2</sub> 2: Continuous HRM 3: Sampled HRM 4: Sampled HRM and One-Shot SpO <sub>2</sub> 5: Activity Tracking 6: SpO <sub>2</sub> Calibration |
|                                | 25            | HR                                                                          | 2                         | N/A                                                                                                                                                                                                                                                                               |
|                                | 27            | HR confidence                                                               | 1                         | N/A                                                                                                                                                                                                                                                                               |
|                                | 28            | RR                                                                          | 2                         | N/A                                                                                                                                                                                                                                                                               |
|                                | 30            | RR confidence                                                               | 1                         | N/A                                                                                                                                                                                                                                                                               |
|                                | 31            | Activity class                                                              | 1                         | N/A                                                                                                                                                                                                                                                                               |
|                                | 32            | R                                                                           | 2                         | 1000x calculated R value                                                                                                                                                                                                                                                          |
|                                | 34            | SpO <sub>2</sub> confidence                                                 | 1                         | Calculated confidence in %                                                                                                                                                                                                                                                        |
|                                | 35            | SpO <sub>2</sub> confidence                                                 | 2                         | N/A                                                                                                                                                                                                                                                                               |
|                                | 37            | SpO <sub>2</sub> % complete                                                 | 1                         | N/A                                                                                                                                                                                                                                                                               |
| Wearable<br>Suite<br>Algorithm | 38            | SpO <sub>2</sub> // complete<br>SpO <sub>2</sub> low signal<br>quality flag | 1                         | Shows the low quality of the PPG signal: 0: Good quality 1: Low quality                                                                                                                                                                                                           |
| (20 Bytes)**                   | 39            | SpO <sub>2</sub> motion flag                                                | 1                         | Shows excessive motion: 0: No motion 1: Excessive motion                                                                                                                                                                                                                          |
|                                | 40            | SpO <sub>2</sub> low PI flag                                                | 1                         | Shows the low perfusion index (PI) of the PPG signal: 0: Normal PI 1: Low PI                                                                                                                                                                                                      |
|                                | 41            | SpO <sub>2</sub> unreliable R flag                                          | 1                         | Shows the reliability of R: 0: Reliable 1: Unreliable                                                                                                                                                                                                                             |
|                                | 42            | SpO <sub>2</sub> state                                                      | 1                         | Reported status of the SpO <sub>2</sub> algorithm: 0: LED adjustment 1: Computation 2: Success 3: Timeout                                                                                                                                                                         |
|                                | 43            | Skin contact<br>detector (SCD)<br>state                                     | 1                         | Skin contact state: 0: Undetected 1: Off skin 2: On some subject 3: On skin                                                                                                                                                                                                       |

Page 12 of 29 Maxim Integrated

<sup>\*</sup>If the output mode includes the sensor.
\*\*If the output mode includes the algorithm.

## 3 Measuring SpO<sub>2</sub> and Heart Rate on Wrist—SpO<sub>2</sub> and WHRM

#### 3.1 Raw Data Collection Mode

For hardware testing purposes, the user may choose to start the MAX32664C to collect raw PPG samples. In this case, the host configures the MAX32664C to work in Raw Data mode (no algorithm) by enabling the accelerometer and the AFE. **Table 5** lists the set of commands that are needed to work in this mode. In Raw Data mode, only raw PPG samples and accelerometer data are included in the received samples.

Table 5. Host Commands—Raw Data Mode

|                 | #    | HOST COMMAND<br>(HEX)                                               | COMMAND DESCRIPTION                                                 | RESPONSE<br>(HEX) |
|-----------------|------|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|
|                 |      |                                                                     | n Raw Data mode using following commands:                           |                   |
|                 | 1.1  | AA 10 00 01*                                                        | Set the output mode to Sensor Only.*                                | AB 00             |
|                 | 1.2  | AA 10 01 01                                                         | Set the sensor hub interrupt threshold.                             | AB 00             |
|                 | 1.3  | AA 44 04** 01 00 (if                                                | Enable the accelerometer.                                           | AB 00             |
|                 |      | sensor hub                                                          |                                                                     |                   |
|                 |      | accelerometer is used)                                              |                                                                     |                   |
|                 |      | AA 44 04** 01 01 (if host                                           |                                                                     |                   |
|                 |      | accelerometer is used)                                              |                                                                     |                   |
|                 | 1.4  | AA 44 00** 01 00                                                    | Enable AFE (e.g., MAX86141).**                                      | AB 00             |
|                 |      |                                                                     | e next command. Any command to change the sensor registe            | ers should        |
| <del> </del>    |      |                                                                     | or or they will be overwritten.                                     |                   |
| START           |      | fault, the algorithm sets the                                       |                                                                     |                   |
| က်              |      | le rate: 100Hz, 1-sample av                                         | eraging                                                             |                   |
|                 |      | ation time: 117µs                                                   |                                                                     |                   |
|                 |      | 1 and 2 range: 32μΑ<br>1, 2, and 3 full range: 124m                 | ۸                                                                   |                   |
|                 |      | AA 40 00 12 18                                                      | Set the sample rate of the MAX86141 to 100Hz with 1-                | AB 00             |
|                 | 1.10 | AA 40 00 12 10                                                      | sample averaging.                                                   | AD 00             |
|                 | 1.11 | AA 40 00 23 7F                                                      | Set the MAX86141 LED1 current to half of full scale.                | AB 00             |
|                 |      |                                                                     | Reduce [7F] if the signal is saturated.                             |                   |
|                 | 1.12 | AA 40 00 24 7F                                                      | Set the MAX86141 LED2 current to half of full scale. AB 00          |                   |
|                 |      |                                                                     | Reduce [7F] if the signal is saturated.                             |                   |
|                 | 1.13 | AA 40 00 25 7F Set the MAX86141 LED3 current to half of full scale. |                                                                     | AB 00             |
|                 |      |                                                                     | Reduce [7F] if the signal is saturated.                             |                   |
|                 |      | eads samples periodically (                                         |                                                                     | 1                 |
|                 | 2.1  | AA 00 00                                                            | Read the sensor hub status byte:                                    | AB 00 08          |
| က္သ             |      |                                                                     | Bit 0: Sensor comm error                                            |                   |
| ٣               |      |                                                                     | Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) |                   |
| F               |      |                                                                     | Bit 4: Output FIFO overflow (FifoOutOvrInt)                         |                   |
| ¥               |      |                                                                     | Bit 5: Input FIFO overflow (FifoInOverInt)                          |                   |
| (5)             |      |                                                                     | Bit 6: Sensor hub busy (DevBusy)                                    |                   |
| Ž               |      |                                                                     | Bit 7: Reserved                                                     |                   |
| $\overline{Q}$  |      |                                                                     | If DataRdyInt is set, proceed to the next step.                     |                   |
| READING SAMPLES | 2.2  | AA 12 00                                                            | Get the number of samples (nn) in the FIFO.                         | AB 00 nn          |
| I.E.            | 2.3  | AA 12 01                                                            | Read the data stored in the FIFO; nn samples (24 bytes              | AB 00             |
|                 |      |                                                                     | each) will be included. The format of samples is shown in           | data_for_         |
|                 |      |                                                                     | Table 6.                                                            | nn_samples        |
| P               |      | ends the procedure:                                                 |                                                                     |                   |
| STOP            | 3.1  | AA 44 00** 00                                                       | Disable the AFE (e.g., the MAX86141).**                             | AB 00             |
|                 | 3.2  | AA 44 04 00                                                         | Disable the accelerometer.                                          | AB 00             |

<sup>\*</sup>The host is required to poll the MAX32664C for an available report. A report is available per every sensor sample.

Maxim Integrated Page 13 of 29

<sup>\*\*</sup>Provided indexes are examples for sensors such as the MAX86141 or MAXM86161.

Table 6. Format of Received Samples—Raw Data Mode

| DATA SOURCE                | BYTE<br>INDEX | DATA<br>ITEM | # OF BYTES<br>(MSB FIRST) | DESCRIPTION                    |
|----------------------------|---------------|--------------|---------------------------|--------------------------------|
|                            | 0             | PPG1         | 3                         | Green counter                  |
| MAY96141                   | 3             | PPG2         | 3                         | N/A                            |
| MAX86141<br>PPG Data       | 6             | PPG3         | 3                         | N/A                            |
| (18 Bytes)                 | 9             | PPG4         | 3                         | Green2 counter                 |
| (To bytes)                 | 12            | PPG5         | 3                         | IR counter                     |
|                            | 15            | PPG6         | 3                         | Red counter                    |
| Accelerometer<br>(6 Bytes) | 18            | accelX       | 2                         | Two's complement. LSB = 0.001g |
|                            | 20            | accelY       | 2                         | Two's complement. LSB = 0.001g |
|                            | 22            | accelZ       | 2                         | Two's complement. LSB = 0.001g |

#### 3.2 AGC Mode

In this mode, the wearable algorithm suite ( $SpO_2$  and WHRM) is enabled and the R value,  $SpO_2$ ,  $SpO_2$  confidence level, heart rate, heart-rate confidence level, RR value, and activity class are reported. Furthermore, automatic gain control (AGC) is enabled. Because AGC is a subset of AEC functionality, to enable AGC, AEC still needs to be enabled. However, automatic calculation of target PD should be turned off, and the desired level of AGC target PD current is set by the user. The user may change the algorithm to the desired configuration mode, as shown in **Table 11**. If signal quality is low, a LowSNR flag will be set. Excessive motion is also reported with a flag. The sequence of commands is shown in **Table 7**.

Following operation mode of the algorithm can be selected as described in **Table 11**:

- 0. **Continuous HRM + Continuous SpO<sub>2</sub>:** Both heart-rate and SpO<sub>2</sub> values are continuously measured and updated.
- 1. **Continuous HRM + One-Shot SpO<sub>2</sub>:** Heart rate is continuously monitored; SpO<sub>2</sub> is measured once.
- 2. **Continuous HRM:** Only the heart-rate algorithm in continuous mode is enabled.
- 3. **Sampled HRM:** It measures heart rate once using the sampled HRM algorithm and then switches to activity mode.
- 4. **Sampled HRM + One-Shot SpO<sub>2</sub>:** It measures heart rate and SpO<sub>2</sub>, and then switches to activity mode.
- 5. Activity Tracking ONLY: Only shows accelerometer data. LEDs are off.
- 6. **SpO<sub>2</sub> Calibration:** Used for SpO<sub>2</sub> calibration. Only red and IR LEDs are activated, and R value is being measured and updated to be used in the calibration procedure.

Maxim Integrated Page 14 of 29

Table 7. Host Commands—AGC Mode

|                 | #      | HOST COMMAND<br>(HEX)                                                         | COMMAND DESCRIPTION                                                                                                                                                                                                                                                                                                   | RESPONSE<br>(HEX) |
|-----------------|--------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                 | Host i | nitializes the MAX32664C                                                      | in AGC mode using the following commands:                                                                                                                                                                                                                                                                             |                   |
|                 | 1.1    | AA 50 07 00<br>[FFE69196000CB735<br>00989680]*                                | This step is ONLY needed if non-default calibration coefficients are used to write the SpO <sub>2</sub> calibration coefficients as derived according to <b>section 2</b> . Provided coefficients are for example only.*                                                                                              | AB 00             |
|                 | 1.2    | AA 10 00 03**                                                                 | Set the output mode to sensor + algorithm data (streamed data will include PPG, accelerometer, and algorithm data).**                                                                                                                                                                                                 | AB 00             |
|                 | 1.3    | AA 10 01 01                                                                   | Set the sensor hub interrupt threshold.                                                                                                                                                                                                                                                                               | AB 00             |
|                 | 1.4    | AA 10 02 01**                                                                 | Set the report rate to be one report per every sensor sample.**                                                                                                                                                                                                                                                       | AB 00             |
| START           | 1.5    | AA 44 04 01 01 (if host accelerometer is used)                                | Enable the host-side accelerometer, if used.                                                                                                                                                                                                                                                                          | AB 00             |
| STA             | 1.6    | AA 50 07 0A 00                                                                | Set the algorithm operation mode to Continuous HRM and Continuous SpO <sub>2</sub> or as needed. See <b>Table 11</b> .                                                                                                                                                                                                | AB 00             |
|                 | 1.7    | AA 50 07 0B 01                                                                | Enable AEC [enabled by default].                                                                                                                                                                                                                                                                                      | AB 00             |
|                 | 1.8    | AA 50 07 12 00                                                                | Disable Auto PD Current Calculation.****                                                                                                                                                                                                                                                                              | AB 00             |
|                 | 1.9    | AA 50 07 0C 00                                                                | Disable SCD.                                                                                                                                                                                                                                                                                                          | AB 00             |
|                 | 1.10   | AA 50 07 11 00 64                                                             | Set AGC Target PD Current to 10µA or as needed.                                                                                                                                                                                                                                                                       | AB 00             |
|                 | 1.11   |                                                                               | to change the algorithm settings and configurations ( <b>Table 11</b> ) ere BEFORE enabling the algorithm.                                                                                                                                                                                                            | from the          |
|                 | 1.12   | AA 52 07 01 (normal algorithm report) AA 52 07 02 (extended algorithm report) | Enable WHRM and SpO <sub>2</sub> algorithm.  The format of samples is shown in <b>Table 8</b> (normal algorithm report) or <b>Table 9</b> (extended algorithm report).                                                                                                                                                | AB 00             |
|                 | Host r | eads samples periodically                                                     | / (repeated as needed):                                                                                                                                                                                                                                                                                               |                   |
| READING SAMPLES | 2.1    | AA 00 00                                                                      | Read the sensor hub status byte: Bit 0: Sensor comm error Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt) Bit 6: Sensor hub busy (DevBusy) Bit 7: Reserved If DataRdyInt is set, proceed to the next step. | AB 00 08          |
| Ä               | 2.2    | AA 12 00                                                                      | Get the number of samples (nn) in the FIFO.                                                                                                                                                                                                                                                                           | AB 00 nn          |
| Ŀ               | 2.3    | AA 12 01                                                                      | Read the data stored in the FIFO; nn samples will be read.                                                                                                                                                                                                                                                            | AB 00             |
|                 |        |                                                                               | The format of the samples is shown in <b>Table 8</b> (normal                                                                                                                                                                                                                                                          | data_for_         |
|                 |        |                                                                               | algorithm report) or <b>Table 9</b> (extended algorithm report).                                                                                                                                                                                                                                                      | nn_samples        |
| STOP            | Host e | ends the procedure:                                                           |                                                                                                                                                                                                                                                                                                                       |                   |
| ST              | 3.1    | AA 52 07 00                                                                   | Disable the algorithm.                                                                                                                                                                                                                                                                                                | AB 00             |
|                 |        |                                                                               | example. Actual data should be derived as described in section 2                                                                                                                                                                                                                                                      |                   |

<sup>\*</sup>Provided 12-byte calibration data is an example. Actual data should be derived as described in **section 2**.

Maxim Integrated Page 15 of 29

<sup>\*\*</sup>The host is required to poll the MAX32664C for an available report. A report is available per every sensor sample. Since the effective sample rate is 25Hz, this means the report will be ready every 40ms. Depending on the output mode, the report may include algorithm and/or sensor data (see **section 1.2** and **Table 12**).

<sup>\*\*\*</sup>Provided indexes are examples for sensors such as the MAX86141 or MAXM86161.

<sup>\*\*\*\*</sup>After disabling the Auto PD Current Calculation, the algorithm will use the value in step 1.10 to adjust AGC.

Table 8. Format of Received Samples—Normal Algorithm Report

| DATA<br>SOURCE            | BYTE<br>INDEX | DATA ITEM                                | # OF BYTES<br>(MSB FIRST) | DESCRIPTION                                                                                                                                                                                                                                                  |
|---------------------------|---------------|------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COOKOL                    | 0             | PPG1                                     | 3                         | Green counter                                                                                                                                                                                                                                                |
|                           | 3             | PPG2                                     | 3                         | N/A                                                                                                                                                                                                                                                          |
| MAX86141                  | 6             | PPG3                                     | 3                         | N/A                                                                                                                                                                                                                                                          |
| PPG Data                  | 9             | PPG4                                     | 3                         | Green2 counter                                                                                                                                                                                                                                               |
| (18 Bytes)*               | 12            | PPG5                                     | 3                         | IR LED counter                                                                                                                                                                                                                                               |
|                           | 15            | PPG6                                     | 3                         | Red LED counter                                                                                                                                                                                                                                              |
|                           | 18            | accelX                                   | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                               |
| Accelerometer             | 20            | accelY                                   | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                               |
| (6 Bytes)*                | 22            | accelZ                                   | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                               |
|                           | 24            | Op mode                                  | 1                         | Current operation mode: 0: Continuous HRM and Continuous SpO <sub>2</sub> 1: Continuous HRM and One-Shot SpO <sub>2</sub> 2: Continuous HRM 3: Sampled HRM 4: Sampled HRM and One-Shot SpO <sub>2</sub> 5: Activity tracking 6: SpO <sub>2</sub> calibration |
|                           | 25            | HR                                       | 2                         | 10x last calculated heart rate                                                                                                                                                                                                                               |
|                           | 27            | HR confidence                            | 1                         | Last calculated confidence level in %                                                                                                                                                                                                                        |
|                           | 28            | RR                                       | 2                         | 10x RR – interbeat interval in ms Only shows a nonzero value when a new value is calculated.                                                                                                                                                                 |
|                           | 30            | RR confidence                            | 1                         | Calculated confidence level of RR in % Only shows a nonzero value when a new value is calculated.                                                                                                                                                            |
| Wearable                  | 31            | Activity class                           | 1                         | Activity class: 0: Rest 1: Other 2: Walk 3: Run 4: Bike                                                                                                                                                                                                      |
| Suite                     | 32            | R                                        | 2                         | 1000x last calculated SpO <sub>2</sub> R value                                                                                                                                                                                                               |
| Algorithm<br>(20 Bytes)** | 34            | SpO <sub>2</sub> confidence              | 1                         | Last calculated SpO <sub>2</sub> confidence level in %                                                                                                                                                                                                       |
|                           | 35            | SpO <sub>2</sub>                         | 2                         | 10x last calculated SpO <sub>2</sub> %                                                                                                                                                                                                                       |
|                           | 37            | SpO <sub>2</sub> % complete              | 1                         | Calculation progress in % in one-shot mode of algorithm. In continuous mode, it is reported as zero and only jumps to 100 when the SpO <sub>2</sub> value is updated.                                                                                        |
|                           | 38            | SpO <sub>2</sub> low signal quality flag | 1                         | Shows the low quality of the PPG signal: 0: Good quality 1: Low quality                                                                                                                                                                                      |
|                           | 39            | SpO <sub>2</sub> motion flag             | 1                         | Shows excessive motion: 0: No motion 1: Excessive motion                                                                                                                                                                                                     |
|                           | 40            | SpO <sub>2</sub> low PI flag             | 1                         | Shows the low perfusion index (PI) of the PPG signal: 0: Normal PI 1: Low PI                                                                                                                                                                                 |
|                           | 41            | SpO <sub>2</sub> unreliable R flag       | 1                         | Shows the reliability of R: 0: Reliable 1: Unreliable                                                                                                                                                                                                        |
|                           | 42            | SpO <sub>2</sub> state                   | 1                         | Reported status of the SpO <sub>2</sub> algorithm: 0: LED adjustment                                                                                                                                                                                         |
|                           |               |                                          |                           |                                                                                                                                                                                                                                                              |

Maxim Integrated Page 16 of 29

|    |           |   | 1: Computation 2: Success 3: Timeout                                        |
|----|-----------|---|-----------------------------------------------------------------------------|
| 43 | SCD state | 1 | Skin contact state: 0: Undetected 1: Off skin 2: On some subject 3: On skin |

<sup>\*</sup>If the output mode includes the sensor.

Table 9. Format of Received Samples—Extended Algorithm Report

| DATA<br>SOURCE            | BYTE<br>INDEX | DATA ITEM                 | # OF BYTES<br>(MSB FIRST) | DESCRIPTION                                                                                                                                                                                                                                                  |
|---------------------------|---------------|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 0             | PPG1                      | 3                         | Green counter                                                                                                                                                                                                                                                |
| MAX86141                  | 3             | PPG2                      | 3                         | N/A                                                                                                                                                                                                                                                          |
| PPG Data                  | 6             | PPG3                      | 3                         | N/A                                                                                                                                                                                                                                                          |
| (18 Bytes)*               | 9             | PPG4                      | 3                         | Green2 counter                                                                                                                                                                                                                                               |
| (10 Dytes)                | 12            | PPG5                      | 3                         | IR LED counter                                                                                                                                                                                                                                               |
|                           | 15            | PPG6                      | 3                         | Red LED counter                                                                                                                                                                                                                                              |
| Accelerometer             | 18            | accelX                    | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                               |
| (6 Bytes)*                | 20            | accelY                    | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                               |
| (O Dytes)                 | 22            | accelZ                    | 2                         | Two's complement. LSB = 0.001g                                                                                                                                                                                                                               |
|                           | 24            | Op mode                   | 1                         | Current operation mode: 0: Continuous HRM and Continuous SpO <sub>2</sub> 1: Continuous HRM and One-Shot SpO <sub>2</sub> 2: Continuous HRM 3: Sampled HRM 4: Sampled HRM and One-Shot SpO <sub>2</sub> 5: Activity Tracking 6: SpO <sub>2</sub> Calibration |
|                           | 25            | HR                        | 2                         | 10x last calculated heart rate                                                                                                                                                                                                                               |
|                           | 27            | HR confidence             | 1                         | Last calculated confidence level in %                                                                                                                                                                                                                        |
|                           | 28            | RR                        | 2                         | 10x RR – inter-beat interval in ms<br>Only shows a nonzero value when a new<br>value is calculated.                                                                                                                                                          |
| Wearable<br>Suite         | 30            | RR confidence             | 1                         | Calculated confidence level of RR in % Only shows a nonzero value when a new value is calculated.                                                                                                                                                            |
| Algorithm<br>(52 Bytes)** | 31            | Activity class            | 1                         | Activity class: 0: Rest 1: Other 2: Walk 3: Run 4: Bike                                                                                                                                                                                                      |
|                           | 32            | Total walk steps          | 4                         | Total number of walking steps since the last reset                                                                                                                                                                                                           |
|                           | 36            | Total run steps           | 4                         | Total number of running steps since the last reset                                                                                                                                                                                                           |
|                           | 40            | Total energy exp in kcal  | 4                         | 10x total energy expenditure since the last reset in kcal                                                                                                                                                                                                    |
|                           | 44            | Total AMR in kcal         | 4                         | 10x total active energy expenditure since the last reset in kcal                                                                                                                                                                                             |
|                           | 48            | Is LED current adjustment | 1                         | Flag to notify if the LED current adjustment is requested or not in the first time slot                                                                                                                                                                      |

Maxim Integrated Page 17 of 29

<sup>\*\*</sup>If the output mode includes the algorithm.

|    | requested in first time slot                            |   |                                                                                                                                                                       |
|----|---------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45 | Adjusted LED                                            | 2 | 10x value of the adjusted LED current (mA) in the first time slot, valid only if "Is LED current adjustment requested in first time slot" flag is true                |
| 5  | Is LED current adjustment requested in second time slot | 1 | Flag to notify if the LED current adjustment is requested or not in the second time slot                                                                              |
| 52 | slot                                                    | 2 | 10x value of the adjusted LED current (mA) in the second time slot, valid only if the "Is LED current adjustment requested in second time slot" flag is true          |
| 54 | Is LED current adjustment requested in third time slot  | 1 | Flag to notify if the LED current adjustment is requested or not in the third time slot                                                                               |
| 55 | Adjusted LED current in third time slot                 | 2 | 10x value of the adjusted LED current (mA) in third time slot, valid only if the "Is LED current adjustment requested in third time slot" flag is true                |
| 57 | Is integration time adjustment requested                | 1 | Flag to notify if the integration time adjustment is requested or not                                                                                                 |
| 58 | Requested integration time                              | 1 | Value of the requested integration time option, valid only if the "Is integration time adjustment requested" flag is true                                             |
| 59 | Is sampling rate adjustment requested                   | 1 | Flag to notify if the sampling rate adjustment is requested or not                                                                                                    |
| 60 | Requested sampling rate                                 | 1 | Value of the requested sampling rate option, valid only if the "Is sampling rate adjustment requested" flag is true                                                   |
| 6  | average                                                 | 1 | Sampling average required for the requested sampling rate, valid only if the "Is sampling rate adjustment requested" flag is true                                     |
| 62 | WHRM AFE controller state for HRM channels              | 1 | State of the AFE manager (for WHRM channels)                                                                                                                          |
| 63 | Is high motion for HRM                                  | 1 | Flag to notify if the motion is considered high for heart-rate measurement                                                                                            |
| 64 |                                                         | 1 | Skin contact state: 0: Undetected 1: Off skin 2: On some subject 3: On skin                                                                                           |
| 65 |                                                         | 2 | 1000x last calculated SpO <sub>2</sub> R value                                                                                                                        |
| 67 | SpO <sub>2</sub> confidence                             | 1 | Last calculated confidence level in %                                                                                                                                 |
| 68 |                                                         | 2 | 10x last calculated SpO <sub>2</sub> %                                                                                                                                |
| 70 | SpO <sub>2</sub> % complete                             | 1 | Calculation progress in % in one-shot mode of algorithm. In continuous mode, it is reported as zero and only jumps to 100 when the SpO <sub>2</sub> value is updated. |

Maxim Integrated Page 18 of 29

| 71 | SpO <sub>2</sub> low<br>signal quality<br>flag | 1 | Shows the low quality of the PPG signal: 0: Good quality 1: Low quality                                   |
|----|------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------|
| 72 | SpO <sub>2</sub> motion flag                   | 1 | Shows excessive motion: 0: No motion 1: Excessive motion                                                  |
| 73 | SpO <sub>2</sub> low PI<br>flag                | 1 | Shows the low perfusion index (PI) of the PPG signal: 0: Normal PI 1: Low PI                              |
| 74 | SpO <sub>2</sub><br>unreliable R<br>flag       | 1 | Shows the reliability of R: 0: Reliable 1: Unreliable                                                     |
| 75 | Status                                         | 1 | Reported status of the SpO <sub>2</sub> algorithm: 0: LED adjustment 1: Computation 2: Success 3: Timeout |

Page 19 of 29 Maxim Integrated

<sup>\*</sup>If the output mode includes the sensors.
\*\*If the output mode includes the algorithm.

#### 3.3 AEC Mode

In this mode, the algorithm and AEC and SCD are all enabled (by default). The algorithm mode of operation can be selected as described in previous section. The sequence of commands is shown in Table 10.

Table 10. Host Commands—AEC Mode

|                 | #      | HOST COMMAND                                                                          | COMMAND DESCRIPTION                                                                                                                                                                                                                                                                                           | RESPONSE                         |
|-----------------|--------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                 |        | (HEX)                                                                                 |                                                                                                                                                                                                                                                                                                               | (HEX)                            |
|                 | 1.1    | AA 50 07 00<br>[FFE69196000CB73500<br>989680]*                                        | This step is ONLY needed if non-default calibration coefficients are used to write the SpO <sub>2</sub> calibration coefficients as derived according to <b>section 2</b> . Provided coefficients are for example only.*                                                                                      | AB 00                            |
|                 | 1.2    | AA 10 00 03**                                                                         | Set the output mode to sensor + algorithm data (streamed data will include PPG, accelerometer, and algorithm data).**                                                                                                                                                                                         | AB 00                            |
| Σ               | 1.3    | AA 10 01 01                                                                           | Set the sensor hub interrupt threshold.                                                                                                                                                                                                                                                                       | AB 00                            |
| RITH            | 1.4    | AA 10 02 01**                                                                         | Set the report rate to be one report per every sensor sample.**                                                                                                                                                                                                                                               | AB 00                            |
| START ALGORITHM | 1.5    | AA 44 04 01 01 (if host accelerometer is used)                                        | Enable the host-side accelerometer, if used.                                                                                                                                                                                                                                                                  | AB 00                            |
| RT A            | 1.6    | AA 50 07 0A 00                                                                        | Set the algorithm operation mode to Continuous HRM and Continuous SpO <sub>2</sub> or as desired. See <b>Table 11</b> .                                                                                                                                                                                       | AB 00                            |
| Σ               | 1.7    | AA 50 07 0B 01                                                                        | Enable AEC [enabled by default].                                                                                                                                                                                                                                                                              | AB 00                            |
| က               | 1.8    | AA 50 07 12 01                                                                        | Enable Auto PD Current Calculation [enabled by default].                                                                                                                                                                                                                                                      | AB 00                            |
|                 | 1.9    | AA 50 07 0C 01                                                                        | Enable SCD [enabled by default].                                                                                                                                                                                                                                                                              | AB 00                            |
|                 | 1.10   |                                                                                       | o change the algorithm settings and configurations ( <b>Table 11</b><br>PRE enabling the algorithm.                                                                                                                                                                                                           | ) from default                   |
|                 | 1.11   | AA 52 07 01 (for normal algorithm report) AA 52 07 02 (for extended algorithm report) | Enable the WHRM and SpO <sub>2</sub> algorithm. The format of the samples is shown in <b>Table 8</b> (normal algorithm report) or <b>Table 9</b> (extended algorithm report).                                                                                                                                 | AB 00                            |
|                 | Host ı | reads samples periodically (                                                          | repeated as needed):                                                                                                                                                                                                                                                                                          |                                  |
| READING SAMPLES | 2.1    | AA 00 00                                                                              | Read sensor hub status byte: Bit 0: Sensor comm error Bits 1 and 2: Reserved Bit 3: FIFO filled to threshold (DataRdyInt) Bit 4: Output FIFO overflow (FifoOutOvrInt) Bit 5: Input FIFO overflow (FifoInOverInt) Bit 6: Sensor hub busy (DevBusy) Bit 7: Reserved If DataRdyInt is set, proceed to next step. | AB 00 08                         |
| E               | 2.2    | AA 12 00                                                                              | Get the number of samples (nn) in the FIFO.                                                                                                                                                                                                                                                                   | AB 00 nn                         |
| _               | 2.3    | AA 12 01                                                                              | Read the data stored in the FIFO; nn samples will be read. The format of the samples is shown in <b>Table 8</b> (normal algorithm report) or <b>Table 9</b> (extended algorithm report).                                                                                                                      | AB 00<br>data_for_<br>nn_samples |
| OP              | Host 6 | ends the procedure:                                                                   |                                                                                                                                                                                                                                                                                                               |                                  |
| STOP            | 3.1    | AA 52 07 00                                                                           | Disable the algorithm.                                                                                                                                                                                                                                                                                        | AB 00                            |
| -T              |        | d 40 byte calibration data is a                                                       | a expense . The petual data about the deviced as described in secti                                                                                                                                                                                                                                           |                                  |

<sup>\*</sup>The provided 12-byte calibration data is an example. The actual data should be derived as described in section 2. \*\*The host is required to poll the MAX32664C for an available report. A report is available per every sensor sample. Since the effective sample rate is 25Hz, this means the report will be ready every 40ms. Depending on the output mode, the report may include algorithm and/or sensor data (see **section 1.2** and **Table 12**). \*\*\*Provided indexes are examples for sensors such as the MAX86141 or MAXM86161.

Maxim Integrated Page 20 of 29

#### 3.4 Power-Saving Mode

This mode is similar to the previously described mode where the algorithm, AEC and SCD are enabled (by default). The only differences are to change the following in **Table 10**:

- Change the output mode in step 1.2 to Algorithm Only (0x02) as shown in **Table 12**.
- Change the report rate in step 1.4 to 25 (0x19) or more as shown in **Table 12**.
- Adjust the host polling period according to the report rate.
- Choose the desired algorithm operation mode in step 1.7. The Sampled HRM mode saves
  more power as it automatically switches to Activity Tracking mode once the heart rate is
  measured. In this case, the host may choose to reconfigure the operation mode as needed
  (e.g., in case of motion).
- Enable the WHRM and SpO<sub>2</sub> algorithm in step 1.11 in normal report mode.

This configuration helps the MAX32664C to wake up less often, and I<sup>2</sup>C communication time is minimized. The report detailed in **Table 8** will only include algorithm data.

Note: This mode is not appropriate for monitoring interbeat interval (RR) value. RR and RR Confidence are reported whenever a new value is calculated by the algorithm and shown as zero for the rest of the time. Therefore, the last reported value may be missed if the report rate is not set to 1.

## 4 Configurations and Settings

The settings shown in **Table 11** are available for the wearable suite (SpO<sub>2</sub> and WHRM) algorithm. To update the algorithm settings, make sure to send the appropriate commands BEFORE enabling the algorithm.

**Table 12** lists a number of frequently used sensor hub settings and commands. For the full list, refer to the **MAX32664 User Guide**.

**Table 11. Algorithm Configuration and Settings** 

| FAMILY<br>BYTE               | ALGORITHM<br>INDEX | CONFIGURATION | DESCRIPTION                                                                                                                                                                                                | DEFAULT<br>VALUE<br>(MSB<br>FIRST) |
|------------------------------|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                              |                    | 0x00          | SpO <sub>2</sub> calibration coefficients x 100,000 (12 bytes comprised of three 32-bit signed values)                                                                                                     | 0xFFE69196<br>000CB735<br>00989680 |
|                              |                    | 0x01          | SpO <sub>2</sub> motion-detection period (unsigned 16-bit int) [sec]                                                                                                                                       | 0x0002                             |
| 0x50 for write 0x51 for read | 0x07               | 0x02          | SpO <sub>2</sub> motion-detection threshold<br>(signed 32-bit int, equal to 10 <sup>5</sup> x actual<br>float threshold value; value1: MSB in 4<br>bytes signed int, value4: LSB in 4 bytes<br>signed int) | 0x01C9C380                         |
|                              |                    | 0x03          | SpO <sub>2</sub> AGC Timeout [sec]                                                                                                                                                                         | 0x3C                               |
|                              |                    | 0x04          | SpO <sub>2</sub> Algorithm Timeout [sec]                                                                                                                                                                   | 0x5A                               |
|                              |                    | 0x05          | Initial HR value                                                                                                                                                                                           | 0x3C                               |
|                              |                    | 0x06          | Height [cm] (Height = 256 x<br><value_msb> + <value_lsb> cm)</value_lsb></value_msb>                                                                                                                       | 0x00AF                             |

Maxim Integrated Page 21 of 29

| 0x07 | Weight [kg] (Weight = 256 x                                                                                                                                                                                                                                                         | 00045  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|      | <value_msb> + <value_lsb> kg)</value_lsb></value_msb>                                                                                                                                                                                                                               | 0x004E |
| 0x08 | Age [years] (Age = <value> years)</value>                                                                                                                                                                                                                                           | 0x1E   |
| 0x09 | Gender 0x00: Male 0x01: Female                                                                                                                                                                                                                                                      | 0x00   |
| 0x0A | Algorithm operation mode (can be switched in runtime):  0x00: Continuous HRM + Continuous SpO2.  0x01: Continuous HRM + One-Shot SpO2  0x02: Continuous HRM  0x03: Sampled HRM  0x04: Sampled HRM + One-Shot SpO2  0x05: Activity Tracking ONLY  0x06: SpO2 Calibration  AEC enable | 0x00   |
| 0x0B | 0x00: Disable<br>0x01: Enable                                                                                                                                                                                                                                                       | 0x01   |
| 0x0C | SCD enable<br>0x00: Disable<br>0x01: Enable                                                                                                                                                                                                                                         | 0x01   |
| 0x0D | Adjusted target PD current period in seconds. (16-bit unsigned)                                                                                                                                                                                                                     | 0x0708 |
| 0x0E | Motion magnitude threshold in 0.001g. (16-bit unsigned)                                                                                                                                                                                                                             | 0x0032 |
| 0x0F | Minimum PD current in 0.1mA. (16-bit unsigned)                                                                                                                                                                                                                                      | 0x0032 |
| 0x10 | Initial PD current in 0.1mA. (16-bit unsigned)                                                                                                                                                                                                                                      | 0x0064 |
| 0x11 | Target PD current in 0.1mA. (16-bit unsigned) Works only if Auto Target PD Current Calculation is enabled.                                                                                                                                                                          | 0x0064 |
| 0x12 | Automatic calculation of target PD current: 0x00: Disable 0x01: Enable                                                                                                                                                                                                              | 0x01   |
| 0x13 | Minimum integration time:<br>0x00: 14.8μs<br>0x01: 29.4μs<br>0x02: 58.7μs<br>0x03: 117.3μs                                                                                                                                                                                          | 0x00   |
| 0x14 | Minimum sampling rate and averaging:<br>0x00: 25sps, avg = 1<br>0x01: 50sps, avg = 2<br>0x02: 100sps, avg = 4<br>0x03: 200sps, avg = 8<br>0x03: 400sps, avg = 16                                                                                                                    | 0x00   |
| 0x15 | Maximum integration time:<br>0: 14.8μs<br>1: 29.4μs<br>2: 58.7μs<br>3: 117.3μs                                                                                                                                                                                                      | 0x03   |
| 0x16 | Maximum sampling rate and averaging: 0: 25sps, avg = 1 1: 50sps, avg = 2 2: 100sps, avg = 4                                                                                                                                                                                         | 0x02   |

Maxim Integrated Page 22 of 29

| 0x1A | 3: 200sps, avg = 8<br>4: 400sps, avg = 16<br>Initial integration time:<br>0: 14.8µs<br>1: 29.4µs<br>2: 58.7µs<br>3: 117.3µs                                                                                                                                                                                                                              | 0x03   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0x1B | Initial sampling rate and averaging: 0: 25sps, avg = 1 1: 50sps, avg = 2 2: 100sps, avg = 4 3: 200sps, avg = 8 4: 400sps, avg = 16                                                                                                                                                                                                                       | 0x02   |
| 0x17 | LED PD configuration for 2 channels of WHRM (MS byte channel 1, and LS byte channel 2): For each channel, 4-bit MSB is LED # and 4-bit LSB is PD #: - LED #: 0–2 for LED1–LED3; 7: LED not used - PD #: 0–1 for PD1–PD2; 3: PD not used  For one channel case, use appropriate settings for channel 1 and set LED and PD for channel 2 as unused (0x73). | 0x0001 |
| 0x18 | LED PD configuration for SpO <sub>2</sub> (MS byte: IR channel; LS byte: red channel): For each red or IR channel, 4-bit MSB is LED # and 4-bit LSB is PD #: - LED #: 0–2 for LED1–LED3; 7: LED not used - PD #: 0–1 for PD1–PD2; 3: PD not used                                                                                                         | 0x1020 |

Maxim Integrated Page 23 of 29

**Table 12. Frequently Used Sensor Hub Settings and Commands** 

| COMMAND<br>FAMILY BYTE          | COMMAND<br>INDEX | VALUE                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01 for write                  | 0x00             | 0x01                                           | Shut down the MAX32664C. Restart is only possible by power cycle or toggling RSTN.                                                                                                                                                                                                                                                                                                                                       |
| 0x10 for write<br>0x11 for read | 0x00             | One byte in the 1–3 range                      | Output mode: 1: Sensor only 2: Algorithm only 3: Algorithm and sensor data                                                                                                                                                                                                                                                                                                                                               |
| 0x10 for write 0x11 for read    | 0x02             | One byte                                       | Configures the report period per number of samples. For example, if the value is 1 (default), the report is generated every sample (40ms). If the value is 25, the report is generated once every 25 samples (1s).                                                                                                                                                                                                       |
| 0x10 for write                  | 0x03             | New<br>one-byte<br>I <sup>2</sup> C<br>address | Change the default I <sup>2</sup> C address from 0xAA. The new address will be effective only AFTER sending the response of this command to the host.                                                                                                                                                                                                                                                                    |
| 0x46 for write                  | 0x04             | 0x00<br>followed<br>by a 3-<br>byte<br>value   | Enable/disable wake up on motion detection (3-byte value):  - MS byte: Enable wake up on motion:  0: Disabled  1: Enabled  - Middle byte: WUFC*: the time in seconds in which motion should be present before a wake up interrupt. WUFC = desired time (s) x 25  Example: For a 0.2s time, set WUFC to 5.  - LS byte: ATH*: the motion level threshold ATH = Desired threshold (g) x 16  Example: For 0.5g, set ATH to 8 |
|                                 |                  |                                                | To disable wake up on motion, use 0x00FFFF.                                                                                                                                                                                                                                                                                                                                                                              |

<sup>\*</sup>As defined in the KX122 data sheet.

Maxim Integrated Page 24 of 29

## 5 Using SCD State and Motion Detection for Power Saving

In order to further reduce power consumption when the device is not placed on the skin, a motion-detection-enabled state machine can be implemented in the host. In this case, the MAX32664C stays in sleep mode until a motion event is reported by the accelerometer, or an I<sup>2</sup>C command is received from the host. **Figure 4** demonstrates an example of such a state machine.

- Active State: Normally, the MAX32664C runs in Active state in AEC mode (section 3.3) or Power Saving mode (section 3.4). If the SCD state in the report shows off-skin for certain time, the state machine switches to Probing state.
- Probing State: In this state, the host periodically turns the algorithm on and off. If an On-Skin state is reported while the algorithm is running, it will switch back to Active state and continue running the algorithm. Otherwise, after several attempts of turning the algorithm on and off (the off period can be increased after each attempt), it will switch to Off-Skin state. In Active and Probing states, the procedure to start, read report, or stop are similar to the regular sequence described in Table 10 for AEC mode, or as highlighted for Power-Saving mode.
- Off-Skin State: In Off-Skin state, the goal is to save more power by allowing the MAX32664C to stay in sleep mode, so long as there is no motion. Depending on the use of a host or sensor hub accelerometer (section 1.3), the host is required to configure the MAX32664C differently, as shown in Figure 4.

If the KX122 is connected to the MAX32664C as the sensor hub accelerometer, the MAX32664C must be configured to wake up on motion. In this case, the accelerometer is enabled in the interrupt mode and the motion threshold and the duration of motion is configured using the wake up on motion configuration command, as shown in **Table 13**. Note that the interrupt line of the accelerometer is required to be connected to the MAX32664C as shown in **Figure 1**, to support this feature. Once the MAX32664C is configured, the host should start only the accelerometer. As soon as a motion interrupt occurs, the MAX32664C will wake up and read accelerometer samples and store them in the sensor hub FIFO. The host should periodically read the MAX32664C FIFO to check if any accelerometer sample has been captured since the last polling period. If there is a sample, the host should switch to Active state by first disabling the wake up on motion configuration and then restarting the algorithm.

In case of using a host-side accelerometer, the implementation exclusively relies on the host. In this case, the host accelerometer should be configured to interrupt on a certain level of motion for certain duration. Refer to the data sheet of the desired accelerometer for such a setting. The host can stop the MAX32664C when going to this mode and restart it as motion is detected using the same procedure shown in **Table 10**.

Maxim Integrated Page 25 of 29

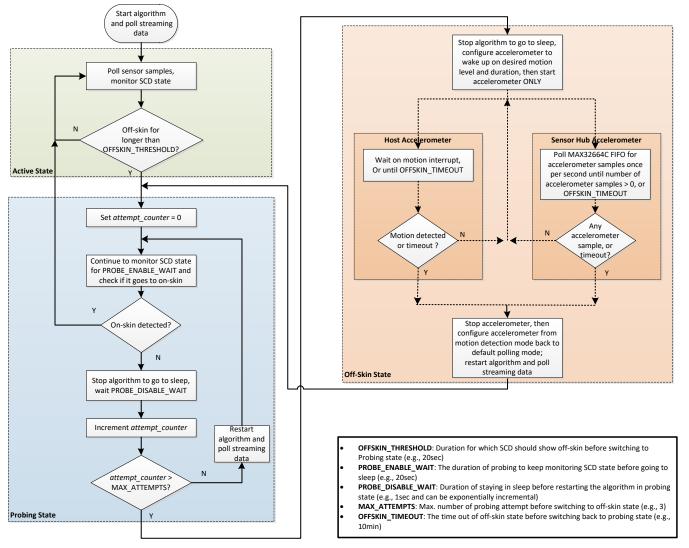



Figure 4. Example of an SCD-enabled, power-saving state machine.

Maxim Integrated Page 26 of 29

Table 13. Host Commands to Enable/Disable Wake Up on Motion Configuration of Sensor Hub Accelerometer for Off-Skin State

|             | #                                                                                                                     | HOST COMMAND<br>(HEX)                                                              | COMMAND DESCRIPTION                                                                                                                                                                                                                                                | RESPONSE<br>(HEX) |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
|             | Host initializes the MAX79356C to wake up on KX122 accelerometer motion detection in order to go into off-skin state. |                                                                                    |                                                                                                                                                                                                                                                                    |                   |  |  |
| STATE       | 1.1                                                                                                                   | Stop the sensor, accelerom <b>10</b> .                                             | leter, and algorithm if already enabled, as seen in step                                                                                                                                                                                                           | 3 in <b>Table</b> |  |  |
| OFF-SKIN ST | 1.2                                                                                                                   | AA 46 04 00 01 [05] <sup>1</sup> [08] <sup>2</sup>                                 | Set the sensor hub accelerator in wake up on motion mode if motion is greater than a threshold for a certain duration, for example: <sup>1</sup> [05]: 0.2s motion duration, see <b>Table 12</b> . <sup>2</sup> [08]: 0.5g motion threshold, see <b>Table 12</b> . | AB 00             |  |  |
| 0           | 1.3                                                                                                                   | AA 10 00 01                                                                        | Set the output mode to accelerometer only.                                                                                                                                                                                                                         | AB 00             |  |  |
| START       | 1.4                                                                                                                   |                                                                                    |                                                                                                                                                                                                                                                                    |                   |  |  |
| S           |                                                                                                                       |                                                                                    |                                                                                                                                                                                                                                                                    | AB 00             |  |  |
| ب           | Host                                                                                                                  | reads samples periodically (                                                       | repeated as needed) during off-skin state:                                                                                                                                                                                                                         |                   |  |  |
| POLL        | 2.1                                                                                                                   |                                                                                    |                                                                                                                                                                                                                                                                    |                   |  |  |
|             | Host                                                                                                                  | ends the wake up on motion                                                         | configuration.                                                                                                                                                                                                                                                     |                   |  |  |
| END<br>OFF. | 3.1                                                                                                                   | AA 44 04 00                                                                        | Disable the accelerometer.                                                                                                                                                                                                                                         | AB 00             |  |  |
| 피유왕         | 3.2 AA 46 04 00 00 FF FF Disable wake up on motion. See <b>Table 12</b> . AB 00                                       |                                                                                    |                                                                                                                                                                                                                                                                    |                   |  |  |
|             | 3.3                                                                                                                   | 3.3 Proceed to start algorithm in AEC or Power Saving mode as in <b>Table 10</b> . |                                                                                                                                                                                                                                                                    |                   |  |  |

Maxim Integrated Page 27 of 29

## **6 Power Consumption Estimate**

The MAX32664 sensor hub family runs in two distinct operating modes. The Active mode is the mode in which the execution of the firmware occurs. The Deep Sleep mode is enabled by the sensor hub to save power when the processor is idle or there is no need for any processing. It makes all internal clocks of the MAX32664 gated off. In this mode, only RTC is enabled as a source of backup for wakeup. As soon as a sensor interrupt is received, the MAX32664 wakes up, completes the processing, and goes back to sleep. It also must wake up prior to I<sup>2</sup>C communication by pulling MFIO low, as described in **section 1.1**.

**Table 8** and **Table 15** show the power consumption in each mode. To estimate the power consumption while running the algorithm, the percentage of time that the MAX32664 is in Active mode is measured. For this measurement, the report interval is set to 1 second and only algorithm data is reported, as described in **section 3.4**. The estimated power consumption for a selected number of algorithm operation modes is summarized in **Table 16**.

Table 14. Comparison of Active and Deep Sleep Power—Single Supply (V<sub>DD</sub> Only)

| MAX32664 OPERATIONAL MODE | POWER CONSUMPTION |
|---------------------------|-------------------|
| Active                    | 15.5664mW         |
| Deep Sleep                | 0.00756mW         |

Table 15. Comparison of Active and Deep Sleep Power—Dual Supply (VDD and VCORE)

| MAX32664 OPERATIONAL MODE | POWER CONSUMPTION |
|---------------------------|-------------------|
| Active                    | 9.64106mW         |
| Deep Sleep                | 0.01383mW         |

Table 16. Estimated Power Consumption for the MAX32664C

| WEARABLE SUITE                                       | MEASURED CPU<br>ACTIVE TIME | CALCULATED POWER CONSUMPTION (AVERAGE)*         |                                                    |
|------------------------------------------------------|-----------------------------|-------------------------------------------------|----------------------------------------------------|
| ALGORITHM                                            | (AVERAGE) %                 | SINGLE-SUPPLY V <sub>DD</sub><br>+ INTERNAL LDO | DUAL-SUPPLY<br>V <sub>DD</sub> + V <sub>CORE</sub> |
| Continuous HRM +<br>Continuous SPO <sub>2</sub> mode | 4.7%                        | 0.74mW                                          | 0.47mW                                             |
| Continuous HRM                                       | 4.3%                        | 0.68mW                                          | 0.43mW                                             |
| Sampled HRM                                          | 4.3%                        | 0.68mW                                          | 0.43mW                                             |
| Activity Tracking Only                               | 4.2%                        | 0.66mW                                          | 0.42mW                                             |

\*V<sub>DD</sub>: 1.8V, V<sub>CORE</sub>: 1.1V, and CPU clock: 96MHz.

Maxim Integrated Page 28 of 29

**Revision History** 

| REVISION NUMBER | REVISION DATE | DESCRIPTION                                                                                                                                                                                                                                                                             | PAGES<br>CHANGED |
|-----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0               | 06/19         | Initial release                                                                                                                                                                                                                                                                         | _                |
| 1               | 08/19         | Updated for low power and host accelerometer.                                                                                                                                                                                                                                           | All              |
| 2               | 08/19         | Updated 1.2.2 Polling Period. Updated Table 12 for configuration index 0x15, 0x16, 0x17, and 0x18.                                                                                                                                                                                      | 8, 23            |
| 3               | 10/19         | Updated tables 4, 8, and 9 for definition of reported R value. Updated Table 11 for family bytes 0x46, 0x01, 0x03. New Table 12 to include additional commands in support of sensors like the MAXM86161 with an I <sup>2</sup> C connection. New section 5 on SCD-enabled power saving. | All              |
| 4               | 1/20          | Updated section 1, section 3.2, Table 7, Table 8, Table 9, Table 10, section 3.4, Table 11; added section 4.1                                                                                                                                                                           | 5, 14-18, 20-23  |

©2020 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the property of their respective owners.

Maxim Integrated Page 29 of 29