
Analog Devices Page 1 of 163

GMSL2 General
User Guide
Rev 0; 7/23

GMSL2 General User Guide

Analog Devices Page 2 of 163

GMSL2 General User Guide

Serial Link Features .. 5

1. GMSL2 Link Basics ... 6

2 Spread-Spectrum Clocking ... 19

3 Clocks ... 21

Video Transmission .. 26

4 Video Basics .. 27

5 Forward Error Correction .. 34

Bidirectional Channels .. 42

6 I2C/UART .. 43

7 Serial Peripheral Interface .. 80

Bandwidth Calculations .. 94

8 GMSL2 Link System Bandwidth ... 95

9 GMSL2 Error Reporting (ERRB Pin) .. 112

10 CRC Error Detection and ARQ Error Correction... 134

11 Voltage Monitoring ... 142

12 Line Fault .. 147

13 Error Generator .. 151

Device Families ... 153

14 MIPI D-PHY Deskew ... 156

Revision History .. 163

GMSL2 General User Guide

Analog Devices Page 3 of 163

List of Figures
Figure 1. GMSL2 Single-Link Mode ... 6
Figure 2. Reverse Splitter Mode ... 7
Figure 3. Dual-Link Mode.. 7
Figure 4. Periodic Adapt Not Enabled.. 14
Figure 5. Periodic Adapt Enabled... 14
Figure 6. Example SSC Center Frequency Spread .. 19
Figure 7. Simplified Diagram of Frequency Reference System ... 21
Figure 8. Example Crystal Layout .. 23
Figure 9. Video Frame Regions ... 27
Figure 10. Sync Pulses: Data Enable and the Vertical and Horizontal Sync Signals .. 28
Figure 11. Horizontal Sync and Data Enable Signals ... 28
Figure 12. Uncompressed Video Frame with 91,480 Random Bit Errors ... 34
Figure 13. Compressed Video Frame with 1 Bit Error .. 34
Figure 14. Architecture of FEC Implementation in GMSL Devices .. 35
Figure 15. Block Diagram of a Single Microcontroller System ... 37
Figure 16. Block Diagram of a Dual Microcontroller System .. 38
Figure 17. Typical GMSL2 Serial Link System with the Control Channel ... 43
Figure 18. GMSL2 System with Multi-Main Control Channel (I2C) .. 44
Figure 19. I2C Write Data Transfer Format .. 48
Figure 20. I2C Read Data Transfer Format ... 48
Figure 21. I2C Clock Stretching .. 49
Figure 22. I2C Address Translation .. 55
Figure 23. I2C Broadcasting .. 57
Figure 24. UART Frame Format ... 65
Figure 25. UART Synchronization Frame .. 66
Figure 26. UART Write Protocol Format .. 66
Figure 27. UART Read Protocol Format.. 66
Figure 28. UART Acknowledge Frame Format ... 67
Figure 29. Pass-Through I2C/UART ... 71
Figure 30. GMSL2 SPI Interface .. 81
Figure 31. GMSL2 SPI Implementation ... 86
Figure 32. SPI Network: Two Deserializers and One Serializer .. 88
Figure 33. SPI Network: Two Serializers and One Deserializer .. 91
Figure 34. Typical SPI Application ... 92
Figure 35. GMSL2 System Block Diagram .. 95
Figure 36. A GMSL2 Serializer with Two Independent MIPI Inputs .. 104
Figure 37. MIPI Lane Configurations ... 107
Figure 38. ERRB Logic ... 113
Figure 39. Internal Error Reporting Mechanism .. 113
Figure 40. ERRB Transition System Reaction Process ... 114
Figure 41. Operation of Go-Back-N ARQ with Go‐Back‐3 ... 137
Figure 42. ARQ Path ... 138
Figure 43. Voltage Monitor and Internal Power Pins .. 143
Figure 44. Voltage Monitoring ERRB Configuration ... 146
Figure 45. Line-Fault Configuration 1: Local-Side Serializer (Coax Mode) ... 148
Figure 46. Line-Fault Configuration 2: Local-Side Deserializer (Coax Mode) .. 148
Figure 47. MIPI D-PHY Deskew Within a GMSL2 System ... 156
Figure 48. High-Speed Data Transmission in Normal Mode.. 157
Figure 49. High-Speed Deskew Calibration .. 158
Figure 50. Skew Calibration (Detailed View) ... 158

GMSL2 General User Guide

Analog Devices Page 4 of 163

List of Tables
Table 1. GMSL2 Link Rate Configuration .. 8
Table 2. Manual Link Mode Configuration ... 8
Table 3. GMSL2 Tx SSC Configuration for Fixed Ppm .. 20
Table 4. Example DC Characteristics of X1/OSC and X2 Pins ... 22
Table 5. External Clock DC Characteristics .. 23
Table 6. External Clock AC Characteristics... 24
Table 7. Example RCLKOUT Characteristics ... 24
Table 8. Observation Time Required for 95% Confidence Interval of Different BER (@ 6Gbps) 25
Table 9. I2C/UART Selection Status Register ... 46
Table 10. Remote/Local Control Channel and Device Configuration Registers ... 47
Table 11. Number of I2C-to-I2C Links Configuration Registers .. 47
Table 12. I2C Acknowledge Bit and Time-Out Status (Read-Only Registers) .. 48
Table 13. Internal I2C Subordinate Configuration Registers .. 50
Table 14. Internal I2C Main Configuration Registers... 50
Table 15. I2C Address Configuration.. 52
Table 16. I2C Address Translator Configuration Registers .. 53
Table 17. UART Initial Output Delay Configuration Register ... 60
Table 18. UART Bypass Mode Configuration Registers .. 61
Table 19. UART Rx Source Arbitration Time-Out Configuration Register .. 64
Table 20. UART Detected Bit Length (Read-Only Registers) .. 68
Table 21. UART Rx/Tx FIFO Overflow Status (Read-Only Registers) .. 68
Table 22. Pass-through I2C Channels Enable Registers.. 72
Table 23. Pass-Through I2C Internal Subordinate Configuration Registers ... 72
Table 24. Pass-Through I2C Internal Main Configuration Registers .. 73
Table 25. Pass-Through I2C Acknowledge and Time-Out Status (Read-Only Registers) ... 73
Table 26. Pass-Through I2C/UART Device Pin Assignments and Channel Connections Configuration Registers . 75
Table 27. Pass-Through I2C Address Translator Configuration Registers.. 76
Table 28. Pass-Through UART Channels Enable Registers ... 77
Table 30. Pass-Through UART Bit Rate Configuration Registers ... 78
Table 31. Pass-Through UART Rx/Tx FIFO Overflow Status (Read-Only Registers) ... 78
Table 32. SPI Minimum Timing Requirements .. 85
Table 33. Example Calculations for 1080p, RGB888 Video for a Serializer and a Deserializer 96
Table 34. Maximum Video Payload for GMSL2 Modes.. 97
Table 35. Maximum CSI-2 Lane Rates (Mbps) in Constant BPP Mode ... 99
Table 36. MIPI D-PHY and C-PHY Lane Configurations and Output Bandwidth ... 107
Table 37. 16-Bit CRC Registers ... 139
Table 38. 16-Bit ARQ Registers ... 140
Table 40. Line-Fault Signal Assignment to SIO, and Resistors in Coax Mode... 148
Table 41. Register Mapping and Descriptions for the Line-Fault Registers .. 149
Table 42. Line-Fault Detection Decode Table ... 149
Table 43. ERRG Parameters (Register TX2) .. 152
Table 44. ERRG Enable (Register TX1) .. 152
Table 45. ERRG Enable (Register GMSL__x:TX1) .. 152
Table 46. Maximum MIPI Lane Rates for 6Gbps Link .. 154
Table 47. D-PHY Serializers Deskew Calibration Configuration Registers .. 160
Table 48. D-PHY Deserializers Deskew Calibration Configuration Registers .. 161

GMSL2 General User Guide

Analog Devices Page 5 of 163

Serial Link Features

GMSL2 General User Guide

Analog Devices Page 6 of 163

1. GMSL2 Link Basics
1.1 GMSL2 Overview

This section provides a brief introduction to the proprietary physical interface (PHY) layer and link
protocol used by GMSL2 serial links. Refer to the GMSL2 Hardware Design Guide for a more detailed
discussion of the PHY and the implementation of the GMSL2 Channel Specification.

The GMSL2 serial links use packet-based, bidirectional architecture with forward and reverse channels.
The forward channel transfers data from the serializer to the deserializer; the reverse channel transfers
data from the deserializer to the serializer. The programmable forward and reverse channel link rates
are fixed and independent of the video pixel clock (PCLK). Typical GMSL2 devices have a forward
serial bit rate of 3Gbps or 6Gbps and reverse channel serial bit rate of 187.5Mbps.

Note: Transmit side refers to the device in the serial link transmitting to the receive side. These
arrangements are dependent upon application.

1.2 GMSL2 Link Configurations
The GMSL2 architecture can support the following link configurations. R

1.2.1 Single-Link Mode
In single-link mode, a single serializer PHY connects to a single deserializer PHY (Figure 1). The
available bandwidth is equal to the forward and reverse channel link rates that have been selected. In
parts that only have a single GMSL2 PHY, this is the only link mode available.

Serializer Deserializer

Single-Link Mode

Figure 1. GMSL2 Single-Link Mode

1.2.2 Reverse Splitter Mode
In reverse splitter mode, two serializers connect to a single deserializer through two GMSL2 PHYs
(Figure 2). The available bandwidth into the deserializer is equal to the sum of the forward channel link
rates that have been selected in each serializer, allowing up to 12Gbps of bandwidth to be aggregated
into the deserializer.

GMSL2 General User Guide

Analog Devices Page 7 of 163

Deserializer

Serializer

Reverse Splitter Mode

Serializer

PHYA

PHYB

Figure 2. Reverse Splitter Mode

1.2.2.1 Coaxial Cables
Coaxial cables can be used for dual-link operation (Figure 3). The standard GMSL2 link requirements
described in the GMSL2 Channel Specification must be adhered to when using coaxial cables in this
application—with the addition of a cable-to-cable skew limit. When two coaxial cables are used for dual-
link operation they must be relatively close in length to ensure that PHY-to-PHY skew does not exceed
10ns. This means there should be no more than 2m difference in length.

Serializer Deserializer

Dual-Link Mode
PHYA

PHYB

PHYA

PHYB

Figure 3. Dual-Link Mode

GMSL2 General User Guide

Analog Devices Page 8 of 163

1.3 GMSL2 Link Rate and Configuration Programming
The link rate is configured with the TX_RATE[1:0] and RX_RATE[1:0] registers in each device. See
Table 1.

1.3.1 Programming Link Rate
Table 1. GMSL2 Link Rate Configuration

LINK RATE SERIALIZER REGISTERS DESERIALIZER
REGISTERS

Forward Channel Link Rate
6Gbps TX_RATE[1:0] = 10 RX_RATE[1:0] = 10
3Gbps TX_RATE[1:0] = 01 RX_RATE[1:0] = 01

Reverse Channel Link Rate

187Mbps RX_RATE[1:0] = 00 TX_RATE[1:0] = 00

1.3.2 Programming Link Configuration
Link configuration is controlled with the AUTO_LINK and LINK_CFG[1:0] registers. After link
configuration settings are changed, a RESET_ONESHOT command must be sent to either the
serializer or deserializer for the link change to take effect. See the Resets section for more information.

1.3.2.1 Auto Link Mode
By default, the automatic link configuration mode is enabled (AUTO_LINK = 1). This means the device
attempts to lock in single-link mode. It automatically detects if PHYA or PHYB is connected to the
remote device and enables that PHY. If both PHYA and PHYB are connected to remote devices, it
connects in single-link mode to whichever device is first detected.

Note: In auto link mode, the LINK_CFG[1:0] setting is ignored.

1.3.2.2 Manual Link Mode
Manual link mode should be used to manually select which PHY is used in single-link mode and to
configure splitter, reverse splitter, or dual-link modes. To enable manual link mode, set AUTO_LINK =
0. See Table 2 for configuration details of each mode. Manual link mode can impact the time to
achieve GMSL link lock. For typical single-link applications, AUTO_LINK = 1 is recommended to
simplify system level design.

Table 2. Manual Link Mode Configuration

LINK MODE SERIALIZER SETTINGS DESERIALIZER SETTINGS
Single-Link Mode
(PHYA)

AUTO_LINK = 0
LINK_CFG[1:0] = 01

AUTO_LINK = 0
LINK_CFG[1:0] = 01

Single-Link Mode
(PHYB)

AUTO_LINK = 0
LINK_CFG[1:0] = 10

AUTO_LINK = 0
LINK_CFG[1:0] = 10

GMSL2 General User Guide

Analog Devices Page 9 of 163

Reverse Splitter
Mode

In both serializers, either use auto
link mode or manual mode and
configure to single-link mode for the
connected PHY (auto link mode
recommended)

AUTO_LINK = 0
LINK_CFG[1:0] = 11

Note: Link rate and configuration changes require a link reset to take effect. Write RESET_ONESHOT
to 1 in the serializer after making changes.

1.3.2.3 Programming Example
Set both serializer and deserializer to 6G/187M rate
0x80,0x0001,0x48
0x90,0x0001,0x02
Set both parts to dual-link mode
0x80,0x0010,0x00
0x90,0x0010,0x00
Write one-shot reset in serializer
0x80,0x0010,0x20

1.3.2.4 Standard Splitter Mode: Switch from Splitter Mode to Single-Link Mode
An individual PHY in the serializer is programmed to single-link mode. Enable single-link mode by
writing register 0x0010 with one of the following values:

• PHY A: 0x21
• PHY B: 0x22

This write switches the link to single-link mode and performs a “Oneshot Reset.” The following process
takes <50ms to complete:

1. Reset the link into single-link mode.
2. Self-clear the reset bit.
3. Recalibrate the canceller.
4. Auto-adapt the equalizer.
5. Link up to the deserializer.
6. Pull the LOCK pin high.

Alternatively, the serializer can be programmed to “Auto Link Mode”. In auto link mode, the serializer
automatically detects which PHY is connected to the deserializer and enables that PHY. Program auto
link mode by writing the serializer register 0x0010 to 0x30. The following process is automatically
performed:

• Autodetect which of the two PHYs is connected to a deserializer.
• Reset the link to single-link mode to the detected deserializer device.
• Self-clear the reset bit.
• Recalibrate the canceller.
• Auto-adapt the equalizer.
• Link up to the deserializer.
• Pull the LOCK pin high.

GMSL2 General User Guide

Analog Devices Page 10 of 163

1.3.2.5 Standard Splitter Mode: Switch from Single-Link Mode to Splitter Mode
If both deserializers connected to the serializers are powered-up again, the serializer remains linked to
only one deserializer in single-link mode until splitter mode is re-enabled. To re-enable splitter mode,
write serializer register 0x0010 to 0x23. The following re-enabling process takes <50ms to complete:

• Reset the link to splitter mode to both deserializers.
• Self-clear the reset bit.
• Recalibrate the canceller.
• Auto-adapt the equalizer.
• Link up to both deserializers.
• Pull the LOCK pin high on all three devices.

1.3.2.6 Cables Supported
GMSL2 devices support both 50Ω coaxial and 100Ω differential pair cables (e.g., STP, SPP, STQ) that
meet the GMSL2 Channel Specification. Refer to the GMSL2 Hardware Design Guide for more details
on supported cables and connectors.

1.4 Device Power-Up
The GMSL2 device is in power-down mode when either the PWDNB pin is low or any power supply is
below its respective power-on reset (POR) threshold. The device begins the power-up sequence after
the PWDNB pin is driven high and all power supplies are above their respective POR thresholds.
GMSL2 devices do not require power supply sequencing; however, it is recommended to enable all the
power supplies followed by the PWDNB pin to precisely control when the device powers on. The initial
power-up sequence applies to all GMSL2 devices; the Link Start-Up Procedure is different for devices
operating in GMSL2 Mode and those operating in backward compatible GMSL1 Mode. The applicable
procedures are indicated in the following steps.

1.4.1 Initial Power-Up Sequence
The following sequence is performed automatically by the device after the PWDNB pin is driven high
and all power supplies are above their respective POR thresholds. Note that there are differences
depending on whether the device is in GMSL2 mode.

• The oscillator is powered up:
o GMSL2 mode: The crystal oscillator is powered up.

• Internal termination resistance calibration using the 402Ω external resistor connected to the
XRES pin is performed.

• Configuration (CFG) pins levels are sampled:
o Two-level configuration pins: Pin levels are latched. Internal registers are set according

to the latched pin levels.
o Multi-level CFG pins: The CFG pin levels are sampled and latched. Internal registers are

set according to the latched pin levels.
• GMSL2 Link Start-Up:

o GMSL2 mode: Continue with the GMSL2 Mode Link Start-Up Procedure.

GMSL2 General User Guide

Analog Devices Page 11 of 163

1.4.2 Link Start-Up Procedure

1.4.2.1 GMSL2 Mode
Following the Initial Power-Up Sequence section, the local-side control channel (I2C or UART) is
functional, and the device registers are writable and readable. The power-up time to this state is given
in each device’s data sheet.

• GMSL2 devices (i.e., serializer and deserializer) can power up in any order. After power-up,
each serial link device sends a beacon signal out to available PHYs to recognize other devices
present on the channel.

• A handshake procedure is initiated after successful recognition with the beacon signal.
• Transmitter (Tx) canceller calibration is automatically performed on serializer(s) and

deserializer(s) for the forward and reverse channels.
• Equalizer autocalibration is performed on serializer(s) and deserializer(s) to optimize equalizer

coefficients and maximize both horizontal and vertical eye openings for the forward and reverse
channels. See the Benefits of Adaptive Equalization section for more details.

• Video and control channels are enabled. The LOCK pin and LOCK status register go high on
both serializer and deserializer (i.e., link lock is established).

Note: The GMSL2 Link Start-Up Procedure completes for any channel that meets GMSL2 Channel
Specification in the maximum time provided in the device-specific data sheets (see the tLOCK parameter
section in the data sheet). LOCK time may vary due to channel, crystal stability, temperature, and
manufacturing tolerance(s).

1.4.3 GMSL2 Link Lock
GMSL2 link lock is an automatic bidirectional lock that occurs when both a properly connected
serializer and deserializer are both powered up (following the procedures in the Initial Power-Up
Sequence section). In this state, the forward and reverse channels’ LOCK pins mirror each other
(LOCK pins go high in all devices). The detection of sync words on the serial link determines the link
lock.

In GMSL2 mode, the serial link uses the 25MHz crystal or external reference clock (see the Clocks
section) as the clock source. A valid video input (pixel clock) is not necessary to establish GMSL2 link
lock.

1.4.3.1 LOCK Pin
Both serializers and deserializers have an open-drain LOCK output pin. The LOCK pin indicates that
the phase lock loops (PLLs) for the GMSL2 serial link are locked and that the GMSL2 data receive path
(i.e., forward channel in serializer, reverse channel in deserializer) has locked to the correct word
boundary alignment. Control channels (i.e., I2C/UART, SPI, GPIO, and RGMII) can be used
immediately after LOCK is asserted.

Note: The LOCK pin or register MUST be monitored for successful GMSL lock status. Placing a hard-
coded wait threshold is NOT recommended. The LOCK status should be obtained prior to continuing
with the remaining system programming or actions. If a system level timeout is desired to ensure there
is not a system issue, a timeout can be placed on the system to reset the devices after 1s.

GMSL2 General User Guide

Analog Devices Page 12 of 163

1.4.3.2 Losing Link Lock
Link lock is lost (i.e., LOCK pins go low) if the serial link cable is unplugged or there is some other
interruption to the system connectivity. In single-link mode, the link lock is automatically re-established
(following the Link Start-Up Procedure) when the serial link cable is reconnected (i.e., “hotplugged”).
Video and control channels are also automatically re-established.

Note: If the LOCK pin or bit is being monitored for such an interruption, allow 100ms of recovery time
for a clean system relock. Only issue a reset to the link or device if it does not recover after this delay.

Similarly, the link is lost if either the serializer or deserializer is powered down. For single-link mode, the
link lock is automatically re-established when the device is powered on again; however, video and
control channel settings need to be reprogrammed. Follow the appropriate guidance for optimal GMSL
link lock time based on the system.

1.4.3.3 Video Lock
Video lock indicates that the deserializer is receiving valid video data from the serializer. After the
GMSL2 link has locked, the deserializer video lock sequence begins. Optionally, the LOCK pin behavior
in the deserializer can be changed by a register setting (LOCK_CFG) so that the LOCK pin is asserted
only when the deserializer is receiving video (asserted with VIDEO_LOCK).

GMSL2 General User Guide

Analog Devices Page 13 of 163

1.4.4 Benefits of Adaptive Equalization
Adaptive equalization (AEQ) addresses critical aspects of serial link implementation and ensures
highest possible link performance. Manual equalization is not recommended since it fails to dynamically
respond to factors that affect channel quality.

1. AEQ automatically adapts to changes in channel characteristics. Optimal equalization requires
dynamic response to variations in IC process(es), package(s), temperature, cable insertion and
return loss, PCB layout, and power over coax (PoC) performance.

2. Equalization is nonlinear; nonoptimized equalizer settings have a nonlinear effect on eye
opening and link margin. AEQ corrects for link margin to ensure optimum link quality.

3. Changes to equalization alters the signal-to-noise ratio on the bidirectional GMSL2 serial link
nonlinearly across the frequency band. Fixed equalization results in a loss of correlation
between link margin and channel quality.

4. Manual programming of the canceller registers is inexact. If the canceller is not optimized, signal
may be misinterpreted as a noise source. The reduction of the signal-to-noise ratio would
negatively impact link performance and link bit error ratio (BER).

1.4.5 Periodic Adaptation
The GMSL2 PHY for both forward and reverse channels periodically re-adapt the equalization to
optimize receive-side gain and equalization settings for different environmental and use-case
conditions. This allows the equalizer to compensate for changes in the channel due to temperature,
aging cables, PoC loads, cable bending, and/or other external factors.

Channel characteristics are dynamic and environmentally dependent. The periodic adaptation (which
default runs at a 1Hz rate) allows for the equalizer to continually track and adapt to these channel
changes. This is illustrated in the eye diagrams (Figure 4 and Figure 5).

GMSL2 General User Guide

Analog Devices Page 14 of 163

1.4.5.1 Periodic Adaptation Performance Impact

Figure 4. Periodic Adapt Not Enabled

Figure 5. Periodic Adapt Enabled

With periodic adaptation enabled, the eye is continually optimized as the temperature changes. Without
periodic adaptation enabled, variations in cable temperature from the initial link condition affect the eye-
opening. A nonoptimized eye-opening leads to lower link BER.

GMSL2 General User Guide

Analog Devices Page 15 of 163

1.5 Resets
Registers that affect GMSL2 PHY operation should be programmed when the link is held in reset.

A link reset must be used after programming:

• TX_RATE
• RX_RATE
• CXTP_A/B
• AUTO_LINK
• LINK_CFG
• GMSLGMSL2 mode

Note: There are other situations when a link reset may be needed which are described in their relevant
sections.

1.5.1 Types of Resets
There are three different reset bits available for GMSL2 devices. These are as follows:

1.5.1.1 Reset All
Reset All is a full reset that resets the link, all registers, and all digital and analog blocks. Writing
RESET_ALL = 1 (cleared when written) or toggling the PWDNB pin low then high performs a Reset All.

1.5.1.2 Oneshot Reset
The Oneshot Reset is a self-clearing bit that resets the link without resetting registers. This can only be
performed by writing RESET_ONESHOT = 1. Use this reset after making a change that affects the
GMSL2 serial link, such as changing the link rate.

1.5.1.3 Reset Link
Reset Link is similar to Oneshot Reset, but it is not self-clearing. This bit should be used if the link is
held in a reset state to suspend connect attempts to the remote side. After this bit is set, all local
registers are still available, but the remote device is not accessible. This bit should not be set on the
remote device: setting Reset Link on the remote device prevents write access on the link and the reset
is unable to be cleared. Enable by writing RESET_LINK = 1; release the reset by writing RESET_LINK
= 0.

GMSL2 General User Guide

Analog Devices Page 16 of 163

1.6 GMSL2 Link Protocol
The GMSL2 is a programmable fixed rate packet-based protocol, flexibly sharing link bandwidth
between video data and multiple bidirectional communications channels. Dynamic bandwidth allocation
allows active channels to share full link bandwidth; inactive channels do not consume any link
bandwidth. Additionally, maximum packet size is limited to prevent a single channel from overutilizing
link bandwidth.

1.6.1.1 Encoding
The GMSL2 serial link uses a proprietary 9B/10B encoding method. This encoding method features the
following:

• Less encoding overhead (11%) compared to traditional 8B/10B encoding (25%).
• DC-balance: The number of 1s and 0s in any given window is bounded to +/- 9.
• A maximum run length (consecutive number of 0s or 1s) limited to 7.
• Eight special symbols used for link synchronization, framing (packet start/stop indication), and

control purposes. The Hamming distance between special symbols is at least 3, so these are
robust to errors (i.e., the special symbols cannot accidentally transform into another special
symbol with 1- or 2-bit errors in the 10-bit symbol).

• Special sync words for word boundary locking contain an exclusive comma sequence that
cannot exist in regular random encoded data stream starting from any bit position.

1.6.1.2 Scrambling
The GMSL2 serial link features synchronous scrambling to improve clock and data recovery
robustness. This also improves electromagnetic interference (EMI) performance by reducing any
pattern-dependent EMI emission. The scrambler in the transmitter and the descrambler in the receiver
are synchronized with sync words.

1.6.1.3 Special Symbols
Special symbols (individually and in combination) are used as packet delimiters and headers. These
are selected to keep GMSL2 link robust (i.e., tolerant to bit errors) as much as possible. All special
9B/10B symbols have 3-bit Hamming distance between each other; it is impossible for a special symbol
to transform into another special symbol with 1- or 2-bit errors.

1.6.1.4 Total Link Bandwidth
Total link bandwidth used by all different communication channels cannot exceed the fixed available
link bandwidth. In typical use cases, available link bandwidth exceeds the bandwidth requirement. Idle
packets are used to fill unused link bandwidth.

1.6.2 Packet Protocol
The GMSL2 serial links use a packet-based protocol comprising various packet types to transmit
information across the link. The packet types are summarized in the following sections.

Note: The GMSL2 forward and reverse channels use the same protocol.

GMSL2 General User Guide

Analog Devices Page 17 of 163

1.6.2.1 Video Packets
Video packets are used to transmit up to four concurrent video streams over the GMSL2 serial link.
Each video packet consists of 36 pixels and a 1-bit sequence number that allows the receiver to detect
dropped packets.

During video blanking time, pixel data values are not transmitted to save bandwidth. By default,
Horizontal Sync (HS), Vertical Sync (VS), and Data Enable [DE (HVD)] values are transmitted from the
serializer so that the receiver can exactly reconstruct the same blanking time that the serializer receives
on the video input. This is needed when driving a deserializer with open LVDS display interface (OLDI)
output.

Optionally, the serializer can be programmed to “remove the heartbeat” (LIM_HEART = 1). In this
mode, the serializer does not transmit HVD packets to minimize bandwidth usage. This mode can be
used when driving a deserializer with CSI-2 or eDP/DP output, as those deserializers do not require
HVD values. In this case, SEQ_MISS_EN = 0 and DIS_PKT_DET = 1 should be programmed in the
deserializer so that it does not expect HVD packets during video blanking.

By default, video packets do not have embedded Cyclic Redundancy Check (CRC). When bandwidth is
available, this can be enabled to attach a 16-bit CRC value to each video packet. This is checked by
deserializer device and reported.

1.6.2.2 Control Channel Packets
Control packets are used for communications channels that use less than 100Mbps of bandwidth. This
includes I2C, UART, SPI, GPIO, audio, and internal info frame packets. Info frame packets are internal
control packets used to transmit information between serializer and deserializer (e.g., video PCLK PLL
settings, audio PLL settings).

Control packet types are differentiated by header formats. Each control packet is tagged with a 4-bit
sequence number and includes a 16-bit CRC value by default. These are used for error detection and
correction. See the CRC Error Detection and ARQ Error Correction section for additional information.

1.6.2.3 Sync Words
Sync words are periodically transmitted packets used for word boundary locking, lock validation, and
scrambler synchronization. Sync words are also used to align two GMSL2 lanes when the serial link is
configured in dual-link mode.

1.6.2.4 RGMII/RMII Packets
The RGMII/RMII packets are used to tunnel RGMII and RMII data. CRC is disabled by default for this
packet type, as Ethernet has error-detection capability at higher protocol layer. However, CRC can
optionally be enabled if bandwidth is available.

1.6.2.5 Idle Packets
Idle packets are transmitted to fill the link bandwidth when there is no data to transmit. Both the header
and payload data of idle packets are scrambled to minimize EMI. Idle packets are decoded and
checked for errors, which are reported to the IDLE_ERR_FLAG register. See the GMSL Idle Packet
Errors section for additional information.

GMSL2 General User Guide

Analog Devices Page 18 of 163

1.6.3 Priority-Based Packet Scheduler
GMSL2 devices support multiple communication channels in addition to the forward channel video.
Available bandwidth is flexibly shared between the various channels with dynamic bandwidth allocation.

GMSL2 devices use a bandwidth allocation scheduler that acts as an arbiter if multiple channels (i.e.,
video or control channels) attempt to simultaneously send packets over the link. The scheduler uses a
channel-based priority setting and a calculated running average of the bandwidth usage of each type of
communication channel to schedule transmissions over the link and throttle channels if needed.

Link bandwidth sharing is based on predefined share ratios and the recent bandwidth usage of each
channel. GMSL2 devices track averages of recent bandwidth usage for each channel compared to
assigned bandwidth share ratios. When deciding which packet to transmit, the scheduler selects the
channel with lowest usage ratio from the pending requests.

GMSL2 General User Guide

Analog Devices Page 19 of 163

2 Spread-Spectrum Clocking
Spread-Spectrum Clocking (SSC) provides enhanced mitigation of EMI emitted from devices and
interconnections. GMSL2 serial links offer exceptional EMI performance; however, it is recommended
to use SSC when possible, to reduce emission peaks for additional margin. This option is a feature of
all GMSL2 devices and is also available in GMSL1 mode.

Spread spectrum is available for the following interfaces:

• Forward serial link (GMSL2 mode)
• Reverse serial link
• Serializer camera clock reference output

Configuration is similar for each of these interfaces. Programming through the GMSL2 registers is
described in the following sections.

2.1 SSC Operation
The SSC uses a constant frequency 6GHz Clock Multiplier Unit (CMU) clock and a phase interpolator.
A digital block generates the phase commands to modulate the transmitter clock. Linear frequency
modulation requires quadratic phase command generation. The digital logic supports five levels of SSC
generation all at 25kHz. An example center frequency spread is illustrated in Figure 6.

-40us -30us -20us -10us 0s 10us 20us 30us 40us

166.85ps

166.80ps

166.75ps

166.70ps

166.65ps

166.60ps

166.55ps

166.50ps

166.45ps

SSC Modulation Interval

GM
LS

2 S
ym

bo
l P

er
iod

Figure 6. Example SSC Center Frequency Spread

GMSL2 General User Guide

Analog Devices Page 20 of 163

2.2 SSC Configuration
Enabling spread spectrum for a GMSL2 serial link requires configuring registers controlling the phase
command generation and maintenance of the 25kHz triangle waveform. The forward and reverse
channel spread spectrum generator must be disabled before configuring its settings and then re-
enabled once the settings are configured.

The SSC can be individually enabled and configured for various interfaces, allowing for user flexibility in
their target application. See the register settings in Table 3 to configure the spread spectrum transmitter
on either side of the link. For GMSL2 devices, writing these values to the serializer registers
implements spread spectrum on the forward serial channel while writing these values to the deserializer
registers implements spread spectrum on the reverse serial channel.

The maximum spread for the GMSL2 serial link is 2530ppm.

2.2.1 Forward and Reverse Channel SSC
Care must be taken to prevent large phase transients on the transmit clock. The procedure to enable
SSC on the GMSL2 forward/reverse serial link is as follows:

1. Disable SSC generator: RLMS71[0] = 0.
2. Configure SSC generator per the table below.
3. Enable SSC generator: RLMS71[0] = 1.

Table 3. GMSL2 Tx SSC Configuration for Fixed Ppm

SSC
Ppm

SSC
Fc

(kHz)

RLMS
64 RLMS

70
RLMS

71
RLMS

72
RLMS

73
RLMS

74
RLMS

75
RLMS

76
RLMS

77
268 25 0x03 0x07 0x02 0xC9 0x02 0xF9 0x01 0x00 0x00
580 25 0x03 0x06 0x02 0xAB 0x00 0x63 0x07 0x00 0x00
970 25 0x03 0x03 0x02 0xAB 0x00 0x63 0x07 0x00 0x00
1750 25 0x03 0x01 0x02 0xF9 0x00 0x2C 0x05 0x00 0x00
2530 25 0x03 0x01 0x02 0xAB 0x00 0x63 0x07 0x00 0x00

After configuration is complete, enable the generator by writing “1” to RLMS71[0].

Note: Disabling the GMSL2 serial link spread spectrum may cause loss-of-lock. It is recommended to
perform a link reset if link spread spectrum is disabled. See the Resets section for additional
information.

GMSL2 General User Guide

Analog Devices Page 21 of 163

3 Clocks
3.1 Overview

GMSL2 devices require a precise, low-jitter external frequency reference. This frequency reference is
multiplied and used to establish the GMSL link clock, other internal clocks, and, in some cases, clocks
associated with external video or peripheral interfaces.

Integrated oscillators are included in all GMSL2 devices. Most frequency reference applications require
only the addition of an external crystal and associated passive components. Alternatively, the on-chip
oscillator can be overdriven by an external oscillator or clock source. This enables multiple devices to
share a common frequency reference and potentially reduces the number of crystals required in a
complex system.

3.2 Architecture
The frequency reference for GMSL2 devices is typically realized using an external 25MHz crystal in
conjunction with the on-chip oscillator to create an accurate, low-jitter reference. This reference is
distributed throughout the GMSL2 device to establish the link and generate other required clocks. An
external 25MHz clock source, such as another GMSL2 device, can alternatively be used in the place of
the crystal. When using an external oscillator or clock source, the frequency precision and jitter must be
within the bounds specified in the electrical characteristics of the device.

A simplified diagram of the frequency reference system is shown in Figure 7. The diagram shows both
on-chip and external circuit elements.

10kΩ

1.2kΩ

25MHz
Crystal CL2CL1

25MHz
Clock

Clock Generation

RCLKOUT
Divider / DPLL

X1/OSC X2 MFP

Either crystal or external clock is used

To other
GMSL2
Devices

RLIM
RFB

GMSL2 Device

Figure 7. Simplified Diagram of Frequency Reference System

GMSL2 General User Guide

Analog Devices Page 22 of 163

3.3 Operation
Depending on the architecture of a given system, either a crystal or external precision clock source
must be used to provide a frequency reference to the GMSL2 device. The following information details
some of the key considerations involved in successfully implementing either a crystal- or external clock-
based frequency reference. Note that no device programming is required to accommodate one
operating mode versus the other.

3.3.1 Crystal Mode
When deriving the frequency reference using a crystal, a device with the required frequency and
tolerance (i.e., 25MHz ±200ppm) as well as environment characteristics must be selected to ensure
compatibility and reliable performance.

The implementation of the crystal circuit is illustrated in Figure 7. The values of CL1 and CL2 must be
selected based on the specified load capacitance of the crystal and the estimated parasitic
capacitances of the PCB and GMSL2 device. An example of the typical parasitic capacitances of the
GMSL2 X1/OSC and X2 pins is given in Table 4. Refer to device-specific data sheets for the
capacitance of these pins, as they vary by device. Note that the feedback resistor and limit resistor are
included on-chip. The selected crystal is connected between the X1/OSC and X2 pins.

Table 4. Example DC Characteristics of X1/OSC and X2 Pins
REFERENCE CLOCK INPUT REQUIREMENTS (CRYSTAL) (X1/OSC, X2)

PARAMETER SYMBOL VALUE (TYP)
X1/OSC Input
Capacitance

CIN_X1 3pF

X2 Input
Capacitance

CIN_X2 1pF

Internal X2 Limit
Resistor

RLIM 1.2kΩ

Internal Feedback
Resistor

RFB 10kΩ

Transconductance gM 28mA/V

Proper layout of the crystal circuitry is important to achieving the best possible performance. Figure 8
provides an example layout of the crystal and associated components. The crystal and associated
external load capacitors should be placed near the X1/OSC and X2 pins of the GMSL2 device to
reduce interconnect capacitance and susceptibility to noise coupling. If preferred, the crystal can be
placed on the opposite side of the board from the GMSL2 device. There should be a solid ground plane
in the region of both the crystal and GMSL2 device, and the crystal’s ground terminals should be
connected to the ground plane with minimal inductance. Finally, noisy components and interconnects
should not be arranged near the crystal or associated interconnects. Length matching and impedance
of the X1/OSC and X2 interconnects is not critical.

GMSL2 General User Guide

Analog Devices Page 23 of 163

Figure 8. Example Crystal Layout

3.3.2 External Reference Mode
The external load capacitors and crystal can be omitted if the frequency reference is supplied by an
external clock source such as a TCXO or the RCLKOUT function of a GMSL2 device. The external
clock source must be compliant with the specifications detailed in Table 5 and Table 6. Note that the
maximum signal level is constrained by VDDIO. Assuming that the clock source uses a CMOS driver and
is powered by the same VDDIO as the device that is being driven, the clock signal can be DC coupled to
the X1/OSC pin of the GMSL2 device. For example, a GMSL2 device’s RCLKOUT function can be
directly connected to another GMSL2 device’s X1/OSC pin assuming that the two devices use a
common VDDIO. The required frequency accuracy and tolerance are identical to the crystal specifications
(i.e., 25MHz ±200ppm). Note that the jitter, duty cycle, and fall time must all be considered when using
an external clock source.

Table 5. External Clock DC Characteristics
REFERENCE CLOCK REQUIREMENTS (EXTERNAL INPUT ON X1/OSC, X2 UNCONNECTED)

PARAMETER MIN TYP MAX
High-Level Input Voltage 0.9V VDDIO
Low-Level Input Voltage 0.4V
Input Impedance 10kΩ
X1/OSC Input Capacitance 3pF

GMSL2 General User Guide

Analog Devices Page 24 of 163

Table 6. External Clock AC Characteristics
REFERENCE CLOCK REQUIREMENTS (EXTERNAL CLOCK INPUT ON X1/OSC, X2 UNCONNECTED)
PARAMETER MIN TYP MAX
Frequency 25MHz
Frequency
Stability +
Frequency
Tolerance

 ±200ppm

Input Jitter 600ps
(p-p)

Input Duty
Cycle

40% 60%

Input Fall
Time

 4ns

Table 7 includes an example of the typical RCLKOUT characteristics of a GMSL2 device. The jitter and
RCLKOUT fall time are within the specified bounds, confirming that this device’s RCLKOUT meets the
requirements to be used as the frequency reference source for another GMSL2 device. Note that in the
case of GMSL2 devices, the drive strength of the RCLKOUT MFP pin must be specified appropriately
to achieve the desired fall time depending on VDDIO. A similar set of specifications should be reviewed
while evaluating any external clock source.

Table 7. Example RCLKOUT Characteristics
REFERENCE CLOCK REQUIREMENTS (EXTERNAL CLOCK INPUT ON X1/OSC, X2 UNCONNECTED)
PARAMETER CONDITIONS MIN TYP MAX

Frequency
Crystal or
reference
clock input

 25MHz

Rise Time 20% to 80%,
CL = 10pF

 4ns

Fall Time 80% to 20%,
CL = 10pF

 4ns

Jitter

CL = 10pF,
rising or
falling edge
fREFOUT =
12.5MHz

 210ps
(p-p)

In contrast to crystal mode, the frequency reference is not guaranteed to automatically be available at
power-up in external reference mode. For example, if the RCLKOUT function of another GMSL2 device
is used to provide the frequency reference, that device’s RCLKOUT function must be enabled prior to
the frequency reference being operational.

The layout of a design that uses an external frequency reference must be carefully considered. The
clock should be routed so that it is not susceptible to picking up noise or corrupting other noise-
sensitive functions. The interconnect should be as short as possible, and a solid ground plane should
be used in the vicinity of the clock source and along the length of the interconnect. A provision should
be included for a source termination resistor.

GMSL2 General User Guide

Analog Devices Page 25 of 163

3.3.3 Frequency Reference Debugging
Proper operation of the frequency reference is required for GMSL2 link functionality. If a system is not
achieving the anticipated operation and power supplies have been checked, verify that the frequency
reference is operational.

Test the frequency reference by probing the X2 pin with a low-capacitance, high-impedance probe. If
the frequency reference is functioning correctly, X2 should toggle at 25MHz. If not, inspect the
associated solder joints, clean the PCB, and consider replacing the crystal and load capacitors. Finally,
confirm that the equivalent series resistance (ESR) of the crystal is within the bounds supported by the
GMSL2 device and verify that the load capacitance values employed are consistent with the
requirements of the crystal.

3.4 Applications and Examples

3.4.1 BER Testing Using the GMSL2 Idle Link
The GMSL2 serial link itself can also be used as a pseudo-PRBS test. The packet-based transmission
protocol of the GMSL2 link sends data at a fixed rate while it is active. If there is no video, control, or
other data to send, the link transmits ‘idle packets.’ These idle packets are filled with random data and
undergo the same serial link protocol encoding, scrambling, etc. processes of other data types.
Analyzing the number of errors per unit of time while sending at a fixed rate provides a BER, which can
be used to determine the quality of the link.

See Table 8 for an example of the classification of the BER with respect to time without an observed
error.

Table 8. Observation Time Required for 95% Confidence Interval of Different BER (@ 6Gbps)

BER TIME INTERVAL BETWEEN ERRORS
10-6 ~500 microseconds
10-9 ~500 milliseconds
10-12 ~8.3 minutes
10-15 ~5.8 days
10-18 ~16 years

GMSL2 General User Guide

Analog Devices Page 26 of 163

Video Transmission

GMSL2 General User Guide

Analog Devices Page 27 of 163

4 Video Basics
GMSL devices transmit digital video. Digital video transmissions consist of a series of specifically
formatted video frames. The architecture of these frames, which borrows heavily from analog video,
must be understood to ensure proper performance of the GMSL device(s) and the system as a whole.
This section defines and reviews the core concepts of digital video, the terminology used throughout
the GMSL2 User Guide, and the basic equations used to calculate video bandwidth.

4.1 Video Frame Architecture
The different regions of a video image are identified in Figure 9. Note that there are variations in how
these parameters are defined across the industry and that their usage may differ from analog video.
The definitions are used throughout this document and are applicable to all GMSL products. When
designing systems, be aware that concepts and parameters presented here may not align with other
industry definitions.

Active Video

Total
Horizontal
Line Length
(Htotal)

Horizontal
Front Porch

Horizontal
Sync (HS)

Vertical
Active Pixels

(Vactive)

Horizontal Active Pixels (Hactive)

Vertical
Front Porch

Vertical Sync
(VS)

Horizontal
Back Porch

Vertical
Back Porch

Figure 9. Video Frame Regions

The diagram includes both the active video and blanking periods. The active video frame consists of
horizontal lines scanned from left to right. The first pixel transmission begins in the top left corner of the
frame. After the horizontal line has completed scanning, a new line is started directly below it, and the
left-to-right scan pattern repeats. This process continues until the last line of the frame is completed,
and the process restarts for a new frame. Note that the front porch and back porch locations are not
intuitive. This naming convention comes from the parameters’ location in time relative to the sync pulse
(see Figure 10).

GMSL2 General User Guide

Analog Devices Page 28 of 163

VS

DE

HS

Vsw

Start of
Frame N

Vactive Vfp

Vsw

VbpVbp

Vtot

Hactive

HfpHsw Hbp

Htot
Vblank

Vactive

Hblank

Start of
Frame N + 1

Figure 10. Sync Pulses: Data Enable and the Vertical and Horizontal Sync Signals

DE

HS

Hactive

Hfp Hbp

Htot

Hblank

Hsw

Figure 11. Horizontal Sync and Data Enable Signals

The diagram in Figure 10 shows the relationships between the Vertical Sync, Horizontal Sync, and
Data Enable signals. Figure 11 exaggerates the horizontal blanking period to illustrate the relationship
between the HS and DE signals as well as the video frame parameters.

GMSL2 General User Guide

Analog Devices Page 29 of 163

4.2 Equations
This section contains video timing and blanking equations and demonstrates how to calculate video
bandwidth. Note that total link bandwidth available for video data is less than the link transfer speed
due to link encoding overheard and side channel usage (e.g., main control channel, SPI, etc.). Also, the
pixel clock and GMSL bandwidth must consider the total resolution of a video (i.e., video data plus
blanking). See the GMSL2 Link System Bandwidth section for further details.

4.2.1 Relationships Between Video Signals

Vertical Sync

• VSW – Vertical Sync Width
• VFP – Vertical Front Porch
• VBP – Vertical Back Porch
• Vactive – Vertical Active
• Vtot – Total Vertical Line Length
• Vblank – Vertical Blanking

Horizontal Sync
• HSW – Horizontal Sync Width
• HFP – Horizontal Front Porch
• HBP – Horizontal Back Porch
• Hactive – Horizontal Active
• Htot – Total Horizontal Line Length
• Hblank – Horizontal Blanking

The video is active (i.e., the display time in which the video contains visible pixel data) during the
horizontal active period. The horizontal blanking period separates the active video of each visible
horizontal line. The horizontal sync (during the blanking period) indicates the start of a new horizontal
line. The vertical sync signals have analogous functions to the horizontal counterparts; however, the
vertical signals are used to indicate frame boundaries and are sometimes used to trigger other events
(e.g., buffer resets) between frames. The vertical sync signal occurs during the vertical blanking period.

These concepts are illustrated in the diagram (Figure 9). The active video (i.e., display time) is
equivalent to the video screen that actively shows video data. The pixel data advances horizontally one
pixel with each successive pixel clock period until the entire horizontal line is formed. The end of the
horizontal line is designated by a horizontal sync pulse (HS) and signifies a shift to begin a new
horizontal line directly below. This process continues until the entire frame is filled. When the entire
frame is filled with horizontal lines, a vertical sync pulse (VS) indicates the end of the frame. The frame
then refreshes and the process repeats. Note that cameras and SoCs often express resolution in terms
of “active video” (i.e., viewable resolution). This designation ignores blanking. The pixel clock and
GMSL bandwidth is dependent on the total resolution, however, and includes blanking.

GMSL2 General User Guide

Analog Devices Page 30 of 163

4.2.2 Total Blanking Interval

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵 = (𝐻𝐻.𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑃𝑃𝐻𝐻𝐻𝐻𝑃𝑃ℎ) + (𝐻𝐻. 𝑆𝑆𝑆𝑆𝐻𝐻𝑃𝑃 𝑊𝑊𝐻𝐻𝑊𝑊𝐻𝐻ℎ) + (𝐻𝐻.𝐵𝐵𝐻𝐻𝑃𝑃𝐵𝐵 𝑃𝑃𝐻𝐻𝐻𝐻𝑃𝑃ℎ)

𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻 𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵 = (𝑉𝑉.𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑃𝑃𝐻𝐻𝐻𝐻𝑃𝑃ℎ) + (𝑉𝑉. 𝑆𝑆𝑆𝑆𝐻𝐻𝑃𝑃 𝑊𝑊𝐻𝐻𝑊𝑊𝐻𝐻ℎ) + (𝑉𝑉.𝐵𝐵𝐻𝐻𝑃𝑃𝐵𝐵 𝑃𝑃𝐻𝐻𝐻𝐻𝑃𝑃ℎ)

4.2.3 Total Line and Frame Period

𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐴𝐴𝑃𝑃𝐻𝐻𝐻𝐻𝐴𝐴𝑉𝑉 𝑃𝑃𝐻𝐻𝑃𝑃𝑉𝑉𝐻𝐻𝑃𝑃 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻 𝐴𝐴𝑃𝑃𝐻𝐻𝐻𝐻𝐴𝐴𝑉𝑉 𝐿𝐿𝐻𝐻𝐻𝐻𝑉𝑉𝑃𝑃 + 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻 𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵

4.2.4 Pixel Clock
Calculating the pixel clock (PCLK) is necessary to determine if video transmissions are compatible with
interface and GMSL2 link bandwidth availability.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 = 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐹𝐹𝐻𝐻𝐻𝐻𝐹𝐹𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉

4.2.4.1 Pixel Clock (Alternative Calculation)
In some situations, the specific blanking timings are not known. In these cases, an approximation of the
blanking timing (called “Blanking Ratio”) should be used to calculate an approximate PCLK value.
Blanking ratios are typically in the range of 1.1–1.25; those values should be used for approximate
calculations.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 = (𝐴𝐴𝑃𝑃𝐻𝐻𝐻𝐻𝐴𝐴𝑉𝑉 𝑊𝑊𝐻𝐻𝑊𝑊𝐻𝐻ℎ) ∗ (𝐴𝐴𝑃𝑃𝐻𝐻𝐻𝐻𝐴𝐴𝑉𝑉 𝐻𝐻𝑉𝑉𝐻𝐻𝐵𝐵ℎ𝐻𝐻) ∗ (𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵 𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) ∗ (𝐹𝐹𝐻𝐻𝐻𝐻𝐹𝐹𝑉𝑉 𝑅𝑅𝐻𝐻𝐻𝐻𝑉𝑉)

4.2.4.2 Sample Calculation

1920 ℎ.𝑝𝑝𝐻𝐻𝑃𝑃𝑉𝑉𝐻𝐻𝑃𝑃 ∗ 1080 𝐴𝐴.𝑝𝑝𝐻𝐻𝑃𝑃𝑉𝑉𝐻𝐻𝑃𝑃 ∗ 1.2 𝑏𝑏𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∗ 60 𝐻𝐻𝐻𝐻 = 149𝑀𝑀𝐻𝐻𝐻𝐻 𝑝𝑝𝑃𝑃𝐻𝐻𝐵𝐵

4.2.5 Calculating Total Video Bandwidth

𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝐵𝐵𝑊𝑊 = 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 ∗ 𝑏𝑏𝑝𝑝𝑝𝑝

Where bpp = bits per pixel. For RGB888 video this is 24 bits per pixel (8 bits per color). Note that the
bits per pixel value varies with other video formats (e.g., RAW).

For example, a 1920x1080 60Hz 24-bit RGB display has a video bandwidth of ~3.56 Gbps.

The GMSL2 link has additional overhead that shares bandwidth with video data. Therefore, a 6Gbps
video stream cannot be transferred on a 6Gbps GMSL2 link. See the GMSL2 Link System Bandwidth
section for further details.

GMSL2 General User Guide

Analog Devices Page 31 of 163

4.3 Definitions
This section contains definitions of basic video terminology.

4.3.1.1 Aspect Ratio
The ratio of the visible picture width to the height. Traditional televisions and monitors have an aspect
ratio of 4:3 (1.33). The standard aspect ratio of modern computer monitors and automotive infotainment
displays is 16:9 (1.78). Automotive instrument cluster displays are typically 8:3 (2.66), but custom
aspect ratios are also common.

4.3.1.2 Back Porch
The area of a composite video signal defined as the time between the end of the sync signal and the
start of the of active video.

4.3.1.3 Blanking Interval
There are horizontal and vertical blanking intervals. The horizontal blanking interval is the time period
from the last active pixel in a line to the first active pixel in the following line. The vertical blanking
interval is the time period from the last active pixel in a field or frame to the first active pixel in the
following field or frame. The synchronizing signals occupy a portion of the blanking interval.

4.3.1.4 Color Bars
A standard video waveform used to test the calibration of a video system. It consists of a sequence of
seven colored bars of a standard amplitude and size. The standard active-low color sequence is white,
yellow, cyan, green, magenta, red, and blue. There are several amplitude standards, the most common
being 75% amplitude (brightness) with 100% saturation (intensity of the color).

4.3.1.5 Data Enable
The signal defines the valid video data. When the Data Enable signal is off, the video data is ignored.
Note that cameras typically do not use DE signals, and instead use the HS and VS signals to indicate
valid video data. Some display applications use only DE signals, while the HS and VS sync signals are
ignored.

4.3.1.6 Fields and Frames
A frame is one complete scan of a picture. In interlaced scanning systems, a field is half of a frame;
thus, two fields make a frame.

4.3.1.7 Frame Rate
See Vertical Frame Rate.

4.3.1.8 Front Porch
The area of a composite video waveform between the end of the active video and the leading edge of
sync.

4.3.1.9 GMSL
Gigabit Multimedia Serial Link. GMSL is a proprietary serial link protocol used to transmit video,
bidirectional audio, and bidirectional communication channel data over an automotive-grade physical
interface.

GMSL2 General User Guide

Analog Devices Page 32 of 163

4.3.1.10 Horizontal Blanking
The horizontal blanking interval is the time period from the last active pixel in a line to the first active
pixel in the following line. Synchronizing signals occupy a portion of the blanking interval.

4.3.1.11 Horizontal Line Frequency
The inverse of the period of the total horizontal line time.

4.3.1.12 Horizontal Sync
The beginning of a horizontal line is indicated by a HS “pulse” during the horizontal blanking period.
Sometimes, the Horizontal Sync is replaced by Data Enable.

4.3.1.13 Interlaced Scan
The process whereby each frame of a picture is created by first scanning half of the lines and then
scanning the second set of lines. The second set of lines is interleaved between the first set to
complete the picture. Each half is referred to as a field. Two fields make a frame. See also Progressive
Scan.

4.3.1.14 Pixel
Picture element. A pixel is the smallest piece of display detail, and each has a unique brightness and
color. In a digital image, a pixel is an individual point in the image, represented by a certain number of
bits to indicate the brightness.

4.3.1.15 Pixel Clock
The clock rate of pixels in a video stream. Pixel data advances at every clock edge.

4.3.1.16 Progressive Scan
The process whereby a picture is created by scanning all the lines of a frame in successive
passes. Contrast with Interlaced Scan. The process of converting from interlaced to progressive scan is
called "line doubling."

4.3.1.17 Refresh Rate
See Vertical Frame Rate.

4.3.1.18 Sync Signals/Pulses
Sync signals, also known as sync pulses, are timing pulses in video signals that are used by video
processing or display devices to synchronize the horizontal and vertical portions of the display. They
include Horizontal Sync and Vertical Sync. These signals typically occur during the blanking period(s).

4.3.1.19 Vertical Blanking
The vertical blanking interval is the time period from the last active pixel in a field or frame to the first
active pixel in the following field or frame. Synchronizing signals occupy a portion of the blanking
interval.

4.3.1.20 Vertical Field Frequency
The inverse of the time (or period) to produce one field of video (half of a frame). In NTSC, it is
59.94Hz.

GMSL2 General User Guide

Analog Devices Page 33 of 163

4.3.1.21 Vertical Frame Rate
The inverse of the time (or period) to produce one frame of video. Also called "refresh rate" or "vertical
refresh rate."

4.3.1.22 Vertical Sync
The beginning of a frame is indicated by a VS “pulse” during the vertical blanking period in which data
enable is also turned off.

4.4 Configuration
The video Tx/Rx blocks have the following programmable modes of operation:

• Heartbeat Mode On: Enables video clock regeneration
• Heartbeat Mode Off: Disables video clock regeneration (CSI-2)

4.4.1 Heartbeat Mode On
Default setting. No additional configuration is required.

4.4.2 Heartbeat Mode Off
For applications where PCLK regeneration is not required, it is suggested to completely turn off data
transmission during blanking periods. This eliminates video bandwidth consumption during blanking.

Note: Heartbeat mode should only be disabled when the deserializer device has CSI-2.

Serializer:

• Disable heartbeat packet transmission: LIM_HEART = 1’b1

Deserializer:

• Disable the packet sequence number checker: SEQ_MISS_EN = 1’b0
• Disable the packet detector: DIS_PKT_DET = 1’b1

Note: If the GMSL2 device has multiple video pipes, these registers are set individually for each video
pipe.

GMSL2 General User Guide

Analog Devices Page 34 of 163

5 Forward Error Correction
5.1 Overview

Forward Error Correction (FEC) is used in GMSL2 devices to detect and correct bit errors occurring
during the transmission of compressed video on the serial link. The FEC implementation in GMSL2
devices corrects both single and burst errors and results in an improved bit error rate (BER). An
additional CRC mechanism is used to indicate the presence of uncorrectable bit errors. FEC consumes
an additional fixed 6.7% bandwidth overhead when enabled; however, it provides error correction
without requiring reverse channel communication or incurring video stream delays.

FEC is primarily used to enable robust transmission of compressed video over a GMSL2 link. On an
uncompressed video stream, a single bit error on a video packet corrupts only one pixel and is visually
undetectable (Figure 12). However, on a compressed video stream, a single bit error can possibly
corrupt the entirety of the DSC macroblock, typically comprising thousands of pixels, and can usually
be detected visually (Figure 13).

To test the visual impact of bit errors on a compressed video stream, 1000 compressed 4K frames,
each with a single bit error, were transmitted over a GMSL2 link with FEC disabled. The average
observed macroblock error was 484x48 pixels (0.28% of the image) and was visibly detectable
approximately 60% of the time.

Since a single bit error can cause visual corruption of a compressed video stream, FEC is required for
all GMSL links with compressed video to minimize the BER so that the probability of bit errors becomes
negligible.

Figure 12. Uncompressed Video Frame with
91,480 Random Bit Errors

Figure 13. Compressed Video Frame with 1 Bit
Error

The images contrast the visual impact of bit errors on uncompressed and compressed video frames. In
Figure 12, the 91,480 random bit errors are undetectable. However, in Figure 13, a single bit error on a
video packet has corrupted an entire DSC macroblock and resulted in visually detectable damage to
the video frame.

GMSL2 General User Guide

Analog Devices Page 35 of 163

5.2 Operation
5.2.1 Architecture
In the serializer, data is grouped into codeword blocks of 2560 bits and converted to GMSL data. After
conversion, the GMSL data is encoded by the FEC block then processed by the 9b10b
encoder/scrambler. The GMSL data is transmitted from the serializer’s GMSL PHY over the serial link
to the deserializer’s GMSL PHY. In the deserializer, the GMSL data is first processed by the 9b10b
decoder and de-scrambler. This block detects decode and idle errors. Bit errors are detected and
corrected when GMSL data passes through the FEC decoder. The count of errors corrected by the
FEC decoder block are reported to fec_bit_errors_corrected. The GMSL data then moves to the FEC
CRC block. An 18-bit CRC is calculated per codeword block. If the received CRC matches the
calculated CRC, the block is deemed correct; if the CRC values do not match, it is deemed an
uncorrectable codeword block and reported to fec_uncorrectable_blks. The block diagram (Figure 14)
illustrates the data path through the serial link system and highlights error detection, correction, and
reporting behavior.

Packetizer FEC Encoder
9b10b

Encoder/
Scrambler

GMSL PHY

GMSL PHY
9b10b

Decoder/
De-Scrambler

FEC Decoder FEC CRC

Serializer

Deserializer

GMSL

Decode errors and idle
errors detected

Uncorrectable errors are detected and
reported by fec_uncorrectable_blks

Corrected errors in FEC decoder are
reported by fec_bit_errs_corrected

Depacketizer

Figure 14. Architecture of FEC Implementation in GMSL Devices

GMSL2 General User Guide

Analog Devices Page 36 of 163

5.2.2 BER Reduction Performance
FEC is designed to lower the BER on GMSL links containing compressed video streams. The FEC
block operates with an error correction scheme based on Reed-Solomon error-correction codes. This
coding scheme improves the BER in high-error systems (e.g., wireless transmission), and it is used to
substantially improve the BER in GMSL systems and effectively mitigate the incidence of uncorrectable
bit errors on compressed video streams. Without FEC enabled, compliant GMSL2 links operate with a
BER range of approximately 10-12 to 10-16; with FEC enabled, the GMSL2 links operate with an
improved BER range of approximately 10-40 to 10-60. To illustrate, a link operating with a BER of 10-15 is
improved to a BER of 10-55 with FEC enabled, which corresponds to a single uncorrectable bit error
every 1.6 x 1038 years.

5.2.3 Bandwidth Overhead and System Impacts
The overall FEC bandwidth overhead is the combination of the Reed-Solomon correction overhead and
the 18-bit CRC correction overhead. The code rate of Reed-Solomon [N/K/S] = [127/121/7] plus an
additional symbol to pack parity bits and the CRC results in a total bandwidth overhead of 128/120 =
6.677%.

The link overhead added when FEC is enabled must be considered when calculating GMSL bandwidth
consumption. Additionally, FEC adds a small increase in the link latency of the video and control
channel data that is proportional to the forward channel serial link rate. For 6Gbps link rate, the
additional latency due to FEC encoding and decoding is 720ns; for 3Gbps link rate, the latency is
1440ns. I2C clock stretching, GPIO delay compensation, etc. can be used to compensate for this
latency. See the I2C/UART and Interface-Specific Bandwidth Calculations sections for details.

5.2.4 Resynchronization
If a receiver loses and subsequently regains synchronization, FEC returns to normal operation without
freezing. Therefore, FEC auto-recovers if the GMSL link lock is lost and recovered.

5.2.5 Power-Up Configuration
The FEC block is disabled by default on all GMSL2 devices. It is enabled using the procedure in the
Configuration section.

5.3 Configuration
FEC only requires a single register write per device to be enabled; additional configuration may be
needed to change the ERRB reporting depending on the requirements of the application.

Ensure that FEC is either enabled or disabled on both serializer and deserializer. The deserializer FEC
should be enabled before or simultaneous to the serializer. Note that valid operation cannot be
guaranteed until both devices have been properly configured using the procedures presented in the
following sections.

Once both devices have been configured, FEC autorecovers if the link is lost and re-established or
either device is reset (and re-initialized).

5.3.1 Enabling FEC in a Single Microcontroller System
This procedure applies if all configuration of the serializer and deserializer is performed on one side of
the link.

GMSL2 General User Guide

Analog Devices Page 37 of 163

µC Serializer

Serializer

Deserializer

µCDeserializer

I2C/UART

I2C/UARTGMSL2

GMSL2

Figure 15. Block Diagram of a Single Microcontroller System

In a single microcontroller system, the microcontroller can be on either side of the link (Figure 15). The
remote device is configured over the serial link through the control channel.

5.3.1.1 Single Microcontroller System Configuration Procedure

1. Wait for link LOCK (ensure bit LOCKED = 1 on serializer or deserializer)
2. Enable FEC in the deserializer (set fec_en = 1)
3. Enable FEC in the serializer (set TX_FEC_EN = 1)

GMSL2 General User Guide

Analog Devices Page 38 of 163

5.3.2 Enabling FEC in a Dual Microcontroller System
This procedure describes how to enable FEC in a system that has a microcontroller on both sides of
the link and has the control channel disabled (Figure 16). The devices can be programmed in any order
provided that the link is held in reset and link lock is not established before configuration is completed.

µC Serializer Deserializer
I2C/UART GMSL2*

µC
I2C/UART

*There is no control channel on the GMSL2 link

Figure 16. Block Diagram of a Dual Microcontroller System

5.3.2.1 Deserializer Programming Procedure

1. Write RESET_LINK = 1 (this prevents premature link lock).
2. Write other initialization registers (configuration of video, control channels, etc.).
3. Enable FEC (set fec_en = 1).
4. Clear all ERRs.
5. Write RESET_LINK = 0 (this allows link to lock when both devices are ready).

5.3.2.2 Serializer Programming Procedure

1. Write RESET_LINK = 1 (this prevents premature link lock).
2. Write other initialization registers (configuration of video, control channels, etc.).
3. Enable FEC (set TX_FEC_EN = 1).
4. Write RESET_LINK = 0 (this allows link to lock when both devices are ready).

GMSL2 General User Guide

Analog Devices Page 39 of 163

5.4 Status and Debug Registers
FEC enables reporting of uncorrected link errors to the ERRB pin, as well as providing status registers
to determine the exact link BER rate and post-correction BER rate. See the GMSL2 Error Reporting
(ERRB Pin) section for additional information.

5.4.1 Error Reporting to the ERRB Pin
When the number of uncorrectable FEC errors is greater than FEC_ERR_THR (set to 1 by default), the
FEC_RX_ERR_FLAG is set to 1. If FEC_RX_ERR_OEN = 1, the FEC_RX_ERR_FLAG error sets the
ERRB pin high.

When FEC_RX_ERR_FLAG is read, it clears to 0. To reset error reporting so that additional FEC errors
are detected, the FEC statistics counters must also be reset by setting fec_clr_stats = 1 (this bit self-
clears after writing).

5.4.1.1 Example System Pseudocode

if Deserializer ERRB pin goes low and triggers hardware interrupt:

Read error registers to determine what error is active
Read registers 0x001B, 0x001D, and 0x001F
if FEC_RX_ERR_FLAG = 1
 react to error as defined by system engineer
 write fec_clr_stats = 1 to clear error counters
 read FEC_RX_ERR_FLAG to clear error

 end
end

5.4.2 Statistics Registers
The FEC block has status registers that indicate the number of uncorrected errors, number of corrected
errors, and total number of codeword blocks processed. These status registers can be cleared at any
time by writing fec_clr_stats = 1.

1. fec_blks_processed [31:0] – Blocks processed: number of codeword blocks received divided by
32768. For example, a value of 10 indicates that 327,680 blocks have been received. The
scaling down by 32768 is implemented inside chip to avoid saturating the counter too soon.
Write to clear or clear by writing fec_clk_stats = 1.

2. fec_uncorrectable_blks [31:0] – Uncorrectable errors: Number of codeword blocks that were
uncorrectable by FEC (as detected by CRC). Write to clear or cleared by writing fec_clk_stats =
1.

3. fec_bit_errs_corrected [31:0] – Corrected bit errors: Number of bit errors corrected in the FEC
block. Note that this does not map directly to the number of bit errors on the serial link (see Link
BER). Write to clear or cleared by writing fec_clr_stats = 1.

GMSL2 General User Guide

Analog Devices Page 40 of 163

5.4.3 BER Calculations
For any system, the measured BER is given by the equation:

𝐵𝐵𝐵𝐵𝑅𝑅 =
𝐵𝐵𝐻𝐻𝐻𝐻 𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐵𝐵𝐻𝐻𝐻𝐻𝑃𝑃

However, since the observation period for bit errors can be prohibitively long in systems with a low
BER, an estimated BER can be determined for a given observation period of no bit errors using a
Poisson distribution. In this case, the confidence level that a system is operating at or better than a
given BER after observing no bit errors over a period of Nbits is given by:

𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻𝑃𝑃𝑉𝑉 𝐿𝐿𝑉𝑉𝐴𝐴𝑉𝑉𝐻𝐻 (𝑃𝑃𝐿𝐿) = 1− 𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵∗ 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Rearranging and solving for a 95% confidence level:

𝐵𝐵𝐵𝐵𝑅𝑅𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 =
−ln (0.05)
𝑁𝑁𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒

These equations can be combined with the status registers in the FEC block to get the measured and
estimated BER for a system.

5.4.3.1 Link BER
The Link BER (pre-FEC bit corrections) can be a good indicator of the health of the link, but it is not the
BER seen by the system. To calculate the link BER, the number of bit errors and total bits in an
observation period must be known.

Due to GMSL2 9b10b encoding, bit errors on the serial link do not map directly to bit errors seen by the
FEC decoder block. An error on the link has a probability to cause between one and nine errors within
the FEC decoder block. On average, a single bit error corrupts approximately 4.1 bits in the FEC block,
so a scaling factor of 4.1 is applied to the BER approximation equations.

The approximate link BER is given by:

𝐵𝐵𝐵𝐵𝑅𝑅 =
𝐶𝐶𝑉𝑉𝑃𝑃_𝑏𝑏𝐻𝐻𝐻𝐻_𝑉𝑉𝐻𝐻𝐻𝐻𝑃𝑃_𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉𝑃𝑃𝐻𝐻𝑉𝑉𝑊𝑊

4.1 ∗ 2560 ∗ 32768 ∗ 𝑏𝑏𝐻𝐻𝐵𝐵𝑃𝑃_𝑝𝑝𝐻𝐻𝐻𝐻𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑊𝑊

If no bit errors are observed (fec_bit_errors_corrected = 0), using the Poisson distribution equation:

𝐵𝐵𝐵𝐵𝑅𝑅𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 =
−ln (0.05)

4.1 ∗ 2560 ∗ 32768 ∗ 𝑏𝑏𝐻𝐻𝐵𝐵𝑃𝑃_𝑝𝑝𝐻𝐻𝐻𝐻𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑊𝑊

The approximate BER after the FEC block corrects errors is given by:

GMSL2 General User Guide

Analog Devices Page 41 of 163

𝐵𝐵𝐵𝐵𝑅𝑅𝐹𝐹𝐵𝐵𝐹𝐹 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝑉𝑉𝑃𝑃_𝑢𝑢𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉𝑃𝑃𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻𝑉𝑉_𝑏𝑏𝐻𝐻𝐵𝐵𝑃𝑃

4.1 ∗ 2560 ∗ 32768 ∗ 𝑏𝑏𝐻𝐻𝐵𝐵𝑃𝑃_𝑝𝑝𝐻𝐻𝐻𝐻𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑊𝑊

There is a tool available in the GUI which provides the BER based on these equations.

GMSL2 General User Guide

Analog Devices Page 42 of 163

Bidirectional Channels

GMSL2 General User Guide

Analog Devices Page 43 of 163

6 I2C/UART
6.1 Overview

I2C and UART are serial communication protocols supported by all GMSL2 devices. The control
channel (CC) and pass-through (tunneling) channels utilize these protocols to transmit control
information from the host controller to the GMSL2 devices and connected peripherals from either end of
the serial link.

The CC provides access to both the internal registers of GMSL2 devices and connected peripheral
devices; the pass-through I2C/UART channels provide a direct connection to remote I2C/UART
peripherals but do not provide access to internal GMSL2 device registers.

6.2 Main Control Channel – I2C/UART
6.2.1 Overview
The I2C/UART control channel (CC) provides a main microcontroller (μC) with access to GMSL2 device
registers and connected peripheral devices from either end of the serial link. Typical applications use
one main μC (Figure 17). I2C multi-main applications are also supported, provided that a software
arbitration method is used to prevent collisions (Figure 18). Note that the serial link allows only one
main μC to communicate at any given time. The CC also enables the main μC to configure peripherals
connected at the other end of the serial link (i.e., remote side). This application requires that both
GMSL2 devices are configured for the same CC protocol (i.e., both I2C or both UART); GMSL2 devices
do not support I2C-to-UART or UART-to-I2C conversion.

Note: In CC applications, the local GMSL2 device is connected to the µC; the remote GMSL2 device is
connected to the remote peripheral I2C/UART device (see Figure 17).

Remote Serializer / Deserializer

Host
Controller

(µC)

I2C / UART

SCL / Tx

SDA / Rx

CRC / ARQ

GMSL2
Forward

Channel Tx

GMSL
Reverse

Channel Rx

GMSL2
PHY CRC / ARQ

GMSL2
Reverse

Channel Tx

GMSL
Forward

Channel Rx

GMSL2
PHY

GMSL2

Peripheral
Device

I2C / UART

SCL / Tx

SDA / Rx

Local Serializer / Deserializer

Figure 17. Typical GMSL2 Serial Link System with the Control Channel

GMSL2 General User Guide

Analog Devices Page 44 of 163

Local Serializer / Deserializer

µC* SCL

SDA

CRC / ARQ

GMSL2
Forward

Channel Tx

GMSL
Reverse

Channel Rx

GMSL2
PHY CRC / ARQ

GMSL2
Reverse

Channel Tx

GMSL
Forward

Channel Rx

GMSL2
PHY

GMSL2

µC*SCL

SDA

Local Serializer / Deserializer

*Software arbitration is required in multi-main applications to prevent collisions.

I2C I2C

Figure 18. GMSL2 System with Multi-Main Control Channel (I2C)

Both CC protocols use the GMSL2 device’s SDA_RX and SCL_TX pins. Selection of I2C (SDA and
SCL) or UART (Rx and Tx) is determined at power-up with the I2CSEL pin state or the Configuration
Pin (CFG). Refer to device-specific data sheet for the protocol selection settings; note that some parts
may feature pins with shared functionality. The I2C/UART outputs are open-drain and require external
pullup resistors to ensure proper operation. The value of the external pullup resistors is application-
specific and is determined by the characteristics of the connected μC or other peripherals and the value
of VDDIO.

6.2.2 Operation
All GMSL2 device registers are accessible with an external µC through the control channel. GMSL2
devices use 16-bit register addressing. Protocol details are provided (see I2C Data Transfer Format and
UART Frame Format).

Note: GMSL1 devices use 8-bit register addressing; GMSL2 devices use 16-bit register addressing.

The CC protocol is selected by setting the I2CSEL pin or CFG pins to the required value with a resistor
network. The pin level is latched at power-up and selects either I2C or UART operation. Refer to device-
specific data sheet for configuration details.

The GMSL2 device directly connected to the μC that programs the serial link system and accesses
remote peripherals through the CC is called the local device. The GMSL2 device on the opposite side
of the serial link of the local device is called the remote device. See Figure 17.

Remote-side devices are connected to the CC of local GMSL2 device when the link is locked. To
configure remote devices over the serial link, both the serializer and deserializer must be configured to
the same protocol (i.e., I2CSEL or CFG settings must match for both devices).

Each device on the I2C/UART CC must have a unique device address that is used as the I2C/UART
subordinate address. The voltage level of the ADD or CFG pins (depending on availability) at power-up
sets the initial GMSL2 device address and the default value of the TX_SRC_ID registers for
bidirectional channels. After power-up, the GMSL2 device address can be changed by writing to the
DEV_ADDR register. If a device address is changed, all subsequent transactions with the device must
use the new address.

GMSL2 General User Guide

Analog Devices Page 45 of 163

In general, only one μC (I2C or UART main) should be connected to either the serializer or deserializer
CC pins (SDA/RX, SCL/TX) at any one time within a serial link system. If both the serializer and
deserializer within a single system are connected to μCs and the remote CC is not disabled, the two
μCs must take turns using the CC. Without arbitrated access, concurrent transfers from each μC result
in a NACK (I2C) or a collision (UART).

Note: Multi-main UART applications have many design risks and are not recommended.

Remote-side control channel access is blocked by setting DIS_REM_CC = 1 in both devices. When
remote access is disabled, GMSL2 device access is limited to locally connected μCs, and CC access to
remote-side device(s) is disabled.

A GMSL2 device can be set to read-only on the CC by setting the CFG_BLOCK register to 1. After
setting a device to read-only, it cannot be configured through the CC until the device powers down
(PWNDNB = 0 or VDD = 0). This bit can be used to freeze device configuration.

Applications may require remote access to GMSL2 device registers while blocking I2C/UART
transmissions from being repeated at the remote device’s CC pins. Remote device CC pins are
disabled by setting DIS_LOCAL_CC = 1 in the remote device. When disabled, these pins can be used
for another function (e.g., GPIO).

Note: Some devices with reduced pin counts share CC and pass-through functionality on the same set
of pins. Extreme care must be taken when enabling and disabling the shared pins with respect to the
channel being used. These devices must have DIS_LOCAL_CC = 1 set to use the pins for pass-
through I2C/UART. Refer to device-specific data sheets for pinout information.

By default, I2C/UART CC transmission on the serial link are protected by ARQ (Automatic Repeat
Request) for error correction. I2C/UART CC ARQ and packet CRC can only be disabled by a local
register write in both devices while the link is not locked. See the CRC Error Detection and ARQ Error
Correction section for details.

Note: Disabling ARQ and packet CRC for the I2C/UART CC is discouraged for field applications and
should only be used for debugging or testing purposes.

6.2.3 I2C Control Channel
The I2C is a bidirectional communication protocol that connects multiple devices through a single two-
wire bus. Microcontrollers can be programmed to generate I2C data transfers that GMSL2 devices can
process. The following sections contain configuration information.

6.2.3.1 I2C Mode Configuration
The following tables and sections contain registers associated with the I2C control channel (CC). Note
that the I2CSEL, DIS_REM_CC, DIS_LOCAL_CC, and CFG_BLOCK bitfields are common to the I2C
and UART control channel protocols.

Note: Registers listed in Table 9, Table 10, and Table 11 may not exist in all parts. Refer to device-
specific data sheets and register documents for the most accurate part information.

GMSL2 General User Guide

Analog Devices Page 46 of 163

Table 9. I2C/UART Selection Status Register
BITFIELD DESCRIPTION DECODE

I2CSEL[0] This bit is set according to the latched
I2CSEL/CFG pin value at power-up.

0b0: UART
0b1: I2C

Note: I2CSEL[0] should only be used as a status bit, and writing to this bitfield is discouraged. It is not
recommended to change the CC from I2C to UART or vice versa by writing to this register after power-
up.

GMSL2 General User Guide

Analog Devices Page 47 of 163

Table 10. Remote/Local Control Channel and Device Configuration Registers
BITFIELD DESCRIPTION DECODE

DIS_REM_CC[0] Disables the remote-control
channel over the GMSL2 link.

0b0: Remote control-channel enabled
0b1: Remote control-channel disabled

DIS_LOCAL_CC[0]
Disables control-channel
connection to RX/SDA and
TX/SCL pins.

0b0: RX/SDA and TX/XCL connected to
control channel
0b1: RX/SDA and TX/SCL disconnected from
control

CFG_BLOCK[0]

Configuration block. When set,
all registers become
nonwritable (read-only). This
bit can be used to freeze the
chip configuration.

0b0: Not Blocked
0b1: Blocked

Table 11. Number of I2C-to-I2C Links Configuration Registers

BITFIELD DESCRIPTION DECODE

I2C_AUTO_CFG[0]

When set to 1, I2C-to-I2C number of
links is automatically determined
based on splitter mode.
In splitter mode, response from two
I2C channels are expected, otherwise
response from one I2C channel is
expected.

0b0: Number of I2C-to-I2C links set by
I2C_SRC_CNT[2:0] bits
0b1: Splitter mode automatically
determines the number of I2C-to-I2C
links

I2C_SRC_CNT[2:0]

I2C-to-I2C number of links (valid when
I2C_AUTO_SRC = 0).
Set this field to N - 1 when expecting
I2C response from N remote I2C
transmitters (usually the same as the
number of remote devices connected
to this device).

0b000: 1 serializer/deserializer
connected
0b001: 2 serializers/deserializers
connected
0b010: Reserved
0b011: Reserved
0b100: Reserved
0b101: Reserved
0b110: Reserved
0b111: Reserved

GMSL2 General User Guide

Analog Devices Page 48 of 163

6.2.3.1.1 I2C Internal Register Access
Each GMSL2 device has an internal I2C subordinate for register access. The internal registers can be
written and read according to the I2C protocol using the data transfer formats. Register addresses are
16-bits wide. Single or multiple data bytes can be written or read (by address auto-increment). I2C data
transfers can be monitored with the read-only registers for I2C acknowledge bits and time-out status
(Table 12).

Note: Devices have auto-increment limits. Refer to device-specific data sheets for information.

6.2.3.1.1.1 I2C Data Transfer Formats

Note: In Figure 19 and Figure 20, unshaded blocks indicate data transfers from the main to the
subordinate and shaded blocks indicate data transfers from the subordinate to the main.

I2C Write:

S Dev Addr W A Reg Addr (MSB) A Reg Addr (LSB) A Data 0 A Data N A P
1 1 1 1 1 17 8 8 8 18 1

Figure 19. I2C Write Data Transfer Format

I2C Read:

S Dev Addr W A Reg Addr (MSB) A Reg Addr (LSB) A Data 0 A Data N NA P
1 1 1 1 1 17 8 8 8 18 1

S Dev Addr
1 7

R A
1 1

Figure 20. I2C Read Data Transfer Format

Table 12. I2C Acknowledge Bit and Time-Out Status (Read-Only Registers)

BITFIELD DESCRIPTION DECODE

REM_ACK_ACKED[0] Inverse of the I2C acknowledge bit received
from remote side.

0b0: I2C acknowledge bit received as
1
0b1: I2C acknowledge bit received as
0

REM_ACK_RECVED[0]
I2C acknowledge bit for any I2C byte has
been received from the remote side for the
previous GMSL packet with I2C data.

0b0: I2C acknowledge bit not
received
0b1: I2C acknowledge bit received

I2C_TIMED_OUT[0]
Internal I2C-to-I2C subordinate or main has
timed out while receiving data transfer from
remote device.

0b0: Time-out has not occurred
0b1: Time-out has occurred

GMSL2 General User Guide

Analog Devices Page 49 of 163

6.2.3.1.2 I2C over the GMSL2 Link (Remote Device Access)
The I2C channel connects the serializer and deserializer I2C interfaces (i.e., SDA_RX and SCL_TX)
over the serial link.

In addition to the internal I2C subordinate used for register access, GMSL2 devices have I2C link mains
and link subordinates used for remote device access throughI2C transmissions over the GMSL2 link.
When an external I2C main (e.g., μC) performs an I2C transaction on the I2C bus on one side of the link
(i.e., local side), the I2C events (e.g., Start, Stop, Data Bit 0, and Data Bit 1) are forwarded to the other
side of the link (i.e., remote side) by the local-side device’s I2C link subordinate. The I2C events are
received by the remote-side device’s I2C link main and generated on the remote-side I2C bus. The
remote-side I2C link main sends back across the link any I2C events that are expected to be driven by
the remote-side I2C subordinate(s) (e.g., Ack bits during writes and read data bits during reads) to the
local-side I2C link subordinate.

I2C over the GMSL2 link operates such that the remote-side internal I2C main mimics the actions of the
local-side external I2C main (e.g., μC) and the local-side internal I2C link subordinate mimics the actions
of the external I2C subordinate(s) on the remote side. This method logically connects the two separate
I2C buses: an entire I2C transaction looks like as if it has been performed on the same physical I2C bus
(except for incurred timing differences).

I2C data transfers require an immediate acknowledgement from the receiver following each byte. To
account for timing differences between the main and subordinate and to allow time for data to be
forwarded and received across the serial link, the I2C protocol uses clock stretching (i.e., holding SCL
low) to temporarily pause communication as the acknowledge propagates through the I2C control
channel. In GMSL2 systems, all I2C devices on the local side (i.e., external main μC and any attached
peripherals) must support clock stretching; the remote-side I2C peripherals are not required to support
clock stretching (Figure 21).

Host
Controller

(µC)

Peripherals
(Local Side)

Local
Serializer / Deserializer

Remote
 Serializer / Deserializer

Peripherals
(Remote Side)

Must support clock
stretching

Clock stretching not
required

GMSL2
SCL

SDA

SCL

SDA

Figure 21. I2C Clock Stretching

GMSL2 General User Guide

Analog Devices Page 50 of 163

The remote-side link I2C main operates according to timing settings configured with the remote-side
MST_BT bitfield. It is strongly recommended that users program the MST_BT bitfield as close as
possible to the bit rate used by the external main (e.g., μC). The local-side I2C subordinate timing is
configured with the SLV_SH register. The SLV_TO and MST_TO bitfields select the time-out durations
that release the local or remote side I2C bus in case an expected response from remote side is not
received within the selected time-out duration. Ensure that all timing registers (Table 13 and Table 14)
are programmed according to the desired I2C bit rate and in compliance with the official I2C timing
parameters.

Table 13. Internal I2C Subordinate Configuration Registers

BITFIELD DESCRIPTION DECODE

SLV_SH[1:0]

I2C-to-I2C subordinate setup and hold time
setting (setup, hold). Configures the
interval between SDA and SCL transitions
when driven by the internal I2C
subordinate.

0b00: Set for I2C Fast-mode Plus
speed
0b01: Set for I2C Fast-mode speed
0b10: Set for I2C Standard-mode
speed
0b11: Reserved

SLV_TO[2:0]

I2C-to-I2C subordinate time-out setting.
Internal GMSL2 I2C subordinate times out
after the configured duration if it does not
receive any response while waiting for a
packet from the remote device.

0b000: 16us
0b001: 1ms
0b010: 2ms
0b011: 4ms
0b100: 8ms
0b101: 16ms
0b110: 32ms
0b111: Disabled

Table 14. Internal I2C Main Configuration Registers

BITFIELD DESCRIPTION DECODE

MST_BT[2:0]

I2C-to-I2C main bit rate setting.
Configures the I2C bit rate used
by the internal I2C main (in the
device on the remote side from
the external I2C main). Set this
according to the I2C speed
mode.

0b000: 9.92Kbps - Set for I2C Standard- mode speed
0b001: 33.2Kbps - Set for I2C Standard-mode speed
0b010: 99.2Kbps - Set for I2C Standard- or Fast-mode
speed
0b011: 123Kbps - Set for I2C Fast-mode speed
0b100: 203Kbps - Set for I2C Fast-mode speed
0b101: 397Kbps - Set for I2C Fast- or Fast-mode Plus
speed
0b110: 625Kbps - Set for I2C Fast-mode Plus speed
0b111: 980Kbps - Set for I2C Fast-mode Plus speed

MST_TO[2:0]

I2C-to-I2C main time-out setting.
Internal GMSL2 I2C main times
out after the configured duration
if it does not receive any
response while waiting for a
packet from remote device.

0b000: 16us
0b001: 1ms
0b010: 2ms
0b011: 4ms
0b100: 8ms
0b101: 16ms
0b110: 32ms
0b111: Disabled

The external I2C main (e.g., μC) can be located on the serializer-side (typically for display applications)
or the deserializer-side (typically for camera applications). Multi-microcontroller operations are

GMSL2 General User Guide

Analog Devices Page 51 of 163

supported provided that a software arbitration method is used to prevent collisions (see I2C Multi-Main
Options). The serial link assumes that only one microcontroller is transmitting at any given time.

GMSL2 General User Guide

Analog Devices Page 52 of 163

6.2.3.1.3 I2C Splitter Mode
The I2C channel can be used in GMSL2 I2C splitter mode applications (i.e., a single serializer connects
to two deserializers). In GMSL2 splitter mode:

• The µC connected to the local device in splitter mode can communicate with each connected
remote device and the attached peripherals.

• The µC connected to a remote device can communicate with the local device in splitter mode
and its attached peripheral. It cannot communicate with the other remote device(s).

• If more than one µC is connected to the serial link system, only one µC can use the control
channel at a time. The serial link assumes that only one µC is using the CC at any one time.
Multiple µCs must take turns using the control channel to avoid error conditions. If the CC is in
use by a µC, attempts from another µC to access the CC result in a NACK. If software
arbitration is not implemented, the remote-side controller should be blocked to avoid collisions.

Note: The I2C channel can also operate in GMSL2 Reverse Splitter Mode. The operation is the same
as splitter mode but reversed.

I2C address configuration options are presented in Table 15. Each function is described in more detail
in following sections. Note that these functions may be used in combination.

Table 15. I2C Address Configuration

FEATURE DESCRIPTION PURPOSE NOTES

I2C Address
Reassignment

Allows users to
configure a GMSL2
device’s I2C address
from the default
address at power-up
(determined by the CFG
pin).

Used to assign unique I2C
addresses to GMSL2
devices when a GMSL2
system comprises multiple
devices with the same
default address.

In splitter and reverse
splitter applications, I2C
address reassignment is
used to avoid address
conflicts and data
collisions.

I2C Address
Translation

Configurable mapping
of one I2C address to
another (virtual) I2C
address. Address
translation occurs within
the GMSL2 device.

Map a virtual I2C address
to a peripheral I2C device
on the remote side of the
GMSL2 link. This allows a
host µC to separately
access different devices
and peripherals with the
same device address
througha unique virtual I2C
address.

The mapped virtual I2C
address must be unique
within the system.

I2C
Broadcasting

Allows multiple GMSL2
devices to be
addressed
simultaneously at a
single I2C address.

Simplifies configuration by
allowing a single write to
simultaneously configure
multiple devices as a
group to identical settings.

It is not possible to
determine if all devices
provide an acknowledge
following an I2C broadcast
write. Each device must be
individually checked to
verify correct configuration.

GMSL2 General User Guide

Analog Devices Page 53 of 163

6.2.3.1.4 I2C Address Reassignment

Note: The methodology discussed in this section also applies to UART.

In splitter and reverse splitter mode applications, it is recommended to use a unique I2C device address
for each connected serializer/deserializer. I2C address reassignment is required if identical device
addresses are selected at power-up.

Note: The follow configuration procedures do not apply to GMSL2 quad deserializer devices.

6.2.3.1.4.1 Camera Setup – Two Serializers to One Deserializer
In systems with two camera modules connected to one deserializer, address reassignment should be
used to avoid address conflicts and data collisions.

This procedure applies to a system comprising two identical camera modules connected to a dual CSI-
2 camera deserializer, with the microcontroller on the deserializer side.

1. Isolate one camera module by configuring the deserializer into single-link mode. For example,
enable link A only by setting LINK_CFG[1:0] to 0b01 and AUTO_LINK[0] low on the deserializer.

2. Perform a link reset by writing the self-clearing bit RESET_ONESHOT high.
3. Poll the LOCKED pin until it goes high.
4. Modify the serializer I2C device address connected to link A with a register write to

DEV_ADDR[6:0] located in REG0.
5. Modify each of the source identifiers (TX_SRC_ID) for each of the GMSL protocol packets to a

value unique relative to the other serializer in the system.
6. Configure the deserializer to reverse splitter mode by writing LINK_CFG[1:0] to 0b11.
7. Perform a link reset by writing the self-clearing bit RESET_ONESHOT high.
8. Poll the LOCKED pin until it goes high.
9. All devices should be present on the I2C bus. Continue with any additional system configuration.

6.2.3.1.5 I2C Address Translation
Address translation is a function in I2C mode that enables mapping one device address to a virtual
device address. In GMSL2 serial link systems, two separate device addresses can be translated to
another two separate device address. This function is used when two identical modules with the same
device address are used within the same system. Address translation allows the host µC to separately
access different devices and peripherals with the same device address throughsoftware configuration.
Configuration details are presented in Table 16.

Note: There may be more than two devices/modules with the same address used with GMSL2 Quad
Deserializer systems.

Table 16. I2C Address Translator Configuration Registers

BITFIELD DESCRIPTION DECODE
SRC_A[6:0] I2C address translator source A. 0bXXXXXXX: Value of I2C

SRC_A

GMSL2 General User Guide

Analog Devices Page 54 of 163

When I2C device address matches I2C SRC_A,
internal I2C main (on remote side) replaces the
device address by I2C DST_A.

DST_A[6:0] I2C address translator destination A.
See the description of I2C SRC_A.

0bXXXXXXX: Value of I2C
DST_A

SRC_B[6:0]
I2C address translator source B.
When I2C device address matches I2C_SRC_B,
internal I2C main (on remote side) replaces the
device address by I2C_DST_B.

0bXXXXXXX: Value of I2C
SRC_B

DST_B[6:0] I2C address translator destination B.
See the description of I2C SRC_B.

0bXXXXXXX: Value of I2C
DST_B

Address translation can be used in addition to address reassignment (see Camera Setup – Two
Serializers to One Deserializer) for systems with two identical camera modules connected to one
deserializer. Address translation allows two camera modules with image sensors at the same I2C
address to be independently addressed at user-defined virtual addresses to avoid address conflicts.
GMSL2 devices allow for up to two address translations (permitting two devices to have their addresses
translated). In this scenario, I2C address translation is configured for the serializer device. I2C
commands are sent from the deserializer over the serial link to the serializer. In the serializer, address
SRC_A[6:0] is then translated into address DST_A[6:0] by the remote link main (Table 16). Both the
serializer and the peripheral(s) see this translated address (i.e., the DST_A address).

Note: An unused address translation can be used for I2C broadcasting. See the I2C Broadcasting
section for details.

GMSL2 General User Guide

Analog Devices Page 55 of 163

This procedure provides the configuration steps for two identical camera modules connected to a CSI-2
deserializer. The µC is located on the deserializer side (Figure 28).

• Use address reassignment to modify one serializer’s I2C device address so that each serializer
has a unique address. See address reassignment procedure given (see Camera Setup – Two
Serializers to One Deserializer). Ensure that the deserializer is in reverse splitter mode and that
all devices are present on the I2C bus before proceeding with the following steps.

• Program the address translation registers in the (link A) serializer by setting the desired image
sensor address in the source register SRC_A[6:0] and the original image sensor address in the
destination register DST_A[6:0].

• Program the address translation registers in the (link B) serializer by setting the desired image
sensor address in the source register SRC_A[6:0] and the original image sensor address in the
destination register DST_A[6:0].

6.2.3.1.5.1 I2C Address Translation Example
An I2C address reassignment and translation example is shown in the block diagram (Figure 22). A
GMSL2 CSI-2 deserializer is connected to two identical camera modules. Each camera module
comprises a GMSL2 serializer at I2C address 0x80 and an image sensor at address 0x6C.

I2C address reassignment is used to change the link A serializer’s device address from 0x80 to 0x84.
Then, I2C address translation is performed on each serializer to allow individual access of each image
sensor. The I2C address for the link A serializer is translated from 0x20 to 0x6C; the I2C address for the
link B serializer is translated from 0x22 to 0x6C.

µC HW ADD = 0x90

ADD pins = 0x80
new ADD = 0x84

I2C Translation
0x20 0x6C

Camera Module 1

Camera Module 2

ADD pins = 0x80

I2C Translation
0x22 0x6C

Sensor
0x6C

Sensor
0x6C

GMSL2 Serializer

GMSL2 SerializerGMSL2
Deserializer

GMSL2

GMSL2

I2C

Link A

Link B

Figure 22. I2C Address Translation

GMSL2 General User Guide

Analog Devices Page 56 of 163

6.2.3.1.6 I2C Broadcasting
I2C broadcasting can be used to simplify programming in GMSL2 systems consisting of a deserializer
connected to two identical camera modules. I2C broadcasting enables the deserializer to configure the
connected camera modules as a group to identical settings. The deserializer uses the I2C address of
the image sensors assigned at power-up and the I2C address of the serializers assigned throughI2C
address translation as the broadcasting address.

Additional configuration may be necessary depending on the system application. If individual
configuration of the image sensors is also required, each must be given a unique address with I2C
Address Translation. This allows the deserializer to access the image sensors both as a group
throughI2C broadcasting and individually with the unique addresses.

Note: To assign unique addresses to each image sensor, an I2C address translation must be
performed on each device.

To avoid address conflicts and data collisions, use I2C Address Reassignment to assign a unique I2C
address to each serializer (see Camera Setup – Two Serializers to One Deserializer). If serializers with
unique addresses share many configuration settings, address translation can be used to assign a
broadcasting address so that the serializers can be configured as a group to identical settings by the
deserializer. Note that programming a broadcasting address for both serializers requires one address
translation per serializer.

Note: Analog Devices, Inc., cannot guarantee the programming of all devices. Each device must be
individually checked to verify correct configuration, as Analog Devices cannot guarantee or distinguish
which device provides the acknowledge. If one subordinate pulls the SDA line low, it can mask the state
of the other subordinates. Analog Devices cannot guarantee that all subordinates pulled SDA low.
Therefore, the user must implement a mechanism to verify that each subordinate is properly
configured.

This procedure provides the configuration steps for two identical camera modules connected to a CSI-2
deserializer. The µC is located on the deserializer side (Figure 23).

1. Use address reassignment to modify one serializer’s I2C device address to have a unique
address for each serializer. See the I2C Address Reassignment procedure given (see Camera
Setup – Two Serializers to One Deserializer). Ensure that the deserializer is in reverse splitter
mode and that all devices are present on the I2C bus before proceeding with the following steps.

2. Modify the first address translation register in the (link A) serializer to give a broadcast address
to the serializer. Set the desired broadcasting address in the source register SRC_A[6:0] and
the modified serializer address at Step 1 in the destination register DST_A[6:0].

3. Modify the second translation register in the (link A) serializer to give a unique address to the
image sensor. Set the desired image sensor address in the second source register SRC_B[6:0]
and the original image sensor address in the second destination register DST_B[6:0].

4. Modify the first address translation register in the (link B) serializer to give a broadcast address
to the serializer. Set the desired broadcasting address in the source register SRC_A[6:0] and
the original serializer address in the destination register DST_A[6:0].

5. Modify the second translation register in the (link B) serializer to give a unique address to the
image sensor. Set the desired image sensor address in the second source register SRC_B[6:0]
and the original image sensor address in the second destination register DST_B[6:0].

GMSL2 General User Guide

Analog Devices Page 57 of 163

6.2.3.1.6.1 I2C Broadcasting Example
An example of I2C address reassignment, translation, and broadcasting is shown in the block diagram
(Figure 29). A GMSL2 CSI-2 deserializer is connected to two identical camera modules. Each camera
module comprises a GMSL2 serializerat I2C address 0x80 and an image sensor at address 0x6C.

I2C address reassignment is used to change the link A serializer’s device address from 0x80 to 0x84.
Then, I2C address translation is performed twice on each serializer to allow individual access of each
image sensor and configure an I2C broadcasting address for the serializers. For individual access of the
image sensors, the I2C address for the link A serializer is translated from 0x20 to 0x6C, and the I2C
address for the link B serializer is translated from 0x22 to 0x6C. The serializers have an additional I2C
translation programmed to establish the I2C broadcasting address. Here, the broadcasting address is
set as the source register, and the serializer device address is set as the destination register. In the link
A serializer, 0xC4 is translated to 0x84 (i.e., the modified device address configured with I2C address
reassignment); in the link B serializer, 0xC4 is translated to 0x80.

µC HW ADD = 0x90

ADD pins = 0x80
new ADD = 0x84

I2C Translations
0x20 0x6C
0xC4 0x84

Camera Module 1

Camera Module 2

ADD pins = 0x80

I2C Translations
0x22 0x6C
0xC4 0x80

Sensor
0x6C

Sensor
0x6C

GMSL2 Serializer

GMSL2 SerializerGMSL2
Deserializer

GMSL2

GMSL2

I2C

Link A

Link B

Figure 23. I2C Broadcasting

GMSL2 General User Guide

Analog Devices Page 58 of 163

6.2.3.2 I2C Multi-Main Options
GMSL2 systems can support multi-main I2C applications. However, measures to avoid
conflicts/collisions must be implemented to ensure proper operation. There is no officially supported
measure; options are provided as follows:

• Islanding: The remote CC can be disabled to separate the two μCs. See Disabling Remote
Control Channel on Power-Up for details.

• Pass-through Channel: Depending on the application and its requirements, one of the pass-
through I2C channels can be used to separate the two I2C mains.

• Single Main: One of the μCs is designated as the main. Only the main sends I2C commands
through the GMSL2 link. Alternatively, software arbitration can permit a second main to send I2C
commands (after a delay) when the first main is not active.

• Token Pass: Similar to single main, except that the main also sets up the GPIOs. The
subordinate can request control through one of the GPIOs, and the main can notify the
subordinate that control is allowed through a different GPIO. Note that most GPIOs are low by
default, and polarity must be carefully chosen to ensure that the subordinate μC waits if the
GPIOs are not yet programmed.

If one of the μCs does not need to program GMSL2 devices, the pass-through I2C channel should be
used instead of the I2C CC.

Note: Multi-main UART applications have many design risks and are not recommended.

6.2.3.3 I2C Channel GMSL2 Bandwidth Utilization
See the GMSL2 Link Bandwidth Consumption from Side Channels – I2C section for details.

6.2.3.4 I2C Debug Techniques
The I2C protocol is used by most µCs. Ensure that µCs are programmed to generate I2C data transfers
that GMSL2 devices can process and respond to I2C data transfers from GMSL2 devices.

If I2C issues are exhibited, inspect the I2C port(s) using a logic analyzer or digital oscilloscope. Verify
that the waveforms observed on the SDA and SCL pins are as expected.

The REM_ACK_RECVED register is used to check if an I2C Ack bit for any I2C byte has been received
from the remote side for the previous I2C data transfer. Alternatively, a logic analyzer or digital
oscilloscope can be used to monitor if I2C Ack bits have been received from the remote side for any
transmitted I2C byte.

The REM_ACK_ACKED register can be read back to see if the received Ack is 1 or 0.

The I2C_TIMED_OUT register can be read back to check if the internal I2C–I2C link subordinate or link
main has timed-out while receiving data from the remote device.

GMSL2 General User Guide

Analog Devices Page 59 of 163

6.2.4 Main UART Control Channel
UART is typically a point-to-point communication protocol; however, in GMSL2 systems, it is possible to
have microcontroller(s), serializer(s), deserializer(s), and peripheral subordinate(s) physically
connected to the same bus. This expanded application of UART involves several important restrictions
with ramifications on system design.

6.2.4.1 UART Mode Configuration
The following tables and sections contain registers that are associated with the main UART control
channel. Note that the I2CSEL, DIS_REM_CC, DIS_LOCAL_CC, and CFG_BLOCK registers are
common to the main I2C and UART control channel protocols. See the I2C Mode Configuration section
for information regarding the shared registers (Table 9 and Table 10).

Devices with multiple independent GMSL2 links require that UART programming be performed on a
link-by-link basis because UART communication is not broadcast across all links. Program the
UART_0_LINK_SELECT, UART_1_LINK_SELECT and UART_2_LINK_SELECT registers accordingly.
This contrasts with I2C, which can be used to communicate over any number of available links
simultaneously.

Note: Registers listed in the following sections and tables may not exist in all parts. Refer to device-
specific data sheets and register documents for the most accurate part information.

GMSL2 General User Guide

Analog Devices Page 60 of 163

6.2.4.1.1 UART Base/Bypass Mode
GMSL2 devices provide two main UART CC modes of operation: UART Base Mode and UART Bypass
Mode. Base Mode is used to program and configure the serializer and deserializer. The µC can
communicate with both GMSL2 devices and attached (compatible) peripherals on the remote side.
Bypass Mode is used to bypass GMSL2 devices and provides direct point-to-point access to a
peripheral device. The UART CC can be programmed to transition between these modes, allowing
flexible use of the UART CC.

UART Bypass Mode is distinct from Pass-through UART: Pass-through UART only provides access to
remote peripherals (internal GMSL2 device registers are inaccessible), while UART Bypass Mode is a
control channel mode. If a GMSL2 system includes a peripheral connected to the remote device that is
not compatible with the GMSL2 UART protocol, UART Bypass Mode allows a µC to communicate with
this peripheral without requiring the use of the UART Pass-through connection. After the
communication is complete, the µC can access GMSL2 devices in UART Base Mode. Pass-through
UART does not have access to GMSL2 devices.

6.2.4.1.1.1 UART Base Mode
UART Base Mode is enabled by default at power-up. In base mode, µCs are the host and use the
GMSL2 UART Frame Format to write and read the internal registers of GMSL2 devices from either side
of the serial link. The µC can also communicate with attached remote peripherals compatible with the
GMSL2 UART protocol. UART data transmitted by the µC is output from the remote-side GMSL2
device Tx pin by default. To disable the UART Tx and Rx pins on remote-side GMSL2 device, set
DIS_LOCAL_CC = 1 in the remote GMSL2 device.

Single or multiple bytes can be written or read using the GMSL2 UART protocol. Between each UART
transmission, the µC must wait up to 48-bits time or 200µs, whichever is longer, for the expected
response from the GMSL2 device. This logically enforces half-duplex control channel operation. After
completely receiving the response to a transmission, the µC must wait and keep the line high for at
least 48-bits times before sending the next transmission. The high-time duration sums up to 49 bits with
the stop bit of previous data transfer included. Note that response to a read or write request (including
Ack frame) is also part of the data transfer, and the 48-bits time wait starts after the stop bit of the last
UART frame of the response.

The first received UART byte of a transmission (i.e., sync or acknowledge frame) can be configured to
be delayed by 0-, 1-, 4-, or 8-bits time with the OUT_DELAY register (Table 17) in UART base mode.
This programming can be used to ensure that UART frames of the same data transfer are output one
after the other on the remote side.

Table 17. UART Initial Output Delay Configuration Register

BITFIELD DESCRIPTION DECODE

OUT_DELAY[1:0]

UART initial output delay.
In base mode, the first received UART byte of a
packet (sync or acknowledge frame) is delayed by the
configured number of bit times in order to output the
UART frames of the same packet back-to-back on
remote side.

0b00: 0 bits
0b01: 4 bits
0b10: 8 bits
0b11: 1 bit

GMSL2 General User Guide

Analog Devices Page 61 of 163

6.2.4.1.1.2 UART Bypass Mode
In UART bypass mode, UART commands are not interpreted by the GMSL2 devices, and data is
passed directly from the µC to connected peripherals (and from peripherals to the µC). The µC cannot
access GMSL2 device registers. There are two methods to enable UART bypass mode: with the
BYPASS_EN register bit or with the MS pin (shared with GPIO). Configure the MS pin method of UART
bypass mode enable with REM_MS_EN and LOC_MS_EN (Table 18).

Note: Ensure that the GPIO pins with MS pin assignments are available for use before configuring the
system for MS pin control of UART bypass mode. Refer to device-specific data sheet for pinout
information.

Note: UART bypass mode should ONLY be enabled when GMSL2 link lock is preset.

UART bypass mode is implemented with software by setting the BYPASS_EN register in the remote
device first, then in the local device. This programming can be temporary or permanent. In temporary
programming, bypass mode is automatically exited and the BYPASS_EN register is reset to 0 when the
UART line stays high beyond the time-out duration defined with the BYPASS_TO register.
BYPASS_TO has four settings: 2ms, 8ms, 32ms, and “Disabled”. Permanent programming is
configured by setting BYPASS_T O to “Disabled”: BYPASS_EN is never cleared, and the device
stays in bypass mode until power is cycled. UART bypass mode configuration registers are presented
in Table 18.

Note: Programming BYPASS_TO to “Disabled” is discouraged because this setting blocks control
channel access to the GMSL2 devices.

Table 18. UART Bypass Mode Configuration Registers

BITFIELD DESCRIPTION DECODE

REM_MS_EN[0]

Enables UART bypass mode control by remote GPIO
pin.
When set, remote chip's GPIO is used as MS pin
(UART Mode Select). Refer to the specific device’s
data sheet to see which GPIO has MS functionality.
When MS is high, chip is in bypass mode, otherwise
chip is in base mode.

0b0: UART bypass mode
not controlled by remote MS
pin
0b1: UART bypass mode
controlled by remote MS pin

LOC_MS_EN[0]

Enables UART bypass mode control by local GPIO
pin.
Set to use relevant GPIO pin as MS pin (UART Mode
Select). Refer to device data sheet or UART
Base/Bypass Mode Operation section to see which
GPIO has MS functionality. When MS is high, chip is
in bypass mode, otherwise chip is in base mode.

0b0: UART bypass mode
not controlled by local MS
pin
0b1: UART bypass mode
controlled by local MS pin

BYPASS_DIS_PAR[0] Selects whether to receive and send parity bit in
bypass mode.

0b0: Receive and send
parity bit in bypass mode
0b1: Do not receive and
send parity bit in bypass
mode

BYPASS_TO[1:0]
UART soft bypass time-out duration.
When set to 0b11, BYPASS_EN is never cleared, so
the device stays in bypass mode until next power
down.

0b00: 2ms
0b01: 8ms
0b10: 32ms
0b11: Disabled

GMSL2 General User Guide

Analog Devices Page 62 of 163

BYPASS_EN[0]

Enables UART soft bypass mode.
Bypass mode remains active if there is UART activity.
When there is no UART activity for selected duration
configured by BYPASS_TO register, device exits
bypass mode, and the bit is automatically cleared.

0b0: UART soft bypass
mode disabled
0b1: UART soft bypass
mode enabled

GMSL2 General User Guide

Analog Devices Page 63 of 163

This procedure provides the steps required to control UART bypass mode with the MS pin.

Note: Refer to device-specific data sheet. In the procedure, the GPIO number corresponding to the MS
pin is represented by *.

• Drive the MS pin low.
• If the remote device is an OLDI deserializer or an eDP/DP deserializer:

o Set GPIO_TX_ID_* of the local device to 2.
• Else (remote device is not an OLDI deserializer or an eDP/DP deserializer):

o Set GPIO_TX_ID_* of the local device to 29.
• Set GPIO_TX_EN_* = 1 in the local device.
• Set REM_MS_EN = 1 in the remote device.
• Set LOC_MS_EN = 1 in the local device.
• Repeat the following as needed:

o Drive MS pin high from local side to switch to bypass mode.
o Perform UART communication with the peripheral UART subordinate.
o Drive MS pin low from local side to switch to base mode.
o Perform UART communication with serializer or deserializer.

UART is in bypass mode when MS is high; UART is in base mode when MS is low.

GMSL2 General User Guide

Analog Devices Page 64 of 163

6.2.4.1.2 UART Splitter Mode
The UART channel can be used in GMSL2 UART splitter mode applications (i.e., a single serializer
connected to two deserializers). In GMSL2 splitter mode:

• The µC connected to the local device in splitter mode can communicate with each connected
remote device and the attached peripheral(s).

• The µC connected to a remote device can communicate with the local device in splitter mode
and its attached peripheral(s). It cannot communicate with the other remote device(s) or
attached peripheral(s).

• If a serial link system in splitter mode has multiple remote devices connected to µCs, the first µC
to communicate with the local device in splitter mode gets dedicated access to the UART link
(the UART link from the other µC is blocked at the splitter device). The UART link remains
dedicated to that µC if it maintains communication. When the µC stops communication for the
UART arbitration time-out duration (default = 2ms, programmable by ARB_TO_LEN), the link
becomes available again and the process repeats (Table 19). Any µC can attempt to
communicate on the UART link until it is made available and is able to gain dedicated access.

Note: The UART channel can also operate in GMSL2 Reverse Splitter Mode. The operation is the
same as splitter mode but reversed.

See the I2C Splitter Mode section for shared configuration details.

Table 19. UART Rx Source Arbitration Time-Out Configuration Register

BITFIELD DESCRIPTION DECODE

ARB_TO_LEN[1:0]

UART RX source arbitration time-out duration.
UART RX processes packets from a single UART
source at any time. When UART RX does not receive
any UART packets for this duration, it selects the next
UART source according to the source ID of the next
following received packet.

0b00: 1ms
0b01: 2ms
0b10: 8ms
0b11: 32ms

GMSL2 General User Guide

Analog Devices Page 65 of 163

6.2.4.2 UART Frame Format
A regular UART frame with an even parity bit is used to carry one byte of data (Figure 24). UART
frames consist of a low start bit, 8 data bits, a parity bit, and a high stop bit. The parity bit is high if the
number of ones in 8-bit data is odd, otherwise it is low. There must be at least one high stop bit. If the
next frame is in the same transmission, there can be at most four high bits from the end of the stop bit
to the beginning of the next start bit. If there is a parity bit error, the transmission is discarded starting
from the frame with the error.

The phase of the internal UART bit clock is adjusted using the start bit of each frame. The UART
receiver asynchronously samples the incoming data at a higher rate than the actual data rate and
establishes the period of the data such that it can correctly identify each bit (i.e., the incoming data is
quantized).

Note: UART rates up to 5Mbps are given sufficient bit-error protection from the internal clock recovery
running at 150MHz (30x oversampling).

Start D0 D1 D2 D3 D5 D6 D7 Parity Stop

Stop

D4

 1 UART Frame

Frame 1 Frame 2 Frame 3

Start Stop Start

Figure 24. UART Frame Format

In bypass mode, the parity bit is enabled by default, but GMSL2 devices do not check frames for
correct parity. Even or odd parity can be used. The parity bit is passed through the serial link along with
the UART data so that the receiver can check for errors. The parity bit can be disabled in bypass mode
by setting BYPASS_DIS_PAR to 1 before entering bypass mode.

The bit rate (baud rate) in bypass mode must be same as the last bit rate used in base mode.

GMSL2 General User Guide

Analog Devices Page 66 of 163

6.2.4.2.1 UART Synchronization Frame
The UART bit rate is unknown to GMSL2 devices; the internal bit-length counters must be calibrated to
correctly recover UART frames. GMSL2 devices use UART sync frames to calibrate the bit length in
terms of the internal 150MHz clock. Each UART transmission begins with a sync frame (Figure 25).
Sync frames are regular UART frames with a value of 0x79. They must be successfully detected to
ensure that the remaining frames of the transmission are received correctly, as the data pattern of the
sync frame is used to set the UART data bit rate for the rest of the data transfer. No transactions are
allowed (the line must stay high) for a minimum of 48-bits time between UART transmissions.

Start D0 D1 D2 D3 D5 D6 D7 Parity StopD4

Figure 25. UART Synchronization Frame

6.2.4.2.2 UART Write Protocol
The UART write protocol consists of a 5-byte header followed by one or more data bytes (Figure 26).
The LSB of the device address frame is 0. The addressed device responds with an Ack frame if no
errors are detected and the transmission is valid. The byte count indicates the number of data bytes to
be written (N). This must be a non-zero number.

Sync Frame Dev Addr Reg Addr (MSB) Reg Addr (LSB) Byte Count Data 1 Data N

Ack Frame

Figure 26. UART Write Protocol Format
6.2.4.2.3 UART Read Protocol
The UART read protocol consists of 5 bytes (Figure 27). The LSB of the device address frame is 1. The
addressed device responds with an Ack frame followed by one or more data bytes if no errors are
detected, and the transmission is valid. The byte count indicates the number of data bytes to be read
(N). This must be a non-zero number.

Sync Frame Dev Addr Reg Addr (MSB) Reg Addr (LSB) Byte Count

Ack Frame Data 1 Data N

Figure 27. UART Read Protocol Format

GMSL2 General User Guide

Analog Devices Page 67 of 163

6.2.4.2.4 UART Acknowledge Frame
The Ack frame is a regular UART frame with a value of 0xC3 (Figure 28). When a transmission is
successfully received and recognized, the addressed device responds with an acknowledge (Ack)
frame to inform the µC that the transmitted data was received, no errors were detected, and it was
recognized as valid. The addressed device responds with an Ack frame after the last bit of the
transmission is received.

Start D0 D1 D2 D3 D5 D6 D7 Parity StopD4

Figure 28. UART Acknowledge Frame Format

6.2.4.2.5 UART Bit Rate
In base mode, GMSL2 devices automatically detect the UART bit rate using the sync frame at the start
of each transmission. The UART bit rate can be any value from 9.6Kbps to 1Mbps and can be changed
(by the µC) after a transaction is completed (i.e., when the µC receives an Ack for a write or Ack and
data for a read). When changing to a lower bit rate, the ratio of high and low bit rates must not exceed a
factor of 3.5. The µC can begin transmissions with the new bit rate after waiting 48-bits time (measured
by the slower of the old and new bit rates).

In bypass mode, the UART bit rate cannot be changed. The last bit rate used in base mode before
entering bypass mode remains the bit rate for bypass mode.

GMSL2 General User Guide

Analog Devices Page 68 of 163

6.2.4.3 UART Channel GMSL2 Bandwidth Utilization
See the GMSL2 Link Bandwidth Consumption from Side Channels – UART section for details.

6.2.4.4 UART Debug Techniques
If UART issues are exhibited, inspect the UART port(s) using a logic analyzer or digital oscilloscope.
Verify that the waveforms observed on the UART Tx and Rx pins are as expected.

BITLEN_LSB and BITLEN_MSB are read-only bits that contain the UART bit rate detected by the
device (Table 20). The value in these status bits is the ratio of 150MHz to the detected UART bit rate
(e.g., it is ~300 when UART bit rate is 500Kbps).

Table 20. UART Detected Bit Length (Read-Only Registers)

BITFIELD DESCRIPTION DECODE
BITLEN_LSB[7:0] UART detected bit length in terms of

internal 150MHz clock, low 8 bits.
0xXXXXXXXX: UART
detected bit length, low 8 bits

BITLEN_MSB[5:0] UART detected bit length in terms of
internal 150MHz clock, high 6 bits.

0bXXXXXX: UART detected
bit length, high 6 bits

UART_RX_OVERFLOW and UART_TX_OVERFLOW are read-only bits that latch if an overflow
condition has occurred with UART CC communications across the serial link (Table 21).

Note: In rare circumstances, a link reset during a UART communication or insufficient serial link
bandwidth may result in overflow conditions.

Table 21. UART Rx/Tx FIFO Overflow Status (Read-Only Registers)

BITFIELD DESCRIPTION DECODE

UART_RX_OVERFLOW[0]
UART RX FIFO overflow.
Set to 1 following an overflow condition.
Clears upon read.

0b0: No overflow
occurred
0b1: Overflow occurred

UART_TX_OVERFLOW[0]
UART TX FIFO overflow.
Set to 1 following an overflow condition.
Clears upon read.

0b0: No overflow
occurred
0b1: Overflow occurred

GMSL2 General User Guide

Analog Devices Page 69 of 163

6.2.5 Disabling Remote Control Channel on Power-Up
The following method describes the process to power up a GMSL2 link with the control channel
disabled. This is important when a link is to be established without any I2C/UART communication visible
on the remote device.

1. Keep PWDNB low initially at local device (or keep VDD off).
2. Set PWDNB high to power up the GMSL2 device.
3. Wait ~2ms for power-up to complete.
4. Write RESET_LINK high within 10ms (before the LOCKED status bit goes high) to prevent the

serializer and deserializer from locking.
5. Set DIS_REM_CC high.
6. Write RESET_LINK low.
7. Poll the LOCKED pin until it goes high.
8. The devices are now locked with the control channel disabled.

GMSL2 General User Guide

Analog Devices Page 70 of 163

6.3 Pass-Through Channels – I2C/UART
6.3.1 Overview
Most GMSL2 devices have two pass-through I2C/UART channels available for local or remote
peripheral control. The pass-through I2C/UART channels do not have access to serializer and
deserializer registers. The pass-through channels typically have the following naming convention:

• Channel 1:
o SDA1_RX1
o SCL1_TX1

• Channel 2:
o SDA2_RX1
o SCL2_TX2

Pass-through I2C and UART modes require pullup resistors (see the Main Control Channel – I2C/UART
section).

Note: The GMSL2 CSI-2 Quad Deserializers have three independent I2C/UART ports. Two of the ports
are pass-through by default. These pass-through ports always provide access to local registers (a
unique feature among GMSL2 devices).

Note: Some devices with reduced pin counts share main CC and pass-through CC functionality on the
same set of pins. Extreme care must be taken when enabling and disabling the shared pins with
respect to the channel being used. Refer to device-specific data sheets for pinout information. Incorrect
system behavior may result if ports sharing the same pins are enabled simultaneously.

GMSL2 General User Guide

Analog Devices Page 71 of 163

6.3.2 Operation
The pass-through I2C/UART channels are independent of the main I2C/UART control channel. The
pass-through channels provide a direct connection to remote I2C/UART peripherals but do not provide
any access to internal GMSL2 device registers (except GMSL2 CSI-2 Quad Deserializers).

The pass-through I2C channels provide a connection to a remote I2C port without the GMSL2 devices’
internal I2C register subordinates hanging off the bus. This provides a mechanism to separate I2C
channels and avoid multi-main conflicts.

The pass-through UART channels provide a direct point-to-point connection to the remote UART
peripheral without necessitating UART Bypass Mode (as required by the main UART CC).

The pass-through channels are protected by the ARQ (Automatic Repeat Request) to improve the
robustness of the channel. This is the same as the main CC. See the CRC Error Detection and ARQ
Error Correction section for additional information.

Pass-through I2C channels support the basic Single Main I2C protocol with 7-bit subordinate address.
Multi-main busing is not supported. The remote I2C port supports multiple subordinates. The µC
connected to the local I2C port must support clock stretching to accommodate possible link latency with
remote peripheral access(es) (Figure 21). A time-out controller prevents locking up the I2C bus (e.g., in
the case that the far side of the link fails to respond).

Pass-through UART channel data must conform to the UART Frame Format. Additionally, pass-through
UART data must have a specified bit length. This requirement ensures that the remote device can
create the proper UART signaling to the remote UART target peripheral device. Most devices provide
two methods for specifying the bit length: manual and control channel inheritance. Note that control
channel inheritance only applies if UART data has been written or read to a GMSL2 device using the
properly formatted UART synchronization frame and UART accesses on the pass-through channel use
the same data rate. If the UART control channel is not being used or a different data rate is desired on
the pass-through UART channel(s), the pass-through channel bit length must be manually specified.
GMSL2 devices support UART bit rates between 9.6Kbps and 1Mbps.

A simplified system-level block diagram for the pass-through I2C/UART feature is illustrated in Figure
29. The local serializer/deserializer device is connected to the µC; the remote deserializer/serializer is
connected to the remote peripheral I2C/UART device.

Remote Serializer / Deserializer

Host
Controller

(µC)

I2C / UART
Pass-through

Port

SCL / Tx

SDA / Rx

CRC / ARQ

GMSL2
Forward

Channel Tx

GMSL
Reverse

Channel Rx

GMSL2
PHY CRC / ARQ

GMSL2
Reverse

Channel Tx

GMSL
Forward

Channel Rx

GMSL2
PHY

GMSL2

Peripheral
Device

I2C / UART
Pass-through

Port

SCL / Tx

SDA / Rx

Local Serializer / Deserializer

Figure 29. Pass-Through I2C/UART

GMSL2 General User Guide

Analog Devices Page 72 of 163

6.3.3 Pass-Through I2C
6.3.3.1 I2C Mode Configuration
The configuration of pass-through I2C channels is independent from main I2C/UART control channel
configuration. The following tables contain registers associated with the pass-through I2C channels.

Note: Registers listed in the following tables may not exist in all parts. Refer to device-specific data
sheets and register documents for the most accurate part information.

Pass-through I2C channels are enabled on a per channel basis by setting the IIC_1_EN (Channel 1)
and IIC_2_EN (Channel 2) in both the serializer and deserializer (Table 22).

Table 22. Pass-through I2C Channels Enable Registers

BITFIELD DESCRIPTION DECODE

IIC_1_EN[0] Enables pass-through I2C Channel 1
(SDA1/RX1, SCL1/TX1).

0b0: I2C pass-through Channel 1
disabled
0b1: I2C pass-through Channel 1
enabled

IIC_2_EN[0] Enables pass-through I2C Channel 2
(SDA1/RX1, SCL1/TX1)

0b0: I2C pass-through Channel 2
disabled
0b1: I2C pass-through Channel 2
enabled

The following tables contain the pass-through I2C internal subordinate (Table 23) and main (Table 24)
configuration registers. The I2C pass-through bit rate is set with the SLV_SH_PT (local side) and
MST_BT_PT (remote side) bitfields. These should be programmed according to the desired I2C pass-
through bit rate to satisfy official I2C timing parameters. Set MST_DBL_PT high in the remote-side
device to double the I2C-to-I2C main bit rate. The SLV_TO_PT and MST_TO_PT bits select the time-
out durations which release the local- or remote-side I2C bus in case an expected response from
remote side is not received within the selected time-out duration.

Table 23. Pass-Through I2C Internal Subordinate Configuration Registers

BITFIELD DESCRIPTION DECODE

SLV_SH_PT[1:0]

Pass-through I2C-to-I2C subordinate setup and
hold time setting (setup, hold).
Configures the interval between SDA and SCL
transitions when driven by the internal I2C
subordinate. Set this according to the I2C speed
mode.

0b00: Set for I2C Fast-mode Plus
speed
0b01: Set for I2C Fast-mode speed
0b10: Set for I2C Standard-mode
speed
0b11: Reserved

SLV_TO_PT[2:0]

Pass-through I2C-to-I2C subordinate time-out
setting.
Internal GMSL2 I2C subordinate times out after the
configured duration if it does not receive any
response while waiting for a packet from the remote
device.

0b000: 16us
0b001: 1ms
0b010: 2ms
0b011: 4ms
0b100: 8ms
0b101: 16ms
0b110: 32ms
0b111: Disabled

GMSL2 General User Guide

Analog Devices Page 73 of 163

Table 24. Pass-Through I2C Internal Main Configuration Registers
BITFIELD DESCRIPTION DECODE

MST_BT_PT[2:0]

Pass-through I2C-to-I2C main
bit-rate setting.
Configures the I2C bit rate
used by the internal I2C main
(in the device on remote side
from the external I2C main).

0b000: 9.92Kbps – Set for I2C Standard- mode speed
0b001: 33.2Kbps – Set for I2C Standard-mode speed
0b010: 99.2Kbps – Set for I2C Standard- or Fast-mode
speed
0b011: 123Kbps – Set for I2C Fast-mode speed
0b100: 203Kbps – Set for I2C Fast-mode speed
0b101: 397Kbps – Set for I2C Fast- or Fast-mode Plus
speed
0b110: 625Kbps – Set for I2C Fast-mode Plus speed
0b111: 980Kbps – Set for I2C Fast-mode Plus speed

MST_TO_PT[2:0]

Pass-through I2C-to-I2C main
timeout setting.
Internal GMSL2 I2C main times
out after the configured
duration if it does not receive
any response while waiting for
a packet from the remote
device.

0b000: 16us
0b001: 1ms
0b010: 2ms
0b011: 4ms
0b100: 8ms
0b101: 16ms
0b110: 32ms
0b111: Disabled

MST_DBL_PT[0] Doubles the pass-through I2C-
to-I2C main bit rate

0b0: Do not double the pass-through I2C-to-I2C main bit
rate
0b1: Double the pass-through I2C-to-I2C main bit rate

Table 25 contains read-only I2C acknowledge and time-out status registers. Note that the numbers (i.e.,
1 and 2) used in the bitfield names indicate whether the bit is associated with either pass-through I2C
Channel 1 or Channel 2.

Table 25. Pass-Through I2C Acknowledge and Time-Out Status (Read-Only Registers)

BITFIELD DESCRIPTION DECODE

REM_ACK_ACKED_1[0]
In pass-through I2C Channel 1, inverse of
the I2C acknowledge bit received from
remote side.

0b0: I2C acknowledge bit received
as 1
0b1: I2C acknowledge bit received
as 0

REM_ACK_RECVED_1[0]
In pass-through I2C Channel 1, I2C
acknowledge bit for any I2C byte is
received from remote side for the previous
I2C packet.

0b0: I2C acknowledge bit not
received
0b1: I2C acknowledge bit received

I2C_TIMED_OUT_1[0]
In pass-through I2C Channel 1, internal
I2C-to-I2C subordinate or main has timed
out while receiving packet from remote
device.

0b0: Time-out has not occurred
0b1: Time-out has occurred

REM_ACK_ACKED_2[0]
In pass-through I2C Channel 2, inverse of
the I2C acknowledge bit received from
remote side.

0b0: I2C acknowledge bit received
as 1
0b1: I2C acknowledge bit received
as 0

REM_ACK_RECVED_2[0]

In pass-through I2C Channel 2, I2C
acknowledge bit for any I2C byte is
received from remote side for the previous
I2C packet.

0b0: I2C acknowledge bit not
received
0b1: I2C acknowledge bit received

GMSL2 General User Guide

Analog Devices Page 74 of 163

I2C_TIMED_OUT_2[0]
In pass-through I2C Channel 2, internal
I2C-to-I2C subordinate or main has timed
out while receiving packet from remote
device.

0b0: Time-out has not occurred
0b1: Time-out has occurred

GMSL2 General User Guide

Analog Devices Page 75 of 163

The pass-through I2C/UART pin assignments can be swapped on select devices with the PT_SWAP
bitfield. Refer to device-specific data sheets and register documents for device support. This allows the
pass-through I2C/UART pins for Channel 1 (SDA1 and SCL1) to be used as pass-through I2C/UART
pins for Channel 2 (SDA1 and SCL2) or vice versa. Pass-through I2C/UART channels can be
connected to the main CC on the remote side on a per channel basis by configuring the XOVER_EN_1
and XOVER_EN_2 bitfields.

See Table 26 for I2C/UART pin assignments and channel connections configuration registers.

Table 26. Pass-Through I2C/UART Device Pin Assignments and Channel Connections Configuration
Registers

BITFIELD DESCRIPTION DECODE

PT_SWAP[0] Swaps I2C/UART pass-through device pin
assignments

0b0: Do not swap pin
assignments
0b1: Swap pin assignments

XOVER_EN_1[0] Connects pass-through I2C/UART Channel 1 to
main control channel on remote side.

0b0: Do not connect
0b1: Connect

XOVER_EN_2[0] Connects pass-through I2C/UART Channel 2 to
main control channel on remote side.

0b0: Do not connect
0b1: Connect

GMSL2 General User Guide

Analog Devices Page 76 of 163

6.3.3.1.1 Pass-Through I2C Address Translation
Pass-through I2C channels allow address translation for the remote-side GMSL2 device (Table 27). In
the remote serializer/deserializer, the GMSL2 I2C link main recreates the I2C signaling to the remote
peripheral. Additionally, with address translation, the remote I2C link main can translate a given device
address into another device address with the following bitfields:

• Channel 1:
o SRC_A_1 and DST_A_1
o SRC_B_1 and DST_B_1

• Channel 2:
o SRC_A_2 and DST_A_2
o SRC_B_2 and DST_B_2

Table 27. Pass-Through I2C Address Translator Configuration Registers

BITFIELD DESCRIPTION DECODE

SRC_A_1[6:0]
I2C address translator source A.
When I2C device address matches SRC_A_1, internal I2C
main replaces the device address by DST_A_1.

0bXXXXXXX: I2C address
translator source A

DST_A_1[6:0] I2C Address Translator Destination A.
See the description of SRC_A_1

0bXXXXXXX: I2C address
translator destination A

SRC_B_1[6:0]
I2C Address Translator Source B.
When I2C device address matches SRC_B_1, internal I2C
main replaces the device address by DST_B_1.

0bXXXXXXX: I2C address
translator source B

DST_B_1[6:0] I2C Address Translator Destination B.
See the description of SRC_B_1

0bXXXXXXX: I2C address
translator destination B

SRC_A_2[6:0]
I2C address translator source A.
When I2C device address matches SRC_A_2, internal I2C
main replaces the device address by DST_A_2.

0bXXXXXXX: I2C address
translator source A

DST_A_2[6:0] I2C Address Translator Destination A.
See the description of SRC_A_2.

0bXXXXXXX: I2C address
translator destination A

SRC_B_2[6:0]
I2C Address Translator Source B.
When I2C device address matches SRC_B_2, internal I2C
main replaces the device address by DST_B_2.

0bXXXXXXX: I2C address
translator source B

DST_B_2[6:0] I2C Address Translator Destination B.
See the description of SRC_B_2.

0bXXXXXXX: I2C address
translator destination B

GMSL2 General User Guide

Analog Devices Page 77 of 163

6.3.4 Pass-Through UART
6.3.4.1 UART Mode Configuration
The following tables contain bitfields associated with the pass-through UART channels. Note that the
PT_SWAP, XOVER_EN_1, and XOVER_EN_2 bitfields (only available on select devices) are common
to the pass-through I2C and UART channels. See Table 26 for configuration information.

Note: Bitfields listed in the following tables may not exist in all parts. Refer to device-specific data
sheets and register documents for the most accurate part information.

Pass-through UART channels are enabled on a per channel basis by setting the UART_1_EN (Channel
1) and UART_2_EN (Channel 2) in both the serializer and deserializer (Table 28).

Table 28. Pass-Through UART Channels Enable Registers

BITFIELD DESCRIPTION DECODE

UART_1_EN[0] Enables pass-through UART Channel
1 (SDA1/RX1, SCL1/TX1).

0b0: Pass-through UART Channel 1
disabled
0b1: Pass-through UART Channel 1
enabled

UART_2_EN[0] Enables pass-through UART Channel
2 (SDA2/RX2, SCL2/TX2).

0b0: Pass-through UART Channel 2
disabled
0b1: Pass-through UART Channel 2
enabled

The UART parity bit can be enabled or disabled in pass-through operation on a per channel basis
(Table 29).

Table 29. Pass-Through UART Parity Check Configuration Registers

BITFIELD DESCRIPTION DECODE
DIS_PAR_1[0] Disables parity bit in pass-through UART

(Channel 1)
0b0: Parity bit enabled
0b1: Parity bit disabled

DIS_PAR_2[0] Disables parity bit in pass-through UART
(Channel 2)

0b0: Parity bit enabled
0b1: Parity bit disabled

If the main UART CC is being used and UART data has been written or read to a GMSL2 device
(serializer or deserializer) using the properly formatted UART synchronization frame in base mode,
pass-through UART channels use the same data rate automatically detected by the GMSL2 device in
base mode.

If the main UART CC is not being used, or if a different data rate is required on the pass-through UART
channels, the pass-through UART channels bit length must be manually programmed. Bit length is
manually configured by first setting BITLEN_MAN_CFG_1/2 for the appropriate channel(s). Then, the
14-bit bitlength is specified in terms of the internal 150MHz clock with the concatenation of bitfields
BITLEN_PT_1_H[5:0] / BITLEN_PT_1_L[7:0] for Channel 1 and BITLEN_PT_2_H[5:0] /
BITLEN_PT_2_L[7:0] for Channel 2 (Table 30).

GMSL2 General User Guide

Analog Devices Page 78 of 163

Table 29. Pass-Through UART Bit Rate Configuration Registers
BITFIELD DESCRIPTION DECODE

BITLEN_MAN_CFG_1[0]
Uses the custom UART bit rate (selected by the
BITLEN_PT_1_L and BITLEN_PT_1_H bitfields) in
pass-through UART Channel 1.

0b0: Use standard bit rate
0b1: Use custom bit rate

BITLEN_PT_1_L[7:0]

Low byte of custom UART bit length for pass-through
UART Channel 1.
Set this register to the UART bit length divided by
6.666ns (LSB 8 bits). Set BITLEN_MAN_CFG_1 to 1
to use this value.

0xXXXXXXXX: Low byte
of custom UART bit length
for pass-through UART
Channel 1

BITLEN_PT_1_H[5:0]

High byte of custom UART bit length for pass-
through UART Channel 1.
Set this register to the UART bit length divided by
6.666ns (MSB 6 bits). Set BITLEN_MAN_CFG_1 to
1 to use this value.

0xXXXXXX: High byte of
custom UART bit length for
pass-through UART
Channel 1

BITLEN_MAN_CFG_2[0]
Uses the custom UART bit rate (selected by the
BITLEN_PT_2_L and BITLEN_PT_2_H bitfields) in
pass-through UART Channel 2.

0b0: Use standard bit rate
0b1: Use custom bit rate

BITLEN_PT_2_L[0]

Low byte of custom UART bit length for pass-through
UART Channel 2.
Set this register to the UART bit length divided by
6.666ns (LSB 8 bits). Set BITLEN_MAN_CFG_2 to 1
to use this value.

0xXXXXXXXX: Low byte
of custom UART bit length
for pass-through UART
Channel 2

BITLEN_PT_2_H[0]

High byte of custom UART bit length for pass-
through UART Channel 2.
Set this register to the UART bit length divided by
6.666ns (MSB 6 bits). Set BITLEN_MAN_CFG_2 to
1 to use this value.

0xXXXXXX: High byte of
custom UART bit length for
pass-through UART
Channel 2

Overflow conditions are monitored for each UART pass-through channel. UART_RX_OVERFLOW_1/2
and UART_TX_OVERFLOW_1/2 are read-only bitfields that latch if an overflow condition has occurred
with UART pass-through communications across the serial link (Table 31).

Note: In rare circumstances, a link reset during a UART communication or insufficient serial link
bandwidth may result in overflow conditions.

Table 30. Pass-Through UART Rx/Tx FIFO Overflow Status (Read-Only Registers)

BITFIELD DESCRIPTION DECODE

UART_RX_OVERFLOW_1[0]
Pass-through UART RX FIFO overflow.
Set to 1 following an overflow
condition. Clears upon read.

0b0: No overflow occurred
0b1: Overflow occurred

UART_TX_OVERFLOW_1[0]
Pass-through UART TX FIFO overflow.
Set to 1 following an overflow
condition. Clears upon read.

0b0: No overflow occurred
0b1: Overflow occurred

UART_RX_OVERFLOW_2[0]
Pass-through UART RX FIFO overflow.
Set to 1 following an overflow
condition. Clears upon read.

0b0: No overflow occurred
0b1: Overflow occurred

UART_TX_OVERFLOW_2[0]
Pass-through UART TX FIFO overflow.
Set to 1 following an overflow
condition. Clears upon read.

0b0: No overflow occurred
0b1: Overflow occurred

GMSL2 General User Guide

Analog Devices Page 79 of 163

6.3.5 Pass-Through I2C/UART in Splitter Mode
The pass-through I2C and UART channels operate point-to-point. This differs from the bus operation of
the main CC. For systems with a GMSL2 link in Splitter Mode or Reverse Splitter Mode, a separate
pass-through I2C/UART channel is required for each link to provide a connection to remote I2C/UART
peripherals. For example, two deserializers, each with connected peripherals, are connected to a
serializer in splitter mode. If pass-through I2C/UART Channel 1 is enabled on the deserializer
connected to Link A, pass-through I2C/UART Channel 2 must be enabled on the deserializer connected
to Link B.

6.3.6 Pass-Through Channels Debug Techniques
The pass-through I2C/UART channels can be inspected with a logic analyzer or digital oscilloscope. If
there are issues with the pass-through channels, verify that the waveforms observed on the SDA1_RX1
and SCL1_TX1 pins (Channel 1) and SDA2_RX1 and SCL2_TX2 pins (Channel 2) are as expected.
Refer to the I2C timing diagram in the device data sheet for additional information.

Ensure that the pass-through I2C/UART channel is enabled in both the serializer and deserializer. For
example, for pass-through I2C Channel 1, the IIC_1_EN register must be set to 1 in both the serializer
and deserializer.

For pass-through I2C channels, there are several methods to verify that I2C Ack bits are received from
the remote side for any transmitted I2C byte. The Ack bit after each I2C byte can be observed with a
logic analyzer or digital oscilloscope. Alternatively, the REM_ACK_RECVED_1 and
REM_ACK_RECVED_2 bitfields read 1 if an I2C Ack bit has been received from the remote side for the
previous I2C byte, and REM_ACK_ACKED_1 and REM_ACK_ACKED_2 can be read back to see the
value of the received Ack bit.

The I2C_TIMED_OUT_1 and I2C_TIMED_OUT_2 registers can be read back to check if the internal
I2C-I2C main or subordinate has timed-out while receiving packets from the remote device on pass-
through I2C Channel 1 or Channel 2.

UART overflow conditions are flagged independently for each channel with the following bitfields:
UART_RX_OVERFLOW_1 / UART_RX_OVERFLOW_2 and UART_TX_OVERFLOW_1 /
UART_TX_OVERFLOW_2.

GMSL2 General User Guide

Analog Devices Page 80 of 163

7 Serial Peripheral Interface
7.1 Overview

The serial link bridges several interfaces, including SPI, between GMSL2 devices. SPI is a serial
communication interface that provides a simple connection between ICs and requires less IOs than
parallel buses. Data is synchronized with the clock signal and transmitted throughtwo unidirectional
data lines. A separate control line determines when the interface is active. This simplicity allows for
implementation without dedicated hardware or complex software code. This section provides setup and
initialization details for multiple SPI link use cases.

Key Features

• Four-wire main (connects to remote peripheral) or four-wire subordinate (connects to µC/SoC).
• Remote-side SPI bus supports SPI modes 0 or 3; local-side SPI bus supports SPI mode 0.
• Device filtering on (multiple SPI interfaces with different SPI IDs) or off (point-to-point SPI

interface).
• Subordinate Select active low or high.
• 600kHz to 25MHz or 50MHz SPI clock (depending on device).
• MSB first (for control commands).
• Pin or I2C control of RO and BNE input/output.

GMSL2 General User Guide

Analog Devices Page 81 of 163

7.1.1 GMSL2 SPI Architecture
GMSL2 enables an SPI main on one the side of the link to control an SPI peripheral on the opposite
side. Functionally, the GMSL2 link does not act as a transparent bridge. On the local side, an internal
SPI subordinate receives data from an external SPI main and transmits it across the serial link. On the
remote side, the device receives the data and uses an internal SPI main to transmit the data to the
external SPI subordinate devices. Within the serial link, this has the effect of appearing as a four-wire
SPI main controlled by a four-wire SPI subordinate. Figure 30 shows a block diagram of the GMSL2
SPI interface.

Data on one side is forwarded from the transmit FIFO through the GMSL2 link and into the remote
receive FIFO. This data transfer incurs a slight transmit delay. Due to this delay, the local side
(connected to the µC) operates with transmit data sent first. Once data is received, the µC then reads
back the received data.

SPI
Subordinat

e

SPI GMSL2
Packet Tx

SPI GMSL2
Packet Rx

Pin
Control

GMSL2External
SPI

Main

sck

mosi
miso

ro
bne

SPI
Main

SPI GMSL2
Packet Tx

SPI GMSL2
Packet Rx

Pin
Control

GMSL2

External
SPI

Subordina
te

External
SPI

Subordina
te

sck
mosi
miso

ss0
ss1

Figure 30. GMSL2 SPI Interface

GMSL2 General User Guide

Analog Devices Page 82 of 163

7.2 Operation
7.2.1 SPI Bridge
The SPI bridge has a Tx buffer used to store bytes prior to transmission on the GMSL2 link and an Rx
buffer used to store bytes received from the GMSL2 link prior to being read throughan SPI transaction.
All SPI modes provide this buffering, which is done in both directions. Each buffer has overflow detection
logic with status bits that can be read at SPI_TX_OVRFLW and SPI_RX_OVRFLW. The status bits are
latching and are set with any overflow event. Status bits clear automatically upon read.

7.2.2 SPI Subordinate Control Bits/Pins
The SPI subordinate uses two bits/pins for control: Read Only (RO) and Buffer Not Empty (BNE).

Note: Refer to the latest device data sheets for SPI MFP pins. Some MFP pins may have default
alternate functions that must be disabled before enabling SPI. If the SPI pins are also used as CFG
pins, do not pull CFG pins until the device powers up and the CFG pins are latched.

7.2.2.1 Read Only
Read Only (RO) is an input bit that determines if the SPI subordinate is in read/command or write
mode.

Write mode is enabled if RO is set low. In this mode, any data clocked into the SPI port exits the remote
SPI port. This mode is used to write data to an external peripheral (i.e., SPI subordinate device).

Read/command mode is enabled if RO is set high. Any data sent during this time is interpreted as
control commands for SPI. Control commands are used to select an SPI port, set/clear CS/SS pins, or
clock out data from the receive FIFO.

7.2.2.2 Buffer Not Empty
Buffer Not Empty (BNE) is an output bit that shows the receive FIFO state. BNE is low when the buffer
is empty; BNE is high when there is data in the buffer. This bit is used to determine the status of the
buffer for data transfers and avoiding buffer overflow. This signal de-asserts during a read operation
and re-asserts if the buffer remains not empty after the read has completed.

Ensure that the buffer is empty before starting an SPI data transfer. If it is not empty, clock out the
excess data until the buffer is empty (BNE = 0). BNE is also indicates the availability of a read byte on
the local device. This helps in avoiding buffer overflow. See the Read Data and Configuration sections
for more details.

GMSL2 General User Guide

Analog Devices Page 83 of 163

7.2.3 SPI Control Commands
Several control commands are used when RO is high and read/command mode is enabled.

7.2.3.1 Device Select
These commands select which GMSL device responds based on the programmable SPI ID. These are
only used in multipoint GMSL topologies and are not used in point-to-point applications (e.g., with
GMSL2 quad deserializers). See the Multiple SPI IDs section.

• 0xA0: Select SPI ID ‘00’
• 0xA1: Select SPI ID ‘01’
• 0xA2: Select SPI ID ‘10’
• 0xA3: Select SPI ID ‘11’

7.2.3.2 Subordinate Select
These commands control the remote subordinate select (SS) outputs. Note that actual output voltage
depends on the programmed SS polarity.

• 0xA4: Assert SS1 output
• 0xA5: Assert SS2 output
• 0xA6: De-assert both SS outputs

7.2.3.3 Read Data
Sending the control byte (0xA7) during a normal buffer read allows the user to request the read of
another byte from the remote side without having to toggle RO. This allows multiple data bytes to be
read from the SPI subordinate without toggling the RO bit and requires only half as many local-side SPI
byte accesses (i.e., all reads instead of alternating reads and writes).

Once there is at least a single byte to read in the local buffer (BNE = 1), the byte can be read (RO = 1),
and an additional byte read request from the remote-side SPI subordinate can be sent (by sending
0xA7 into the MOSI). The next SPI subordinate read byte is ready to be read from the local buffer when
BNE returns high.

When BNE returns high, the next SPI subordinate read byte is ready to read from the local buffer.

7.2.4 SPI Clock
The SPI clock (SCK) on local-side SPI subordinate is determined by the external SPI main.

The specified SPI main timing on the remote-side SPI bus is slow due to long I/O path delays.
Depending on the SPI subordinate ClkQ delay, operating this bus at 50MHz can be challenging. To
improve performance reliability, the GMSL2 SPI interface provides a mode to use the full SCK clock
period for off-chip, ClkQ, and on-chip timing for MISO reading.

The FULL_SCK_SETUP register bit sets whether MISO is sampled after a half or full SCK period.
Normal SPI timing has the subordinate transition on the falling clock edge and the main transition on
the rising clock edge (half SCK period, FULL_SCK_SETUP = 0). If required, the GMSL2 main device
can read the subordinate MISO data on the falling edge (full SCK period, FULL_SCK_SETUP = 1).
Note that the FULL_SCK_SETUP bit has no effect on the GMSL2 subordinate device.

GMSL2 General User Guide

Analog Devices Page 84 of 163

7.2.4.1 SPI SCK
The SCK on the remote-side SPI main can be set between 600kHz and 50MHz using register settings.
Register SPI_4 is used for changing SCK low time and SPI_5 is used for changing SCK high time in
numbers of 300MHz clocks.

Example 1: SCK = 1MHz
Write 0x96 (dec 150) to registers SPI_4 and SPI_5.
SCK = 300MHz / (150 x 2) = 1MHz

Example 2: SCK = 5MHz
Write 0x1E (dec 30) to registers SPI_4 and SPI_5.
SCK = 300MHz / (30 x 2) = 5MHz

Example 3: SCK = 42.85MHz:
Write 0x03 (dec 03) to register SPI_4 and write 0x04 (dec 04) to register SPI_5.
SCK = 300MHz / (3 + 4) = 42.85MHz

For higher SCK values, some GMSL2 device SPI MFP pins may need to be adjusted to have faster
speed group settings (i.e., the rise and fall transition times for each MFP pin).

Note: GMSL2 HDMI Serializers do not have speed controls for MFP pins and no changes are required
for different SCK speeds. For other GMSL2 devices, MFP speed group settings can be changed using
register settings. Refer to the latest device-specific data sheet for the recommended SPI latching edge
and speed group details.

Note: The maximum SPI bandwidth is SCK/8, however, there may be overhead due to BNE sampling,
initiating, SPI traffic from the SoC, and/or programming overhead from the SPI subordinate. Actual
throughput depends on the implementation and may be less than the calculated maximum bandwidth.

GMSL2 General User Guide

Analog Devices Page 85 of 163

7.2.4.2 Minimum Timing Requirements
Use register SPI_3 to guarantee that minimum timing requirements are met between the assertion of
SS and the start of SCK clocks, the end of SCK clocks and the de-assertion of SS, or the time between
de-assertion of SS and re-assertion of SS.

All three timing events use the same 8-bit field which defines the minimum number of 300MHz clock
cycles allowed (Table 32).

Table 31. SPI Minimum Timing Requirements

BIT LABEL R/W DESCRIPTION DEFAULT

7:0 SPIM_SS_DLY_
CLKS R/W

Number of 300MHz clocks to delay between:
1. Assertion of SS and Start of SCK pulses
2. End of SCK pulses and De-assertion of SS
3. De-assertion of SS and Re-assertion of SS (if

necessary).
4. 0xXX: Number of clock delays

00000000

For all modes of operation, control registers are available to limit the minimum and maximum GMSL2
SPI packet payload as well as set the transmit request priority. These are:

• SPI_LOC_N: This control limits the maximum packet size generated for GMSL2 transmission to
(2N+1) bytes. The default value is 6’d7, which limits the packet size to 15 bytes. If this value is
programmed to be larger than 7 bytes, the SPI ARQ function must be disabled to avoid ARQ
buffer overflows. See the CRC Error Detection and ARQ Error Correction section for additional
information.

• REQ_HOLD_OFF: This controls defines the minimum number of extra bytes required in the Tx

buffer prior to requesting the GMSL2 link. The default value of 3’d0 requires no extra bytes in
the Tx buffer, and the link request is granted as soon as there is data to transmit. Note: All
available bytes (as limited by SPI_LOC_N) are sent when the link request has been granted.

• REQ_HOLD_OFF_TO: The control defines the timeout duration for the REQ_HOLD_OFF logic

in terms of 100ns units. With a timeout, a GMSL2 request is issued regardless of how many
extra bytes are required per the REQ_HOLD_OFF control field. The default value of 8’d0
disables the timeout function.

• SPI_BASE_PRIORITY: This field defines the SPI bridge request priority for the GMSL2 link. The

priority levels increase lowest to highest from 0 to 3. The priority automatically increases by one,
if possible, when the Tx buffer is over half-full. The default value is 2’d1.

GMSL2 General User Guide

Analog Devices Page 86 of 163

7.3 Configuration
7.3.1 Initialization
Configure SPI in the following order to initialize SPI (starting from the default values):

1. Configure SPI mode 0 or 3 on the serializer and deserializer and set SS output polarity (remote
side).

2. Set the clock delay and high/low times (in number of 300MHz clocks).
3. Program the IO pin enables (BNE/RO/SS1/SS2).
4. Configure Main/Subordinate mode, SPI ID (if needed), and enable SPI.

7.3.2 Sending a Four-Wire SPI Command (Up to 15 Bytes)
Perform the following to send a full duplex command:

1. Set RO high to put the device into command mode.
2. Check BNE to ensure that the buffer is empty. If not, clock out the excess data until the buffer is

empty.
3. (Optional) send 0xA0 – A3 to select which SPI Device to talk to.
4. Send 0xA4 or 0xA5 to assert SS1 or SS2 on the remote main.
5. Set RO low to put the device into write mode.
6. Write 4 data bytes on MOSI.
7. Wait until BNE is high (indicating that data has been received from the remote device), then set

RO high to put the device into command mode.
8. BNE is high for the number of bytes available in the FIFO.
9. Send 0xA6 to de-assert SS1 and SS2. Read one data byte on MISO.
10. Check if BNE is still high.
11. If BNE is still high, send 0xFF to read more bytes on MISO.
12. Set RO low to put the device into write mode.

Figure 31. GMSL2 SPI Implementation

GMSL2 General User Guide

Analog Devices Page 87 of 163

7.3.3 SPI Burst Read/Write
The SPI Tx FIFO is 16 bytes and Rx FIFO is 32 bytes. It is possible to read/write burst data (more than
16 bytes) across the GMSL link. A burst write access generates a sequence of write bytes, while a
burst read access reads multiple bytes from the read buffer. The number of bytes available to read in
the buffer is available in the status field SPIS_BYTE_CNT.

Buffer overflows can be avoided by tracking the number of bytes that are moving through the SPI
bridge. This measurement is referred to as Bytes in Transit (BIT). The potential for buffer overflows is
avoided by maintaining a maximum BIT less than the maximum buffer size (16 bytes).

At the beginning of the burst, initiate a string of write transactions until the maximum BIT has been met.
Maintain the maximum BIT during the burst by initiating a new write transaction for every data byte that
is read througha read transaction. At the end of the burst, perform only read transactions until the BIT is
zero.

7.3.3.1 SPI Burst Write

1. Set RO.
2. Send 0xA0 (Set SPI Target = 0, optional if only one device).
3. Send 0xA4/A5 (Assert SS1/SS2).
4. Clear RO.
5. Send Cmd Byte (Read/Write and Address MS bit).
6. Send Adrs Byte.
7. Send Write Byte.
8. Set RO.
9. Wait for BNE = 1.
10. Send 0x00/Read Byte (Discard).
11. Clear RO.
12. Repeat 7-11 until all data is written.
13. Set RO.
14. Wait for BNE = 1.
15. Send 0xA6/Read Byte (Discard) (Clear SS).
16. Send 0xA6/Read Byte (Discard) (Clear SS).

7.3.3.2 SPI Burst Read

1. Set RO.
2. Send 0xA0 (Set SPI Target = 0, optional if only one device).
3. Send 0xA4/A5 (Assert SS1/SS2).
4. Clear RO.
5. Send Cmd Byte (Read/Write and Address MS bit).
6. Send Adrs Byte.
7. Set RO.
8. Wait for BNE = 1.
9. Send 0xA7/Read Byte (Read Data) (Discard first two reads, remaining are valid).
10. Repeat Steps 8–9 until all but two bytes are read.
11. Wait for BNE = 1.
12. Send 0xA6/Read Byte (Valid Data) (Clear SS).
13. Send 0xA6/Read Byte (Last Valid Data) (Clear SS).

GMSL2 General User Guide

Analog Devices Page 88 of 163

7.3.4 Multiple SPI IDs
In point-to-point SPI applications, the GMSL devices can be set to ignore the packet IDs and accept all
packets (SPI_IGNR_ID = 1). For multipoint GMSL topology (e.g., one serializer linked to two
deserializers or vice-versa), each remote-side device can be assigned a different SPI ID using register
writes to filter SPI packets. Four SPI IDs (i.e., A0 – A3) are available for this application.

Example 1: One serializer Two deserializers

The configuration below is used to create a SPI network using one GMSL2 serializer as an internal
subordinate and two GMSL2 deserializer devices as internal mains to be able to control up to four
subordinates using Splitter Mode (Figure 32).

External Main GMSL2
Serializer

Internal Main

Subordinate
Device 1

Subordinate
Device 2

SS1

A

A

B

GMSL2

MISO1

MISO2

Subordinate
Device 1

Subordinate
 Device 2

B

MOSI2
SCLK2

MOSI2
SCLK2

MOSI2
SCLK2

MOSI2
SCLK2

MOSI2
SCLK2

MISO2

MISO2

MISO2

MISO2

SS1

SS1

SS2

RO

SCLK1

MOSI1

GMSL2
Deserializer

GMSL2

SS2

MOSI2
SCLK2

MISO2

SS2

GMSL2
Deserializer

Internal Subordinate

SS1
SS2

External Subordinate

Figure 32. SPI Network: Two Deserializers and One Serializer

In this SPI network, splitter mode is enabled, and the SPI registers are configured to acknowledge the
header ID to determine packet acceptance. The two deserializers are linked to one serializer and
communicate with each external subordinate by sending command bytes of 0xA0 (link A) or 0xA1 (link
B) to select the desired link and 0xA4 or 0xA5 to select the desired Subordinate Select (SS).

GMSL2 General User Guide

Analog Devices Page 89 of 163

Script:
#SPI 1 to 2 communication
#enable splitter mode

#Ser SUBORDINATE
#SER
############################SPLITTER MODE SETUP############################
#set splitter mode, auto link, and reset link
0x80,0x10,0x53
#turn off reset link
0x80,0x10,0x13
############################SPLITTER MODE SETUP############################

#################################SPI SETUP#################################
#SPI0
0x80,0x170,0x9
#SPI1
0x80,0x171,0x0
#SPI2
0x80,0x172,0x0
#SPI3
0x80,0x173,0x0
#SPI4
0x80,0x174,0x2C
#SPI5
0x80,0x175,0x2C
#SPI6
0x80,0x176,0x03
#SPI7
0x80,0x177,0x98

#Des MAIN
#DES dev90
#SPI mode 0 default
#SPI0
0x90,0x160,0x3
#SPI1
0x90,0x161,0x2
#SPI2
0x90,0x162,0x4
#SPI3
0x90,0x163,0x20
#SPI4
0x90,0x164,0x80
#SPI5
0x90,0x165,0x80
#SPI6
0x90,0x166,0xC
#SPI7
0x90,0x167,0x0

#Des MAIN2
#DES dev94
#SPI mode 0 default
#SPI0
0x94,0x160,0x43

GMSL2 General User Guide

Analog Devices Page 90 of 163

#SPI1
0x94,0x161,0x2
#SPI2
0x94,0x162,0x4
#SPI3
0x94,0x163,0x20
#SPI4
0x94,0x164,0x80
#SPI5
0x94,0x165,0x80
#SPI6
0x94,0x166,0xC
#SPI7
0x94,0x167,0x0

GMSL2 General User Guide

Analog Devices Page 91 of 163

Example 2: Two serializers One deserializer
Similarly, an SPI network using two GMSL2 serializer devices as internal mains and one GMSL2
deserializer device as an internal subordinate can be configured to control up to four external
subordinates using Reverse Splitter Mode (Figure 33).

External Main GMSL2
Deserializer

Internal Mains

Subordinate
Device 1

Subordinate
Device 2

SS1

A

A

B

GMSL2

MISO1

MISO2

Subordinate
Device 1

Subordinate
Device 2

B

MOSI2
SCLK2

MOSI2
SCLK2

MOSI2
SCLK2

MOSI2
SCLK2

MOSI2
SCLK2

MISO2

MISO2

MISO2

MISO2

SS1

SS1

SS2

RO

SCLK1

MOSI1

GMSL2
Serializer

GMSL2

SS2

MOSI2
SCLK2

MISO2

SS2

GMSL2
Serializer

Internal Subordinate

SS1
SS2

External Subordinate

Figure 33. SPI Network: Two Serializers and One Deserializer

Script:
#Script for two Ser and one Des SPI

#5MHz SCK output

#Reset Parts - Remove if not required
#0x90,0x0010,0x91
#0x80,0x0010,0x91
#disable UART pass-through on Des
0x90,0x0003,0x00

#0x90 deserializer is configured as µC local side
#0x80 and 0x84 serializer are configured as µC remote side

#enable reverse splitter mode
0x90,0x0010,0x23
0x90,0x0170,0x09
0x90,0x0176,0x03
#0x90,0x0162,0x08

0x80,0x0173,0x1E
0x80,0x0174,0x1E

GMSL2 General User Guide

Analog Devices Page 92 of 163

0x80,0x0175,0x1E
0x80,0x0176,0x0C
0x80,0x0172,0x00
#To ignore the SPI ID
#0x80,0x0170,0x0B
#SPI ID = 0x01, use 0xA1 command
0x80,0x0170,0x53

0x84,0x0173,0x1E
0x84,0x0174,0x1E
0x84,0x0175,0x1E
0x84,0x0176,0x0C
0x84,0x0172,0x00
#To ignore the SPI ID
#0x84,0x0170,0x0B
#SPI ID = 0x00, use 0xA0 command
0x84,0x0170,0x03

7.3.5 Typical Application
In this example script, it is assumed that external SPI main (µC) is connected to a GMSL2 deserializer,
and the peripheral SPI devices are connected to a GMSL2 serializer. See Figure 34 for the block
diagram of this application.

Note: If the µC is connected to the GMSL2 serializer, interchange the register settings for the serializer
and the deserializer as indicated in the script.

Peripheral SPI
Subordinate

Remote SPI Main
(Serializer)

Local SPI
Subordinate

(Deserializer)
External Main (µC)

MOSI
MISO
SCK
SS1
SS2

MOSI
MISO
SCK
RO
BNE

GMSL2

Figure 34. Typical SPI Application

Script:
#disable UART pass-through on Des
0x90,0x0003,0x03

#0x90 deserializer is configured as µC local side
#0x80 serializer is configured as µC remote side
#swap only below registers 0x80 and 0x90 if µC is on Ser side

#SCK = 5MHz

GMSL2 General User Guide

Analog Devices Page 93 of 163

0x80,0x0173,0x1E
0x80,0x0174,0x1E
0x80,0x0175,0x1E
#SS1 and SS2 enable
0x80,0x0176,0x0C
#enable RO and BNE
0x90,0x0176,0x03
#SS is active low
0x80,0x0172,0x00
#enable SPI, ignore SPI ID and internal SPI subordinate
0x90,0x0170,0x09
#enable SPI, ignore SPI ID and internal SPI main
0x80,0x0170,0x0B

GMSL2 General User Guide

Analog Devices Page 94 of 163

Bandwidth Calculations

GMSL2 General User Guide

Analog Devices Page 95 of 163

8 GMSL2 Link System Bandwidth
8.1 Overview

GMSL2 systems provide robust serial link connections between camera and display interfaces. Each
interface in these interconnected systems (i.e., input interface, GMSL2 link, and output interface) has its
own bandwidth requirements. Ensuring proper operation of the system requires that all bandwidth
consumption be compatible and within specified limits. The overall system bandwidth is limited by the
most restrictive interface: this can be either the serializer input interface, deserializer output interface, or
the serial link itself.

The input and output interfaces have protocol-specific bandwidth requirements. In order to ensure
compatibility with GMSL2 systems, these requirements and figures must be translated into values used
by GMSL2 systems. The most important factor here is the pixel clock (PCLK). The PCLK of video
received at the input interface is used to determine the video bandwidth consumed on the serial link.
The GMSL video bandwidth figure is then converted into the protocol of the output interface to ensure
compatibility with remote devices.

GMSL2 link bandwidth is shared by the forward channel video and other sideband channels, and both
must be considered to ensure that the combined bandwidth consumption remains within protocol limits.
This consideration requires evaluating two related and interactive concepts: payload size and
bandwidth consumption. Payload size is the discrete size of a channel’s data and is a product of the
data received at the input interface; bandwidth is the total consumption by a channel and includes the
payload size with the addition of encoding and other protocol overhead. Proper operation of a GMSL2
system requires that the cumulative bandwidth usage of all channels does not exceed GMSL2 protocol
limits.

The following image (Figure 35) and table (Table 33) show an example of the integrated calculations
necessary for determining bandwidth compliance of a serial link system.

Serializer Deserializer

GMSL2

Output
Interface

Input
Interface

Figure 35. GMSL2 System Block Diagram

Figure 35 is a visual representation of the serial link system stages referenced in the Table 33 example
calculations used to demonstrate the concepts of payload and bandwidth throughout a serial link
system. In this example, a GMSL2 system consisting of a serializer and a deserializer is transmitting a
1080p RGB888 video with I2C control channel information and a 1Mbps switching GPIO.

GMSL2 General User Guide

Analog Devices Page 96 of 163

Table 32. Example Calculations for 1080p, RGB888 Video for a Serializer and a Deserializer
 INPUT INTERFACE GMSL LINK OUTPUT

INTERFACE
PCLK 148.5MHz 148.5MHz 148.5MHz
Video Payload (PCLK *
bpp) 3.56Gbps 3.56Gbps 3.56Gbps

Video Bandwidth
Consumed
(video payload +
interface overhead)

4.45Gbps 4.04Gbps 4.45Gbps

Total Bandwidth
Consumed (video
bandwidth + additional
interface bandwidth)

4.45Gbps 4.084Gbps* 4.45Gbps

* GMSL Link Total Bandwidth Consumed Calculation:

4.04𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃 + 𝐼𝐼2𝑃𝑃 + 𝐺𝐺𝑃𝑃𝐼𝐼𝐺𝐺 = 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐺𝐺𝑀𝑀𝑆𝑆𝐿𝐿 𝐿𝐿𝐻𝐻𝐻𝐻𝐵𝐵 𝐵𝐵𝐻𝐻𝐻𝐻𝑊𝑊𝐵𝐵𝐻𝐻𝑊𝑊𝐻𝐻ℎ

4.04𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃 + 4𝑀𝑀𝑏𝑏𝑝𝑝𝑃𝑃 + 40𝑀𝑀𝑏𝑏𝑝𝑝𝑃𝑃 = 4.084𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

See GMSL2 Link Bandwidth Consumption from Side Channels for additional information.

GMSL2 General User Guide

Analog Devices Page 97 of 163

8.2 GMSL2 Link Bandwidth Consumption from Video
The majority of GMSL2 serial link bandwidth comprises video transmission. The total link bandwidth
consumed by video is derived from the incoming video stream and calculated by multiplying the pixel
clock (PCLK) expressed in MHz, bits per pixel (bpp), and GMSL2 link overhead factors. Note that
optional features (e.g., forward error correction and display stream compression) affect link bandwidth
consumption and must be considered if enabled. For details on PCLK calculation, see the Video Basics
Equations section.

Note: Video transmission consumes the largest proportion of serial link bandwidth; however, all data
transmitted on the serial link must be considered when calculating link bandwidth to ensure optimum
serial link performance.

The equation used to calculate the forward channel video payload is:

𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝑃𝑃𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊 = 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 ∗ 𝑏𝑏𝑝𝑝𝑝𝑝

The equation used to calculate the total forward channel video bandwidth is shown as follows:

𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝐵𝐵𝑊𝑊 = [(𝐴𝐴𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝑝𝑝𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊) + (𝐴𝐴𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝑝𝑝𝐻𝐻𝑃𝑃𝐵𝐵𝑉𝑉𝐻𝐻 ℎ𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻) + (𝐴𝐴𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝑝𝑝𝐻𝐻𝑃𝑃𝑉𝑉𝐻𝐻 𝑃𝑃𝑅𝑅𝑃𝑃)] ∗ (9b10b 𝑉𝑉𝐻𝐻𝑃𝑃𝐻𝐻𝑊𝑊𝐻𝐻𝐻𝐻𝐵𝐵)
∗ (𝑃𝑃𝑆𝑆𝐻𝐻𝑃𝑃 𝐵𝐵𝐻𝐻𝐻𝐻𝑊𝑊𝑃𝑃) ∗ [(𝐹𝐹𝐵𝐵𝑃𝑃) ∗ (𝐷𝐷𝑆𝑆𝑃𝑃)]

𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝐵𝐵𝑊𝑊 = PCLK ∗ �(𝑏𝑏𝑝𝑝𝑝𝑝) + �
1
2
� + �

1
2
�� ∗ �

10
9
� ∗ �

2048
2047

� ∗ ��
128
120

� ∗ �
1
3
��

𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝐵𝐵𝑊𝑊 = PCLK ∗ �(𝑏𝑏𝑝𝑝𝑝𝑝) +
1
2

+
1
2
� ∗ �

10
9
� ∗ �

2048
2047

� ∗ ��
128
120

� ∗ �
1
3
��

Note: Video Pixel CRC, FEC, and DSC are optional features; see the Forward Error Correction section
for additional information and refer to device-specific data sheets for availability details. Video pixel
CRC is disabled by default as video line CRC is enabled by default and is typically preferred. See the
Video Data CRC section for additional details.

Note: BPP = 9 is the minimum allowed bpp value for GMSL2 link BW calculation. For video datatypes
with a bpp value less than 9 (e.g., RAW8 and EMB8), a bpp value of 9 must be used when calculating
GMSL2 link bandwidth consumption.

This forward channel video bandwidth calculation is applicable to all input interfaces.

Forward channel rates vary depending on GMSL2 mode. Table 34 lists the maximum video payload for
each mode. The maximum rates factor in sufficient margin to accommodate sideband channels.

Table 33. Maximum Video Payload for GMSL2 Modes
GMSL2 MODE MAXIMUM VIDEO PAYLOAD
3Gbps Mode 2.6Gbps (2600Mbps)
6Gbps Mode 5.2Gbps (5200Mbps)

GMSL2 General User Guide

Analog Devices Page 98 of 163

8.3 Interface-Specific Bandwidth Calculations
8.3.1 CSI-2 Bandwidth Calculations
The pixel clock for MIPI input interfaces is determined by the input MIPI speed (i.e., the MIPI clock
multiplied by the number of MIPI D-PHY or C-PHY data lanes). For a given video format, higher MIPI
speeds allow margin for the image sensor to transmit the required video stream; however, this results in
a higher PCLK value and increased consumption of GMSL2 link bandwidth. This balance means that
careful consideration is required, especially for marginal system design.

8.3.1.1 CSI-2 Serializers – D-PHY Input
This section explains how the received MIPI video stream relates to the resulting PCLK frequency and
bpp that feeds into the GMSL2 transmitter block. Here, the input data stream rates and packet formats
are converted to GMSL formatting.

The maximum allowed PCLK is 600MHz. The MIPI D-PHY can use up to four available lanes; each
lane has a maximum bandwidth of 2.5Gbps.

The PCLK is calculated with the following equation:

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

The total MIPI data rate is the product of the video PCLK and bpp:

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉 = 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵 = 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 ∗ 𝑏𝑏𝑝𝑝𝑝𝑝

The maximum total MIPI data rate supported on GMSL devices is:

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉 = 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵 = 4 ∗ 2.5𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃 = 10𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

Note: A higher MIPI lane rate results in a higher PCLK, which consumes more bandwidth on the GMSL
link. When configuring the MIPI lane rate in the video source, use the slowest lane rate possible which
supports the video bandwidth (with sufficient margin).

The bpp is the bits per pixel of the chosen CSI-2 or DSI datatype. Example bpp values for various
datatypes are given below. Note that, for purposes of bandwidth calculations, DSI can be considered
equal to the RGB888 CSI-2 data stream (bpp = 24).

• RGB888: 24 bpp
• RAW12: 12 bpp
• RAW8: 8 bpp
• EMB8: 8 bpp

GMSL2 General User Guide

Analog Devices Page 99 of 163

8.3.1.1.1 Managing Multiple PCLK Values in a MIPI Input Stream (Time
Multiplexed)
In the following modes, the video stream is time multiplexed: the data is sequential as it would typically
be transmitted from a single camera source.

8.3.1.1.1.1 Constant BPP Video Pipe Mode
This is the default mode for processing streams containing multiple PCLK values. In this basic mode,
every video pipe is arranged to have a single bpp value. The maximum allowed PCLK is 600MHz
regardless of the GMSL2 bandwidth. The resulting maximum allowed MIPI rates for the given D-PHY
input is provided in Table 35.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝐻𝐻𝐻𝐻𝑉𝑉

𝑏𝑏𝑝𝑝𝑝𝑝

Table 34. Maximum CSI-2 Lane Rates (Mbps) in Constant BPP Mode

MAX CSI-
2 LANE
RATE

NUMBER OF LANES
1 2 3 4

bpp

8 2500.00 2400.00 1600.00 1200.00
10 2500.00 2500.00 2000.00 1500.00
12 2500.00 2500.00 2400.00 1800.00
14 2500.00 2500.00 2500.00 2100.00
16 2500.00 2500.00 2500.00 2400.00
18 2500.00 2500.00 2500.00 2500.00
20 2500.00 2500.00 2500.00 2500.00
24 2500.00 2500.00 2500.00 2500.00

GMSL2 General User Guide

Analog Devices Page 100 of 163

8.3.1.1.1.2 Double Loading Mode
Double loading mode provides increased bandwidth efficiency and expanded use case possibilities.
This data arrangement mode is available for low-bpp video datatypes with a bpp value of 8, 10, or 12.
Double mode concatenates two input pixels so that they are processed as a single pixel in a video pipe.
This concatenation enables video streams with heterogenous PCLK values to be combined into a
single video pipe. Double loading mode also provides serial link bandwidth efficiency gains for single
video streams.

Note: Double loading mode is one method of combining two video streams in a single video pipe. This
allows multiple datatypes differing by a factor of two to be sent through a single video pipe without loss
in bandwidth efficiency.

Example: RAW12 and RGB888 Double Loading
An image sensor transmits RAW12 (bpp = 12) and RGB888 (bpp = 24) video packets over two lanes,
each operating at 1Gbps. The RAW12 packets are double loaded so that the bpp of the RAW12
packets matches the bpp of the RGB888 packets. The two datatypes are transmitted through the same
video pipe.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
2 ∗ 1𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

24 𝑏𝑏𝑝𝑝𝑝𝑝
= 83.33𝑀𝑀𝐻𝐻𝐻𝐻 (𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉: 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑒𝑒𝑡𝑡𝑎𝑎 ≤ 600𝑀𝑀𝐻𝐻𝐻𝐻)

The link bandwidth calculation uses the highest bpp value of the transmitted datatypes. Here, the
RGB888 bpp value of 24 is used.

𝐵𝐵𝑊𝑊 = 83.33𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (24 𝑏𝑏𝑝𝑝𝑝𝑝 + 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 2.27𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

The GMSL2 link bandwidth consumption of RAW12 and RGB888 datatypes is 2.27Gbps.

GMSL2 General User Guide

Analog Devices Page 101 of 163

Example: RAW12 Double Loading
An image sensor transmits RAW12 (bpp = 12) video packets over one lane at 1.5Gbps.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
1 ∗ 1.5𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

12 𝑏𝑏𝑝𝑝𝑝𝑝
= 125𝑀𝑀𝐻𝐻𝐻𝐻 (𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉: 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑒𝑒𝑡𝑡𝑎𝑎 ≤ 600𝑀𝑀𝐻𝐻𝐻𝐻)

GMSL2 bandwidth consumption is calculated with the following equation:

𝐵𝐵𝑊𝑊 = 125𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (12 𝑏𝑏𝑝𝑝𝑝𝑝 + 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 1.737𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

However, the RAW12 packets can be double loaded to reduce the link bandwidth consumption (by
reducing protocol overhead).

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
1 ∗ 1.5𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

24 𝑏𝑏𝑝𝑝𝑝𝑝
= 62.5𝑀𝑀𝐻𝐻𝐻𝐻 (𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉: 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑒𝑒𝑡𝑡𝑎𝑎 ≤ 600𝑀𝑀𝐻𝐻𝐻𝐻)

GMSL2 bandwidth consumption is calculated with the following equation:

𝐵𝐵𝑊𝑊 = 62.5𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (24 𝑏𝑏𝑝𝑝𝑝𝑝+ 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 1.702𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

In this example, double loading the RAW12 packets provides a bandwidth reduction of 35Mbps.

GMSL2 General User Guide

Analog Devices Page 102 of 163

8.3.1.1.1.3 Zero-Padding Mode
Zero-padding allows multiple datatypes that do not have the same bpp value to be transmitted on a
video pipe together. This option is an alternative to double loading mode and does not require the bpp
values to differ by a factor of two. With zero-padding, the datatype with the lower bpp value is zero-
padded to be the same length as the bpp of the larger datatype.

The PCLK is derived from the datatype with the lowest bpp value. Prior to zero-padding one of the
datatypes, there are two PCLKs due to the two different bpp values. The slower video stream (i.e., the
datatype with the larger bpp value) can only be processed with the clock from the faster video stream
(i.e., the datatype with the smaller bpp value).

The link bandwidth calculation uses the bpp value of the video pipe. This is equal to the highest bpp
value of the transmitted datatypes.

The video streams are time multiplexed. The multiple datatypes are not transmitted simultaneously;
individual frames of each datatype are transmitted sequentially.

Note: Zero-padding mode is available for all datatypes with bpp ≤16.

Example: EMB8 and RAW12 Zero-Padding
An image sensor transmits EMB8 (bpp = 8) and RAW12 (bpp = 12) video packets over two lanes, each
operating at 1Gbps. The EMB8 packets are zero-padded with four zeros per pixel, matching the bpp of
RAW12. The two datatypes are transmitted through the same video pipe.

EMB8 has a bpp = 8 and RAW12 has a bpp = 12. Since the PCLK is calculated using the datatype with
the lowest bpp value, the EMB8 value is used in the equation.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
2 ∗ 1𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

8 𝑏𝑏𝑝𝑝𝑝𝑝
= 250𝑀𝑀𝐻𝐻𝐻𝐻 (𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉: 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑒𝑒𝑡𝑡𝑎𝑎 ≤ 600𝑀𝑀𝐻𝐻𝐻𝐻)

The 250MHz value is confirmed to be smaller than 600MHz (the maximum PCLK value).

The link bandwidth calculation uses the highest bpp value of the transmitted datatypes. Here, the
RAW12 bpp value of 12 is used.

𝐵𝐵𝑊𝑊 = 250𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (12 𝑏𝑏𝑝𝑝𝑝𝑝+ 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 3.47𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

The GMSL2 link bandwidth consumption of EMD8 and RAW12 datatypes is 3.47Gbps.

GMSL2 General User Guide

Analog Devices Page 103 of 163

8.3.1.1.1.4 Double Loading Mode in Combination with Zero-Padding Mode
Double loading mode and zero-padding mode can be used together to accommodate a wide range of
use cases involving many different datatypes.

Example: An image sensor transmits RAW12 and EMB8 video packets in a two-lane CSI-2 stream,
each lane operating at 1Gbps. In the serializer, The EMB8 and RAW12 packets are transmitted
together in a video pipe. Here, double loading mode is used to pack two EMB8 pixels together into a 16
bpp pixel, and zero-padding is used to increase the bpp of the RAW12 packet from 12 to 16. With the
effective bpp of each datatype equal to 16, both datatypes can be sent together throughthe same video
pipe.

To calculate the PCLK, the bpp from the datatype with the lowest bpp value (i.e., higher PCLK value) is
used. In this example, the RAW12 bpp value is the lowest (bpp = 12) and is used for the PCLK
calculation.

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
 2 ∗ 1𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

12 𝑏𝑏𝑝𝑝𝑝𝑝
= 166.67𝑀𝑀𝐻𝐻𝐻𝐻

The link bandwidth calculation uses the highest bpp value of the transmitted datatypes. Here, the
double loaded EMB8 bpp value of 16 is used.

𝐵𝐵𝑊𝑊 = 166.67𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (16 𝑏𝑏𝑝𝑝𝑝𝑝 + 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 3.057𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

The GMSL2 link bandwidth consumption of EMB8 and RAW12 datatypes is 3.057Gbps.

GMSL2 General User Guide

Analog Devices Page 104 of 163

8.3.1.1.2 Managing Video that is not Time Multiplexed
These calculations assume that the video stream is time multiplexed. If the video streams are not time
multiplexed, the MIPI long packets may overlap in time. This may occur if multiple independent MIPI
inputs are received by the serializer (Figure 36). To calculate the peak bandwidth consumed on the
serial link, the peak bandwidth demands of each video stream are calculated separately then summed
together. This figure must be less than the maximum video bandwidth limit to ensure the proper
operation of the serial link.

Serializer

Image Sensor 1

Image Sensor 2

GMSL2 Link

1Gbps

2Gbps

3.636Gbps

MIPI Lane Rate GMSL2 Video Bandwidth

Figure 36. A GMSL2 Serializer with Two Independent MIPI Inputs

Example: Two image sensors separately transmit EMB8 (bpp = 8) and RAW12 (bpp = 12) to a single
CSI-2 serializer. The EMB8 video stream has a lane rate of 1Gbps; the RAW12 video stream has a
lane rate of 2Gbps.

EMB8 video stream:

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
 1 ∗ 1𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

8 𝑏𝑏𝑝𝑝𝑝𝑝
= 125𝑀𝑀𝐻𝐻𝐻𝐻

𝐵𝐵𝑊𝑊 = 125𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (9 𝑏𝑏𝑝𝑝𝑝𝑝 + 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 1.320𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

Note: BPP = 9 is the minimum allowed bpp value for GMSL2 link BW calculation.

GMSL2 General User Guide

Analog Devices Page 105 of 163

RAW12 video stream:

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵

𝑏𝑏𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 =
 1 ∗ 2𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

12 𝑏𝑏𝑝𝑝𝑝𝑝
= 166.67𝑀𝑀𝐻𝐻𝐻𝐻

𝐵𝐵𝑊𝑊 = 166.67𝑀𝑀𝐻𝐻𝐻𝐻 ∗ (12 𝑏𝑏𝑝𝑝𝑝𝑝 + 0.5) ∗ �
 10
9
� ∗ �

2048
2047

� = 2.316𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

Combined GMSL2 bandwidth consumption:

𝐵𝐵𝑊𝑊𝑝𝑝𝑒𝑒𝑡𝑡𝑝𝑝 = 1.320𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃 + 2.316𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃 = 3.636𝐺𝐺𝑏𝑏𝑝𝑝𝑃𝑃

GMSL2 General User Guide

Analog Devices Page 106 of 163

8.3.1.2 CSI-2 Deserializers – D-PHY Output
The MIPI CSI-2 output clock frequency is independently configured. The phy_csi_tx_dpll_predef_freq
registers allow adjustments with 100Mbps step resolution. The CSI2_LANE_CNT register programs the
LANE_CNT definition (one to four lanes). Further configuration of the output frequency is covered in the
section.

Relevant equations:

• 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉 = 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑅𝑅𝐴𝐴𝑇𝑇𝐵𝐵 ∗ 𝐿𝐿𝐴𝐴𝑁𝑁𝐵𝐵_𝑃𝑃𝑁𝑁𝑇𝑇
• 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉 ≥ 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 ∗ (𝐵𝐵𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑣𝑣𝑒𝑒𝑟𝑟 𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒)

If there are multiple video pipes aggregated to a single CSI-2 output, the calculation must consider if
the packets are time domain multiplexed between the video pipes.

• If multiple video pipes have time-overlapping data:

(𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃1 ∗ 𝐵𝐵𝑃𝑃𝑃𝑃1) + (𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃2 ∗ 𝐵𝐵𝑃𝑃𝑃𝑃2) + ⋯ ≤ 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉

• If multiple video pipes have time-separated data:

𝑀𝑀𝐴𝐴𝑀𝑀{(𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃1 ∗ 𝐵𝐵𝑃𝑃𝑃𝑃1), (𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃2 ∗ 𝐵𝐵𝑃𝑃𝑃𝑃2), … } ≤ 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝑉𝑉

The maximum allowed PCLK is 600MHz. In standard operation, the maximum MIPI Lane Rate is
2500Mbps. GMSL2 dual-link mode increases the serial link bandwidth between the serializer and the
deserializer to 12Gbps. This increased bandwidth can transmit CSI-2 data to the deserializer at
10.4Gbps. Enabling DSC can further increase the CSI-2 data available to the deserializer.

GMSL2 General User Guide

Analog Devices Page 107 of 163

8.3.1.3 CSI-2 Deserializers – C-PHY Output
CSI-2 C-PHY output supports higher output bandwidth than D-PHY. C-PHY uses three-phase symbol
encoding that delivers 2.28 bits per symbol over three-wire trios, each with an embedded clock (Note:
‘trios’ are also referred to as ‘lanes’ or ‘pins’). Each trio operates at 2.5GSym/s, resulting in a bandwidth
of 5.7Gbps per trio. Lanes can be combined to increase available bandwidth (Table 36). There is no
line coding overhead (e.g., 8b10b). Video pipes Y and Z permit 1x3 and 1x4 configurations, while video
pipes X and U only allow 1x1 and 1x2 lane configurations (Figure 37).

Table 35. MIPI D-PHY and C-PHY Lane Configurations and Output Bandwidth

 D-PHY C-PHY
Width

(CLKxDATA) Pins Rate (Gbps) Pins Rate (Gbps)

1x1 4 2.5 3 5.7
1x2 6 5.0 6 11.4
1x3 8 7.5 9 17.1
1x4 10 10.0 12 22.8

mipi_tx_io_2X1

DPHY Data0_Dp

(CPHY Data0_A)

DPHY Data0_Dn

(CPHY Data0_B)

DPHY Clk0_Dp

(CPHY Data0_C)

DPHY Clk0_Dn

(CPHY Data1_A)

DPHY Data1_Dp

(CPHY Data1_B)

DPHY Data1_Dn

(CPHY Data1_C)

Figure 37. MIPI Lane Configurations

GMSL2 General User Guide

Analog Devices Page 108 of 163

8.4 GMSL2 Link Bandwidth Consumption from Side Channels
Side channels occupy channel bandwidth when enabled. The total link bandwidth usage is the sum of
the side channel consumption, the utilization from video, and protocol overhead. This calculation must
be below the specified bandwidth for the serial link to avoid overflow.

Note: Video signals only occupy the forward channel (serializer to deserializer) of the GMSL2 link,
while side channels may operate on both the forward and reverse channels. Typically, the side
channels consume bandwidth in the direction the data is sent—referred to here as “forward bandwidth”
and also in the opposite direction—referred to here as “reverse bandwidth” if CRC is enabled.

The calculations are agnostic of GMSL link direction. For example, if audio is sent from the deserializer
to the serializer, the audio forward bandwidth is consumed on the GMSL reverse channel, and the
audio reverse bandwidth is consumed on the GMSL forward channel.

Note: CRC increases bandwidth consumption for all side channels (in both directions) and is enabled
by default for all channels besides RGMII. Disabling CRC is not recommended for most applications.
See the CRC Error Detection and ARQ Error Correction section for additional details.

GMSL2 General User Guide

Analog Devices Page 109 of 163

8.4.1 GPIO
GPIO bandwidth consumption is a function of how many transitions per second occur. This
consumption is increased if delay-compensation mode is enabled. Bandwidth is consumed in the
direction of the transmitted GPIO transmission; however, if CRC/ARQ is enabled, the ARQ
acknowledge packets also consume reverse channel bandwidth.

GPIO Forward BW (Mbps) = (𝑇𝑇 ∗ (2 + 𝑃𝑃𝐺𝐺𝑀𝑀𝑃𝑃 + 𝑃𝑃𝑅𝑅𝑃𝑃) ∗ 20) 1000000⁄

GPIO Reverse BW (Mbps) = (𝑇𝑇 ∗ 𝑃𝑃𝑅𝑅𝑃𝑃 ∗ 2 ∗ 20) 1000000⁄

Where:

• T = transitions per second.
• COMP = 1 if delay compensated mode is enabled; COMP= 0 if delay compensated mode is

disabled.
• CRC = 1 if CRC is enabled; CRC = 0 if CRC is not enabled.

For example, if a GPIO is used to transmit a touch interrupt signal, the maximum transitions per second
would be approximately five, resulting in a bandwidth consumption of 0.3kbps on the forward channel.

Note: For serializers the Forward BW is consumed from serializer to deserializer and Reverse BW is
consumed from deserializer to serializer. For deserializers the opposite is true, the Forward BW is
consumed from deserializer to serializer and Reverse BW is consumed from serializer to deserializer.

8.4.2 SPI
SPI bandwidth consumption is a function of the SPI clock and byte length. Bandwidth is consumed in
the direction of the SPI transaction as well as the reverse direction for the acknowledge packets.

SPI Forward BW (Mbps) = (𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃 (8 ∗ 𝐿𝐿)⁄) ∗ (2 + 𝑃𝑃𝑅𝑅𝑃𝑃 + 𝐻𝐻𝐻𝐻𝑢𝑢𝐻𝐻𝑊𝑊𝑢𝑢𝑝𝑝((𝐿𝐿 − 1) 2⁄)) ∗ 20

SPI Reverse BW (Mbps) = (𝐶𝐶𝑆𝑆𝑃𝑃𝑃𝑃 (8 ∗ 𝐿𝐿)⁄) ∗ 2 ∗ 20 ∗ 𝑃𝑃𝑅𝑅𝑃𝑃

Where:

• fSCK = SPI clock (SCK) frequency in Mbps.
• L = SPI read/write length in bytes.
• roundup() is a function defined as rounding up the contained number to the next integer value.

CRC = 1 if CRC is enabled; CRC = 0 if CRC is not enabled.

Note: For serializers the Forward BW is consumed from serializer to deserializer and Reverse BW is
consumed from deserializer to serializer. For deserializers the opposite is true, the Forward BW is
consumed from deserializer to serializer and Reverse BW is consumed from serializer to deserializer.

GMSL2 General User Guide

Analog Devices Page 110 of 163

8.4.3 I2C
The I2C bandwidth consumption is a function of the SCL frequency. The I2C is generated
simultaneously in both directions and includes ARQ ACK traffic; bandwidth is consumed in both the
forward and reverse directions.

I2C Forward BW (Mbps) = (𝐶𝐶𝑆𝑆𝑃𝑃𝐿𝐿/4500) ∗ (2 + 𝑃𝑃𝑅𝑅𝑃𝑃) ∗ 20

I2C Reverse BW (Mbps) = 40 ∗ (𝐶𝐶𝑆𝑆𝑃𝑃𝐿𝐿/1000) ∗ 𝑃𝑃𝑅𝑅𝑃𝑃

Where:

• fSCL is the I2C clock rate (kbps).
• CRC = 1 if CRC is enabled; CRC = 0 if CRC is not enabled.

Note: For serializers the Forward BW is consumed from serializer to deserializer and Reverse BW is
consumed from deserializer to serializer. For deserializers the opposite is true, the Forward BW is
consumed from deserializer to serializer and Reverse BW is consumed from serializer to deserializer.

GMSL2 General User Guide

Analog Devices Page 111 of 163

8.4.4 UART
UART bandwidth consumption is a function of the UART baud rate. UART consumes bandwidth in in
the direction of the UART transaction as well as the reverse direction for the acknowledge packets.

UART Forward BW (Mbps) = (𝐶𝐶𝑓𝑓𝐴𝐴𝑅𝑅𝑇𝑇/10000) ∗ (2 + 𝑃𝑃𝑅𝑅𝑃𝑃) ∗ 20

UART Reverse BW (Mbps) = (𝐶𝐶𝑓𝑓𝐴𝐴𝑅𝑅𝑇𝑇/10000) ∗ 2 ∗ 20

Where:

• fUART is the UART baud rate.
• CRC = 1 if CRC is enabled; CRC = 0 if CRC is not enabled.

Note: For serializers the Forward BW is consumed from serializer to deserializer and Reverse BW is
consumed from deserializer to serializer. For deserializers the opposite is true, the Forward BW is
consumed from deserializer to serializer and Reverse BW is consumed from serializer to deserializer.

GMSL2 General User Guide

Analog Devices Page 112 of 163

9 GMSL2 Error Reporting (ERRB Pin)
9.1 Overview

All GMSL2 devices have a multi-purpose open-drain error reporting and interrupt status output (ERRB).
The configurable ERRB pin can output detected error status(es) and/or certain internal device events
relevant to the host processor (i.e., interrupts). The ERRB function is assigned to an MFP (see device-
specific data sheets for pinout information).

The ERRB pin operates in open-drain output mode with a 40kΩ internal pull-up resistor. It is an active-
low signal: 1 indicates “no error and no interrupt event,” 0 indicates the occurrence of an “error and/or
interrupt event.”

Note: The ERRB pin reflects the status of the ERROR bit (register 0x0013) but with inverted logic (i.e.,
ERROR=1 and ERRB pin low indicates an error condition).

Multiple errors and event sources can be simultaneously configured to drive the ERRB pin. Each error
and event able to drive the ERRB pin has a status flag register. When several errors and/or events are
configured to drive the ERRB pin, these status registers can be read to determine the source of the
ERRB assertion. Each ERRB source can be individually enabled and disabled.

Functions and uses include:

• Very fast routing of on-chip diagnostics to device pin used as an interrupt for the SoC.
• ASIL-related functions route to the internal ERRB signal to be used as an interrupt.
• Remote-side forwarding of diagnostics to local ERRB signal permits all GMSL2 system devices

to centralize ERRB reporting to a single pin.

9.2 Operation
Most GMSL2 device errors/statuses can be output to the ERRB pin. Independent of ERRB reporting,
the individual device error statuses are reported in the local registers of the feature. Many of these
errors have attendant counters that track the cumulative number of errors that have occurred. Refer to
device-specific data sheets for more information.

Errors are individually configured to be output to the ERRB pin. Each error eligible for ERRB pin routing
has an output enable (OEN) bit that is used to send the error status to the ERRB OR gate. The OR
gate controlling the ERRB status is illustrated in Figure 38. Note that concept is universal to GMSL2
devices; available errors and event statuses may vary by device.

GMSL2 General User Guide

Analog Devices Page 113 of 163

OR

DEC_ERR_B_OEN

EOM_ERR_A_OEN

DEC_ERR_A

DEC_ERR_B

EOM_ERR_A
ERRB

DEC_ERR_A_OEN

ETC_OEN

ETC...

Figure 38. ERRB Logic

The ERRB pin can be used to monitor important error or status flags. If the ERRB pin is driven low and
multiple errors/statuses are configured to output to ERRB, the local registers for the enabled
errors/statuses should be read to determine the cause. Figure 39 shows the internal error reporting
mechanism.

Specific
Error

Occurs

Specific
Error
Count

Register

Specific
Error

Register

Main
Error

Registers

If
ERR_OEN = 1 ERROR bit

ERRB pin
and

Register
Reported

Located in specific
feature register block

Located in
INTR3 – INTR9 registers

Located in
register 0x0013

Figure 39. Internal Error Reporting Mechanism

If an error occurs and its ERR_OEN bit is enabled, the ERRB pin is driven low (i.e., active) and the
ERROR bit (register 0x0013) reports a 1. This alerts the user to a nonspecific error state among the
enabled error bits. To determine what error occurred and whether the error is continuous or a one-time
event, a sequence of register reads of the ERRB errors/statuses must be executed. GMSL2 errors are
latching: once an error occurs, an error flag is set and is not cleared until it or the associated error count
register is read/cleared.

Figure 40 contains a suggested process for identifying errors resulting in an ERRB transition.

GMSL2 General User Guide

Analog Devices Page 114 of 163

9.2.1 Example ERRB System Reaction
This example is presented to illustrate the function of errors within a GMSL2 system and describe the
process used to determine the source of the error condition (Figure 46).

ERRB transitions
into active state

Reference error
priority hierarchy

Is error flag high? Does this error
have count bits?

Read the error count
bits via I2C

YES

Are flag/count
bits clear?NO

Error occurred but
does not appear to be

continuous

YES

Is ERROR active?

Error appears to be
continuously active

Enter Safe State

Done

YES Read ERROR status

Initial Error
ReactionYES

Have all errors
been checked?NO

NOYES

Read next error flag

Read highest priority
error flag

NO

NO

List and
prioritize errors

Define Safe
State per

Error Type

Define Initial
Error Reaction

per Error

Enable
specific error

outputs

Figure 40. ERRB Transition System Reaction Process

Four monitored errors are assigned the following priority:

1. Line fault error
2. GMSL decoding error
3. EOM error
4. Watermark error

GMSL2 General User Guide

Analog Devices Page 115 of 163

During initial system configuration, enable ERRB output for the relevant errors:
• Line fault error: LFLT_INT_OEN = 1
• GMSL decoding error: DEC_ERR_OEN = 1
• EOM error: EOM_ERR_OEN = 1
• Watermark error: WM_ERR_OEN = 1
• All other error output enable (OEN) bits are set to 0.

A link quality fault event occurs and ERRB transitions to the active state. The system reaction process
(defined in Figure 40) is used to determine the cause(s) of the error state.

• ERRB transitions to active state (ERROR = 1).
• The highest priority error is line fault error.

o LFLT_ERR_FLAG is read, returns LFLT_ERR_FLAG = 0.
• The next highest priority error is decode error.

o DEC_ERR_FLAG is read, returns DEC_ERR_FLAG = 1.
o System reacts as defined by system engineer for decode error fault condition.
o The decode error counter register DEC_ERR_A[7:0] is read and returns a non-zero

value.
o The decode error counter register DEC_ERR_A[7:0] is read again and returns zero,

indicating this was a noncontinuous error condition.
o ERRB pin status is checked again (either by ERRB pin state or reading ERROR register

value). The ERRB status is still active (ERROR = 1).
• The next highest priority error is EOM error.

o EOM_ERR_FLAG is read, returns EOM_ERR_FLAG = 1.
o System reacts as defined by system engineer for EOM error fault condition.
o The EOM error does not have count bits.
o EOM_ERR_FLAG is read again and now returns EOM_ERR_FLAG = 0, indicating this

was a noncontinuous error condition.
o ERRB status is checked again and is no longer active (ERROR = 0).

• The remaining lower priority errors do not need to be checked as there is no longer an error
condition present (i.e., watermark errors do not need to be checked).

• System returns to nominal operating state.

GMSL2 General User Guide

Analog Devices Page 116 of 163

9.2.2 Disabling the ERRB Function
The ERRB function can be disabled if, for example, error/interrupt reporting is not required, or the MFP
pin used by ERRB is needed for another function. To disable the ERRB function of the default MFP, set
ERRB_EN = 0. If ERRB is disabled, the MFP pin defaults to GPIO functionality. Note that the pin can
be further reassigned if different functionality is required. Select GMSL2 devices allow for the
assignment of an alternate MFP to be used for ERRB output. For compatible devices, use the
ALT_ERRB_EN register to enable the alternative MFP for ERRB.

9.2.3 Remote Error Reporting
After the serial link is locked, GMSL2 devices can report the ERRB status of remote device(s) through a
GPIO with programmable ID. To enable remote error reporting, set ERR_TX_EN = 1, and assign the
GPIO ID by programming the ERR_TX_ID register. The local device receives the transmitted error over
the GPIO tunnel.

9.2.3.1 Output Error Status with Local GPIO
Configure the remote device to output the error status throughGPIO tunneling. Then, program the local
device with the following register writes to connect the local device to the GPIO tunnel and output the
error status on an available MFP:

• Write GPIO_RX_EN = 1 to enable the GPIO receive block for the GPIO pin.
• Write GPIO_TX_EN = 0 to disable the GPIO transmit block for the GPIO pin.
• Set GPIO_OUT_DIS = 0 to enables the GPIO output driver.
• Write GPIO_TX_ID = “Remote ERR_TX_ID value” to assign the GPIO pin ID with the same

GPIO pin ID as the remote-side ID transmitting the error status.

GMSL2 General User Guide

Analog Devices Page 117 of 163

9.2.3.2 Combine Remote and Local Error Statuses for ERRB Output
The remote and local error statuses can be combined for consolidated ERRB output on the local
device. Set ERR_TX_EN = 1 in the remote device. If necessary, program the ERR_TX_ID register to
an unused value. In the local device, set ERR_RX_ID = “Remote ERR_TX_ID value”, ERR_RX_EN =
1, and REM_ERR_OEM = 1.

The remote ERRB status is transmitted to the local device and drives the local ERRB pin active (unless
already active due to a previous local error or interrupt condition). The host controller can read the
REM_ERR_FLAG register to determine whether the source of the error originated in the remote or local
device.

GMSL2 devices that support connections to multiple remote devices (i.e., devices with two links and
serializers that support daisy-chaining) can consolidate all remote ERRB status signals to the local
ERRB pin. For daisy-chain applications, multiple ERRB signals can be combined and output from a
separate MFP (i.e., combining multiple GPIO tunnel outputs).

GMSL2 General User Guide

Analog Devices Page 118 of 163

9.3 Configuration
All possible errors and events capable of driving the ERRB pin are listed with the configuration details.
“Flag” indicates the name of the read-only register that is asserted to 1 in the case of an error condition;
“OEN” indicates the name of the register used to enable reporting of the flag status to the ERRB pin.

Note: Although ERRB is supported by all GMSL2 devices, not all errors/interrupts addressed in this
section are available in all devices. Refer to device-specific data sheets for available errors and
interrupts. If the register controlling error/interrupt output to the ERRB pin is not listed, that
error/interrupt reporting function is not available in that device.

9.3.1 GMSL Decoding Errors

Flag:

• DEC_ERR_FLAG_A
• DEC_ERR_FLAG_B
• DEC_ERR_FLAG_C
• DEC_ERR_FLAG_D
• DEC_ERR_FLAG_SIO
• DEC_ERR_FLAG_DCIO

OEN (Output Enable):
• DEC_ERR_OEN_A
• DEC_ERR_OEN_B
• DEC_ERR_OEN_C
• DEC_ERR_OEN_D
• DEC_ERR_OEN_SIO
• DEC_ERR_OEN_DCIO

Description: Each GMSL link has a built-in 8-bit counter that tracks detected 9b10b disparity errors.
Disparity errors are detected whenever the 9b10b running disparity exceeds the minimum or maximum
limit.

Note: Isolated single-bit errors are detected with a high probability. Burst errors and single-bit errors
occurring in close proximity may not be detected or may be counted as a single error. Therefore,
decode errors cannot be used to calculate bit error rate (BER) statistics. See the BER Testing Using
the GMSL2 Idle Link section) for additional information.

Decoding error counter registers:

• DEC_ERR_A
• DEC_ERR_B
• DEC_ERR_C
• DEC_ERR_D
• DEC_ERR_SIO
• DEC_ERR_DCIO

Each decoding error flag is asserted when the corresponding decoding error counter value is greater
than or equal to the error counter threshold value defined by DEC_ERR_THR (default is 1).

Related registers: DEC_ERR_THR, AUTO_ERR_RST

Clearing: Decoding error counters are reset to 0 when read, reset by the Auto Error Reset function, or
after establishing link lock after loss of lock. After a decoding error counter is reset, its error flag is also
reset (the counter value of 0 is always less than the error threshold value).

GMSL2 General User Guide

Analog Devices Page 119 of 163

9.3.2 GMSL Idle Packet Errors

Flag:

• IDLE_ERR_FLAG
• IDLE_ERR_FLAG_A
• IDLE_ERR_FLAG_B
• IDLE_ERR_FLAG_C
• IDLE_ERR_FLAG_D
• IDLE_ERR_FLAG_SIO
• IDLE_ERR_FLAG_DCIO

OEN (Output Enable):
• IDLE_ERR_OEN
• IDLE_ERR_OEN_A
• IDLE_ERR_OEN_B
• IDLE_ERR_OEN_C
• IDLE_ERR_OEN_D
• IDLE_ERR_OEN_SIO
• IDLE_ERR_OEN_DCIO

Description: Each GMSL link has a built-in 8-bit idle packet error counter that counts detected idle
packet errors. Idle packets have a data payload consisting of all zeros (before scrambling) and are
transmitted to fill unused link bandwidth. The idle error counter increments when an 18-bit word in an
idle packet is not equal to 0 after decoding and descrambling.

When the GMSL link is primarily idle, idle packets comprise most of the transmitted packets. If the link
is run idle for an amount of time, checking the detected idle errors can provide information about the Bit
Error Rate (BER) of the link during that period. See the BER Testing using the GMSL2 Idle Link in the
PRBS Testing section for additional information.

Note: An error is not detected by idle error detection if the error affects only the header of an idle
packet.

Idle packet error counter registers:

• IDLE_ERR
• IDLE_ERR_A
• IDLE_ERR_B
• IDLE_ERR_C
• IDLE_ERR_D
• IDLE_ERR_SIO
• IDLE_ERR_DCIO

Each idle error flag is asserted when the corresponding idle error counter value is greater than or equal
to the error counter threshold value defined by DEC_ERR_THR (default is 1).

Related registers: DEC_ERR_THR, AUTO_ERR_RST

Clearing: Idle error counters are reset to 0 when read, reset by the Auto Error Reset function, or after
establishing link lock after loss of lock. After an idle error counter is reset, its error flag is also reset (the
counter value of 0 is always less than the error threshold value).

GMSL2 General User Guide

Analog Devices Page 120 of 163

9.3.3 GMSL Packet Count Interrupt

Note: the GMSL Packet Count Interrupt is intended for tests and diagnostics.

Flag:

• PKT_CNT_FLAG
• PKT_CNT_FLAG_A
• PKT_CNT_FLAG_B
• PKT_CNT_FLAG_C
• PKT_CNT_FLAG_D

OEN (Output Enable):
• PKT_CNT_OEN
• PKT_CNT_OEN_A
• PKT_CNT_OEN_B
• PKT_CNT_OEN_C
• PKT_CNT_OEN_D

Description: Each GMSL link has a built-in, user-configurable 8-bit received packet counter. The
PKT_CNT_SEL and PKT_CNT_LBW registers are used to define the packet types that are counted.
The counter is exponentially scaled. The user-configurable unit of count is defined as 2^N, where N is a
value from 0 to 15 programmed with the PKT_CNT_EXP register.

Packet counter registers:

• PKT_CNT
• PKT_CNT_A
• PKT_CNT_B
• PKT_CNT_C
• PKT_CNT_D

The packet count flag is asserted when the packet counter value is greater than or equal to the packet
counter threshold value defined by PKT_CNT_THR (default is 1).

Related registers: PKT_CNT_THR, PKT_CNT_EXP, PKT_CNT_SEL, PKT_CNT_LBW,
AUTO_CNT_RST

Clearing: The packet counter is reset to 0 when read or reset by the Auto Packet Count Reset function.
When a packet counter is reset, its error flag is also reset (the counter value of 0 is always less than the
error threshold value).

9.3.4 Line Fault Error

Flag:

• LFLT_INT

OEN (Output Enable):
• LFLT_INT_OEN

Description: Each GMSL device has a built-in Line Fault detector for link diagnostics. An error is
reported when the line is shorted to power, shorted to ground, or the wires of the differential pair are
shorted. An error is also reported when line is open. See the Line Fault section for additional
information.

Related registers: LF_0, LF_1, LF_2, LF_3, PU_LF_0, PU_LF_1, PU_LF_2, PU_LF_3

Clearing: Resolve the line error condition.

GMSL2 General User Guide

Analog Devices Page 121 of 163

9.3.5 Eye Opening Monitor Error

Flag:

• EOM_ERR_FLAG_A
• EOM_ERR_FLAG_B
• EOM_ERR_FLAG_C
• EOM_ERR_FLAG_D
• EOM_ERR_FLAG_SIO
• EOM_ERR_FLAG_DCIO

OEN (Output Enable):
• EOM_ERR_OEN_A
• EOM_ERR_OEN_B
• EOM_ERR_OEN_C
• EOM_ERR_OEN_D
• EOM_ERR_OEN_SIO
• EOM_ERR_OEN_DCIO

Description: GMSL devices have a built-in Eye Opening Monitor that periodically measures the
received serial data eye after equalization. An eye opening error is reported if the measured eye
opening falls below the programmed threshold (EOM_MIN_THR).

Related registers: EOM, EOM_DONE, EOM_EN, EOM_PER_MODE, EOM_CHK_THR,
EOM_CHK_AMOUNT, EOM_MIN_THR

Clearing: The eye-opening monitor is a latching bit. The error is set once a single eye-opening
measurement is below the programmed threshold and is cleared only when the flag is read. Note that if
the last eye-opening measurement is below the error threshold when the flag is read, the flag is not
cleared.

GMSL2 General User Guide

Analog Devices Page 122 of 163

9.3.6 Lock Status Interrupt

Flag:

• LOCK
• LOCK_A
• LOCK_B

OEN (Output Enable):
• LOCK_OEN
• LOCK_A_OEN
• LOCK_B_OEN

Description: Flag is asserted when the GMSL link loses lock. This is useful if the LOCK pin cannot be
monitored separately by the host controller.

Related registers: None

Clearing: When LOCK output to the ERRB pin is enabled, loss of lock causes ERRB to go low. ERRB
goes high when the link locks if there are not any other active error drivers.

9.3.7 Loss of Lock Status Interrupt

Flag:

• LOSS_OF_LOCK_FLAG

OEN (Output Enable):
• LOSS_OF_LOCK_OEN

Description: Flag is asserted when the GMSL link loses lock. This flag is latching. Note that this
interrupt is different than the live Lock Status Interrupt and is not cleared when the link locks again. This
is useful if the LOCK pin cannot be monitored separately by the host controller.

Related registers: None

Clearing: Flag is cleared when read.

Note: Only some GMSL2 devices have this interrupt—check product-specific data sheet for availability.

GMSL2 General User Guide

Analog Devices Page 123 of 163

9.3.8 Retransmission Count Interrupt

Flag:

• RT_CNT_FLAG
• RT_CNT_FLAG_A
• RT_CNT_FLAG_B
• RT_CNT_FLAG_C
• RT_CNT_FLAG_D

OEN (Output Enable):
• RT_CNT_OEN
• RT_CNT_OEN_A
• RT_CNT_OEN_B
• RT_CNT_OEN_C
• RT_CNT_OEN_D

Description: Low-speed GMSL2 channels (i.e., control channels, PT_X, PT_Y, SPI, GPIO, Audio,
Auto-HDCP) have a built-in Automatic Repeat Request / Automatic Retransmission (ARQ). When
enabled, packets that are not acknowledged by the receiver are automatically retransmitted by the
ARQ. Each low-speed channel has a 7-bit counter that tracks the number of ARQ retransmissions (i.e.,
RT_CNT register in the register block of each sub-channel). When a channel has at least one
retransmission event and the retransmission count reporting is enabled (RT_CNT_OEN register in the
register block of each sub-channel, disabled by default), then the combined RT_CNT_FLAG is
asserted.

Related registers: The RT_CNT and RT_CNT_OEN registers of each sub-channel.

Clearing: The retransmission counter (RT_CNT) of each sub-channel is reset when it is read.

9.3.9 Maximum Retransmission Interrupt

Flag:

• MAX_RT_FLAG
• MAX_RT_FLAG_A
• MAX_RT_FLAG_B
• MAX_RT_FLAG_C
• MAX_RT_FLAG_D

OEN (Output Enable):
• MAX_RT_OEN
• MAX_RT_OEN_A
• MAX_RT_OEN_B
• MAX_RT_OEN_C
• MAX_RT_OEN_D

Description: Low-speed GMSL2 channels (i.e., control channels, PT_X, PT_Y, SPI, GPIO, Audio,
Auto-HDCP) have a built-in Automatic Repeat Request / Automatic Retransmission (ARQ). When
enabled, packets that are not acknowledged by the receiver are automatically retransmitted by the
ARQ. If the same packet is retransmitted for a maximum number of times (set by MAX_RT register in
the register block of each sub-channel) and the expected acknowledge packet is not received, then the
maximum retransmission error of that sub-channel is set (MAX_RT_ERR register in the register block
of each sub-channel). The MAX_RT_ERR flag of all sub-channels are combined to generate the
combined maximum retransmission flag (MAX_RT_FLAG).

Related registers: MAX_RT and MAX_RT_ERR registers of each sub-channel.

Clearing: The maximum retransmission error (MAX_RT_ERR) of each sub-channel is reset when it is
read.

GMSL2 General User Guide

Analog Devices Page 124 of 163

9.3.10 Remote Error

Flag:

• REM_ERR_FLAG
• REM_ERR_FLAG_A
• REM_ERR_FLAG_B

OEN (Output Enable):
• REM_ERR_OEN
• REM_ERR_OEN_A
• REM_ERR_OEN_B

Description: Each GMSL2 device can report the ERRB status of the remote-side serial link device if
the GMSL link is locked. See detailed description in the Remote Error Reporting section.

Related registers:

ERR_TX_EN, ERR_TX_ID
ERR_TX_EN_A, ERR_TX_ID_A
ERR_TX_EN_B, ERR_TX_ID_B
REM_ERR_OEN, REM_ERR_FLAG
REM_ERR_OEN_A, REM_ERR_FLAG_A
REM_ERR_OEN_B, REM_ERR_FLAG_B
ERR_RX_EN, ERR_RX_ID, ERR_RX_RECVED
ERR_RX_EN_A, ERR_RX_ID_A, ERR_RX_RECVED_A
ERR_RX_EN_B, ERR_RX_ID_B, ERR_RX_RECVED_B
ERR_RX_EN_C, ERR_RX_ID_C, ERR_RX_RECVED_C
ERR_RX_EN_D, ERR_RX_ID_D, ERR_RX_RECVED_D
ERR_RX_EN2_A, ERR_RX_ID2_A, ERR_RX_RECVED2_A
ERR_RX_EN3_A, ERR_RX_ID3_A, ERR_RX_RECVED3_A
ERR_RX_EN4_A, ERR_RX_ID4_A, ERR_RX_RECVED4_A
ERR_RX_EN2_B, ERR_RX_ID2_B, ERR_RX_RECVED2_B
ERR_RX_EN3_B, ERR_RX_ID3_B, ERR_RX_RECVED3_B
ERR_RX_EN4_B, ERR_RX_ID4_B, ERR_RX_RECVED4_B

Refer to the device data sheet register descriptions for more detailed information.

Clearing: Resolve the error status on the remote device.

GMSL2 General User Guide

Analog Devices Page 125 of 163

9.3.11 Video Line CRC Error

Flag:

• LCRC_ERR_FLAG

OEN (Output Enable):
• LCRC_ERR_OEN

Description: The video line CRC checker detects pixel corruption within video line packets with very
high probability. Flag is asserted when a video line CRC error is detected. By default, the GMSL link
has video line CRC checking enabled. Video line CRC is a 32-bit code appended to each video line and
is transferred to the receiver throughinfo frames. See the CRC Error Detection and ARQ Error
Correction section for additional information.

Related registers: LCRC_ERR, LINE_CRC_EN, LINE_CRC_SEL

Clearing: The video line CRC flag is a latching bit that resets to 0 when read or the link establishes lock
after loss of lock.

9.3.12 Video Pixel CRC Error

Flag:

• VID_PXL_CRC_ERR_FLAG

OEN (Output Enable):
• VID_PXL_CRC_ERR_OEN

Description: The video pixel CRC checker detects pixel corruption within video packets with very high
probability. Flag is asserted when at least one video pixel CRC error is detected (VID_PXL_CRC_ERR
> 0).

GMSL links have video pixel CRC checking disabled by default; video line CRC (enabled by default)
provides sufficient coverage. Video pixel CRC is enabled by setting TX_CRC_EN = 1 in the video
transmit register block for each video pipe in the GMSL2 serializer and RX_CRC_EN = 1 in the video
receive register block for each video pipe in the GMSL2 deserializer. When enabled, each video packet
carrying 36 pixels is protected by a 16-bit CRC value. See the CRC Error Detection and ARQ Error
Correction section for additional information.

Related registers: TX_CRC_EN_VIDEO, RX_CRC_EN_VIDEO

Clearing: Video pixel CRC error counter is reset to 0 when it is read or due to Auto Error Reset function
or due to link gaining lock after loss of lock. When video pixel CRC error counter is reset, its error flag is
also reset.

GMSL2 General User Guide

Analog Devices Page 126 of 163

9.3.13 Video Sequence Error

Flag:

• VID_SEQ_ERR
OEN (Output Enable):

• VID_SEQ_ERR_OEN

Description: Flag is asserted when the deserializer detects nonsequential video sequence numbers.
This indicates errors in the video transmission, dropped video packets, and/or incorrect sequencing of
packets combined from the two PHYs in dual-link mode. This flag is latching.

Related registers: None

Clearing: Flag is cleared when read.

9.3.14 Video Block Length Error

Flag:

• VID_BLK_LEN_ERR
OEN (Output Enable):

• VID_BLK_LEN_ERR_OEN

Description: Flag is asserted when the deserializer detects incorrect video packet block length. This
flag is latching.

Related registers: None

Clearing: Flag is cleared when read.

GMSL2 General User Guide

Analog Devices Page 127 of 163

9.3.15 Video Mask Error

Flag:

• VIDEO_MASKED_0_FLAG
• VIDEO_MASKED_1_FLAG
• VIDEO_MASKED_2_FLAG
• VIDEO_MASKED_3_FLAG

OEN (Output Enable):
• VIDEO_MASKED_0_OEN
• VIDEO_MASKED_1_OEN
• VIDEO_MASKED_2_OEN
• VIDEO_MASKED_3_OEN

Description: Flag is asserted when video masking is active. Video masking means that the specific
video pipe is outputting blank video lines (data = 0’s, black pixels). Up to three video pipes can lose
VIDEO_LOCK and data continues to output.

Note: This error is only available on GMSL2 CSI-2 Quad Deserializers operating in synchronous
aggregation modes (4WxH or Wx4H) and on video pipes 0-3.

Related registers: VIDEO_MASKED_OEN, VIDEO_MASKED_FLAG, MIPI_PHY_15, MIPI_PHY_16,
MIPI_TX52

Clearing: The video_masked registers (0x934, 0x974, 0x9B4, 0x9F4) indicate whether a video pipe /
MIPI output is currently masked or was previously masked. Video_Mask_Latch_Reset (0x8C7) resets
the video_masked_latched registers (0x934, 0x974, 0x9B4, 0x9F4). Video pipe are individually
configured to output status to the ERRB pin with VIDEO_MASKED_x_OEN ERRB output enable (0x49)
and the associated flags (0x4A).

9.3.16 Video PRBS Error

Flag:

• VPRBS_ERR_FLAG

OEN (Output Enable):
• VPRBS_ERR_OEN

Description: Flag is asserted when the Video PRBS checker detects at least one error (VPRBS_ERR
> 0) while the Video PRBS test is running. See the PRBS Testing section for additional information.

Related registers: VPRBS_CHK_EN, VPRBS_ERR

Clearing: The video PRBS error counter is reset to 0 and the flag is cleared when read.

9.3.17 Frame Sync Error

Flag:

• FSYNC_ERR_FLAG

OEN (Output Enable):
• FSYNC_ERR_OEN

Description: Flag is asserted when the Frame Sync error counter (FSYNC_ERR_CNT) exceeds the
Frame Sync error threshold (FSYNC_ERR_THR). The Frame Sync block can continuously monitor the
received VS signals and assert an error when all VS pulses are not within a certain window.

GMSL2 General User Guide

Analog Devices Page 128 of 163

Related registers: FSYNC_ERR_CNT, FSYNC_ERR_THR, FSYNC_MODE, FRM_DIFF_ERR_THR,
OVLP_WINDOW, EN_FSIN_LAST

Clearing: The Frame Sync error counter is reset to 0 when it is read. When the error counter is reset,
its error flag is also reset (the counter value of 0 is always less than the error threshold value).

9.3.18 FEC Corrected and Uncorrectable Errors

Flag:

• FEX_RX_ERR_FLAG

OEN (Output Enable):
• FEC_RX_ERR_OEN

Description: Flag is asserted when the GMSL Forward Error Correction (FEC) decoder’s uncorrected
error counter (UNCORRECTED_BLOCKS) exceeds uncorrected error threshold
(UNCORRECTED_ERROR_THRESHOLD) or the corrected error counter (BIT_ERRS_CORRECTED)
exceeds corrected error threshold (BIT_ERRS_CORRECTED_THRESHOLD).

Related registers: UNCORRECTED_BLOCKS, UNCORRECTED_ERROR_THRESHOLD,
BIT_ERRS_CORRECTED, BIT_ERRS_CORRECTED_THRESHOLD

Clearing: Write 1 to CLEAR_STATS, CLEAR_BLOCKS_UNCORRECTABLE or
CLEAR_BITS_CORRECTED.

GMSL2 General User Guide

Analog Devices Page 129 of 163

9.3.19 ADC Interrupt

Flag:

• ADC_INT_FLAG

OEN (Output Enable):
• ADC_INT_OEN

Description: ADC interrupt. Asserted whenever any monitored ADC interrupt is asserted.

Related registers: ADC_INTR0ADC_INTR3, ADC_LIMITX_0ADC_LIMITX_3 (where X can be
07).

Clearing: The flag is cleared when the respective latched error source register is read.

9.3.20 VDD Comparator Error

Flag:

• VDDCMP_INT_FLAG

OEN (Output Enable):
• VDDCMP_INT_OEN

Description: Flag is asserted when the internal voltage comparator detects that selected internal VDD
node is below a threshold. See CMP_STATUS description. This flag is latching.

Related registers: CMP_STATUS, CMP_STATUS_MASK, VDDCMP_MASK

Clearing: Flag is cleared when read.

GMSL2 General User Guide

Analog Devices Page 130 of 163

9.3.21 VDD Brown Out Error

Flag:

• VDDBAD_INT_FLAG

OEN (Output Enable):
• VDDBAD_INT_OEN

Description: Flag is asserted when the internal voltage comparator detects either VDD or VDDA has
dropped below 0.82V. This flag is latching.

Related registers: VDDBAD_STATUS

Clearing: Flag is cleared when read.

9.3.22 PORZ VDD Status Interrupt

Flag:

• PORZ_INT_FLAG

OEN (Output Enable):
• PORZ_INT_OEN

Description: Flag is asserted when the internal voltage comparator detects that VDD18 is below
1.516V during power-up. This flag is latching.

Related registers: PORZ_STATUS

Clearing: Flag is cleared when read.

9.3.23 VDD Overvoltage Interrupt

Flag:

• VDD_OV_FLAG

OEN (Output Enable):
• VDD_OV_OEN

Description: Flag is asserted when the internal voltage comparator detects that internal VDD,
VDD1P8, or VREG voltage is above the threshold set by OV_LEVEL, OV1P8_LEVEL, or
OVREG_LEVEL registers and the video channel is active (locked).

Related registers:
VDD_OV_LIVE, OV_LEVEL, OV_HYSTERESIS, VDD1P8_OV_LIVE, OV1P8_LEVEL,
OV1P8_HYSTERESIS, VREG_OV_LIVE, OVREG_LEVEL, OVREG_HYSTERESIS

Clearing: Flag is cleared when read.

9.3.24 MIPI Rx Error

Flag: • MIPI_ERR_FLAG

GMSL2 General User Guide

OEN (Output Enable):

• MIPI_ERR_OEN

Description: Flag is asserted when MIPI Rx controller detects an error.

Related registers: MIPI_RX12MIPI_RX20

Clearing: The flag is cleared when the respective latched error source register is read.

9.3.25 Internal Memory Error

Flag:

• MEM_INT_ERR_FLAG

OEN (Output Enable):
• MEM_INT_ERR_OEN

Description: Some GMSL2 devices can continuously monitor internal memories for errors and assert
this flag when an error is detected. The flag is latching. When a memory error is detected, the host SoC
can decide to discard the transmitted video frame.

Related registers: DV_MEM_CRC_ERR, DV_MEM_CRC_ERR_A, DV_MEM_CRC_ERR_B,
BACKTOP_MEM_CRC_ERR

Clearing: The flag is cleared when MEM_INT_ERR_FLAG is read.

9.3.26 Retention Memory CRC Error

Flag:

• RTTN_CRC_INT

OEN (Output Enable):
• RTTN_CRC_ERR_OEN

Description: Flag is asserted when a CRC error is detected after coming out of sleep mode (after
reading retention memory).

Related registers: INJECT_RTTN_CRC_ERR

Clearing: This flag is cleared when read.

GMSL2 General User Guide

Analog Devices Page 132 of 163

9.3.27 eFuse CRC Error

Flag:

• EFUSE_CRC_INT

OEN (Output Enable):
• EFUSE_CRC_ERR_OEN

Description: When the EFUSE is programmed during the device’s production testing, a CRC signature
is added to the last two locations of the EFUSE array. This signature is generated using the
programming data for the remainder of the EFUSE array. On power-up, the contents of the EFUSE are
read by the device, and its contents are used to initialize and configure device-specific registers. As
part of this initial read, the device recomputes the CRC based on the read values and checks it against
the signature programmed into the array. If this signature is incorrect, the contents of the EFUSE have
changed since the initial programming and the device asserts the ERRB flag to signal an issue.

Related registers: INTR6, INTR7

Clearing: This flag is cleared when read.

GMSL2 General User Guide

Analog Devices Page 133 of 163

9.4 Debug Techniques
The error generator function (ERRG_EN) can be used to evaluate a device’s error detection and
reporting capabilities. The error generator injects bit or burst errors to the outgoing link (i.e., the forward
channel in serializer and the reverse channel in deserializers). This function can be used to evaluate
the decoding error (DEC_ERR), idle error (IDLE_ERR), retransmission count (RT_CNT), maximum
retransmission error (MAX_RT), Audio PRBS, and Video PRBS error detection and reporting.

GMSL2 General User Guide

Analog Devices Page 134 of 163

10 CRC Error Detection and ARQ Error
Correction

10.1 Overview
GMSL2 serial links incorporate 16-bit Cyclic Redundancy Check protection for error detection of control
channel (including I2C, UART, SPI, and GPIO), video, and audio data. The 16-bit CRC can also include
Automatic Repeat Request (ARQ) error correction on both the forward and reverse channels (not
available for RGMII or video data). Video data is protected with 32-bit CRC error detection by default.

Note: Forward Error Correction is used in GMSL2 devices to detect and correct bit errors occurring
during the transmission of compressed video on the serial link. See the Forward Error Correction for
additional details.

CRC ensures link errors caused by EMI or other noise events do not corrupt control channel data.

Note: Video data can be protected with either 16-bit or 32-bit CRC error detection. See Video Data
CRC for more information.

10.2 CRC Operation
10.2.1 16-Bit CRC
Every video, audio, and control channel packet (excluding idle and acknowledge packets) can be
protected with 16-bit CRC. For enabled channels, the CRC block generates a 16-bit code (calculated
with the polynomial as shown in the equation) that is appended to each packet. All low-bandwidth
control channels have packet CRC enabled by default; each packet type can be individually configured
to enable or disable CRC protection. The main and pass-through control channels are protected in both
I2C and UART modes.

The 16-bit packet CRC generator calculates following polynomial:

CRC16 = x16 + x15 + x2 +1

Note: This is the same polynomial used in the USB protocol for data packets.

10.2.2 32-Bit CRC
Video data can be protected with a 32-bit CRC calculated per video line. The CRC block generates a
32-bit code that is appended to each DE (default) or HS (selected by register) pulse. This code is
transferred to the receiver side of the serial link throughinfo frames. The receiver-side CRC checker
generates the same code and checks if the CRC codes match. An error is asserted if the codes do not
match. The CRC check is processed at every falling edge of DE (or HS) on the receiver side even if the
info frame is not received.

The 32-bit packet CRC generator calculates the following polynomial:

GMSL2 General User Guide

Analog Devices Page 135 of 163

CRC32 = x32 + x31 + x28+ x25+ x24+ x23+ x21+ x18+ x11+ x8+ x7+ x6+ x5+ x3+ x1+ 1

GMSL2 General User Guide

Analog Devices Page 136 of 163

10.2.3 Video Data CRC
Video data can be protected with either 16-bit or 32-bit CRC. These are two different error detection
schemes: Video Pixel CRC (16-bit) and Video Line CRC (32-bit). Video Pixel CRC detects pixel
corruption in each packet of video data (36 pixels) with a 16-bit CRC value. Video Line CRC detects
pixel corruption in each line of video data with a 32-bit CRC value. By default, Video Line CRC is
enabled, and Video Pixel CRC is disabled.

Video Line CRC (default) provides robust video data protection with minimal bandwidth overhead.
However, there are use cases where Video Pixel CRC may be the preferred video data CRC scheme:

• Applications that require errors to be detected as soon as possible.
• Applications where the rough location of the error in the line would like to be known.

10.3 Automatic Repeat Request/Automatic Retransmission
Automatic Repeat Request (ARQ) is an automatic packet retransmission method used to ensure data
integrity on communications channels with low-bandwidth control data. ARQ works in conjunction with
16-bit packet CRC to detect whether packets are received without error or not. With a successful data
transmission, the ARQ mechanism on the transmit side receives confirmation of error-free transmission
from the receiver side. In the case of a transmission error (e.g., corrupted or dropped packet), the ARQ
on the transmit side does not receive confirmation of an error-free transmission and automatically
retransmits the packet.

10.3.1 ARQ Operation
Each control packet is appended by a 4-bit sequence number that continuously increments and rolls
over. The transmitter saves the last 15 packets transmitted on each communication channel. When the
receiver receives a control packet, it checks that the CRC and sequence number are correct. If both are
validated, the receiver sends an acknowledgement packet back to notify that the packet with a certain
sequence number has been correctly received. If the transmitter does not get an acknowledge packet
from the receiver for a data packet with a certain sequence number, it automatically retransmits the
data packet after reading it from the internal packet memory.

The 4-bit sequence number allows the transmitter to transmit up to 15 packets without receiving
acknowledgment from the receiver. This allows pipelined operation which minimizes the effects of
round-trip latency with acknowledge packets and increases the continuous available bandwidth.

The acknowledge packet uses the same header field as low-bandwidth packets, but it begins with a
different special symbol to distinguish it from regular data packets. This simplified format keeps
retransmission exchanges independent from the communication channel. Note that this smaller packet
format contains no data, obviating the need for full 16-bit CRC. Instead, acknowledge packets are
protected by a 5-bit CRC (polynomial: x5 + x2 + 1). The acknowledge packets include the same 4-bit
sequence number of the correctly received data packet.

GMSL2 General User Guide

Analog Devices Page 137 of 163

10.3.1.1 Go-Back-N
The GMSL2 ARQ mechanism operates using the ‘Go-Back‐N’ principle, where N = 15 for a 4-bit
sequence number. This 15-packet sliding window improves bandwidth usage and availability as 15
packets can be transmitted without receiving an acknowledge.

Figure 41 demonstrates ‘Go-Back-N’ where N = 3.

Transmitter goes back 3M = 22 = 4, Go-Back-3

A

B

Time

Receiver has Rnext = 3.
It rejects the old frame 0.

fr 0 fr 1 fr 2 fr 0 fr 1 fr 2

ACK 1 ACK 2 ACK 3

Figure 41. Operation of Go-Back-N ARQ with Go‐Back‐3

In this example, the transmitter sends up to three packets. The transmitter begins waiting for the
acknowledge after the first packet is sent; if more than one packet is sent, waiting and transmission of
the additional packets is handled in parallel. If the expected acknowledge does not arrive, the
transmitter goes back three and retransmits the packet. Any retransmission attempt is counted and
stored. This retransmission process repeats until the package is either acknowledged or the maximum
number of retransmissions is reached. Upon reaching the maximum, the packet is assumed to be
acknowledged, it is dropped from the transmission queue, and the send window moves forward to
transmit subsequent packets. In cases where the maximum number of retransmissions is met, a
register error is flagged and the ERRB pin changes state to signal ‘Error Output.’

Note: In the actual GMSL2 ARQ system, N = 15.

A 3‐bit register is allocated to set the maximum number of retransmissions. A packet can be
retransmitted up to seven times depending on the register value set in MAX_RT for each
communication channel.

The receiver side has a receiver window of size one and only waits for one packet with a match to the
expected sequence number. The receiver passes a packet to the corresponding adapter if the packet is
received completely without error and the sequence number matches the expected value. Here, the
receiver also sends an acknowledge packet back to the transmitter. In the case of an error or
unmatched sequence number, the receiver drops the received packet.

GMSL2 General User Guide

Analog Devices Page 138 of 163

10.3.1.2 ARQ Path

ARQ TX0 ARQ RX1

ARQ RX0 ARQ TX1

DATA/0

DATA/0

ACK/1

ACK/1

0 1 0 1

Serializer Deserializer

Figure 42. ARQ Path

The dashed line in the Figure 42 shows the data flow from the serializer to the deserializer and the
subsequent acknowledge from the deserializer to the serializer. The solid line depicts the data flow from
the deserializer to the serializer and the subsequent acknowledge from the serializer to the deserializer.
The ARQ blocks of both the serializer and the deserializer can operate simultaneously and support
bidirectional data transfer(s). For example, ARQ TX0 (in the serializer) can transmit either data or an
acknowledge of data received from the deserializer. The same function is performed by ARQ TX1 in the
deserializer. Here, ARQ TX1 can transmit either data or an acknowledge of data received from the
serializer. The ARQ RX blocks operate in a similar manner with the corresponding ARQ TX blocks. This
coordination facilitates bidirectional operation.

GMSL2 General User Guide

Analog Devices Page 139 of 163

10.4 CRC/ARQ Configuration
The following sections describe how to enable/disable and configure CRC and ARQ in GMSL2 devices.
CRC is enabled by default for all packet types except RGMII; ARQ is enabled by default for all
supported packet types. ARQ does not support RGMII or video.

10.4.1 32-Bit CRC Configuration
To enable Video Line CRC, set the bit LINE_CRC_EN to 1 in the serializer for each video pipe that
needs CRC protection. Additionally, set LINE_CRC_EN to 1 for the deserializer video pipe that is
receiving the video. This is enabled in all serializers and deserializers by default.

The CRC code can be appended to either the DE or HS pulse. This is configured with the
LINE_CRC_SEL bit. Write 0 to use the DE pulse for video line CRC and write 1 to use the HS pulse.

10.4.1.1 32-Bit Video CRC Errors
Video Line CRC errors are reported to the LCRC_ERR_FLAG bit in the deserializer register INTR7. To
enable/disable the output of this error flag to the ERRB pin, set the LCRC_ERR_OEN bit in the
deserializer register INTR6.

10.4.2 16-Bit CRC Configuration
To enable packet CRC for the audio or control channels, set the bit TX_CRC_EN to 1 in the serializer
for each packet type that needs CRC protection. Additionally, set RX_CRC_EN to 1 for the
corresponding deserializer packet types. This is enabled for all audio and control channel packet types,
except RGMII, by default.

Table 37 lists the packet types that can enable/disable 16-bit CRC with their corresponding registers.

Table 36. 16-Bit CRC Registers
16-BIT CRC PACKET TYPE REGISTER

BLOCK*
REGISTER NAME

RGMII† RGMII TR0
Video X† VIDEO_X TX0
Video Y† VIDEO_Y TX0
Audio X AUDIO_X TR0
Audio Y AUDIO_Y TR0
SPI SPI TR0
GPIOs GPIO TR0
HDCP Control Packets AHDCP TR0
Main Control Channel‡ CC TR0
Pass-through Channel 1 IIC_X TR0
Pass-through Channel 2 IIC_Y TR0

* Register block name may vary by device family. Refer to the device data sheet for specific register block name.
For example, devices with only one audio block, the audio registers are named AUDIO without “_X” or “_Y” suffix.
† Not enabled by default. Use of CRC on RGMII packets is discouraged as RGMII has error detection and
retransmission mechanisms at a higher protocol level. Video Line CRC should be disabled if Video Pixel CRC is
enabled.
‡ CRC and ARQ should not be disabled on the main control channel packets.

GMSL2 General User Guide

Analog Devices Page 140 of 163

Note: CRC configuration for pass-through Channel 1 (in I2C or UART mode) is controlled by register
IIC_X_TR0 and CRC configuration for pass-through Channel 2 (in I2C or UART mode) is controlled by
register IIC_Y_TR0.

10.4.2.1 16-Bit Video CRC Errors
Video Pixel CRC errors are reported to the VID_PXL_CRC_ERR_FLAG bit in the deserializer register
INTR7. To enable/disable the output of this error flag to the ERRB pin, set the
VID_PXL_CRC_ERR_OEN bit in the deserializer register INTR6.

10.4.3 16-Bit ARQ Configuration
The ARQ configuration registers for each channel are listed in Table 38. By default, ARQ is enabled for
all channels (except RGMII and Video Pixel), and error reporting to the ERRB pin is enabled.

Note: ARQ is not available for 16-bit Video Pixel CRC or RGMII.

Table 37. 16-Bit ARQ Registers
CONTROL CHANNEL PACKET TYPE REGISTER BLOCK* REGISTER NAMES
RGMII† Not available Not available
Video X† Not available Not available
Video Y† Not available Not available
Audio X AUDIO_X ARQ0 – ARQ2
Audio Y AUDIO_Y ARQ0 – ARQ2
SPI SPI ARQ0 – ARQ2
GPIOs GPIO ARQ0 – ARQ2
HDCP Control Packets AHDCP ARQ0 – ARQ2
Main Control Channel‡ CC ARQ0 – ARQ2
Pass-through Channel 1 IIC_X ARQ0 – ARQ2
Pass-through Channel 2 IIC_Y ARQ0 – ARQ2

* Register block name may vary by device family. Refer to the device data sheet for specific register block name.
† ARQ is not available.
‡ CRC and ARQ should not be disabled on the main control channel packets.

Note: ARQ configuration for pass-through Channel 1 (in I2C or UART mode) is controlled by register
IIC_X_ARQ0 – ARQ2 and ARQ configuration for pass-through Channel 2 (in I2C or UART mode) is
controlled by register IIC_Y_ARQ0 – ARQ2.

If there is a CRC error, the corrupted packet is retransmitted as described in the ARQ Operation
section.

GMSL2 General User Guide

Analog Devices Page 141 of 163

10.4.3.1 Reporting of CRC Errors/ARQ retries
ARQ can only be enabled on channels with CRC enabled. If any of the CRC-enabled control channels
reports an error, the corrupted/dropped packet is retransmitted with the ARQ scheme. If the bit
RT_CNT_OEN (register xx_ARQ1) is set high for a given channel, the flag bit RT_CNT_FLAG (register
INTR5) is set high; if the main RT_CNT_OEN (in register INTR4) is enabled, the error is reported to the
ERRB pin.

The number of ARQ retries is reported to RT_CNT[6:0] (register xx_ARQ2) for each channel.

10.4.3.2 Reporting of Maximum ARQ retries
If the number of retries for a channel exceeds a threshold (set by MAX_RT[2:0]), it is reported to
MAX_RT_FLAG. If the MAX_RT_ERR_OEN (register xx_ARQ1) is set high, the error is reported to the
main MAX_RT_FLAG (register INTR5) error bit. If MAX_RT_OEN (register INTR4) is set high, the error
is reported to the ERRB pin.

GMSL2 General User Guide

Analog Devices Page 142 of 163

11 Voltage Monitoring
11.1 Overview

GMSL2 devices monitor various onboard supply voltages and provide alerts for overvoltage or
undervoltage conditions. Dedicated status register flags are driven by internal comparators that
measure each supply voltage relative to an internal voltage reference. These registers are latching
status flags. Supply voltages with latching status flags retain alerts and can be used to capture
temporary conditions and be read back later (at which time the previously latched state is cleared).
Many status flags have user-configurable parameters including custom voltage thresholds and the
option to report status registers to the ERRB pin (which asserts low when an errant condition is
sensed). See the GMSL2 Error Reporting (ERRB Pin) section for additional information.

Note: Each GMSL2 device has a unique combination of voltage monitoring and status/error reporting
mechanisms. A small subset of the devices provides additional power supply monitoring capabilities
through an integrated ADC.

11.1.1 Architecture
Most GMSL2 devices include a common set of power supplies that provide power to the digital core
(VDD_SW), GMSL link circuitry (VDD18), and general GPIO pins (VDDIO). All devices include
undervoltage monitoring on the common set of power supplies with some providing extended
monitoring capabilities. Each GMSL2 product family has unique, family-specific power supplies with
dedicated functionality. Examples here include HDMI power (VDD33), RGMII power (VDDIORG), and
MIPI output power (VTERM). Except for VTERM, these family-specific power supplies are not typically
monitored.

The following table details the power supplies for which voltage monitoring is available (Table 39).

Table 39. Power Supply Monitoring Functions Available

SUPPLY NAME DESCRIPTION MONITOR FUNCTIONS
AVAILABLE

VDD_SW Internal 1V digital core supply
Undervoltage (all devices)

Overvoltage (some devices)
VDD18 GMSL 1.8V supply Undervoltage (all devices)
VDDIO 1.8V to 3.3V I/O supply Undervoltage (all devices)

VTERM 1.2V MIPI CSI-2 Output
Supply

Undervoltage (CSI-2 deserializers
only)

VDD/VREG 1V LDO input Not monitored

VDD33, VDDA, VDDIORG Misc. special function
supplies Not monitored

GMSL2 General User Guide

Analog Devices Page 143 of 163

The following block diagram (Figure 43) details the connectivity between the voltage monitor and
internal power supplies. The naming convention detailed here is representative of most GMSL2
devices. In some cases, there may be dedicated analog VDD pins and/or explicit VDD regulator input
pins (e.g., VREG). Note that VDD/VREG pins are not typically monitored.

VDD_SW

VDD/VREG VDD18 VDDIO

LDO / Switch GMSL Digital I/O

Digital Core Voltage Monitor

Status Registers and ERRB Logic ERRB

MIPI
Output

(CSI-2 Deserializers Only)

VTERM

Figure 43. Voltage Monitor and Internal Power Pins

GMSL2 General User Guide

Analog Devices Page 144 of 163

11.2 Operation
11.2.1 VDD_SW Monitoring Details
Undervoltage (UV) and overvoltage (OV) monitoring of VDD_SW (the primary 1V core supply) is
included on nearly all GMSL2 devices (VDD_SW OV monitoring is not available on HDMI and
advanced HDMI serializers). VDD_SW is typically derived from VDD/VREG either throughan internal
LDO or series switches.

11.2.1.1 Undervoltage Monitoring of VDD_SW
An undervoltage condition on VDD_SW nominally occurs when VDD_SW < 0.82V. Note that the
precise threshold varies some between devices. Refer to the data sheet specific to the part number to
verify the specified VDD_SW undervoltage threshold for a given device.

In the case of an undervoltage condition, the power manager triggers a reset of the digital core and
resets all registers powered by VDD_SW. When power has recovered, the reset is released. The reset
of the digital core ensures that a brownout does not result in corruption of the registers.

The presence of an undervoltage event is recorded throughtwo status flags:

• VDDBAD_STATUS[1] and VDDBAD_STATUS[0] – latched high following undervoltage event.
• CMP_STATUS[2] – latched low following undervoltage.

The memory that maintains the VDDBAD_STATUS and CMP_STATUS[2] bits is powered by the 1.8V
power supply; as a result, they are persistent following a reset triggered by a VDD_SW undervoltage
event. This enables a VDD_SW undervoltage event to be reported following the recovery of the VDD
power supply, and the associated interrupt flags, VDDBAD_INT_FLAG and VDDCMP_INT_FLAG, can
drive ERRB low to alert the system of a brownout.

To clear VDDBAD_INT_FLAG, the associated VDDBAD_STATUS bits must be read first to clear. After
the VDDBAD_STATUS bits are cleared, VDDBAD_INT_FLAG can then be read, at which point the flag
is cleared. The process to clear VDDCMP_INT_FLAG is similar (i.e., the associated CMP_STATUS bit
must be cleared first throughreading).

11.2.1.2 Overvoltage Monitoring of VDD_SW
An overvoltage condition on VDD_SW is reported if the observed voltage exceeds a user-selectable
threshold specified by the associated OV_LEVEL bit field. Refer to the data sheet specific to the part
number for details regarding the specific threshold levels supported by a given device. If VDD_SW is
greater than the specified threshold, the VDD_OV_FLAG is set. The VDD_OV_FLAG is a latching bit
that is set when an overvoltage condition occurs and does not clear until read. VDD_OV_FLAG can be
configured to drive the ERRB pin to alert the system of a fault condition. Note that operation of the
VDD_OV_FLAG requires that the video path be active.

Note: The overvoltage flag for eDP/DP deserializers is VDD_OV_INT_FLAG.

GMSL2 General User Guide

Analog Devices Page 145 of 163

11.2.2 VDD18 Monitoring Details
All GMSL2 devices include undervoltage monitoring of VDD18.

11.2.2.1 Undervoltage Monitoring of VDD18
An undervoltage condition on VDD18 is nominally flagged when VDD18 < 1.625V. Note that the precise
threshold varies some between devices. Refer to the data sheet specific to the part number to verify the
specified VDD18 undervoltage threshold for a given device.

In the case of an undervoltage condition, the status register bit CMP_STATUS[0] is latched low. The
error can be flagged using the VDDCMP_INT_FLAG, which can be configured to drive the fault
condition to the ERRB pin. The error status is cleared by first reading CMP_STATUS[0] and then
reading VDDCMP_INT_FLAG.

11.2.3 VDDIO Monitoring Details
VDDIO includes undervoltage monitoring only; overvoltage monitoring is not available. This monitoring
is available to all GMSL2 devices. An undervoltage condition on VDDIO is nominally flagged when
VDDIO < 1.625V. Note that the precise threshold varies some between devices. Refer to the data sheet
specific to the part number to verify the specified VDDIO undervoltage threshold for a given device.

In the case of an undervoltage condition, the status register bit CMP_STATUS[1] is latched low. The
error can be flagged using the VDDCMP_INT_FLAG, which can be configured to drive the fault
condition to the ERRB pin. The error status is cleared by first reading CMP_STATUS[1] and then
reading VDDCMP_INT_FLAG.

11.2.4 VTERM Monitoring Details
VTERM includes undervoltage monitoring only; overvoltage monitoring is not available. An
undervoltage condition on VTERM is nominally flagged when VTERM < 1.0V. Note that VTERM is only
available in MIPI CSI-2 deserializers.

In the case of an undervoltage condition, the status register bit CMP_VTERM_STATUS is latched low.
The error can be flagged using the VDDCMP_INT_FLAG, which can be configured to drive the fault
condition to the ERRB pin. The error status is cleared by first reading the PWR0 register and then
reading VDDCMP_INT_FLAG.

GMSL2 General User Guide

Analog Devices Page 146 of 163

11.3 Error Reporting and Status
11.3.1 ERRB Configuration
The ERRB pin can be used to notify the system of undervoltage and overvoltage conditions. Each of
the available monitor functions can be separately routed to the ERRB pin as described in the above
sections detailing the various voltage monitors. The user-configurable register fields are listed below.
These register fields, when set to 1, enable the reporting of the associated undervoltage/overvoltage
condition to the ERRB pins (i.e., the error condition asserts ERRB low). Figure 44 contains a block
diagram of the relationship between the voltage monitoring interrupt enable registers and ERRB pin.
See the GMSL2 Error Reporting (ERRB Pin) section for additional information.

• VDDBAD_INT_OEN – asserts ERRB low when VDDBAD_INT_FLAG = 1 (VDD_SW UV).
• VDDCMP_INT_OEN – asserts ERRB low when VDDCMP_INT_FLAG = 1 (VDD18, VDDIO,

VTERM, and/or VDD_SW UV).
• VDD_OV_OEN – asserts ERRB low when VDD_OV_FLAG = 1 (VDD_SW OV).

o For eDP/DP deserializers: VDD_OV_INT_OEN – asserts ERRB low when
VDD_OV_INT_FLAG = 1 (VDD_SW OV).

VDDCMP_INT_OEN

VDD_OV_OEN*

VDDBAD_INT_FLAG

VDDCMP_INT_FLAG

VDD_OV_FLAG*

ERRB

*Note: The overvoltage flag for eDP/DP deserializers is VDD_OV_INT_FLAG and the ERRB
configuration register is VDD_OV_INT_OEN

VDDBAD_INT_OEN

Figure 44. Voltage Monitoring ERRB Configuration

11.3.1.1 Latching Status Bits and Clearing Errors
The status flags that drive ERRB are latching. They are set in the event of an error condition; the error
indication is persistent following recovery of the error. The flags and other associated bits are cleared
automatically when read. Note that some of the flags are driven by status bits that are also latched and
must be cleared prior to clearing the flag. Flags associated with overvoltage conditions only become
active when the video path is active. If the video path is not active, the flag bits are not set in the event
of an overvoltage.

GMSL2 General User Guide

Analog Devices Page 147 of 163

12 Line Fault
12.1 Operation

Line-fault detection can be added to GMSL2 systems with the addition of two external resistors at each
end of the serial link. Line-fault detection requires that both ends of the cable shield are tied to ground.
The external resistor (REXT) is connected to the LMNx pins (i.e., where the fault condition is to be
detected). The external resistor (RPD) is required on the nondetecting side of the link. This scheme
detects various application fault conditions, including:

• Short-to-battery
• Short-to-ground
• Open-circuit
• Line-to-line short

The line-fault detection configuration options and status are accessible throughregisters. If unmasked, a
line-fault condition asserts ERRB. See the GMSL2 Error Reporting (ERRB Pin) section for additional
information.

Note: The external LMN resistor limits the current flowing into the LMN pin to less than 1mA in the
event of a short to battery or ground.

GMSL2 General User Guide

Analog Devices Page 148 of 163

12.2 Hardware Requirements
12.2.1 Coax Mode (Single-Ended)
The local side performs the line fault detection function. The local-side device requires a single 48.7kΩ
resistor connected directly from an LMNx pin to the serial link. The remote side of the serial link
requires a 49.9kΩ resistor connected to GND, making the remote side hardware-compatible with
existing designs using GMSL1 devices. Any of the line-monitor pins may be used when the serial link is
single-ended (coax). The line-fault signal assignment is shown in Table 40.

Table 38. Line-Fault Signal Assignment to SIO, and Resistors in Coax Mode

SIGNAL SIOP (IF SIOP IS THE ACTIVE PHY) SION (IF SION IS THE ACTIVE PHY)
Line Fault Pin LMN0–3 (any may be used)

48.7kΩ to serial link
LMN0–3 (any may be used)
48.7kΩ to serial link

Note: Line-fault detection can be implemented in either the serializer or deserializer; the orientation is
dependent on where the microcontroller is located on the serial link system.

The two configurations for line-fault detection are shown in Figure 45 and Figure 46. Configuration 1 is
typically used for display links and Configuration 2 is typically used for camera links; however, either
configuration can be used in any serial link system.

µC

Serializer
(Local)

Deserializer
(Remote)

LMNx REXT
48.7kΩ

RPD
49.9kΩ

SIO+ SIO+

100nF

100nF

Figure 45. Line-Fault Configuration 1: Local-Side Serializer (Coax Mode)

µC

Deserializer
(Local)

Serializer
(Remote)

LMNxREXT
48.7kΩ

RPD
49.9kΩ

SIO+SIO+

100nF

100nF

Figure 46. Line-Fault Configuration 2: Local-Side Deserializer (Coax Mode)

The LMNx pins (LMN0–LMN3) are typically mapped to different multifunctional pins on each unique
part and package options. Some parts may have up to four line-fault detectors depending on the
package options and pin availability. Refer to device-specific data sheets for more information.

GMSL2 General User Guide

Analog Devices Page 149 of 163

12.3 Configuration
GMSL2 device register control allows access to enable the line-fault detectors, read the line-fault status
codes, and program the line-fault interrupts. The line-fault registers are outlined in Table 41.

Table 39. Register Mapping and Descriptions for the Line-Fault Registers

REGISTER
NAME BIT(S) BIT NAME BIT DESCRIPTION

REG5 3 PU_LF3 Power up Line-Fault Detector 3 (LMN3) if applicable
REG5 2 PU_LF2 Power up Line-Fault Detector 2 (LMN2) if applicable
REG5 1 PU_LF1 Power up Line-Fault Detector 1 (LMN1) if applicable
REG5 0 PU_LF0 Power up Line-Fault Detector 0 (LMN0) if applicable
REG27 6:4 LF_3[2:0] LMN3 status (see Table 42 Decodes)
REG27 3:0 LF_2[2:0] LMN2 status
REG26 6:4 LF_1[2:0] LMN1 status
REG26 3:0 LF_0[2:0] LMN0 status
INTR2 3 LFLT_INT_OEN Sends line-fault interrupt to ERRB pin

INTR3 3 LFLT_INT Line-fault interrupt asserted when any of the four
enabled detectors indicates a fault condition

Note: The behavior of the line-fault interrupt can be selected to be either latching or live with the
LFLT_STKY_INT bit (interrupt is live by default). Feature availability varies by device; refer to device-
specific data sheet for availability details.

The line-fault detection status registers are encoded to represent various conditions. The code
translations are presented in Table 42. Unused detectors (PU_LFx = 0) return “010” (i.e., the status code
for ‘Normal Operation’).

Table 40. Line-Fault Detection Decode Table

LINE-FAULT CONDITION LF_0,1,2,3 [2:0]
Short-to-battery 000
Short-to-GND 001
Normal Operation (no fault) 010
Open-line 011
Line-to-line short 1xx

12.3.1 Line-Fault Detection Application
To use line-fault detection, power up the line-fault detector (REG5) that corresponds with the pin used
on the device that reports the error condition (local device). For example, if using pins LMN0 and
LMN1, set the local-side line-fault REG5 register bits PU_LF0 and PU_LF1 to 1. Do not enable the line-
fault detector on the remote side.

In normal operation, the status registers LF_0 [2:0] and LF_1 [2:0] each return “010” when read. If a
fault is detected, the status registers change according to error condition (see Table 42). Unused line-
fault detectors default to the “010” status code.

GMSL2 General User Guide

Analog Devices Page 150 of 163

For example, assume LMN0 is connected to SIO+ through REXT as shown in Figure 45. If the serial link
(SIO+) is pulled to GND, LF_0[2:0] returns a code of “001”, and the interrupt bit LFLT_INT in the INTR3
register is set to 1. If LFLT_INT_OEN in the INTR2 register is enabled, the ERRB pin transitions low to
reflect the line-fault interrupt condition.

12.3.1.1 Operation During Line-Fault Detection Events
The SIO+/SIO- pins are protected by AC coupling capacitors and are not exposed to high voltage
caused by a line-fault event. In the event of a short-to-battery, the current into the LMN pin is limited to
less than 1mA by the external LMN resistor. Following a line-fault event, no immediate action is
required, however, system designers should take the appropriate steps to verify the system condition.
ERRB remains low until the line-fault event is reversed.

Note: If ERRB is low, follow the procedure described in the Example ERRB System Reaction section to
determine the source of the error condition.

12.3.1.2 Line Fault with PoC Recommendation
Line-fault monitoring cannot be enabled while using PoC. Analog Devices recommends a supervisory
power supply device for line fault detection and monitoring PoC voltage and current. The MAX20086–
MAX20089 devices are designed specifically to work with all GMSL devices in automotive camera
applications and are ASIL-compliant for safety-critical functions (ASIL-B and ASIL-D compliant versions
are available). See the ASIL section for more information.

GMSL2 General User Guide

Analog Devices Page 151 of 163

13 Error Generator
All GMSL2 devices have an error generator (ERRG) located after the packet scheduler to simulate the
effect(s) of bit errors on the link. This is primarily used to test system-level reactions to serial link bit
errors, including ASIL error handling in safety-relevant systems. The ERRG can also be used to
validate internal self-tests (e.g., PRBS Testing).

13.1 Operation
The error generator is located within each PHY after the scheduler and packetizer. When enabled in
the serializer, bit errors are added to the forward channel; when enabled in the deserializer, bit errors
are added to the reverse channel. Bit errors are generated by flipping bits in the bitstream after data
packetization and encoding, so there is no control over what channels (e.g., video, RMII) are affected.

13.2 Configuration
To enable the ERRG, first set the ERRG parameters in register TX2 (Table 43). Then, enable the error
generator in register TX1 (Table 44) for all devices except CSI-2 Quad Deserializers, which use register
GMSL__x:TX1 (Table 45).

Note: To clear ERRB status after disabling ERRG mode (i.e., ERRG_EN_A or ERRG_EN_B = 0), clear
as described in the GMSL2 Error Reporting (ERRB Pin) section or perform a one-shot reset.

13.2.1 ERRG Parameters
The following parameters must be configured in register TX2 before enabling the error generator:

• ERRG_RATE[1:0] – The error generation rate controls how often error events are triggered (i.e.,
the generated BER). The recommended setting is ERRG_RATE[1:0] = 11. This sets a BER of
4.77 * 10-8, which is four orders of magnitude worse than the expected worst-case BER for a
compliant GMSL2 link.

• ERRG_CNT[1:0] – The error count determines how long to run the ERRG. In continuous mode,
the ERRG produces errors as long as ERRG_EN_x is set high. For the other values of
ERRG_CNT, the ERRG generates a specified number of error events at the rate specified by
ERRG_RATE[1:0]. Setting ERRG_EN_x low resets the error count.

• ERRG_PER[0] – Sets the error generation mode. In periodic mode, the ERRG generates a bit
flip at exactly the rate specified by ERRG_RATE[1:0]. In pseudorandom mode, the bit flip is
generated at a random point by an internal pseudorandom number generator at a rate defined
by ERRG_RATE[1:0] so that the average rate of error generation is equal to the rate specified.

• ERRG_BURST[2:0] – Error burst defines how many errors are generated per error event. By
default, this is set to ‘000’ and generates a single error per error event. If set to a value larger
than 1 bit, a burst of sequential errors is generated: the first and last bits are flipped, and the
other bits have a 50% probability of being flipped. For example, if a value of 8 bits is selected,
the first and eighth bits get flipped, and bits 2–7 each have a 50% chance of being flipped.

GMSL2 General User Guide

Analog Devices Page 152 of 163

Table 41. ERRG Parameters (Register TX2)

PARAMETER BITFIELD DECODE

Select the error generation mode ERRG_PER[0] 0: Pseudorandom
1: Periodic

Set the burst length of errors to
be generated at every error
event

ERRG_BURST[2:0]

000: 1 bit
001: 2 bits
010: 3 bits
011: 4 bits
100: 8 bits
101: 12 bits
110: 16 bits
111: 20 bits

Set error event generation rate ERRG_RATE[1:0]

00: 1 error in 5120 bits
01: 1 error in 81,920 bits
10: 1 error in 1,310,720 bits
11: 1 error in 20,971,520 bits

Set the number of error events
to be generated after ERRG_EN
is set high.

ERRG_CNT[1:0]

00: Continuous
01: 16
10: 128
11: 1024

13.2.1.1 ERRG Enable: All Device Families Except CSI-2 Quad Deserializers
Table 42. ERRG Enable (Register TX1)

PARAMETER BITFIELD DECODE
Enable the error generator for the
desired GMSL PHY

ERRG_EN_A
ERRG_EN_B

0: Disabled
1: Enabled

13.2.1.2 ERRG Enable: CSI-2 Quad Deserializers
Table 43. ERRG Enable (Register GMSL__x:TX1)

PARAMETER BITFIELD DECODE
Enable the error generator for the
desired GMSL PHY ERRG_EN 0: Disabled

1: Enabled

Note: There is a GMSL__x:TX1 register associated with each of the four GMSL PHYs.

GMSL2 General User Guide

Analog Devices Page 153 of 163

Device Families

GMSL2 General User Guide

Analog Devices Page 154 of 163

13.2.2 MIPI Video Bandwidth
The video bandwidth is calculated using the video resolution, blanking times, and frame rate. When
configuring the DSI video source, use the slowest lane rate possible which supports the video
bandwidth (with sufficient margin). This results in:

• reduced MIPI bandwidth results in lower MIPI frequency and improved signal integrity, and
• increased accuracy of the timing relationship of input PCLK to output MIPI clock.

The number of MIPI lanes used contributes to the overall MIPI video payload. The following equations
can be used to calculate the MIPI lane rate(s):

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 = (𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) × (𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻) × (𝐹𝐹𝐻𝐻𝐻𝐻𝐹𝐹𝑉𝑉𝑃𝑃 𝑃𝑃𝑉𝑉𝐻𝐻 𝑆𝑆𝑉𝑉𝑃𝑃𝐻𝐻𝐻𝐻𝑊𝑊)

𝑉𝑉𝐻𝐻𝑊𝑊𝑉𝑉𝐻𝐻 𝑃𝑃𝐻𝐻𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝑊𝑊 = 𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃 × 24 (𝑏𝑏𝑝𝑝𝑝𝑝), must not exceed 5.2Gbps due to link overhead

𝑀𝑀𝐼𝐼𝑃𝑃𝐼𝐼 𝐿𝐿𝐻𝐻𝐻𝐻𝑉𝑉 𝑅𝑅𝐻𝐻𝐻𝐻𝑉𝑉 = 𝑂𝑂𝐹𝐹𝑃𝑃𝑃𝑃 × 𝑏𝑏𝑝𝑝𝑝𝑝
𝑡𝑡𝑜𝑜 𝑃𝑃𝑡𝑡𝑠𝑠𝑒𝑒𝑒𝑒

, four possible lanes (see Table 46 for maximum lane rates)

The MIPI video payload can be derived by the video throughput and number of lanes used. For a
6Gbps serial link, the maximum video throughput is 5.2Gbps (due to 9b10b encoding overhead and
guard band protection). If using four lanes, 5.4Gbps/4 = 1.35Gbps per lane; this limit should be further
rounded down to 1.3Gbps per lane to provide margin for other data channels. Each MIPI lane supports
up to 2.5Gbps. See Table 46 for maximum MIPI lane rates which fit within a 6Gbps GMSL link.

See the GMSL2 Link System Bandwidth section for information regarding other data channels and
overall serial link bandwidth.

Table 44. Maximum MIPI Lane Rates for 6Gbps Link

NUMBER
OF MIPI
LANES

MAXIMUM MIPI LANE
RATE(S) FOR A 6GBPS

LINK
4 1.3Gbps
3 1.7Gbps
2 2.5Gbps
1 2.5Gbps

13.2.2.1 DSI vs. CSI-2
• DSI is Display Serial Interface and is focused on display applications; CSI-2 is Camera Serial

Interface and is focused on camera applications.
• GMSL2 DSI serializers accept only 24-bit RGB888 color.
• The DSI and CSI-2 packet-level protocols are different and not interchangeable. A DSI

transmitter must be matched to a DSI receiver; a CSI-2 transmitter must be matched to a CSI-2
receiver.

• The physical layer (PHY) is the same for most cases, but packet processing does not work for
mismatched MIPI interfaces.

• All MIPI devices operate in the continuous clock mode only.

GMSL2 General User Guide

Analog Devices Page 155 of 163

The MIPI Rx DSI interface receives MIPI data and converts it to parallel data to be sent into the video
pipelines. The data is then serialized and sent across the link. The video pipes only contain generalized
video pixel data and do not retain MIPI data.

GMSL2 General User Guide

Analog Devices Page 156 of 163

14 MIPI D-PHY Deskew
14.1 Overview

CSI-2 devices integrate MIPI D-PHY v1.2 ports conformant with the specifications published by the
MIPI Alliance. For these devices, serializers have D-PHY input ports, and deserializers have D-PHY
output ports. Refer to the product-specific data sheet for more information.

MIPI D-PHY v1.2 supports individual lanes speeds up to 2.5Gbps per lane. To provide the most robust
and reliable MIPI connection, deskew calibration is available to minimize the Tx-to-Rx MIPI clock-to-
data skew. In a GMSL2 system, this can occur in two different locations: from the MIPI source device to
the GMSL2 serializer and/or from the GMSL2 deserializer to the MIPI sink device. Links available for
MIPI D-PHY Deskew are indicated in Figure 47 (i.e., ‘MIPI Link 1’ and ‘MIPI Link 2’).

MIPI Source

Serializer Deserializer

MIPI Sink
GMSL2 Link

MIPI D-PHY Rx

Rx Deskew

MIPI D-PHY Tx

Tx Deskew
MIPI Link 1 MIPI Link 2

Figure 47. MIPI D-PHY Deskew Within a GMSL2 System

Note: The combination of MIPI Tx pins to the MIPI Rx pins must be within the MIPI deskew guidelines
for the deskew procedure to be valid. GMSL2 D-PHY devices only support continuous clock mode.

Deskew calibration is intended for D-PHY lane speeds in excess of 1.5Gbps.

The MIPI D-PHY receiver in the serializers supports the deskew calibration. When it is enabled, the D-
PHY receiver detects a special deskew burst from the MIPI transmitter. The D-PHY receiver then uses
a deskew pattern to internally align the clock and data lanes. This alignment process increases clock-
to-data skew tolerance and reduces data errors. The MIPI D-PHY transmitter in the deserializers sends
out the special deskew packets if deskew calibration is required.

GMSL2 MIPI D-PHY devices, in conformance with the D-PHY v1.2 specification, support both the
mandatory deskew calibration upon initialization and the optional periodic deskew calibration. The
transmission of the deskew calibration sequence is not required for D-PHY lane speeds below
1.5Gbps; periodic deskew is optional for all lane speeds.

Note: GMSL2 MIPI D-PHY v1.2 input and output ports are conformant with published MIPI Alliance
specifications. Refer to the appropriate documentation for more information regarding the D-PHY v1.2
specification.

GMSL2 General User Guide

Analog Devices Page 157 of 163

14.2 Operation
GMSL D-PHY serializers support the Rx portion of the deskew calibration(s); D-PHY deserializers
support the Tx portion. Deskew calibration is disabled by default. When operating the MIPI D-PHY
above 1.5Gbps, deskew calibration must be enabled throughthe enable register bit.

Both the initial and periodic deskew calibrations are enabled through register writes. Note that these
deskew procedures differ in length of the calibration sequence.

In the serializer, Rx deskew is enabled after configuring the data rate, lane selection, and D-PHY lane
map but prior to receiving video from the MIPI source. Once enabled, the initialization calibration
sequence is automatically generated when the MIPI D-PHY receiver in the serializer detects the sync
pattern from the source. The deskew calibration function has successfully aligned the clock and data
lanes when the clock-to-data skew is less than ±0.4UI.

Note: The first packet received by the MIPI D-PHY receiver must be the deskew packet. Once the
receiver detects the deskew sync pattern, the calibration sequence begins.

The Tx deskew registers must be set prior to configuring the CSI-2 PLL. After CSI-2 PLL lock and video
lock are established, the MIPI Tx clock lane starts and is automatically followed by the initial deskew
pattern. The Tx deskew burst uses a sync pattern comprising a series of ones for a duration of 16 UI.
After the sync pattern is sent, a clock pattern payload is transmitted. This pattern comprises alternating
zeroes and ones (i.e., 010101010101…) for a minimum duration of 215 UI for the initial deskew
calibration and 210 UI for the periodic calibration(s).

Figure 48 depicts a high-speed MIPI data transmission in normal mode. Figure 49 shows the deskew
calibration process (see Figure 50 for a detailed view).

TLPX TCLK-PREPARE

TCLK-TERM-EN

TCLK-SETTLE

TCLK-ZERO TCLK-PRE

TLPX

THS-PREPARE

TD-TERM-EN

THS-SETTLE

THS-ZERO

THS-SKIP

TEOT

THS-TRAIL

TREOT

THS-EXIT

LP-11

TCLK-POST TEOT

TCLK-TRAIL

TCLK-MISS

Disconnect
Terminator

Clock Lane
Dp/Dn

Data Lane
Dp/Dn

000

THS-SYNC

111 0 1

Figure 48. High-Speed Data Transmission in Normal Mode

Analog Devices Page 158 of 163

TLPX TCLK-PREPARE

TCLK-TERM-EN

TCLK-SETTLE

TCLK-ZERO TCLK-PRE

TLPX

THS-PREPARE

TD-TERM-EN

THS-SETTLE

THS-ZERO

0 1

THS-SKIP

TEOT

THS-TRAIL

TREOT

THS-EXIT

LP-11

TCLK-POST TEOT

TCLK-TRAIL

TCLK-MISS

Disconnect
Terminator

Clock Lane
Dp/Dn

Data Lane
Dp/Dn

0 0 0 0 01 1 1 1 116'h FFFF

TSKEWCAL-SYNC TSKEWCAL

Skew Calibration

Figure 49. High-Speed Deskew Calibration

TLPX

THS-PREPARE

TD-TERM-EN

THS-SETTLE

THS-ZERO

0 1

THS-SKIP

TEOT

THS-TRAIL

TREOT

THS-EXIT

LP-11

Disconnect
Terminator

0 0 0 0 01 1 1 1 116'h FFFF

TSKEWCAL-SYNC TSKEWCAL

Skew Calibration

Figure 50. Skew Calibration (Detailed View)

GMSL2 General User Guide

Analog Devices Page 159 of 163

14.2.1 Modes of Operation
GMSL2 MIPI D-PHY deserializers have two modes of MIPI deskew packet generation: Initial Deskew
and Periodic Deskew.

Initial Deskew

• Auto Mode: Initial deskew is automatically generated upon MIPI power-up when enabled.
• Manual Mode: Initial deskew is inserted once between MIPI packets throughregister control.

Periodic Deskew
• Auto Mode: The periodic deskew is automatically generated. The occurrence and length of the

deskew are programmable.

The deskew modes differ by length of training sequence. The initial deskew training sequence is longer
than that of the periodic deskew. The initial deskew sequence is longer because the receive needs
sufficient time to calibrate the MIPI clock frequency. Periodic deskew is used to fine-tune the skew to
compensate for operational variations in supply and temperature.

Note: GMSL2 MIPI D-PHY serializers are compatible with both initial and periodic deskew.

In the serializer, the Rx deskew is enabled after configuring the data rate, lane selection, and D-PHY
lane map but prior to receiving video from the MIPI source. If the deskew is enabled, the first packet
received by the MIPI receiver must be the initial deskew packet. In the deserializer, the Tx deskew
registers must be set prior to configuring the CSI-2 PLL.

Note: The Rx deskew is calibrated to the current MIPI clock frequency. Therefore, the clock frequency
must be stable before the deskew packet is sent out. The MIPI clock frequency must remain stable
after the calibration.

GMSL2 General User Guide

Analog Devices Page 160 of 163

14.3 Configuration
PHY and controller availability is package-dependent; refer to the device-specific data sheet(s) for more
information.

14.3.1 D-PHY Serializers
Deskew calibration for GMSL2 serializers with D-PHY is enabled throughthe MIPI_RX1 register. Each
controller has a dedicated enable bit and is used for both initial and periodic deskew calibration:

• Controller 0: MIPI_RX1[2]
• Controller 1: MIPI_RX1[6]

The initial Rx deskew procedure must be completed before receiving MIPI packets. For periodic
deskew, the Rx deskew enable be configured before the start of MIPI operations (including clock and
data lanes). Deskew enable cannot be dynamically changed and must remain active after the
initialization deskew procedure.

Each MIPI PHY has a dedicated deskew calibration status register. There are two status bits for each
lane: one bit indicates whether the calibration pattern was received, and the other bit indicating if the
calibration was successful. MIPI PHY lane configuration must be considered when monitoring the
status registers.

Deskew calibration status registers:

• PHY0: MIPI_RX10
• PHY1: MIPI_RX12
• PHY2: MIPI_RX14
• PHY3: MIPI_RX16

Table 45. D-PHY Serializers Deskew Calibration Configuration Registers
REGISTER BITFIELD POR DESCRIPTION

MIPI_RX1 ctrl0_deskewen
ctrl1_deskewen

0
0

Deskew calibration settings:
Bit 6: ctrl1_deskewen for port B
• 0: Deskew calibration disabled
• 1: Deskew calibration enabled
Bit 2: ctrl0_deskewen for port A
• 0: Deskew calibration disabled
• 1: Deskew calibration enabled

MIPI_RX10
MIPI_RX12
MIPI_RX14
MIPI_RX16

phy0_hs_err[4:7]
phy1_hs_err[4:7]
phy2_hs_err[4:7]
phy3_hs_err[4:7]

0x00

Deskew calibration status:
Bit 7: Deskew calibration pattern flag on data lane 0
• 0: Not received
• 1: Received
Bit 6: Deskew calibration pattern flag on data lane 1
• 0: Not received
• 1: Received
Bit 5: Deskew calibration failure flag on data lane 0
• 0: Default
• 1: Failed
Bit 4: Deskew calibration failure flag on data lane 1
• 0: Default
• 1: Failed

GMSL2 General User Guide

Analog Devices Page 161 of 163

14.3.2 D-PHY Deserializers
The initial deskew pattern for GMSL2 D-PHY deserializers is set with the DESKEW_INIT registers.
Note that each controller is independently configured. These registers must be programmed before
configuring the CSI-2 PLL settings (i.e., the MIPI clock and data rates).

Automatic initial deskew is enabled by writing DESKEW_INIT[7]. The MIPI Tx clock lane starts after
video lock and CSI-2 PLL lock are established, followed by the transmission of an automatic initial
deskew pattern. At any point after the clock lane is established, a one-time initial deskew pattern can be
inserted. Manual initial deskew generation is configured with the DESKEW_INIT[5] register and is
enabled with DESKEW_INIT[4].

The following lists the register addresses for each controller:

• Controller 0: 0x403 and 0x404
• Controller 1: 0x443 and 0x444
• Controller 2: 0x483 and 0x484
• Controller 3: 0x4C3 and 0x4C4

Periodic deskew is configured with the DESKEW_PER registers. The period of the Tx deskew
calibration can be defined within the range of 1 to 128 frames. Periodic deskew can be enabled on
either the rising or falling edge of VSYNC.

DESKEW_INIT[2:0] determines initial deskew width, i.e., Tskewcal in the initial skew-calibration mode.
We recommend set DESKEW_INIT[2:0] =1 to guarantee it greater than minimum allowed value.
DESKEW_PER[2:0] determines periodic deskew width, i.e., Tskewcal in the periodic skew-calibration
mode. We recommend set DESKEW_PER[2:0] =1 to guarantee it greater than the minimum allowed
value.

Note: Periodic deskew can be independently configured for any virtual channel in an enabled controller
using the SKEW_PER_SEL[7:0] bitfield(s).

Table 46. D-PHY Deserializers Deskew Calibration Configuration Registers

REGISTER BITFIELD BITS DESCRIPTION

MIPI_TX3 DESKEW_INIT[7:0] 7:0

Initial deskew pattern settings
Bit 7: Auto initial deskew on/off
Bit 6: Reserved
Bit 5: when bit 4 = 1, any change of this bit triggers one-time
immediate initial skew.
Bit 4: Manual initial on/off
Bit 3: Reserved
Bits [2:0]: Select initial deskew width:
1, 2, 3, … 8 * (32K) UI

MIPI_TX4 DESKEW_PER[7:0] 7:0

Periodic deskew pattern settings
Bit 7: Period deskew calibration on/off
Bit 6: Select generation on rising or falling edge of VS
Bit [5:3]: Select periodic interval at every:
1, 2, 4, 8, … 128 frames
Bit [2:0]: Select periodic deskew width:
1, 2, 3, … 8 * (1K) UI

MIPI_TX50 SKEW_PER_SEL[7:0] 7:0 Periodic deskew select register

GMSL2 General User Guide

Analog Devices Page 162 of 163

Bit 7: Select periodic deskew calibration for one or all virtual
channels.

• 0: Generate periodic deskew on all VC.
• 1: on selected VC by bit 4:0

Bits [4:0] Virtual channel to generate periodic deskew
calibration when Bit[7]=1

14.4 Debug Techniques
Note that external MIPI receivers use the calibration patterns generated by the GMSL2 D-PHY
deserializers for calibration purposes. MIPI deskew debugging must consider all parts of the MIPI
system.

14.4.1 GMSL2 D-PHY Serializers
If deskew status registers indicate that the deskew pattern is not received, ensure that the initial
deskew pattern is sent before any data packets and that the deskew pattern transmitted by the MIPI
source adheres to the MIPI D-PHY v1.4 specifications (i.e., deskew sync pattern and timing
requirements).

If the MIPI receive indicates that the deskew calibration has failed, measure the skew between the
clock and data lanes. The calibration circuit cannot guarantee skew compensation if the skew is greater
than ±0.4UI. Check the MIPI rate to ensure that it is within the operating range of the deskew function
(between 1.5Gbps and 2.5Gbps). Verify that the MIPI clock is stable and that any variation meets the
MIPI specification. Verify that the initial deskew configuration procedure was followed and that an initial
deskew pattern is transmitted before MIPI packets are sent.

14.4.2 GMSL2 D-PHY Deserializers
Repeat the process described above to continue debugging the MIPI system. Consult relevant
documentation for the external MIPI receiver for further system debugging.

GMSL2 General User Guide

Analog Devices Page 163 of 163

Revision History

REVISION
NUMBER

REVISION
DATE

DESCRIPTION

0 7/23 Initial release

	1. GMSL2 Link Basics
	1.1 GMSL2 Overview
	1.2 GMSL2 Link Configurations
	1.2.1 Single-Link Mode
	1.2.2 Reverse Splitter Mode
	1.2.2.1 Coaxial Cables

	1.3 GMSL2 Link Rate and Configuration Programming
	1.3.1 Programming Link Rate
	1.3.2 Programming Link Configuration
	1.3.2.1 Auto Link Mode
	1.3.2.2 Manual Link Mode
	1.3.2.3 Programming Example
	1.3.2.4 Standard Splitter Mode: Switch from Splitter Mode to Single-Link Mode
	1.3.2.5 Standard Splitter Mode: Switch from Single-Link Mode to Splitter Mode
	1.3.2.6 Cables Supported

	1.4 Device Power-Up
	1.4.1 Initial Power-Up Sequence
	1.4.2 Link Start-Up Procedure
	1.4.2.1 GMSL2 Mode

	1.4.3 GMSL2 Link Lock
	1.4.3.1 LOCK Pin
	1.4.3.2 Losing Link Lock
	1.4.3.3 Video Lock

	1.4.4 Benefits of Adaptive Equalization
	1.4.5 Periodic Adaptation
	1.4.5.1 Periodic Adaptation Performance Impact

	1.5 Resets
	1.5.1 Types of Resets
	1.5.1.1 Reset All
	1.5.1.2 Oneshot Reset
	1.5.1.3 Reset Link

	1.6 GMSL2 Link Protocol
	1.6.1.1 Encoding
	1.6.1.2 Scrambling
	1.6.1.3 Special Symbols
	1.6.1.4 Total Link Bandwidth
	1.6.2 Packet Protocol
	1.6.2.1 Video Packets
	1.6.2.2 Control Channel Packets
	1.6.2.3 Sync Words
	1.6.2.4 RGMII/RMII Packets
	1.6.2.5 Idle Packets

	1.6.3 Priority-Based Packet Scheduler

	2 Spread-Spectrum Clocking
	2.1 SSC Operation
	2.2 SSC Configuration
	2.2.1 Forward and Reverse Channel SSC

	3 Clocks
	3.1 Overview
	3.2 Architecture
	3.3 Operation
	3.3.1 Crystal Mode
	3.3.2 External Reference Mode
	3.3.3 Frequency Reference Debugging

	3.4 Applications and Examples
	3.4.1 BER Testing Using the GMSL2 Idle Link

	4 Video Basics
	4.1 Video Frame Architecture
	4.2 Equations
	4.2.1 Relationships Between Video Signals
	4.2.2 Total Blanking Interval
	4.2.3 Total Line and Frame Period
	4.2.4 Pixel Clock
	4.2.4.1 Pixel Clock (Alternative Calculation)
	4.2.4.2 Sample Calculation

	4.2.5 Calculating Total Video Bandwidth

	4.3 Definitions
	4.3.1.1 Aspect Ratio
	4.3.1.2 Back Porch
	4.3.1.3 Blanking Interval
	4.3.1.4 Color Bars
	4.3.1.5 Data Enable
	4.3.1.6 Fields and Frames
	4.3.1.7 Frame Rate
	4.3.1.8 Front Porch
	4.3.1.9 GMSL
	4.3.1.10 Horizontal Blanking
	4.3.1.11 Horizontal Line Frequency
	4.3.1.12 Horizontal Sync
	4.3.1.13 Interlaced Scan
	4.3.1.14 Pixel
	4.3.1.15 Pixel Clock
	4.3.1.16 Progressive Scan
	4.3.1.17 Refresh Rate
	4.3.1.18 Sync Signals/Pulses
	4.3.1.19 Vertical Blanking
	4.3.1.20 Vertical Field Frequency
	4.3.1.21 Vertical Frame Rate
	4.3.1.22 Vertical Sync

	4.4 Configuration
	4.4.1 Heartbeat Mode On
	4.4.2 Heartbeat Mode Off

	5 Forward Error Correction
	5.1 Overview
	5.2 Operation
	5.2.1 Architecture
	5.2.2 BER Reduction Performance
	5.2.3 Bandwidth Overhead and System Impacts
	5.2.4 Resynchronization
	5.2.5 Power-Up Configuration

	5.3 Configuration
	5.3.1 Enabling FEC in a Single Microcontroller System
	5.3.1.1 Single Microcontroller System Configuration Procedure

	5.3.2 Enabling FEC in a Dual Microcontroller System
	5.3.2.1 Deserializer Programming Procedure
	5.3.2.2 Serializer Programming Procedure

	5.4 Status and Debug Registers
	5.4.1 Error Reporting to the ERRB Pin
	5.4.1.1 Example System Pseudocode

	5.4.2 Statistics Registers
	5.4.3 BER Calculations
	5.4.3.1 Link BER

	6 I2C/UART
	6.1 Overview
	6.2 Main Control Channel – I2C/UART
	6.2.1 Overview
	6.2.2 Operation
	6.2.3 I2C Control Channel
	6.2.3.1 I2C Mode Configuration
	6.2.3.1.1 I2C Internal Register Access
	6.2.3.1.1.1 I2C Data Transfer Formats

	6.2.3.1.2 I2C over the GMSL2 Link (Remote Device Access)
	6.2.3.1.3 I2C Splitter Mode
	6.2.3.1.4 I2C Address Reassignment
	6.2.3.1.4.1 Camera Setup – Two Serializers to One Deserializer

	6.2.3.1.5 I2C Address Translation
	6.2.3.1.5.1 I2C Address Translation Example

	6.2.3.1.6 I2C Broadcasting
	6.2.3.1.6.1 I2C Broadcasting Example

	6.2.3.2 I2C Multi-Main Options
	6.2.3.3 I2C Channel GMSL2 Bandwidth Utilization
	6.2.3.4 I2C Debug Techniques

	6.2.4 Main UART Control Channel
	6.2.4.1 UART Mode Configuration
	6.2.4.1.1 UART Base/Bypass Mode
	6.2.4.1.1.1 UART Base Mode
	6.2.4.1.1.2 UART Bypass Mode

	6.2.4.1.2 UART Splitter Mode

	6.2.4.2 UART Frame Format
	6.2.4.2.1 UART Synchronization Frame
	6.2.4.2.2 UART Write Protocol
	6.2.4.2.3 UART Read Protocol
	6.2.4.2.4 UART Acknowledge Frame
	6.2.4.2.5 UART Bit Rate

	6.2.4.3 UART Channel GMSL2 Bandwidth Utilization
	6.2.4.4 UART Debug Techniques

	6.2.5 Disabling Remote Control Channel on Power-Up

	6.3 Pass-Through Channels – I2C/UART
	6.3.1 Overview
	6.3.2 Operation
	6.3.3 Pass-Through I2C
	6.3.3.1 I2C Mode Configuration
	6.3.3.1.1 Pass-Through I2C Address Translation

	6.3.4 Pass-Through UART
	6.3.4.1 UART Mode Configuration

	6.3.5 Pass-Through I2C/UART in Splitter Mode
	6.3.6 Pass-Through Channels Debug Techniques

	7 Serial Peripheral Interface
	7.1 Overview
	7.1.1 GMSL2 SPI Architecture

	7.2 Operation
	7.2.1 SPI Bridge
	7.2.2 SPI Subordinate Control Bits/Pins
	7.2.2.1 Read Only
	7.2.2.2 Buffer Not Empty

	7.2.3 SPI Control Commands
	7.2.3.1 Device Select
	7.2.3.2 Subordinate Select
	7.2.3.3 Read Data

	7.2.4 SPI Clock
	7.2.4.1 SPI SCK
	7.2.4.2 Minimum Timing Requirements

	7.3 Configuration
	7.3.1 Initialization
	7.3.2 Sending a Four-Wire SPI Command (Up to 15 Bytes)
	7.3.3 SPI Burst Read/Write
	7.3.3.1 SPI Burst Write
	7.3.3.2 SPI Burst Read

	7.3.4 Multiple SPI IDs
	7.3.5 Typical Application

	8 GMSL2 Link System Bandwidth
	8.1 Overview
	8.2 GMSL2 Link Bandwidth Consumption from Video
	8.3 Interface-Specific Bandwidth Calculations
	8.3.1 CSI-2 Bandwidth Calculations
	8.3.1.1 CSI-2 Serializers – D-PHY Input
	8.3.1.1.1.1 Constant BPP Video Pipe Mode
	8.3.1.1.1.2 Double Loading Mode
	8.3.1.1.1.3 Zero-Padding Mode
	8.3.1.1.1.4 Double Loading Mode in Combination with Zero-Padding Mode
	8.3.1.1.2 Managing Video that is not Time Multiplexed

	8.3.1.2 CSI-2 Deserializers – D-PHY Output
	8.3.1.3 CSI-2 Deserializers – C-PHY Output

	8.4 GMSL2 Link Bandwidth Consumption from Side Channels
	8.4.1 GPIO
	8.4.2 SPI
	8.4.3 I2C
	8.4.4 UART

	9 GMSL2 Error Reporting (ERRB Pin)
	9.1 Overview
	9.2 Operation
	9.2.1 Example ERRB System Reaction
	9.2.2 Disabling the ERRB Function
	9.2.3 Remote Error Reporting
	9.2.3.1 Output Error Status with Local GPIO
	9.2.3.2 Combine Remote and Local Error Statuses for ERRB Output

	9.3 Configuration
	9.3.1 GMSL Decoding Errors
	9.3.2 GMSL Idle Packet Errors
	9.3.3 GMSL Packet Count Interrupt
	9.3.4 Line Fault Error
	9.3.5 Eye Opening Monitor Error
	9.3.6 Lock Status Interrupt
	9.3.7 Loss of Lock Status Interrupt
	9.3.8 Retransmission Count Interrupt
	9.3.9 Maximum Retransmission Interrupt
	9.3.10 Remote Error
	9.3.11 Video Line CRC Error
	9.3.12 Video Pixel CRC Error
	9.3.13 Video Sequence Error
	9.3.14 Video Block Length Error
	9.3.15 Video Mask Error
	9.3.16 Video PRBS Error
	9.3.17 Frame Sync Error
	9.3.18 FEC Corrected and Uncorrectable Errors
	9.3.19 ADC Interrupt
	9.3.20 VDD Comparator Error
	9.3.21 VDD Brown Out Error
	9.3.22 PORZ VDD Status Interrupt
	9.3.23 VDD Overvoltage Interrupt
	9.3.24 MIPI Rx Error
	9.3.25 Internal Memory Error
	9.3.26 Retention Memory CRC Error
	9.3.27 eFuse CRC Error

	9.4 Debug Techniques

	10 CRC Error Detection and ARQ Error Correction
	10.1 Overview
	10.2 CRC Operation
	10.2.1 16-Bit CRC
	10.2.2 32-Bit CRC
	10.2.3 Video Data CRC

	10.3 Automatic Repeat Request/Automatic Retransmission
	10.3.1 ARQ Operation
	10.3.1.1 Go-Back-N
	10.3.1.2 ARQ Path

	10.4 CRC/ARQ Configuration
	10.4.1 32-Bit CRC Configuration
	10.4.1.1 32-Bit Video CRC Errors

	10.4.2 16-Bit CRC Configuration
	10.4.2.1 16-Bit Video CRC Errors

	10.4.3 16-Bit ARQ Configuration
	10.4.3.1 Reporting of CRC Errors/ARQ retries
	10.4.3.2 Reporting of Maximum ARQ retries

	11 Voltage Monitoring
	11.1 Overview
	11.1.1 Architecture

	11.2 Operation
	11.2.1 VDD_SW Monitoring Details
	11.2.1.1 Undervoltage Monitoring of VDD_SW
	11.2.1.2 Overvoltage Monitoring of VDD_SW

	11.2.2 VDD18 Monitoring Details
	11.2.2.1 Undervoltage Monitoring of VDD18

	11.2.3 VDDIO Monitoring Details
	11.2.4 VTERM Monitoring Details

	11.3 Error Reporting and Status
	11.3.1 ERRB Configuration
	11.3.1.1 Latching Status Bits and Clearing Errors

	12 Line Fault
	12.1 Operation
	12.2 Hardware Requirements
	12.2.1 Coax Mode (Single-Ended)

	12.3 Configuration
	12.3.1 Line-Fault Detection Application
	12.3.1.1 Operation During Line-Fault Detection Events
	12.3.1.2 Line Fault with PoC Recommendation

	13 Error Generator
	13.1 Operation
	13.2 Configuration
	13.2.1 ERRG Parameters
	13.2.1.1 ERRG Enable: All Device Families Except CSI-2 Quad Deserializers
	13.2.1.2 ERRG Enable: CSI-2 Quad Deserializers

	13.2.2 MIPI Video Bandwidth
	13.2.2.1 DSI vs. CSI-2

	14 MIPI D-PHY Deskew
	14.1 Overview
	14.2 Operation
	14.2.1 Modes of Operation

	14.3 Configuration
	14.3.1 D-PHY Serializers
	14.3.2 D-PHY Deserializers

	14.4 Debug Techniques
	14.4.1 GMSL2 D-PHY Serializers
	14.4.2 GMSL2 D-PHY Deserializers

	Revision History

