

DLR Support Library User Guide
UG-1228

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

fido5100BBCZ and fido5200BBCZ Real-Time Ethernet Multiprotocol Switch and

fido2100 3-Port Industrial Ethernet DLR Switch with IEEE 1588

PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS. Rev. D | Page 1 of 18

FEATURES
DLR porting layer support code
fido2100 DLR switch interrupt event handling
DLR packet processing
DLR protocol implementation
Ethernet/IP DLR object support

GENERAL DESCRIPTION
The DLR support library provides all the software required to
support the beacon-based device level ring (DLR) protocol using
either the Analog Devices, Inc. fido5100BBCZ and fido5200BBCZ
real-time Ethernet multiprotocol (REM) switch or the Analog
Devices fido2100 DLR switch. To complete an Ethernet/IP device,
this library must be combined with a TCP/IP stack and an
Ethernet/IP stack. Both of these stacks must be provided by the
user. When using the fido5100BBCZ and fido5200BBCZ REM
switch, it is also necessary to include the Innovasic REM driver,
which is available separately on the DET Developer Portal.

Figure 1 shows the relationship of these functional areas, and
the DLR Porting Layer Support Code section through the DLR
Object Support section describe each of these functional areas
in more detail.

This library only supports creating a DLR node and not a DLR
supervisor.

DLR SWITCH SUPPORT LIBRARY

PORTING LAYER
SUPPORT CODE

HARDWARE

HOST INTERFACE INTERRUPT

MII

ETHERNET/IP
WITH DLR

ETHERNET/IP
WITH DLR

Tx Tx

IP
PACKETS

THIRD PARTY SOFTWARE

PYRAMID
SOLUTIONS

ETHERNET/IP
STACK

Rx

ETHERNET MAC

DLR PROTOCOL
IMPLEMENTATION

SWITCH/DLR
EVENT HANDLING

DLR SWITCH
INTERRUPT

TCP/IP
STACK

DLR PACKET
PROCESSING

DLR PACKETS

DLR VS. IP
PACKET ROUTING

DLR OBJECT
ATTRIBUTES

ANY
MICRO-

CONTOLLER

16
47

7-
00

1

Figure 1. DLR Switch Library Overview

http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/developer-portal?doc=UG-1228.pdf
www.analog.com

UG-1228 DLR Support Library User Guide

Rev. D | Page 2 of 18

TABLE OF CONTENTS
Features .. 1

General Description ... 1

Revision History ... 2

Introduction .. 3

DLR Porting Layer Support Code .. 3

fido2100 DLR Switch Interrupt Event Handling...................... 3

DLR Packet Processing .. 3

DLR Protocol Implementation ... 3

DLR Object Support... 3

Using the DLR Library ... 4

Use Cases ... 4

Compiling and Linking ... 5

Adjustments for Different Hardware Platforms 5

REM Driver Dependencies ... 5

Library File Set General Description ... 6

EtherIpRingUtils.h ... 6

EtherIpRingRx.h/c .. 6

BspEnetSwitch.h/c .. 7

EtherIpRingProtocol.h/c ... 8

EtherIpRingObject.h/c ... 8

Porting Layer Detailed Description ... 9

Implementation Dependent Board Support Porting Layer
Functions ..9

Implementation Dependent RTOS Support Porting Layer
Functions ... 10

Implementation Independent DLR Library Functions 10

Implementation Independent Static Functions in the .c File 11

Implementation Independent Static Inline Functions in the .h
File .. 11

Initialization .. 12

Interrupts ... 13

Ethernet Link Up/Down .. 14

Modifying the DLR Switch Support Library for Use Without an
RTOS .. 15

Introduction .. 15

Task and Thread Modifications .. 15

Background Information ... 16

Semaphore Modifications ... 16

Mutex Modifications .. 17

Event Modifications ... 17

Timer Modifications .. 17

Miscellaneous Modifications .. 18

REVISION HISTORY
This Innovasic product user guide has been reformatted to the
styles and standards of Analog Devices, Inc.

5/2018—Rev. 03 to Rev. D

DLR Support Library User Guide UG-1228

Rev. D | Page 3 of 18

INTRODUCTION
DLR PORTING LAYER SUPPORT CODE
The library contains a set of board support package files that
collocate all the implementation and low level (hardware) access
functions. These files require some work because the user uses
these files to connect this library to the design-specific real-time
operating system (RTOS) and hardware. The initialization process
of the DLR library also makes use of these board support package
(BSP) and porting layer functions so that after the BSP and porting
layer functions are in place, the DLR library is self-contained.
The Porting Layer Detailed Description section discusses the
porting layer in more detail.

This DLR support library is used in a system that makes use of a
real-time operating system.

fido2100 DLR SWITCH INTERRUPT EVENT
HANDLING
The library provides a handler function that contains all the
necessary code to manage the hardware interrupt events that
the fido2100 DLR switch generates. All that is required is to
connect this interrupt handler to the physical, low level hardware
interrupt mechanism used by the microcontroller implemented
in the design. After the connection is established, the DLR
library takes care of any remaining requirements.

DLR PACKET PROCESSING
The DLR protocol makes use of several non-IP Ethernet packets.
These packets must be routed to the packet handling code
within this library. All other, non-DLR, network traffic must be
routed to a TCP/IP or Ethernet/IP stack. Because it is impossible to
anticipate the user hardware or TCP/IP stack requirements, this
packet routing is the responsibility of the user. Other than this
one requirement, the Innovasic Ethernet switch hardware and the
DLR library manages all DLR operations relating to these
special packets.

DLR PROTOCOL IMPLEMENTATION
The DLR library detects the various DLR events and provides
all of the functionality required by the DLR protocol. These
functionalities includes the sign on process; neighbor check
request; response and status frame processing; ring fault and
restoration processing; and beacon and announce frame
management.

DLR OBJECT SUPPORT
The ODVA Ethernet/IP specification describes a set of DLR
object attributes (both class and instance) that must be supported
by all DLR aware devices. The DLR library provides a set of files
that implement these attributes. The object supplied is used within
the Pyramid Solutions Ethernet/IP stack, but the object is a
standard code that can be ported to any other Ethernet/IP stack.

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 4 of 18

USING THE DLR LIBRARY
USE CASES
When creating an Ethernet/IP device using the Innovasic Ethernet
switch hardware, there are four possible use cases. Each case has
its own unique considerations. The essential differences are the
compile environment, the libraries that are included, and how the
hardware is initialized.

The use cases and the necessary build actions are as shown in
Table 1.

Table 1. Actions Required for a Given Chip Depending on DLR Implementation
Use Case Actions Required

Switch in Use Is DLR Enabled? REM Driver DLR Library Comments
fido5100BBCZ/fido5200BBCZ No Yes No Requires no calls to any DLR library functions
fido5100BBCZ/fido5200BBCZ Yes Yes Yes Must enable DLR in EtherIpRingProtocol_Initialize
fido2100 No No Yes Must disable DLR in EtherIpRingProtocol_Initialize
fido2100 Yes No Yes Must enable DLR in EtherIpRingProtocol_Initialize

http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 5 of 18

COMPILING AND LINKING
The REM Switch Driver User Guide describes the requirements
for the build environment. The include directory requirements
for the DLR library are as follows: the DLR library itself is flat,
but the TCP/IP and Ethernet/IP stacks must be included in the
search path.

Some of the files provided in the library include files provided
by the sample processor libraries. These files must be removed
and/or changed (see the Porting Layer Detailed Description
section).

Table 2. Requirements Specific to Certain Use Cases
Requirement Use Case
fido2100 (With or

Without DLR)
Include only the DLR library source files
and do not define the USE_REMS
preprocessor symbol.

REM (With DLR) Include all the source files from both the DLR
library and the REMS driver, and define the
USE_REMS preprocessor symbol.

REM (Without DLR) Include only the REM library source files,
and the definition of the USE_REMS
preprocessor symbol is irrelevant (only the
DLR uses USE_REMS).

ADJUSTMENTS FOR DIFFERENT HARDWARE
PLATFORMS
The DLR library includes several files that are specifically designed
for use with the sample processor on the RapID platform. These
files must be modified to be used elsewhere if the user is using a
different host processor. The files that must be changed are as
follows:

 The BspEnetSwitch.c/h and EtherIpRingRx.c/h files are
included to provide a complete and functional example.
These files are specific to the platform they were developed on
and are dependent on several of the sample processor library
include files. These board support files must be modified for
the actual hardware. See the Porting Layer Detailed
Description section for details.

 The EtherIpRingObject.c file also contains many references
to the sample processor library as well as the processor
platform header files from the Pyramid stack. The sample
processor headers must be replaced with the headers from
the actual libraries and platform.

 The EtherIpRingProtocol.c file includes a header called
syslog.h to use the sample processor syslog facility. This
include directive can be safely deleted. No other changes
are needed.

REM DRIVER DEPENDENCIES
As delivered, the DLR library has certain dependencies on the
REM driver files. These dependencies can cause a problem if the
fido2100 switch is used instead of the fido5100BBCZ/
fido5200BBCZ REM switch. The dependencies must be removed.

The dependencies are limited to two files: BspEnetSwitch.c and
EtherIpRingProtocol.c. The first file contains a call to the function
REMS_DlrXmitPacket, but this is replaced when the board support
files are adapted to the actual platform in use. The second file
contains calls to the following REM driver functions:

 REMS_DlrEnable
 REMS_FlushDynamicTable
 REMS_EipStartTcu
 REMS_EipEnableBTOIrq
 REMS_EipDisableBTOIrq

The DLR library isolates these calls to remove these dependencies.
All that is necessary is to omit the definition of the USE_REMS
preprocessor symbol when the library file is compiled.

http://www.analog.com/UG-1285?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 6 of 18

LIBRARY FILE SET GENERAL DESCRIPTION
EtherIpRingUtils.h
The EtherIpRingUtils.h file contains a set of generic, static inline
helper functions to read/write 16-, 32-, and 48-bit data to or from
the fido2100 switch registers in big and little endian form. There
are no changes required for any of these functions.

EtherIpRingRx.h/c
The code in the EtherIpRingRx.h/c files is written to utilize the
Ethernet medium access control (MAC) on the sample processor
and satisfies the packet routing process described herein. This file
is not used with the fido5100BBCZ and fido5200BBCZ switch;
however, the DLR packets must still be routed into the DLR
library in the same manner. For this reason, it is necessary to have
at least a basic understanding of the packet flow. The two functions
defined in this section are as follows:

 FIDO_DLR_ethRXComplete()
 FIDO_ethGetDWORDAtPacketOffset()

The first function is a public function that contains the code to
receive and route received Ethernet packets. The second function is
a local static helper function to assist in the process. Although
specific implementation provided in this section is not directly
useful to the user, the implementation is provided to illustrate the
processing required. The functions are provided as part of the
library but are not called by this DLR library code. In the case of
the sample processor, when an Ethernet packet is received, the
interrupt handler calls the public function. The provided code is
the way of doing this using the sample processor, but the user
must provide code appropriate for the platform in use. The
important thing is to receive and route DLR packets as described
in this section. DLR packets are routed to this library and all
others are routed to the TCP/IP stack.

The actual code provided is heavily commented and is not
described further in this section. The user is free to develop
code that is appropriate to the platform in use. The key tasks
are as follows:

 Use EtherIpRingProtocol_Ready() (which is provided in
the DLR library) to determine when the DLR library is
ready for packets.

 Use whatever means necessary to examine the packet for
the 802.1Q tag and Ethertype word and route the packets
accordingly (DLR frames have a distinct Ethertype).
Depending on the hardware, the packet examination is
completed before or after the packet is read out of the Ethernet
MAC. If using DMA, the packet examination likely must
be done in the destination memory after the DMA is
complete. If the Ethernet driver stack uses a scatter gather
methodology, this examination may be completed after the
packet is reassembled. All standard TCP/IP packets must be
routed to the user TCP/IP stack in the manner expected by
that component. Because of the wide variety of TCP/IP
stacks that can be used, this is not described in this section.

 The BSP porting layer functions that are used after a packet
is determined to be a DLR packet are as follows:
 Obtain a memory pool buffer into which to read the

received DLR packet data.
 Release the buffer back to the pool on error.
 Add the packet data to the DLR packet queue.

 After adding the DLR packet to the DLR packet queue, call
EtherIpRingProtocol_ReceiveCallBack() (provided in the
DLR library) to inform the DLR library.

The DLR packet is placed into the queue using a structure
defined as follows:

typedef volatile struct {

 unsigned int size;

 char* data_p;

} DLR_Buffer_t;

The structure contains two things: a pointer to the packet data and
the packet size. One simple way to place the DLR packed into the
queue is to ensure the buffers returned by the memory pool are
large enough to contain the packet data as well as the structure
contents. Then, the structure can be prepended to the packet data
in a single memory buffer.

The following pseudo code shows the recommended flow of the
process:

EthernetPacketReceiveHandler()

{

 DLR_Buffer_t* DLR_Packet_p; // struct to
describe DLR packet

 unsigned short pktTypeIsDLR = 0; // default
all packets to non-DLR

 unsigned int pktSize; // size of packet
copied from Ethernet MAC

 if (no errors and received packet is valid)
{

 if (EtherIpRingProtocol_Ready()) {

 if ((packet is 802.1q tagged) && (packet
has DLR Ethertype)) {

 pktTypeIsDLR = 1; // override default above

 }

 }

 if (pktTypeIsDLR == 0) {

 // this means the packet is NOT DLR

 // if present and if necessary remove the
802.1q tag

 // obtain a buffer from the TCP/IP stack

 // read the packet into this buffer

 // give packet to TCP/IP stack

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 7 of 18

 }

 else {

 // the packet IS DLR so we need to route it
to the DLR Library

 // use BSP porting layer to obtain a memory
pool buffer:

 DLR_Packet_p =
(DLR_Buffer_t*)BSP_MemPoolReserveBuffer(&g_D
LR_BufferPool);

 if (DLR_Packet_p != NULL) {

 // set up the packet pointer to memory past
the struct itself

 DLR_Packet_p->data_p =
(char*)(DLR_Packet_p) +
sizeof(DLR_Buffer_t);

 // copy data from MAC into memory at
DLR_Packet_p->data_p...

 if (copy or packet read error) {

 // on error free memory pool buffer and get
out

 BSP_MemPoolReleaseBuffer(&DLR_Packet_p);

 return;

 }

 // assume 'pktSize' is set by function used
to copy packet

 // use this variable to set the size in the
struct

 DLR_Packet_p->size = pktSize;

 // packet and struct is in memory pool,
feed the DLR Library

 BSP_QueueAdd(g_DLR_PacketQueue,
&DLR_Packet_p, NO_WAIT);

 // and tell the DLR Library main task to
process the packet

 EtherIpRingProtocol_ReceiveCallBack();

 }

 else {

 // unable to obtain a buffer from the
memory pool

 // silently discard the data...

 }

 }

 }

 else

 // packet error, dump it...

}

BspEnetSwitch.h/c
The BspEnetSwitch.h/c files contain an abstraction or porting
layer that connects the DLR library to the RTOS as well as the
central processing unit (CPU) and low level hardware. The user
must implement a number of these functions to create a complete
system. These functions are gathered in these files and facilitate
integrating this library into the overall board support package in a
system. Some of the functions in these files are implementation
dependent. These functions are in this file despite being imple-
mentation dependent, because they are part of the low level
fido2100 DLR switch hardware management. These functions
require some user modification. The other functions are functional
in their current form. Rather than providing empty stubs, the
implementation dependent functions provided in the files
contain the sample processor implementations for reference.

The implementation dependent board support functions do the
following:

 Initialize the board support package
 Set up the CPU fido2100 DLR switch chip select hardware
 Enable and disable CPU interrupts
 Get the MAC address of the system
 Determine the link speed and duplex
 Trigger the transmission of a DLR packet

The RTOS porting layer functions are used for the following:

 Create tasks
 Create, take, and post semaphores
 Apply to the rest of the bullets
 Mutual exclusion objects
 Timers
 The memory pool
 Queues

There are several functions that are hardware related but do not
require changes. These functions do the following:

 Retrieve and post integer-based events
 Retrieve a DLR packet from the received packet queue
 Add and delete multicast addresses to and from the

fido2100 DLR switch hash table
 Manage work related to link up and down changes
 Manage the Ethernet link and port enable and disable
 Manage the fido2100 DLR switch counters
 Manage the lookup table and calculate the cyclic redundancy

check (CRC) used by the fido2100 DLR switch multicast
hash table

 Read and write fido2100 DLR switch registers

A detailed description of the porting layer is provided in the
EtherIpRingProtocol.h/c section.

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 8 of 18

EtherIpRingProtocol.h/c
Primarily, the EtherIpRingProtocol.h/c files contain the functions
needed to manage the switch hardware as it pertains to the
actual DLR protocol. Also provided are functions used by the
EtherIpRingObject to manage the Ethernet/IP DLR object. No
platform specific functions are present in this file, so there are
no user changes required.

An RTOS is required by this library, and the code for the required
tasks (threads) is also present in this file. The tasks are as follows:

 EtherIpRingProtocol_LinkMonTask()
 EtherIpRingProtocol_MainTask()
 EtherIpRingProtocol_TimerTask()

When the user calls EtherIpRingProtocol_Initialize(), these
tasks are automatically launched.

EtherIpRingObject.h/c
The EtherIpRingObject.h/c files contain the functions needed
to manage the required Ethernet/IP DLR object. This code is
used with the Pyramid Ethernet/IP stack. The two functions
that the user code must call here are as follows:

 During system initialization, register the DLR object with
the Pyramid stack using EtherIpRingObject_RegisterObject().

 Within the NM_CLIENT_OBJECT_REQUEST_RECEIVED
case in the user call back function (called by the Pyramid
Ethernet/IP stack), call EtherIpRingObject_ProcessRequest()
when a request is made to the ETHERNETIP_DLR_OBJECT
_CLASSID:

clientGetClientRequest(iRequestId,
&Request);

if (Request.iClass ==
ETHERNETIP_DLR_OBJECT_CLASSID)

EtherIpRingObject_ProcessRequest(iRequest
Id, pRequest);

else ... // if the request wasn’t
directed to the DLR object...

No platform specific functions are present in this file, so there
are no user changes required.

When using Ethernet/IP DLR, it is a requirement to also support
the quality of service (QoS) object. Support for this object is
available as a compile time option within the Pyramid Ethernet/IP
stack. The user manages the support for the QoS object outside
of this library.

If creating a device that is intended to be capable of acting as a DLR
supervisor (only supported if using the fido2100), there are certain
operating parameters that must be nonvolatile. In reference to the
operating parameters, the EtherIpRingProtocol.h file contains
a data structure declared as follows:

 typedef struct _RingParams {

 UINT32 m_ulBeaconInterval; // Beacon
interval, microseconds

 UINT32 m_ulBeaconTimeout; // Beacon
timeout, microseconds

 UINT16 m_uwVlanId; // VLAN ID, 0-4094

 UINT8 m_ubSupervisor; // Is supervisor
enabled

 UINT8 m_ubPrecedence; // Supervisor
precedence

 } RingParams;

EtherIpRingProtocol.c declares a global instance of this structure
called m_ConfigParams. In the supplied code, this variable is
initialized within EtherIpRingProtocol_Initialize() but the
existing code assigns these values from hard coded constants.
These parameters must be stored in nonvolatile memory if or
when they are changed. EtherIpRingProtocol_SetRingParams()
is the place to store these parameters. Adding the code to store and
restore this data from nonvolatile memory is the responsibility
of the user.

http://www.analog.com/fido2100?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 9 of 18

PORTING LAYER DETAILED DESCRIPTION
The BspEnetSwitch.h/c files contain the porting layer declaration
and definition. This section provides a detailed description of
each of the functions in these files. The description is broken
down into the following five areas:

 Implementation dependent board support porting layer
functions

 Implementation dependent RTOS support porting layer
functions

 Implementation independent DLR library functions
 Implementation independent static functions in the .c file
 Implementation independent static inline functions in the

.h file

These functions are described in the Implementation Dependent
Board Support Porting Layer Functions section through the
Implementation Independent Static Inline Functions in the .h File
section. BspEnetSwitch.h is richly commented and has detailed
function descriptions describing the function arguments and
return values.

IMPLEMENTATION DEPENDENT BOARD SUPPORT
PORTING LAYER FUNCTIONS
This section describes the board support and RTOS porting
layer functions in more detail. The user must implement many
of these functions. Rather than providing empty stubs, the
implementation dependent functions provided in these files
contain the sample processor implementations for reference.

BSP_EsInitialize()

The BSP_EsInitialize() function initializes the board support
package and (using the DLR library RTOS porting layer) creates
a task, two queues, and the memory pool. Specifically, the
BSP_EsInitialize() function does the following:

 Create the bsp_EsStatCountTask() task
 Create and initialize the DLR packet queue and memory

pool
 Create the DLR library event queue

The BSP_EsInitialize() function does not require many changes
but may need some attention to ensure successful integration
with the user supplied RTOS porting layer functions.

There is no need for the user to directly call BSP_EsInitialize(),
because it is indirectly called when the user initializes the DLR
library using EthernetIpRingProtocol_Initialize(). The
recommended initialization sequence is discussed in the
Implementation Independent Static Inline Functions in the .h File
section.

BSP_SetupChipSelect()

In the sample processor implementation, the
BSP_SetupChipSelect() function sets up the chip select control
and timing registers so the CPU can access the fido2100 DLR
switch. For the sample processor, the BSP_SetupChipSelect()
function is called as a part of the overall system initialization,
not the initialization of the DLR library. Other processors may
set up the chip select registers and chip control registers
differently or may not need this function at all. If the function is
not needed, this function can be simply removed or ignored.

BSP_DisableSwitchInterrupts() and
BSP_EnableSwitchInterrupts()

The BSP_DisableSwitchInterrupts() function and the BSP_
EnableSwitchInterrupts() function disable and enable the CPU
interrupts. As provided, these functions disable and enable the
CPO interrupts using the sample processor HAL library. A
user’s system does not have the sample processor HAL library,
so these functions must be changed accordingly.

BSP_GetMacAdrs()

The BSP_GetMacAdrs() returns the MAC address assigned to
the system. In the case of the sample processor a global variable
is read. The user must obtain the MAC address by whatever
means is provided by that platform.

BSP_EsUpdateLinkSpeedDuplex()

The responsibility of the BSP_EsUpdateLinkSpeedDuplex()
function is to determine the Ethernet link speed and duplex and
to update the bsp_EsLinkData global data for the specified port.
The provided example reads the registers in the physical layer
(PHY) using code supplied by the sample processor Ethernet
driver. The user version must provide its own methods to
obtain this information. This function is called by
EtherIpRingProtocol_
ProcessLinkState() just prior to calling BSP_EsLinkUp().

BSP_Put_DLR_Packet()

The BSP_Put_DLR_Packet() function is called by the DLR
library anytime it must transmit a packet. BSP_Put_DLR_Packet()
function uses the supplied information to form the packet and
then uses the sample processor Ethernet driver functions to
write the packet to the Ethernet transmission hardware FIFO.
The part of this function that formulates the packet is useful as
is, but the part where the packet is written to the hardware must
be replaced by the appropriate method used by the user platform.

http://www.analog.com/fido2100?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 10 of 18

IMPLEMENTATION DEPENDENT RTOS SUPPORT
PORTING LAYER FUNCTIONS
The implementation dependent RTOS support porting layer
functions include the functions listed in this section See the
BspEnetSwitch.h/c section for a detailed description of the
arguments and expected return values.

The existing file contains the following fido specific code for
reference only:

 BSP_CreateTask()
 BSP_SemaphoreCreate()
 BSP_SemaphoreWait()
 BSP_SemaphorePost()
 BSP_MutexCreate()
 BSP_MutexLock()
 BSP_MutexUnlock()
 BSP_GetTicksPerSec()
 BSP_TimerCreate()
 BSP_TimerWait()
 BSP_MemPoolCreate()
 BSP_MemPoolReserveBuffer()
 BSP_MemPoolReleaseBuffer()
 BSP_QueueCreate()
 BSP_QueuePeek()
 BSP_QueueRemove()
 BSP_QueueAdd()

IMPLEMENTATION INDEPENDENT DLR LIBRARY
FUNCTIONS
BSP_GetEvent()

The BSP_GetEvent() uses the BSP porting layer queue facility to
retrieve an integer-based event code from the DLR library event
queue. Because this function uses the porting layer, it is
implementation independent.

BSP_PostEvent()

The BSP_PostEvent() uses the BSP porting layer queue facility
to post an integer-based event code to the DLR library event
queue. Because this function uses the porting layer, it is imple-
mentation independent.

BSP_Get_DLR_Packet()

The BSP_Get_DLR_Packet() uses the BSP porting layer to get a
DLR packet from the DLR packet queue, copy it into the buffer
provided, and free the memory used by the memory pool.
Because this function uses the porting layer, it is
implementation independent.

BSP_EsMulticastAdrsAdd and BSP_EsMulticastAdrsDel

The BSP_EsMulticastAdrsAdd and BSP_EsMulticastAdrsDel
functions add and delete (respectively) a multicast address from
the fido2100 DLR switch hash table. These functions access the

fido2100 DLR switch registers but are not implementation
dependent.

BSP_EsLinkUp() and BSP_EsLinkDown()

The BSP_EsLinkUp() and BSP_EsLinkDown()functions are
called by EtherIpRingProtocol_ProcessLinkState() when a
change is detected in the Ethernet link state. The reference
versions also update the (sample processor specific) global link
state variables, g_phyLinkStatePort1 and g_phyLinkStatePort2.
The g_phyLinkStatePort1 and g_phyLinkStatePort2 variables
are not needed in the user version but is left intact in the library
for testing and reference purposes; it is safe to remove this
unneeded code. These functions also enable or disable
(respectively) the appropriate port in the fido2100 DLR switch.

To operate properly, BSP_EsLlinkUp() requires the global variable,
bsp_EsLinkData, to contain the current Ethernet link speed and
duplex information. To help ensure this requirement is met,
EtherIpRingProtocol_ProcessLinkState() calls the board support
package function BSP_EsUpdateLinkSpeedDuplex() prior to
calling BSP_EsLinkUp().

BSP_NotifyLinkStateChange()

The BSP_NotifyLinkStateChange() function is also called by
EtherIpRingProtocol_ProcessLinkState() when the Ethernet
link state changes. The sample processor specific reference
version sets/clears a global link up flag and sends events to the
sample processor common interface layer. This function is a
hook function that some systems (like a system using the sample
processor) may need, but if it is not needed, this function can
either be left as an empty stub or the call to it can be safely
removed from EtherIpRingProtocol_
ProcessLinkState(). Removal is the choice of the user; this
function is left in the library to facilitate testing when used with
the sample processor platform.

BSP_EsDumpMediaCount()

The BSP_EsDumpMediaCount() function reads and prints the
fido2100 DLR switch counters. It is a debug function and is
currently unused. It is implementation independent.

BSP_EsEnablePort() and BSP_EsDisablePort()

The BSP_EsEnablePort() and BSP_EsDisablePort() functions
enable or disable (respectively) the specified port in the
fido2100 DLR switch. The enable function also indicates the
Ethernet link speed and duplex to the fido2100 DLR switch. The
DLR library calls BSP_EsEnablePort() (in BSP_EsLinkUp()), but
there is no need for the user code to ever call it. BSP_
EsDisablePorts() is also called by the DLR library (in BSP_
EsLinkDown() and BSP_Initialize()), but is called by the user
code when the Ethernet/IP Ethernet link object admin state is
set to disabled. When the Ethernet/IP Ethernet link object
admin state is changed, it is recommended to power up/down
(or otherwise enable/disable) the actual PHYs. The powering
up and powering down of the PHYs is not managed by the DLR
library. When the admin state for a particular port is set to enabled,
it is sufficient for the user code to power on (or otherwise enable)

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 11 of 18

the PHY because the fido2100 DLR switch then detects the link
up event and automatically call BSP_EsEnablePort() to enable
the respective port in the fido2100 DLR switch. The calling of the
BSP_EsEnablePort() is implementation independent.

IMPLEMENTATION INDEPENDENT STATIC
FUNCTIONS IN THE .C FILE
bsp_EsStatCountTask()

bsp_EsStatCountTask() is a task that periodically reads the
fido2100 DLR switch statistics counters and updates the
bsp_EsPortCount global variable. This function is implementation
independent.

bsp_EsCalcCrc32()

bsp_EsCalcCrc32() is a helper function to calculate the CRC
needed by the fido2100 DLR switch multicast hash table. Only
BSP_EsMulticastAdrsAdd uses this function. The helper
function is implementation independent.

bsp_EsMcAdrsFind()

bsp_EsMcAdrsFind() is a helper function to search the
fido2100 DLR switch multicast hash table for a specific entry. It is
used only by BSP_EsMulticastAdrsAdd() and
BSP_EsMulticastAdrsDel(). This function is implementation
independent.

bsp_EsMcAdrsFindFirstFree()

bsp_EsMcAdrsFindFirstFree() is a helper function to search the
fido2100 DLR switch multicast hash table for the first free entry.
Only BSP_EsMulticastAdrsAdd() uses this function. This
function is implementation independent.

IMPLEMENTATION INDEPENDENT STATIC INLINE
FUNCTIONS IN THE .H FILE
Implementation independent static inline functions include the
following:

 BSP_EsReadReg16()
 BSP_EsWriteReg16()
 BSP_EsReadReg32()
 BSP_EsWriteReg32()
 BSP_EsReadReg48()
 BSP_EsWriteReg48()
 BSP_EsReadReg64()
 BSP_EsWriteReg64()

All these functions are usable as is; they are implementation
independent.

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 12 of 18

INITIALIZATION
Because it is not desirable for an Ethernet link to be established
before the DLR library is ready, the PHYs must be disabled by the
user code on power-up. If the chosen PHYs are disabled by default
on power-up, no action is required. Most PHYs are enabled
until told otherwise, so it is likely that the user code must disable
them immediately after the system starts. The library does not
manage this aspect of the PHY interface.

As it pertains to the DLR functions, the user initializes the
system by taking the following steps:

1. Power up.
2. Consult the PHY data sheet to determine if it is necessary

to disable the PHY, and disable the PHY if necessary.
3. Restore the MAC address (and other data as required)

from NVM.
4. Initialize the overall system hardware and interrupt

subsystem.
5. If using the fido5100BBCZ and fido5200BBCZ REM

switch, perform the hardware initialization as described in
the REM Switch Driver User Guide.

6. Call EtherIpRingProtocol_Initialize() to initialize the DLR
library and the board support package (must also provide
proper arguments for DLR enable and switch type).

7. If required, register the DLR library MAC filter add function
(BSP_EsMulticastAdrsAdd()) with the Ethernet driver
and/or TCP/IP stack.

8. Initialize the pyramid stack by taking the following steps:
a. Register the Ethernet/IP call back function

(clientRegisterEventCallBack()).
b. Start the Ethernet/IP stack (clientStart()).
c. Add the assembly instances

(clientAddAssemblyInstance()).
d. Give the Ethernet/IP stack some initial (NULL)

assembly data to produce
(clientSetAssemblyInstanceData()).

e. Tell the Ethernet/IP stack to verify connections,
(clientSetAppVerifyConnection()).

f. Get the Identity object from the Ethernet/IP stack
(clientGetIdentityInfo()).

g. Fill in the system specific identity information as
appropriate.

h. Return the identity object to the Ethernet/IP stack
(clientSetIdentityInfo()).

i. Tell the Ethernet/IP stack to support the DLR object
(EtherIpRingObject_RegisterObject()).

9. Call EtherIpRingProtocol_SetMACAddress() to tell the
hardware, driver, and library what the system MAC address is.

10. Start the DLR library:
a. Call EtherIpRingProtocol_SetIpAdrs().
b. Call EtherIpRingProtocol_Start().

11. Power on the PHYs and set the initial admin state (derived
from NVM).

12. If necessary, force the Ethernet link speed and duplex.

An Ethernet link can now be established. It is essential that the
CPU interrupts and the Ethernet packet receive/transmit capability
be in place at this point. When a DLR capable device detects an
Ethernet link, it sends a link status packet to the DLR supervisor,
and the supervisor immediately sends a sign on packet, so it is
essential that the system is capable of responding to DLR packets at
this point in the initialization process. It is not necessary to be able
to respond to TCP/IP packets because DLR packets are not
TCP/IP packets. At this point it is likely that the system does
not yet have a valid IP address, especially if using dynamic host
configuration protocol (DHCP).

If using DHCP, wait for an IP address before continuing.

If using a static IP address, the user does not need to wait.

Complete the pyramid stack initialization by taking the
following steps:

1. Call clientUnclaimAllHostIPAddress()
2. Call clientGetHostIPAddress()
3. Call clientClaimAllHostIPAddress()

http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/UG-1285?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 13 of 18

INTERRUPTS
All of the fido2100 DLR switch interrupt handler functions are
managed by the code in EtherIpRingProtocol.c. Interrupts
generated by the fido5100BBCZ and fido5200BBCZ REM switch
are managed by the REM driver and are not discussed in this
user guide. For that information, see the REM Switch Driver
User Guide. EtherIpRingProtocol_HandleIrq() is the primary
fido2100 DLR switch interrupt handler function. The system
interrupt handler that is assigned to the fido2100 DLR switch
calls this function. It reads the fido2100 DLR switch event
register and routes the particular fido2100 DLR switch interrupt
event to the rest of the DLR library. The DLR library handles the
interrupt acknowledge required by the fido2100 DLR switch, but it
does not acknowledge the underlying physical CPU interrupt.

The fido2100 DLR switch interrupt pin is routed to an available
CPU interrupt. The user code must enable, disable, detect, and

otherwise manage the physical interrupt interface (vector table
address, interrupt acknowledge, and so on) as required. Then the
interrupt handler must process the EtherIpRingProtocol_
HandleIrq().

The interrupt handler, EtherIpRingProtocol_HandleIrq(), reads
the fido2100 DLR switch event register and calls one or more of
the following functions:

 EtherIpRingProtocol_HandleLinkStateIrq()
 EtherIpRingProtocol_HandleBeaconTimeoutIrq()
 EtherIpRingProtocol_HandleBeaconReceivedIrq()
 EtherIpRingProtocol_HandleBeaconStateIrq()
 EtherIpRingProtocol_HandlePeriodicTimerIrq()

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido5100?doc=UG-1228.pdf
http://www.analog.com/fido5200?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/UG-1285?doc=UG-1228.pdf
http://www.analog.com/UG-1285?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 14 of 18

ETHERNET LINK UP/DOWN
To support the DLR protocol, the detection of the Ethernet link
state (up/down) is required. For both the fido2100 DLR switch
and the REM switch, the Ethernet link active signal (usually used as
a LED output) provided by the PHY must be routed to the link
status input signal on the switch. (There are inputs for each port
on both switches.) The detection of Ethernet link state is also
documented in the REM Switch Driver User Guide. When the
link state changes, the signal changes levels, which triggers an
interrupt to the CPU. In the case of the fido2100 DLR switch, the
CPU interrupt handler function then must acknowledge the CPU
interrupt and call the EtherIpRingProtocol_HandleLinkStateIrq()
function, which acknowledges the interrupt in the fido2100 DLR
switch. Then, read the fido2100 DLR switch event register to
determine the link status and call the EtherIpRingProtocol_
HandleLinkStateChange() function. In the case of the REM
switch, the interrupt handler also must acknowledge the CPU
interrupt but can then call the

EtherIpRingProtocol_HandleLinkStateChange() function directly.
In both cases, this function stores the link state variables and posts,
a semaphore that LinkMonTask() is pending on. This task then
wakes and calls EtherIpRingProtocol_ProcessLinkState() to
complete the processing as described in detail in this section. For
link up and link down detection, it is not necessary to interact
directly with the PHY. When a link up is detected, it is necessary to
determine the link speed and duplex because the Ethernet switch
(both types) must be provided with this information. For this
purpose, it is required to interact with the PHY. The system
must be provided with a method to read the registers in the
PHY. This method can be provided by a serial communications
protocol using the management data input/output (MDIO) pin
and the management data clock (MDC) pin on the PHY. The
MDIO pin and MDC pin functionality are not managed by the
DLR library.

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/UG-1285?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 15 of 18

MODIFYING THE DLR SWITCH SUPPORT LIBRARY FOR USE WITHOUT AN RTOS
INTRODUCTION
The intended use of the fido2100 DLR switch library is in a system
that provides some of the features of an RTOS. When an RTOS is
not available, it is possible to make some simple modifications to
the DLR library (specifically, to the RTOS porting layer) to remove
these requirements. This section describes how the RTOS features
are used within the library and provides some suggestions to guide
the user through modifying the library for use without an RTOS.

The DLR library header file, BspEnetSwitch.h, has a list of the
RTOS porting layer functions used within the library. These
functions are shown in Table 3 along with suggestions for the
library modifications and the corresponding application
implementation details.

TASK AND THREAD MODIFICATIONS
The Background Information section through the Miscellaneous
Modifications section show the modifications that are made to
the task and thread related porting layer functions to use the
fido2100 support library without an RTOS.

BSP_CreateTask() Porting Layer Function

The BSP_CreateTask() porting layer function is not needed.
Replace it with an empty stub.

Table 3. Threads in the DLR Library
Task Function What Triggers It What to Change
EtherIpRingProtocol_MainTask() Pends on a RTOS provided event queue Use a circular array of integers (events)
EtherIpRingProtocol_LinkMonTask() Pends on a RTOS provided semaphore Use a simple Boolean flag
EtherIpRingProtocol_TimerTask() Pends on a RTOS provided timer Delete timer and call periodically in main loop
bsp_EsStatCountTask() Pends on a RTOS provided timer Delete timer and call periodically in main loop

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 16 of 18

BACKGROUND INFORMATION
There are only a small number of tasks (threads) used within
the DLR library. These tasks are described in Table 3.

In the original DLR library, these tasks are implemented with a
standard while (1) threading loop, but they can be changed to
become simple subroutines by removing that code. After that
change, these subroutines are then called by the application
main executive loop. The main issue here is to ensure these
functions are called on a regular basis and often enough to
perform their intended functions.

The first two of these tasks are triggered by functional stimuli
(that is, they are not time-based) and can therefore become
standard functions called conditionally based on standard
variables in memory. The events referred to in this library are a
set of enumerations (integers). Therefore, EtherIpRingProtocol_
MainTask() can be made to look at integers placed into a simple
circular array rather than an RTOS queue. The semaphore
triggers EtherIpRingProtocol_LinkMonTask() can become a
simple Boolean flag that conditionally calls the resulting
subroutine.

Timers provided by an RTOS trigger the other two tasks.
Because RTOS timers are not available, it becomes necessary to
find another method, but only one of these tasks requires any
real timing precision.

For EtherIpRingProtocol_TimerTask(), it is necessary to continue
to use a fairly precise timer. The mechanism to create this timer
depends on the system resources. The task expects to be called
once every 10 ms. If this task is called every 10 ms, there is
nothing more to do. If this is not the rate at which this task is
called, then it is necessary to modify the library timer macros.

For bsp_EsStatCountTask(), precise timing is not critical. It
periodically reads the Ethernet link statistics counters within the
fido2100 DLR switch and as long as it is called at least once every
5 sec, these counters are read correctly. Modify this task to remove
the while (1) thread loop code, delete the existing RTOS timer,
and call this periodically (for example, at least once every 5 sec)
within the application main executive loop.

The purpose of EtherIpRingProtocol_TimerTask() is to monitor
several other DLR library provided timers. These timers are not
dependent on an RTOS but are instead completely contained
within the DLR library. Other than possibly changing the timer
rate, no code changes to these timers are necessary. The timers
themselves are merely data structures and are triggered when
necessary by the DLR library using the
EtherIpRingProtocol_StartTimer() function. When the library
uses a timer, it specifies the desired timer delay in milliseconds
using a value from a set of timer delay variables (actually macros)
in the EtherIpRingProtocol.c file.

One time use case is shown by the following code:

#define
NEIGHBOR_CHECK_TIMEOUT_TICKS
((BSP_GetTicksPerSec()/10)/10)

This timer is intended to fire after a 100 ms delay. The macro gets
the system base tick count using BSP_GetTicksPerSec() and then
divides that by 10 to get the base timer count for 100 ms. Then,
this result is divided again by 10, because EtherIpRingProtocol_
TimerTask() examines the timers once every 10 ms. The other
macros are similar, but all require the timer task to be called at
the expected rate.

For instance,

BSP_GetTicksPerSec()/10 = (system ticks per second)/
(time fires per second)

Calculate as follows:

System Ticks/Timer Fire

System Ticks per Timer Fire/10 = ?

(System Ticks per Timer Fire)/(System Ticks per Timer
Interval) = Timer Intervals per Timer Fire

This number is the number of timer task iterations before this
particular timer is triggered.

Relatively long timer delays can also be defined by the following
code; #define yields a 30 second delay:

#define
RING_RAPID_FAULTS_TIMEOUT_TICKS
((BSP_GetTicksPerSec()*30)/10)

SEMAPHORE MODIFICATIONS
In the modified library for use without an RTOS, the
BSP_SemaphoreInit() section through the Background
Information section show the modifications that are made to
the semaphore related porting layer functions to use the
fido2100 support library without an RTOS.

BSP_SemaphoreInit() Porting Layer Function

The BSP_SemaphoreInit() porting layer function is no longer
needed. Replace it with an empty stub.

BSP_SemaphoreWait() Porting Layer Function

Replace the BSP_SemaphoreWait() porting layer function with
an equivalent function that accomplishes the following tasks:

 Disable interrupts
 Examine flag (and clear it if set)
 Reenable interrupts
 Return flag

BSP_SemaphorePost() Porting Layer Function

Replace the BSP_SemaphorePost() porting layer function with an
equivalent function that accomplishes the following tasks:

 Disable interrupts
 Set flag
 Reenable interrupts
 Return

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

DLR Support Library User Guide UG-1228

Rev. D | Page 17 of 18

Background Information

There is only a single semaphore used in the DLR library:
linkMonTaskSem. It is used to wake EtherIpRingProtocol_
LinkMonTask(). If that task is changed into a main loop subroutine,
a flag can be used in place of the semaphore to conditionally call
the subroutine. The only caution is that this semaphore is posted in
EtherIpRingProtocol_HandleLinkStateChange(), which is usually
called in an application provided interrupt handler. Take care to
ensure the flag is protected from simultaneous access by disabling
interrupts around the code that sets the flag.

MUTEX MODIFICATIONS
The following sections show the modifications that are made to
the mutex related porting layer functions to use the fido2100
support library without an RTOS.

BSP_MutexInit() Porting Layer Function

In the modified mutex, the BSP_MutexInit() porting layer
function is no longer needed. Replace it with an empty stub.

BSP_MutexLock() Porting Layer Function

In the modified mutex, the BSP_MutexLock() porting layer
function is no longer needed. Replace it with an empty stub.

BSP_MutexUnlock() Porting Layer Function

In the modified mutex, the BSP_MutexUnlock() porting layer
function is no longer needed. Replace it with an empty stub.

Background Information

There is only one mutex used in the DLR library: timerMutex. It
protects the m_tmrList array. The m_tmrList array is a set of
data structures that manages the DLR library internal timers.
These timers keep track of the various time related DLR
protocol functions. If the EtherIpRingProtocol_TimerTask is
converted into a main loop subroutine, then less sophisticated
protection is needed. Most likely, all that is required is to disable
interrupts around the access to these data structures within
EtherIpRingProtocol_TimerTask().

EVENT MODIFICATIONS
The BSP_GetEvent() section through the Background Information
section show the modifications that are made to the event related
porting layer functions to use the fido2100 support library
without an RTOS.

BSP_GetEvent() Porting Layer Function

Replace the BSP_GetEvent() porting layer function with an
equivalent function that accomplishes the following tasks:

 If the event array is not empty, do the following:
 Disable interrupts
 Get an event ID from event array
 If necessary, circularize the array
 Reenable interrupts
 Return event ID

 If the event analysis is empty, do the following:
 Return zero

BSP_PostEvent() Porting Layer Function

Replace the BSP_PostEvent() porting layer function with an
equivalent function that accomplishes the following tasks:

 Disable interrupts
 Place provided event ID into event array
 Circularize the array if necessary
 Reenable interrupts
 Return

Background Information

In the DLR library, events trigger EtherIpRingProtocol_MainTask()
to perform various operations. An event is an integer ID code that
indicates an event type. (A list of the defined event types can be
found in EtherIpRingProtocol.c.) When not using an RTOS,
the event queue can become a simple, circular array that holds
these integers. An array size of 16 integers is sufficient. After this
change is made, the get and post functions can become subroutines
to access this array (as a FIFO) and to keep it circular.

TIMER MODIFICATIONS
The BSP_TimerCreate() section through the Background
Information section show the modifications that are made to
the timer related porting layer functions to use the fido2100
support library without an RTOS.

BSP_TimerCreate() Porting Layer Function

In the modified timer, the BSP_TimerCreate() porting layer
function is no longer needed. Replace it with an empty stub.

BSP_TimerWait() Porting Layer Function

In the modified timer, the BSP_TimerWait() porting layer
function is no longer needed. Replace it with an empty stub.

Background Information

There is a pair of RTOS provided timers used in the DLR library:
one is in EtherIpRingProtocol_TimerTask(), and the other is in
bsp_EsStatCountTask(). Because both timers are used to pace
these tasks, and the tasks are to be converted to periodic subroutine
calls in the main loop executive, there is no longer any need for
these RTOS timers; they can be removed.

The DLR library internal timers (see the wdTimer struct) are
distinct from the RTOS provided system timers. These timers
are completely self-contained within the library. In other words,
the timers are merely an array of data structures that are scanned
periodically to trigger various events on a timed basis.

http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf
http://www.analog.com/fido2100?doc=UG-1228.pdf

UG-1228 DLR Support Library User Guide

Rev. D | Page 18 of 18

MISCELLANEOUS MODIFICATIONS
BSP_GetTicksPerSec() Porting Layer Function

Ensure the BSP_GetTicksPerSec() function returns an appropriate
number for the given system architecture.

BSP_EsEnablePort()Porting Layer Function

The BSP_EsEnablePort() function is unaffected. No changes are
needed.

BSP_EsDisablePort()Porting Layer Function
The BSP_EsDisablePort() function is unaffected. No changes
are needed.

Background Information
Strictly speaking, these functions are not RTOS related. The
BSP_GetTicksPerSec() function returns a numeric constant that
represents the rate of the system timer tick. It is a requirement to
have some sort of periodic timer that sets a system timer tick value.
Usually, the implementation of the periodic timer is a simple
hardware timer triggering an interrupt on a periodic basis. This
function returns the ticks per second rate of this timer tick. The
other functions do not require any changes.

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry,
damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth
below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and
agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal
place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-
sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose
referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease,
display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer,
their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI.
CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any
other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer
may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but
not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS
Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE
EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS,
ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A
PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
RESULTING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM
ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and
that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the
Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and
Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly
disclaimed.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 UG16477-0-5/18(0)

www.analog.com

	Features
	General Description
	Table of Contents
	Revision History
	Introduction
	DLR Porting Layer Support Code
	fido2100 DLR Switch Interrupt Event Handling
	DLR Packet Processing
	DLR Protocol Implementation
	DLR Object Support

	Using the DLR Library
	Use Cases
	Compiling and Linking
	Adjustments for Different Hardware Platforms
	REM Driver Dependencies

	Library File Set General Description
	EtherIpRingUtils.h
	EtherIpRingRx.h/c
	BspEnetSwitch.h/c
	EtherIpRingProtocol.h/c
	EtherIpRingObject.h/c

	Porting Layer Detailed Description
	Implementation Dependent Board Support Porting Layer Functions
	BSP_EsInitialize()
	BSP_SetupChipSelect()
	BSP_DisableSwitchInterrupts() and BSP_EnableSwitchInterrupts()
	BSP_GetMacAdrs()
	BSP_EsUpdateLinkSpeedDuplex()
	BSP_Put_DLR_Packet()

	Implementation Dependent RTOS Support Porting Layer Functions
	Implementation Independent DLR Library Functions
	BSP_GetEvent()
	BSP_PostEvent()
	BSP_Get_DLR_Packet()
	BSP_EsMulticastAdrsAdd and BSP_EsMulticastAdrsDel
	BSP_EsLinkUp() and BSP_EsLinkDown()
	BSP_NotifyLinkStateChange()
	BSP_EsDumpMediaCount()
	BSP_EsEnablePort() and BSP_EsDisablePort()

	Implementation Independent Static Functions in the .c File
	bsp_EsStatCountTask()
	bsp_EsCalcCrc32()
	bsp_EsMcAdrsFind()
	bsp_EsMcAdrsFindFirstFree()

	Implementation Independent Static Inline Functions in the .h File

	Initialization
	Interrupts
	Ethernet Link Up/Down
	Modifying the DLR Switch Support Library for Use Without an RTOS
	Introduction
	Task and Thread Modifications
	BSP_CreateTask() Porting Layer Function

	Background Information
	Semaphore Modifications
	BSP_SemaphoreInit() Porting Layer Function
	BSP_SemaphoreWait() Porting Layer Function
	BSP_SemaphorePost() Porting Layer Function
	Background Information

	Mutex Modifications
	BSP_MutexInit() Porting Layer Function
	BSP_MutexLock() Porting Layer Function
	BSP_MutexUnlock() Porting Layer Function
	Background Information

	Event Modifications
	BSP_GetEvent() Porting Layer Function
	BSP_PostEvent() Porting Layer Function
	Background Information

	Timer Modifications
	BSP_TimerCreate() Porting Layer Function
	BSP_TimerWait() Porting Layer Function
	Background Information

	Miscellaneous Modifications
	BSP_GetTicksPerSec() Porting Layer Function
	BSP_EsEnablePort()Porting Layer Function
	BSP_EsDisablePort()Porting Layer Function
	Background Information

