

EVAL-AD5686RARDZ/EVAL-AD5696RARDZ

Evaluating the AD5686R (SPI) and the AD5696R (I²C) Quad Channel, 16-Bit, Voltage Output DACs

FEATURES

- Full featured evaluation boards for the AD5686R (SPI) and the AD5696R (I²C)
- On-board references
- Various link options
- PC control in conjunction with the Analog Devices, Inc., EVAL-SDP-CK1Z (SDP-K1) controller board

EVALUATION KIT CONTENTS

- EVAL-AD5686RARDZ (SPI) evaluation board or EVAL-AD5696RARDZ (I²C) evaluation board
- AD5686R (SPI) device or AD5696R (I²C) device

HARDWARE REQUIRED

 EVAL-SDP-CK1Z (SDP-K1) controller board, which must be purchased separately

SOFTWARE REQUIRED

 ACE software available for download from the EVAL-AD5686RARDZ (SPI) product page or the EVAL-AD5696RARDZ (I²C) product page

GENERAL DESCRIPTION

This user guide details the operation of the EVAL-AD5686RARDZ (serial peripheral interface (SPI)) evaluation board and the EVAL-AD5696RARDZ (I^2C) evaluation board for the AD5686R (SPI) and the AD5696R (I^2C), respectively, which are both quad-channel, voltage output digital-to-analog converters (DACs).

The EVAL-AD5686RARDZ and the EVAL-AD5696RARDZ are designed to facilitate quick prototyping of the AD5686R circuit and the AD5696R circuit, respectively, thereby reducing design time. Both devices operate from a single 2.7 V to 5.5 V supply. Additionally, these devices also incorporate an internal 2.5 V reference. However, if required, a different reference voltage can be applied via the EXT_REF SMB connector. Although these two DACs share common features, they differ in their digital interface protocols. The AD5686R uses SPI whereas the AD5696R uses I²C.

The EVAL-AD5686RARDZ and the EVAL-AD5696RARDZ interface with the USB port of a PC via a system demonstration platform (SDP) controller board. The analysis, control, evaluation (ACE) software is available for download from both the EVAL-AD5686RARDZ product page and the EVAL-AD5696RARDZ product page. The ACE software can be used with the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ to allow the user to program the AD5686R and the AD5696R, respectively. A PMOD connection can also be found on the evaluation board to allow the connection of micro-

TYPICAL EVALUATION SETUP

User Guide

Figure 1. Evaluation Board Connected to the SDP-K1 Controller Board (EVAL-AD5686RARDZ or EVAL-AD5696RARDZ)

controllers without the SDP controller board. Note that when a microcontroller is used through the PMOD connection, the SDP controller board must be disconnected. Therefore, the user cannot use the ACE software.

The EVAL-AD5686RARDZ and the EVAL-AD5696RARDZ both require the EVAL-SDP-CK1Z (SDP-K1) controller board, which is available for purchase from Analog Devices.

For full details, see the AD5686R data sheet or the AD5696R data sheet, which must be consulted in conjunction with this user guide when using either the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Evaluation Kit Contents	1
Hardware Required	1
Software Required	. 1
Typical Evaluation Setup	1
General Description	. 1
Getting Started	3
Installing the Software	. 3
Initial Setup	.3

REVISION HISTORY

3/2024—Revision 0: Initial Version

Block Diagram and Description	5
Memory Map	6
Evaluation Board Hardware	7
Power Supplies	7
Link Options	8
Evaluation Board Schematics and Artwork	9
Ordering Information	12
Bill of Materials	12
Notes	13

GETTING STARTED

INSTALLING THE SOFTWARE

The EVAL-AD5686RARDZ evaluation board and the EVAL-AD5696RARDZ evaluation board use the ACE software, a desktop software application that allows the evaluation and control of multiple evaluation systems.

The ACE installer contains the necessary SDP drivers and the Microsoft[®] .NET Framework 4 Client Profile by default. The ACE software is available for download from the EVAL-AD5686RARDZ product page or the EVAL-AD5696RARDZ product page. This software must be installed before connecting the SDP controller board to the USB port of the PC to ensure that the PC recognizes the SDP controller board. For full instructions on how to install and use this software, see the ACE software pages on the Analog Devices website.

After the ACE software is installed, open the software, and the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ evaluation board plugin appears.

INITIAL SETUP

To set up the EVAL-AD5686RARDZ evaluation board or the EVAL-AD5696RARDZ evaluation board, follow these steps (GUI shown in Figure 2 to Figure 4 for the EVAL-AD5686RARDZ but functionality is the same for the EVAL-AD5696RARDZ):

- Connect the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ to the SDP controller board and then connect a USB cable between the SDP controller board and the PC.
- 2. Run the ACE application, and the main window appears as shown in Figure 2. The EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ evaluation board plugin appears in the Attached Hardware section of the Start tab.
- Double-click the EVAL-AD5686RARDZ plugin or the EVAL-AD5696RARDZ plugin as shown in Figure 2 to open the board view as shown in Figure 3.
- 4. Double-click the AD5686R chip or AD5696R chip shown in Figure 3 to access the chip view as shown in Figure 4. This view provides a basic representation of the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ functionality. The main function blocks of these evaluation boards are labeled in Figure 5.

Analysis Control Evaluation 1.28.	3252.1429			– 0 ×
ANALOG DEVICES	Start			Ē
秴 Home	Start 🗙 Plug-in Manager 🗙			
🖄 Systems		ρ		
Plug-in Manager	Attached Hardware	, ,		
Remoting Console	EVAL- AD5696 RARDZ			
Vector Generator	Version			
Data Set Comparison		U		
🚽 Recent Sessions 🛛 🗸	*	an Defect Allenderd Mershare		
💕 Tools 🗸 🗸		Remen Attached Haldware		
	Explore Without Hardware			
	Plugin ID	Version	Compatible Controllers	Verified
	AD7380 Eval Board	1.2023.16300	SDPH1	*
	AD7380-4 Eval Board	1.2023.16300	SDPH1	*
	AD7381 Eval Board	1.2023.16300	SDPH1	*
	AD7383 Eval Board	1.2023.16300	SDPH1	*
Check For Updates	AD7383-4 Eval Board	1.2023.16300	SDPH1	*
Report Issue	AD7304 Eval David	1 2022 16200	20004	
Application Usage Logging			Add Sele	ted Subsystem(s)
🕜 Help 🏾 🦹 Settings	Ready			83

Figure 2. ACE Software Main Window

GETTING STARTED

Figure 3. Board View of the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ

Figure 4. Chip Block Diagram View of the AD5686R or the AD5696R

BLOCK DIAGRAM AND DESCRIPTION

The EVAL-AD5686RARDZ software and the EVAL-AD5696RARDZ software are organized to appear similar to the functional block diagram shown in the AD5686R data sheet and AD5696R data sheet, respectively. In this way, it is easy to correlate the functions on these evaluation boards with the descriptions in the data sheets. A full description of each block, register, and their settings is given in the AD5686R data sheet or the AD5696R data sheet.

Some of the blocks and their functions are described in this section as they pertain to the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ. The block diagram is shown in Figure 5, and Table 1 describes the functionality of each block.

Figure 5. Block Diagram with Labels

Table 1. Block Diagram Functions

Label	Button Name	Function
A	CONFIGURATION wizard	This button is used to set the initial configuration for the evaluation board by clicking the reference gain case from the Output Gain drop-down box. A gain of 1 is the default. For a gain of 2, an external supply is needed ($V_{DD} = V_{REF} + 1.5$ V). After setting up the initial configuration, click Apply Changes (Label J) to apply the values. These settings can be modified at any stage while evaluating the evaluation board.
В	LDAC and RESET (GPIO buttons)	These buttons act as external GPIO pulses to the <u>LDAC</u> pin and the <u>RESET</u> pin. The LDAC button transfers data from the input registers (Label D) to the DAC registers (Label E). The RESET button clears all data from the input registers and DAC registers. These buttons are live. Therefore, there is no need to click Apply Changes (Label J).
С	Select a Command	The drop-down box under Select a Command controls how the data transfer to the device affects the input registers and DAC registers. When a data value is entered in an input register (Label D), it can be transferred to one or both of the internal DAC registers. The data transfer can be either to the DAC input register only, or to both the DAC input register and the DAC register at the same time. If both registers are updated, the channel DAC register (Label E) shows the new value.
D	Input Register 0 to Input Register 3	The input registers serve as a way to select the 16-bit data word to transfer to the device. Once the desired data word is selected, click Apply Changes (Label J) to transfer it to the device.
E	DAC Register 0 to DAC Register 3	The DAC registers display the value that is currently present in the DAC register on the device. The user can update the DAC registers by clicking the appropriate command option or by clicking LDAC (Label B).
F	Software RESET	The Software RESET button returns the evaluation board and software to default values. This button is live. Therefore, there is no need to click Apply Changes (Label J).
G	Load DAC	This button allows the user to individually control which channel loads the values from the input registers to the DAC registers.
H	DAC	The DAC configuration options provide access to individual channel configuration options such as power-down options, and hardware LDAC mask enable or disable.
I	Internal Reference	In the Internal Reference setting, click Enable to enable the on-chip reference for the evaluation board. If Disable is clicked, an external reference must be applied. This control is only available on the AD5686R and the AD5696R.
J	Apply Changes	This button updates the device with all the modified values. However, if there is no evaluation board connected, the input register values cannot be transferred to the DAC registers.

BLOCK DIAGRAM AND DESCRIPTION

MEMORY MAP

All registers are fully accessible from the **Memory Map** tab as shown in Figure 6. The **Memory Map** tab allows registers to be edited at a bit level. The bits shaded in dark gray (see Figure 7) are read only bits and cannot be accessed from the ACE software. All other bits can be edited. The **Apply Changes** button is used to transfer data to the device. All changes in the **Memory Map** tab correspond to the block diagram. For example, if the internal register bit is enabled, it shows as enabled on the block diagram. Any bits or registers that are in bold are modified values that have not been transferred to the evaluation board. After **Apply Changes** is clicked, the data is transferred to the evaluation board.

Appl	y App Select	oly ted	Read All	Read Selected	Reset C	hip	Diff		Software Defaults	Export		Impor	t	C Sic	thip \ thip See By	/iew /-Side	e	S Bit
Registe	ers																	
2																		
	Address (Hex	Nam	e		٣	T	Side Effects	T	Modified T	Data (Hex)	Dat	a (Bin	ary)					
+	00000011	DAC	0_Input			In				0000	0	0	0	0	0	0	0	0
+	00000012	DAC	1_Input			In				0000	0	0	0	0	0	0	0	0
+	00000014	DAC	2_Input			In				0000	0	0	0	0	0	0	0	0
+	00000018	DAC	3_Input			In				0000	0	0	0	0	0	0	0	0

Figure 6. AD5686R or AD5696R Memory Map Tab

regist	c13							
۶								
	Address (Hex)	Name	٣	Re: Side Ef	ffects 🔻	Modified T	Data (Hex)	Data (Binary)
+	00000011	DAC0_Input		In		\checkmark	FFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+	00000012	DAC1_Input		In		\checkmark	FFFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+	00000014	DAC2_Input		In			0000	

Figure 7. Memory Map of the AD5686R or the AD5696R with Pending Changes in the DAC0_Input Register

EVALUATION BOARD HARDWARE

Before applying power and signals to the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ, ensure that all link positions are as required by the operating mode. There are two modes in which to operate the EVAL-AD5686RARDZ or the EVAL-AD5696RARDZ. First is the SDP controlled mode to be used with the EVAL-SDP-CK1Z (SDP-K1). Second is the standalone mode in which an external supply must be provided.

POWER SUPPLIES

The EVAL-AD5686RARDZ evaluation board and the EVAL-AD5696RARDZ evaluation board provide an on-board, 3.3 V regu-

Table 2. Power Supply Connectors

lator powered through the USB supply. If the evaluation board is controlled through the PMOD connection or a gain of 2 is required, an external supply must be provided via the EXT_VDD connector. See Table 2, and the power requirements stated in the AD5686R data sheet and the AD5696R data sheet for more details.

Both AGND input and DGND input are provided on the evaluation board. The AGND plane and DGND plane are connected at one location close to the AD5686R or the AD5696R. To avoid ground loop problems, it is recommended that the AGND input and the DGND input must not be connected elsewhere in the system.

Connector	Label	External Voltage Supplies Description
EXT_VDD, Pin 1	EXT_VDD	External analog power supply from 2.7 V to 5.5 V, V _{DD}
EXT_VDD, Pin 2	EXT_VDD	Analog ground
EXT_REF, SMB Connector	EXT_REF	External voltage reference supply

EVALUATION BOARD HARDWARE

LINK OPTIONS

Various link options are incorporated in the EVAL-AD5686RARDZ evaluation board and the EVAL-AD5696RARDZ evaluation board, and must be set for the required operating conditions before using these evaluation boards. The functions of these link options are described in Table 4.

Table 3. Link Options Setup for SDP Control (Default)

Table 3 lists the positions of the different links controlled by the PC via the USB port. An SDP controller board operating in single-supply mode is required.

Link	Option						
VDD_SEL	Position B (2-3)						
REF_SEL	Position A (1-2)						
VDD_VIO	Disconnected						
RSTSEL	Position A (1-2)						

Table 4. Link Functions

Link	Description
VDD_SEL	This link selects the DAC analog voltage source. There are two options as follows:
	Position A (1-2): the EXT_VDD option selects an external supply voltage (the EXT_VDD connector).
	Position B (2-3): the 3V3 option selects the on-board voltage source (the SDP-K1, the ADP121).
REF_SEL	This link selects the DAC voltage reference source. There are two options as follows:
	Position A (1-2): the EXT_REF option selects an external reference source (the EXT_REF connector). If no external supply is present, the internal on-chip reference is the default.
	Position B (2-3): the 2V5 option selects the on-board reference from the ADR4525.
VDD_VIO	The VDD_VIO link selects the DAC digital voltage source. There are two options as follows:
	Connected option: shorts V _{DD} and V _{LOGIC} . Use this option only when the SDP controller board is not connected.
	Disconnected option: opens the connection of V _{DD} and V _{LOGIC} . Use this option when using the SDP controller board.
RSTSEL	The reset select (RSTSEL) link selects the power-on reset state of the device. There are two options as follows:
	Position A (1-2): this position ties the RSTSEL pin to VLOGIC and powers up all DACs to midscale.
	Position B (2-3): this position ties the RSTSEL pin to GND and powers up all DACs to zero scale.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 8. NanoDAC+ Evaluation Board Schematic Diagram—Power Supply and Signal Route

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 9. NanoDAC+ Evaluation Board Schematic Diagram—SDP Connector, PMOD, and EEPROM

Figure 10. NanoDAC+ Evaluation Board—Component Placement

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 11. NanoDAC+ Evaluation Board—Top Side Routing

Figure 12. NanoDAC+ Evaluation Board—Bottom Side Routing

ORDERING INFORMATION

BILL OF MATERIALS

Table 5. Bill of Materials

Quantity	Reference Designator	Description					
1	U1	IC, Analog Devices, quad, 16-bit or 14-bit or 12-bit nanoDAC	Analog Devices, AD5686R/AD5696R				
1	U2	IC, Analog Devices, 150 mA, low quiescent current, CMOS linear regulator, 3.3 VOUT	Analog Devices, ADP121-AUJZ33R7				
1	U3	IC, Analog Devices, ultra-low noise, high accuracy voltage references	Analog Devices, ADR4525DEZ				
1	U4	IC, 32 kb serial electronically erasable programmable read-only memory (EEPROM)	Generic				
2	AGND, DGND	Connector for printed circuit board (PCB) test points, black	Generic				
1	AGND1	Connector for PCB test points, black	Generic				
1	C1	0.1 µF ceramic capacitors, 16 V, 10%, X7R, 0402, AEC-Q200	Generic				
3	C5, C11, C18	1 μF ceramic capacitors, 16 V, 10%, X7R, 0603	Generic				
4	C4, C6, C9, C12	0.1 µF ceramic capacitors, 16 V, 10%, X7R, 0402	Generic				
1	C15	0.1 µF ceramic capacitors, 50 V, 10%, X7R, 0603	Generic				
2	C2, C7	10 μF ceramic capacitors, 25 V, 10%, X5R, 0805	Generic				
1	C3	4.7 μF ceramic capacitors, 25 V, 10%, X5R, 0805	Generic				
1	C8	10 µF tantalum capacitors, 10 V, 10%, 3216-18, low effective series resistance (ESR)	Generic				
1	E1	Inductor, ferrite bead, 600 Ω, 25%, 100 MHz, 2.9 A, 0.038 Ω, 1206, AEC-Q200	Generic				
1	EXT_VDD	Connector for PCB 2-position terminal block side entry, 5 mm pitch	Generic				
7	GAIN, LDACB, RESETB, SCLK/A0, SDIN/A1, SDO/SDA, SYNCB/SCL	Connector for PCB test points, white	Generic				
2	P3, P7	Connector for PCB receptacles, 25 mil square post, 2.54 mm pitch	Generic				
1	P4	Connector for PCB receptacles, 25 mil square post, 2.54 mm pitch	Generic				
1	P6	Connector for PCB receptacles, 25 mil square post, 2.54 mm pitch	Generic				
5	R1, R2, R12, R31, R32	100 k Ω resistors, surface-mount device (SMD), 1%, 1/16 W, 0603	Generic				
2	R5, R10	0 Ω resistors, jumper, 1/10 W, 0603	Generic				
1	R3	0 Ω resistors, SMD, jumper, 1/8 W, 0805, AEC-Q200	Generic				
1	R6	1.8 Ω resistors, SMD, 5%, 1/10 W, 0402, AEC-Q200	Generic				
3	REF_SEL, RSTSEL, VDD_SEL	Connector for PCB high temperature 3-position, male header, unshrouded, single row, straight, 2.54 mm pitch, 3.05 mm solder tail	Generic				
7	VDD, VLOGIC, VOUTA, VOUTB, VOUTC, VOUTD, VREF	Connector for PCB, test point, red	Generic				
1	VDD_VIO	Connector for PCB header, 1 row, 2 way	Generic				
6	R17, R20, R21, R24, R27, R28	0 Ω resistors, jumper, 1/10 W, 0603	Install for AD5686R				
6	R18, R19, R23, R25, R26, R30	Resistors, film, SMD, 0603	Install for AD5696R				
6	R18, R19, R23, R25, R26, R30	0 Ω resistors, jumper, 1/10 W, 0603	Do not install for AD5686R				
6	R17, R20, R21, R24, R27, R28	0 Ω resistors, jumper, 1/10 W, 0603	Do not install for AD5696R				
2	R22, R29	0 Ω resistors, jumper, 1/10 W, 0603	Do not install				
1	C10	0.1 µF ceramic capacitors, 16 V, 10%, X7R, 0402	Do not install				
4	C13, C14, C16, C17	200 pF ceramic capacitors, 16 V, 55%, C0G, 0805	Do not install				
1	EXT_REF	Connector for PCB, coaxial, SMB, jack	Do not install				
1	PMOD	Connector for PCB, Berg, header, straight, male, 12 position, do not insert (DNI) or do not populate (DNP) for both the EVAL-AD5686RARDZ and the EVAL- AD5696RARDZ	Do not install				
1	R11	0 Ω resistors, jumper, 1/10 W, 0603	Do not install				
4	R13, R14, R15, R16	2.0 k Ω resistors, SMD, 0.1%, 1/18 W, 0805, AEC-Q200, high reliability	Do not install				
4	R4, R7, R8, R9	100 kΩ resistors, SMD, 1%, 1/16 W, 0603	Do not install				

ORDERING INFORMATION

Table 5. Bill of Materials (Continued)

Quantity	Reference Designator	Description	Supplier, Part Number ¹		
4	VOUT_A, VOUT_B, VOUT_C, VOUT_D	Connector for PCB, SMB, jack, straight	Do not install		

¹ Generic indicates that any part with the specified value, size, and rating can be used.

NOTES

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

