

LTM4658

Low V_{IN}, High Efficiency 10A Step-Down DC/DC µModule Regulator

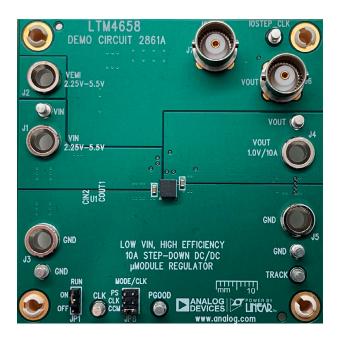
DESCRIPTION

Demonstration circuit 2861A features the LTM®4658, a high efficiency, 10A step-down power μ Module® regulator. The input voltage range is from 2.25V to 5.5V. The output voltage range is 0.5V to V_{IN}. Derating may be necessary for certain V_{IN}, V_{OUT}, frequency and thermal conditions. The DC2861A offers the SSTT pin allowing the user to program output tracking, soft-start period and die temperature monitoring.

The MODE/SYNC pin either synchronizes the switching frequency to an external clock, is a clock output, or sets the PWM mode. It can be externally synchronized to a clock from 1MHz to 2.25MHz. The PWM modes of operation are forced continues mode for low noise or pulse-skipping (PS) mode for high efficiency at light load. The LTM4658 defaults to forced continues mode during synchronization. The LTM4658 operates in pulse-skipping

mode when both the FREQ and MODE/SYNC pins are connected to V_{IN} .

LTM4658 has internal compensation circuit which guarantees sufficient stability margins and good transient performance with a wide range of output capacitors, even with all ceramic output capacitors.


For output loads that demand more than 10A of current, multiple LTM4658s can be paralleled to run out of phase to provide more output current without increasing input and output voltage ripples.

The LTM4658 data sheet must be read in conjunction with this demo manual prior to working on or modifying demo circuit DC2861A.

Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

BORRD PHOTO

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

PARAMETER	CONDITIONS/NOTES	MIN	TYP	MAX	UNITS
Input Voltage Range		2.25		5.5	V
Output Voltage		0.985	1.0	1.015	V
Maximum Continuous Output Current	Derating is Necessary for Certain Operating Conditions. See Data Sheet for Details.		10		ADC
Operating Frequency			2		MHz
Efficiency	V _{IN} = 3.3V, V _{OUT} = 1.0V, I _{OUT} = 10A	84.5	56 (See Figu	re 2)	%
Load Transient	V _{IN} = 3.3V, V _{OUT} = 1.0V, I _{STEP} = 0A to 5A	124 (See Figure 5)		mV	

QUICK START PROCEDURE

Demonstration circuit 2861A is an easy way to evaluate the performance of the LTM4658. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions for a typical application:

RUN	MODE/CLK
ON	CCM

- 2. With power off, connect the input power supply, load and meters as shown in Figure 1. Preset the load to 0A and V_{IN} supply to 3.3V.
- 3. Turn on the power supply at the input. The output voltage should be $1.0V \pm 1.5\%$ (0.985V to 1.015V).
- Vary the input voltage from 2.25V to 5.5V and adjust the load current from 0A to 10A. Observe the output voltage regulation, ripple voltage, efficiency, and other parameters.
- 5. (Optional) To set LTM4658 to pulse-skipping mode, not only the MODE pin jumper needs to be put on "PS", but also FREQ pin needs to be connected to V_{IN} . See Table 1.

Table 1. LTM4658 Single Phase Configuration

	•	_		
FREQ PIN CONNECTION	MODE/SYNC PIN CONNECTION	MODE OF OPERATION	SWITCHING FREQUENCY	
V _{IN}	Clock Input	Forced Continuous	External Clock	
V _{IN}	AGND	Forced Continuous	1 2 MHZ 116 (211)	
V _{IN}	V _{IN}	Pulse-Skip	2MHz Default	
Resistor to AGND	Clock Output	Forced R _{FREQ} Continuous Programm		

- 6. (Optional) For optional load transient test, apply an adjustable pulse signal between IOSTEP_CLK and GND test points. The pulse amplitude sets the load step current amplitude. Keep the pulse width short (<1ms) and pulse duty cycle low (<5%) to limit the thermal stress on the load transient circuit.
- 7. (Optional) LTM4658 can be synchronized to an external clock signal. Place the JP8 jumper on CLK and apply a clock signal on the CLK test point.
- 8. (Optional) The output of LTM4658 can track another voltage. This external voltage can be connected to the test point TRACK on this board.

QUICK START PROCEDURE

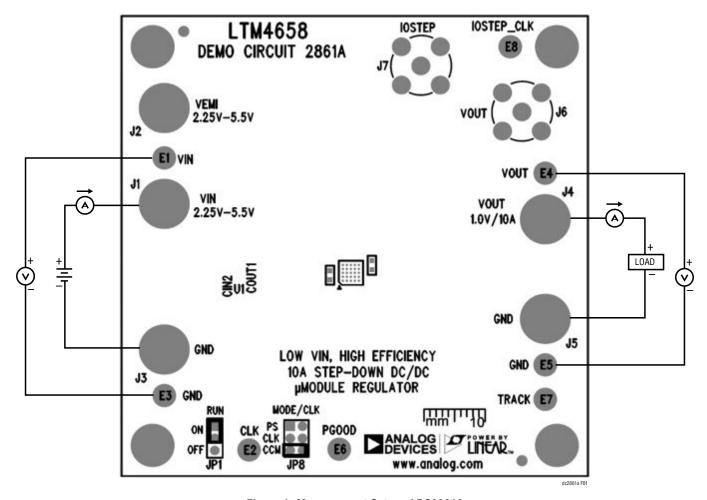


Figure 1. Measurement Setup of DC2861A

QUICK START PROCEDURE

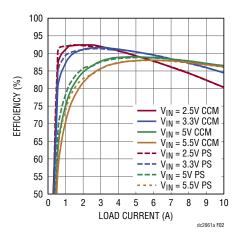


Figure 2. Measured Efficiency at $f_{SW} = 2MHz$

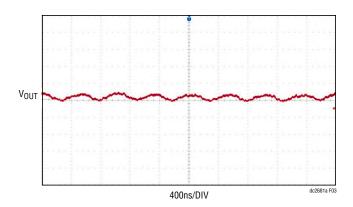


Figure 3. Output Voltage Ripple at V_{IN} = 3.3V, V_{OUT} = 1.0V, I_{OUT} = 0A

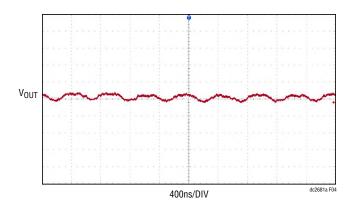


Figure 4. Output Voltage Ripple at V_{IN} = 3.3V, V_{OUT} = 1.0V, I_{OUT} =10A

QUICK START PROCEDURE

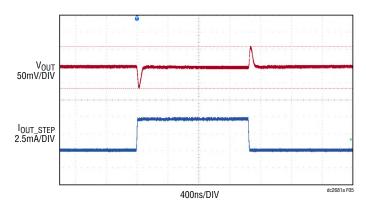
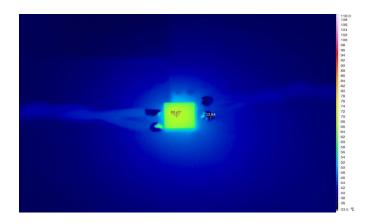
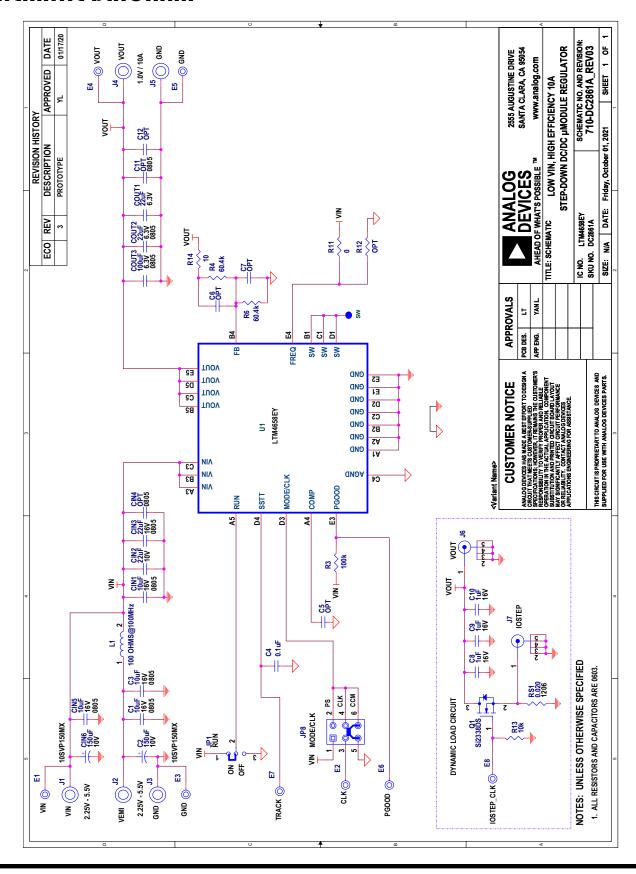


Figure 5. Load Transient at V_{IN} = 3.3V, V_{OUT} = 1.0V, $IOUT_STEP$ = 0A to 5A




Figure 6. Thermal Image of LTM4658 at V_{IN} = 3.3V, V_{OUT} = 1.0V, I_{OUT} = 10A (T_A = 25°C, No Forced Airflow)

DEMO MANUAL DC2861A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Require	d Circuit	Components			
1	4	C1, C3, CIN1, CIN5	CAP, 10µF, X7R, 16V, 10%, 0805	TAIYO YUDEN, EMK212BB7106MG	
2	2	C2, CIN6	CAP., 150µF, ALUM POLY, OS-CON, 10V, 20%, 8mm × 6.9mm	PANASONIC, 10SVP150MX	
3	1	C4	CAP., 0.1µF, X7R, 6.3V, 10%, 0603	AVX, 06036C104KAT2A	
4	1	CIN2	CAP., 22µF, X5R, 10V, 20%, 0603	AVX, 0603ZD226MAT2A	
5	1	CIN3	CAP., 22µF, X5R, 16V, 10%, 0805	TDK, C2012X5R1C226K125AC	
6	1	COUT1	CAP., 22µF, X5R, 6.3V, 20%, 0603	MURATA, GRM188R60J226MEA0D	
7	1	COUT2	CAP., 22µF, X5R, 6.3V, 20%, 0805	KEMET, C0805C226M9PACTU	
8	1	COUT3	CAP., 100μF, X5R, 6.3V, 20%, 0805	MURATA, GRM21BR60J107ME15K	
9	1	R3	RES., 100k, 1%, 1/10W, 0603	STACKPOLE ELECTRONICS, INC., RMCF0603FG100K	
10	2	R4, R6	RES., 60.4k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW060360K4FKEA	
11	1	R11	RES., 0Ω, 1/10W, 0603, AEC-Q200	VISHAY, CRCW06030000Z0EAHP	
12	1	U1	IC, 5.5V _{IN} , 10A μModule in 4mm × 4mm PACKAGE, BGA	ANALOG DEVICES, LTM4658EY#PBF	
Addition	al Demo	Board Circuit Componer	its		
1	0	C5, C6, C7, C12	CAP., OPTION, 0603		
2	0	C11, CIN4	CAP., OPTION, 0805		
3	1	L1	IND., 100Ω AT 100 MHz, FERRITE BEAD, 25%, 8A, 6 m Ω , 1812	WURTH ELEKTRONIK, 74279226101	
4	1	Q1	XSTR., MOSFET, N-CH, 30V, 5.5A, SOT-23-3	VISHAY, Si2338DS-T1-GE3	
5	0	R12	RES., OPTION, 0603		
6	3	C8, C9, C10	CAP., 1µF, X7R, 16V, 10%, 0603	KEMET, C0603C105K4RAC7867	
7	1	R13	RES., 10k, 1%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW060310K0FKEA	
8	1	R14	RES., 10Ω, 1%, 1/10W, 0603	VISHAY, CRCW060310R0FKEA	
9	1	RS1	RES., 0.02Ω, 1%, 1W, 1206, PWR, METAL, SENSE, AEC-Q200	VISHAY, WSLP1206R0200FEA	
lardwar	e: For D	emo Board Only			
1	8	E1, E2, E3, E4, E5, E6, E7, E8	TEST POINT, TURRET, 0.094" MTG. HOLE, PCB 0.062" THK	MILL-MAX, 2501-2-00-80-00-00-07-0	
2	5	J1, J2, J3, J4, J5	CONN., BANANA JACK, FEMALE, THT, NON-INSULATED, SWAGE, 0.218"	KEYSTONE, 575-4	
3	2	J6, J7	CONN., RF, BNC, RCPT, JACK, 5-PIN, ST, THT, 50Ω	AMPHENOL RF, 112404	
4	1	JP1	CONN., HDR, MALE, 1×3, 2mm, VERT, ST, THT, NO SUBS. ALLOWED	WURTH ELEKTRONIK, 62000311121	
5	1	JP8	CONN., HDR, MALE, 2×3, 2mm, VERT, ST, THT	WURTH ELEKTRONIK, 62000621121	
6	4	MP1, MP2, MP3, MP4	STANDOFF, NYLON, SNAP-ON, 0.50"	KEYSTONE, 8833	
7	2	XJP1, XJP8	CONN., SHUNT, FEMALE, 2-POS, 2mm	WURTH ELEKTRONIK, 60800213421	

SCHEMATIC DIAGRAM

DEMO MANUAL DC2861A

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND TIS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

Rev. 0