

EV2HMC998APM5 Evaluation Board for GaAs, pHEMT, MMIC, Power Amplifier, DC to 22 GHz

FEATURES

- ▶ 2-layer Rogers 4350B evaluation board with heat spreader and wideband, surface-mount bias tee circuit
- ▶ End launch, 2.92 mm RF connectors
- ▶ Through calibration path

EVALUATION KIT CONTENTS

► EV2HMC998APM5 with heat spreader

EQUIPMENT NEEDED

- ▶ RF signal generator
- ▶ RF spectrum analyzer
- RF network analyzer
- ▶ 15 V, 0.8 A power supply
- ▶ -1.5 V, 100 mA power supply

GENERAL DESCRIPTION

The EV2HMC998APM5 consists of a 2-layer printed circuit board (PCB) fabricated from 10 mil thick, Rogers 4350B, copper clad, mounted to an aluminum heat spreader. The heat spreader assists in providing thermal relief to the device as well as mechanical support to the PCB. Mounting holes on the heat spreader allow it to be attached to a heat sink for improved thermal management. The RFIN and RFOUT ports are populated with 2.9 mm, female coaxial connectors, and their respective RF traces have a 50 Ω characteristic impedance.

The EV2HMC998APM5 differs from the EV1HMC998APM5 in one key respect. Whereas the EV1HMC998APM5 requires an external connectorized bias tee on its RFOUT port to operate (see the HMC998APM5E data sheet for additional details), the

EV2HMC998APM5 contains an on-board, surface-mount bias tee circuit. This circuit allows the EV2HMC998APM5 to connect directly to RF test equipment, such as network analyzers and spectrum analyzers. This on-board, surface-mount bias tee circuit has an operating frequency up to approximately 22 GHz (see Figure 3).

The EV2HMC998APM5 is populated with components suitable for use over the entire operating temperature range of the HMC998APM5E. To calibrate out board trace losses, a through calibration path, THRU-CAL, is provided between the J5 and J6 connectors. J5 and J6 must be populated with 2.92 mm RF connectors to use the through calibration path. Refer to Figure 4 and Table 2 for the through calibration path performance. The power voltages, ground voltages, gate control voltages, and detector output voltages are accessed through two 4-pin headers, J3 and J4 (see Table 1).

The RF traces are 50 Ω , grounded, coplanar waveguide. The package ground leads and the exposed paddle connect directly to the ground plane. Multiple vias are used to connect the top and bottom ground planes, with particular focus on the area directly beneath the ground paddle, to provide adequate electrical and thermal conduction to the heat spreader.

The decoupling capacitors on the EV2HMC998APM5 represent the configuration used to measure the performance of the circuit, which is detailed in AN-2061. It is possible to reduce the number of capacitors connected to the ACG2, ACG3/ACG4, $V_{GG}1$, and $V_{GG}2$ pins, but this reduction varies from system to system. It is recommended to first remove the largest capacitors that are farthest from the HMC998APM5E when reducing the number of capacitors.

For full details on the HMC998APM5E, see the HMC998APM5E data sheet, which must be consulted in conjunction with this user guide when using the EV2HMC998APM5.

TABLE OF CONTENTS

Features 1	Operating the EV2HMC998APM5	4
Evaluation Kit Contents1	During Power-Up	4
Equipment Needed1		
General Description1	Evaluation Board Schematic and Artwork	
EV2HMC998APM5 Evaluation Board	Ordering Information	.6
Photographs3	•	

REVISION HISTORY

12/2023—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 6

EV2HMC998APM5 EVALUATION BOARD PHOTOGRAPHS

Figure 1. Primary Side

Figure 2. Secondary Side

analog.com Rev. 0 | 3 of 6

OPERATING THE EV2HMC998APM5

A 15 V, 0.8 A power supply is required to provide the main bias to the EV2HMC998APM5. Connect the 15 V power supply to the on-board, wideband, drain biasing network through the VDD clip lead. In addition, a –1.5 V, 100 mA power supply is required to provide the gate control voltage. Connect the –1.5 V power supply to the V_{GG} 1 pin on the EV2HMC998APM5 through Pin 1 and Pin 3 of the J4 header.

DURING POWER-UP

The recommended bias sequence during power-up is as follows:

- 1. Connect GND to the RF and DC ground.
- 2. Initially set $V_{GG}1$ and V_{DD} to 0 V.
- 3. Set the $V_{GG}1$ voltage to -1.5 V.
- **4.** Set V_{DD} to 15 V.
- 5. Increase the $V_{GG}1$ voltage to achieve a quiescent drain current of 500 mA.
- 6. Apply the RF input signal.

DURING POWER-DOWN

The recommended bias sequence during power-down is as follows:

- 1. Turn off the RF signal.
- 2. Decrease the $V_{GG}1$ voltage to -1.5 V to achieve supply current $(I_{DO}) = 0$ mA (approximately).
- 3. Decrease V_{DD} to 0 V.
- 4. Increase V_{GG}1 to 0 V.

Table 1. Connections to the EV2HMC998APM5

Connector or Header Pin	Function Description
J1	Connects to the RFIN pin through the CIN AC coupling capacitor
J2	Connects to the RFOUT/V _{DD} pin through the COUT AC coupling capacitor
J3: Pin 1 and Pin 3	Connects to the V _{GG} 2 pin
J3: Pin 2 and Pin 4	Ground
J4: Pin 1 and Pin 3	Connects to the V _{GG} 1 pin
J4: Pin 2 and Pin 4	Ground
J5, J6	Connects to the RF through calibration path
VDD Clip Lead	Connects to the wideband bias tee network
AGND Clip Lead	Ground

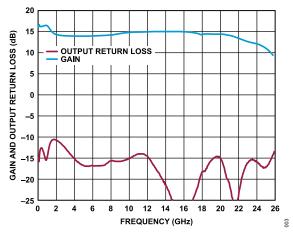


Figure 3. Gain and Output Return Loss of the EV2HMC998APM5

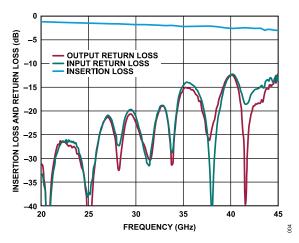


Figure 4. Insertion Loss and Return Loss of the Through Calibration Path

Table 2. Insertion Loss of the Through Calibration Path

Frequency (GHz)	Insertion Loss (dB)
0.01	0.037
0.1	0.059
1	0.265
5	0.566
10	0.709
15	0.916
20	1.142
22	1.355
25	1.48
30	1.671

analog.com Rev. 0 | 4 of 6

EVALUATION BOARD SCHEMATIC AND ARTWORK

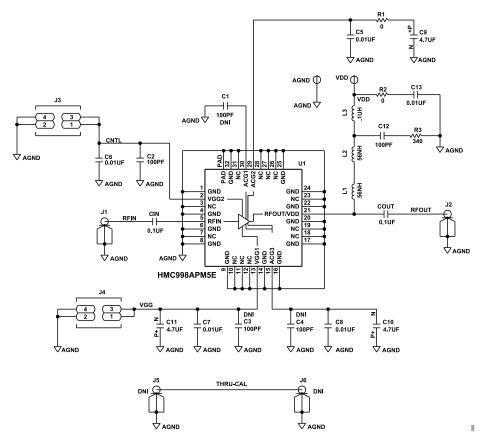


Figure 5. EV2HMC998APM5 Schematic

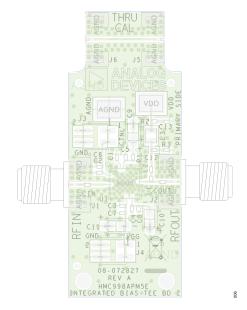


Figure 6. EV2HMC998APM5 Assembly Drawing

analog.com Rev. 0 | 5 of 6

ORDERING INFORMATION

BILL OF MATERIALS

Table 3. EV2HMC998APM5 BOM

Reference Designator	Description	Value	Manufacturer	Part Number
C2	Capacitor, ceramic	100 pF	Johanson Dielectrics	500R07N101JV4T
C1 ,C3, C4	Capacitors, ceramic, C0G, do not install (DNI)	100 pF	Johanson Dielectrics	500R07N101JV4T
C5 to C8, C13	Capacitors, multilayer, ceramic, XR7	0.01 µF	TDK	C1005X7S2A103K050BB
C9, C10, C11	Capacitors, tantalum	4.7 µF	AVX	TAJA475K020RNJ
C12	Capacitor, ceramic, C0G	100 pF	Yageo	CC0402JRNPO9BN101
CIN, COUT	Capacitors, ceramic, 16 V + 20%, 0402	0.1 μF	ATC	ATC560L104YTT
J1, J2	Connectors, K jack edge	Not applicable	SRI Connector Gage Co.	25-146-1000-92
J5, J6	Connectors, K jack edge DNI	Not applicable	SRI Connector Gage Co.	25-146-1000-92
J3, J4	Connectors, PCB, 4-position, unshrouded, dual row header, 0.5 mm, 2 mm pitch, 3.8 mm post height	Not applicable	Molex	87759-0414
_1, L2	Chip inductors, 5%, 0.061 Ω , DC resistance (DCR), 1.2 A	56 nH	Coilcraft Inc.	0402DF-560XJR
_3	Inductor, 0805, 5%, 110 nH	0.11 µH	Coilcraft Inc.	0805LS-111XJLC
R1, R2	Resistors, thick film chip	0 Ω	Panasonic	ERJ-2GE0R00X
R3	Resistor, metal thin film chip, high reliability	340 Ω	Panasonic	ERA-2AEB3400X
U1	IC, gallium arsenide (GaAs), pseudomorphic high electron mobility transistor (pHEMT), monolithic microwave integrated circuit (MMIC), power amplifier, DC to 22 GHz	Not applicable	Analog Devices, Inc.	HMC998APM5E
AGND, VDD	Connectors, PCB, surface-mount technology (SMT) test points	Not applicable	Keystone Electronics	5016
Not applicable	Aluminum heat spreader	Not applicable	Not applicable	M027558

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

