
Reference Manual
ADIN2299

RapID Platform Generation 2 (RPG2) Reference Manual

analog.com PLEASE SEE THE LAST PAGE FOR AN IMPORTANT WARNING AND
LEGAL TERMS AND CONDITIONS.

Rev. A | 1 of 180

INTRODUCTION

The RapID Platform Generation 2 (RPG2) ADIN2299 is a network interface solution that enables connectivity to devices that do not have
this capability. The ADIN2299 supports multiple industrial Ethernet protocols with the same host processor software platform. The user simply
interfaces with the ADIN2299 over a universal asynchronous receiver transmitter (UART) interface, a serial peripheral interface (SPI), or an
Ethernet interface (raw socket connections with no need for a TCP/IP stack). The ADIN2299 can be used as a modular solution (see the
ADIN2299 data sheet) or as an embedded design version. The same software architecture outlined in this reference manual works for both the
ADIN2299 as a module and as an embedded design. Any differences are noted in this reference manual.

http://www.analog.com/en/index.html
https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
TABLE OF CONTENTS

analog.com Rev. A | 2 of 180

Introduction..1
RPG2 RapID Platform Generation 2 User
Guide... 4
Evaluation Kit Options..4
Evaluation Kit Contents......................................4
Additional Hardware Needed............................. 4
Documents Needed..4
General Description..4
Evaluation Kit Photograph..................................5
Evaluation Board Setup......................................5
Protocol Specific Quickstart Guides...................7

RPG2 EtherCAT Quickstart Guide........................ 8
Features... 8
Evaluation Kit Contents......................................8
Equipment Needed...8
Software Needed..8
General Description..8
EtherCAT Example Application Setup................8
Network Interface Example Application
Suite With PC Running TwinCAT................... 10

Next Step: The Design Phase..........................33
RPG2 Profinet Quickstart Guide..........................34

Features... 34
Equipment Needed...34
Software Needed..34
General Description..34
Evaluation Kit Setup for PROFINET.................34
Network Interface Application Suite With a
PC Running the Siemens TIA Portal..............35

Next Step: The Design Phase..........................49
RPG2 EtherNet IP Quickstart Guide................... 50

Features... 50
Equipment Needed...50
Software Needed..50
General Description..50
Evaluation Kit Setup for EtherNet/IP................ 50
Network Interface Application Suite With a
PC Running RS Logix.................................... 52

Next Step: Design Phase................................. 56
RPG2 Unified Interface User Guide.................... 58

Introduction...58
Block Diagram for Embedded Design and
Module Users... 58

Unified Interface Background...........................58
Design Flow Using the Unified Interface.......... 59
Application Processor Link Porting Layer.........59
Porting and Customization............................... 61
Unified Interface API.. 69
Application Processor Link Type...................... 80

RPG2 I/O Configuration Tool User Guide............82
General Description..82
RPG2 I/O Configuration Tool Functionality
and Installation... 82

Configuration Objects.......................................82
Using the RPG2 I/O Configuration Tool............90
Example Configurations................................... 95
PROFINET GSDML Files...............................109
Ethernet/IP EDS Files.....................................110
EtherCAT ESI Files...115
POWERLINK XDD Files.................................129

RPG2 Programming User Guide....................... 132
Features... 132
Equipment Needed...132
Documents Needed..132
Software Needed..132
General Description..132
Communications Controller Applications
and Images...133

Needed Images for the RPG2 Solution..........134
Programming by Means of the API................ 136
Programming by Means of the Embedded
Web Server.. 138

Programming by Means of JTAG................... 140
Programming Methods by Use Case............. 142
Programming Methods by State of Design.....143

RPG2 Hardware Design Integration Guide....... 145
Features... 145
Evaluation Kit Contents..................................145
Equipment Needed...145
Documents Needed..145
Software Needed..145
General Description..145
Development Overview.................................. 145
Introduction...146
Hardware Integration......................................148
Software Integration....................................... 151
Considerations for Production and
Maintenance...152

Connecting Timers for RPG2 Embedded
Reference Design...153

LED Behavior... 154
RPG2 Web Server User Guide..........................158

Features... 158
Equipment Needed...158
Documents Needed..158
Software Needed..158
General Description..158
Introduction...158

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
TABLE OF CONTENTS

analog.com Rev. A | 3 of 180

RPG2 Web Server Security............................159
CI Item, Name Reference Syntax...................161
NonCI Item, Name Syntax..............................163
SSI Directives...164
CGI Functions.. 165

Example RPG2 Web Server Content............. 169
Firmware Upgrade..177
MbedTLS..178
Loading RPG2 Web Server Files................... 178

Notes... 180

REVISION HISTORY

2/2024—Rev. 0 to Rev. A
Changes to Features Section.. 34
Changes to Software Needed Section...34
Changed Network Interface Application Suite With a PC Running the TIA Portal Section to Network
Interface Application Suite With a PC Running the Siemens TIA Portal Section...35

Changes to Network Interface Application Suite With a PC Running the Siemens TIA Portal Section.........35
Changes to Installing the General Description File Section...41
Added Configuring the Optional PROFINET IRT Section..46
Added Figure 90 to Figure 92; Renumbered Sequentially...47
Changes to Table 14..83
Added Current IRT Example PROFINET Configuration Section and Figure 129 to Figure 131....................98
Changes to PROFINET GSDML Files Section..109
Changes to Table 27.. 110
Change to Table 45..150

7/2023—Revision 0: Initial Version

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 RAPID PLATFORM GENERATION 2 USER GUIDE

analog.com Rev. A | 4 of 180

EVALUATION KIT OPTIONS
► EtherCAT: EV-RPG2-ECZ
► EtherNet/IP: EV-RPG2-ENZ
► Profinet: EV-RPG2-PNZ
► Powerlink: EV-RPG2-PLZ
► Modbus: EV-RPG2-MBZ

EVALUATION KIT CONTENTS
► Baseboard

► RapID Generation 2 module installed and preloaded with protocol specific software
► Wall mount AC adapter, 90 V ac to 264 V ac to 12 V dc, 12 W, 1 A
► 4 power supply plug adapters (A, C, G, and I types)
► 1 USB A male to USB micro B male cable
► Ethernet cable

ADDITIONAL HARDWARE NEEDED
► PC with Windows® 10 operating system

DOCUMENTS NEEDED
► Protocol specific user guides are available in this reference manual as follows:

► RPG2 EtherCAT Quickstart Guide section
► RPG2 EtherNet IP Quickstart Guide section
► RPG2 Profinet Quickstart Guide section

GENERAL DESCRIPTION
This user guide describes how to set up the provided hardware of the evaluation kit and establish the link type specific host connection and
connect the evaluation board to an industrial Ethernet network.
The operation of the EV-RPG2 boards vary by Industrial Ethernet Protocol, and separate user guides are available for each protocol on this
reference manual.
The EV-RPG2 evaluation kits provide an end to end evaluation of the communication path from the host processor to the programmable logic
controller (PLC) or PC-based tool.
The EV-RPG2 evaluation kits can completely verify the communication path between the host processor and a PLC before integrating the
network interface into the end field device.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 RAPID PLATFORM GENERATION 2 USER GUIDE

analog.com Rev. A | 5 of 180

EVALUATION KIT PHOTOGRAPH
Figure 1 shows the contents of the evaluation kit.

Figure 1. EV-RPG2 Evaluation Kit Example

EVALUATION BOARD SETUP

Electrostatic Sensitive Device (ESD) Warning
Handle the hardware in this evaluation kit in accordance with proper ESD device handling techniques. Use a grounding wrist strap when using
this evaluation board to prevent accidental damage to the hardware.

Power Supply and Grounding
A wall adapter power supply is included with the evaluation kit. This power supply is 12 V, 12 W, 1 A, and attaches to the barrel connector on
the evaluation board. A screw terminal on the evaluation board allows attachment of a lab benchtop power supply. For either type of power
supply connection, the input voltage to the board must be in a voltage range of 9 V to 42 V.

Hardware Setup
The following steps detail the hardware setup process. The evaluation kit comes preinstalled jumpers and preset switches. To set up the
evaluation kit, take the following steps.
1. Plug the provided AC adapter into the wall socket, and connect the barrel connector of the AC adapter to the baseboard, as shown in

Figure 2. The Power Valid LED illuminates blue. At this point, the evaluation board is powered.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 RAPID PLATFORM GENERATION 2 USER GUIDE

analog.com Rev. A | 6 of 180

Figure 2. Power Cable Connection and Power Valid LED
2. Switch the Power Enable switch on the baseboard to the ON position, as shown in Figure 3. The 3.3 V LED (V702) and the 5.0 V LED

(V703) illuminate blue.

Figure 3. Power Switch in ON position and 5 V and 3.3 V LEDs
3. If it is necessary to reset the evaluation board, press the Reset switch, which illuminates two red LEDs, as shown in Figure 4.

Figure 4. Reset Switch Location and Reset LEDs

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 RAPID PLATFORM GENERATION 2 USER GUIDE

analog.com Rev. A | 7 of 180

Connecting the Ethernet Host Interface
Install the provided Ethernet cable between the host PC and the host port of the evaluation board as shown in Figure 5.

Figure 5. Ethernet Cable Connection

Connecting to the Industrial Ethernet
Use the two industrial Ethernet ports on the baseboard to connect the evaluation board to an industrial Ethernet network, as shown in Figure 6.
The two industrial Ethernet ports are labeled Port 1 and Port 2 on the evaluation board.

Figure 6. Network Interface Port Location

PROTOCOL SPECIFIC QUICKSTART GUIDES
After running the application example, the user can refer to the protocol specific user guide for an example of the network communication.
The evaluation kit and protocol specific user guide must be used in conjunction with the RPG2 Hardware Design Integration Guide section to
develop field device products. These user guides are available in this reference manual.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 8 of 180

FEATURES
► Cyclic input data transfer up to 1440 bytes
► Cyclic output data transfer up to 1440 bytes
► Cycle time down to 1 ms
► 8 SyncManager entities
► 8 FMMU entities
► Distributed clock support
► Supports the modular device profile (MDP) and the CAN application protocol over EtherCAT (CoE)

EVALUATION KIT CONTENTS
► 1 baseboard with the RPG2 module installed with the protocol specific software preloaded
► 1 wall mount AC adapter, 90 VAC to 264 VAC to 12 VDC, 12 W, 1 A
► 4 power supply plug adapters (Type A, Type C, Type G, and Type I)
► 1 USB A male to USB Micro B male cable
► 1 Ethernet cable

EQUIPMENT NEEDED
► EV-RPG2-ECZ evaluation kit
► 1 PC (2 PCs recommended for simplified use of the evaluation board)

SOFTWARE NEEDED
► Network Interface Example Application Suite
► Beckhoff TwinCAT Version 4024.20 or higher version for best results
► WinPCap

GENERAL DESCRIPTION
The RapID Platform Generation 2 (RPG2) module is a pretested, industrial network interface designed to manage industrial protocols and
network traffic. The RPG2 module supports PROFINET®, PROFINET isochronous real-time (IRT), Ethernet/IP®, Ethernet/IP with device level
ring (DLR), EtherCAT®, and Modbus/TCP. The RPG2 module uses the Unified Interface to communicate with different protocols.
The Unified Interface is a custom protocol by Analog Devices, Inc., that allows interaction between an application processor and the RPG2
module. The Unified Interface is agnostic of the industrial protocol.
The Unified Interface ensures that the application processor hardware and software interface is not required to change when switching
or updating protocols. The RPG2 module connects to an application processor via a universal asynchronous receiver transmitter (UART),
Ethernet, or serial peripheral interface (SPI).
The EV-RPG2-ECZ evaluation kit provides end to end evaluation of the communication path from the application processor to the programma-
ble logic controller (PLC) over the industrial Ethernet interface by using the Network Interface Example Application Suite. This user guide
describes how to use the EV-RPG2-ECZ evaluation kit to set up and run a PLC example application.
For the example described in this user guide, the application processor is a PC and communicates to the RPG2 module via an Ethernet
network interface card (NIC).

ETHERCAT EXAMPLE APPLICATION SETUP
Refer to the RPG2 RapID Platform Generation 2 User Guide section to set up the hardware for the EV-RPG2-ECZ. The default link type is
Ethernet. Figure 7 and Figure 8 show the hardware setup using the default link type, depending on whether one or two PCs are in use. If users
want to change the link type to UART, refer to the Link Configuration File section for instructions on how to reprogram the EV-RPG2-ECZ.
The user can choose to run the TwinCAT application and Network Interface Example Application Suite on a single PC. However, it is ideal to
use two PCs so that each application is clearly distinguished on each PC.
This user guide describes the two PC configuration to set up the TwinCAT application and run the Network Interface Example Application Suite.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 9 of 180

Note that in Figure 7 and Figure 8, the A6/7 LED is green, which indicates that the evaluation board is preloaded with EtherCAT and that the
startup process is complete.

Figure 7. EtherCAT Example Application Setup, Ethernet (Default) Link with Two PCs (ESI Is EtherCAT Slave Information)

Figure 8. EtherCAT Example Application Setup, Ethernet (Default) Link with One PC

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 10 of 180

NETWORK INTERFACE EXAMPLE APPLICATION SUITE WITH PC RUNNING TWINCAT
This TwinCAT-based PLC example application is used with a PC. However, this application can run with a regular PLC, which is the
recommended method for real-time systems.
Communication between the application processor and the RPG2 module on the baseboard is enabled by using an Ethernet NIC. In addition
to the evaluation kit, a PC running the Network Interface Example Application Suite (ni-example-app.exe) and a PC running the TwinCAT
application is required.
To see the syntax to start up the example application using any link type, type ni-example-app.exe –h. Note that this user guide covers the
Ethernet link type only (see Figure 9). Ensure that the identifier for the NIC (local NET device) is set to use. Run ni-example-app.exe -l ETH to
see a list of local NET devices.

Obtaining the Network Interface Example Application Suite
To obtain the Network Interface Example Application Suite from the ADIN2299 product page, take the following steps:
1. Go to the ADIN2299 main product page.
2. Click the RPG2 Network Interface Example Application Suite (ZIP) link.
3. Review the Terms and Conditions and accept these conditions to proceed.
4. Extract the contents of the .zip file. This file includes the ni-example-app.exe executable file that must run from the command line (see

Figure 9).
When using the software, if a message appears saying FATAL Bad Memory Block while running the Network Interface Example Application
Suite, ensure that the most recent version of WinPcap is on the PC. Note that WinPcap must be installed on the PC executing the Network
Interface Example Application Suite. WinPcap is a packet capturing library that is used by the Network Interface Example Application Suite to
examine, capture, and transmit network packets. Go to the WinPcap website and follow the instructions to download the appropriate version.
The NIC identifier begins with DeviceNPF_, as shown in Figure 9.

Figure 9. Network Interface Example Application Suite

Configuring TwinCAT as the PLC
This section provides instructions for setting up and using the RPG2 module with the link type selected as Ethernet. The RPG2 module is
connected to a PC running the Network Interface Example Application Suite (which is the leader network program) and TwinCAT to evaluate
the EV-RPG2-ECZ and observe the flow of the packets.
The examples described in this user guide make use of a PC running the TwinCAT application with a real-time capable NIC. This PLC example
application assumes the RPG2 module is configured as detailed in Table 1.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 11 of 180

This configuration defines three items with different input and output types. Item Number 500 defines 16 digital inputs and 16 digital outputs (2
bytes of input and output data each), Item Number 501 defines two analog inputs and two analog outputs (2 bytes per channel for a total of 4
bytes of input and output data), and Item Number 502 represents 2 bytes of control data.
It is recommended to use TwinCAT Version 4024.20 for optimum system performance.
Table 1. RPG2 Module Input and Output Configurations
Item Number Input Size (Bytes) Output Size (Bytes) Description
500 2 2 Digital input/output
501 4 4 Analog input/output
502 0 2 Control

Figure 10. Test Network Setup with Two PCs

The remainder of this user guide describes the setup shown in Figure 10. For details regarding the setup of the test network, see the EtherCAT
Example Application Setup section.
Take the following steps to configure TwinCAT as the PLC:
1. Start the TwinCAT application.
2. Go to File and select New Project from the dropdown menu. Rename the project as desired. For this example, name the project EtherCAT

Quickstart, and click OK to display the New Project screen (see Figure 11).
3. Ensure the .esi file is installed. The default path is C:TwinCAT3.1ConfigIoEtherCAT. Place the example ESI file (Analog-Devices-RapID-

Example.xml) in this location.
4. Go to TwinCAT > EtherCAT Devices and select Reload Device Descriptions (see Figure 12).
5. Select I/O within the Solution Explorer pane if it is not already expanded and right-click Devices under I/O (see Figure 13).
6. Select Scan in the Devices pulldown menu (see Figure 13) and the scan warning message shown in Figure 14 appears.
7. Click OK and the NIC selection list shown in Figure 15 (or a similar message, depending on the NIC used) appears. Choose the desired

NIC.
In the event that the No new I/O devices found message appears, ensure that the following is done:

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 12 of 180

► Locate the Network Connections option in the Windows Control panel. Right-click the TwinCAT NIC and ensure that the TwinCAT
Ethernet Protocol option is checked. Uncheck all other items for this connection.

► In the TwinCAT application window, click TwinCAT in the menu bar and click Show Realtime Ethernet Compatible Devices. If the TwinCAT
NIC is under the Installed and ready to use devices (real-time capable) section then the real-time driver is installed correctly.

If the TwinCat NIC is not installed correctly, it appears under Compatible Devices. To install the driver, highlight the TwinCAT NIC and click
Update List. If you are installing the TwinCAT NIC for the first time, you may have to repeat this step to confirm that the driver is installed.
1. Click OK to add an EtherCAT device to the Devices node with the EtherCAT icon, which is the red icon next to Device 5 (EtherCAT) within

the Solution Explorer pane (see Figure 16). The message in Figure 16 then appears asking the user to Scan for boxes.
2. Click Yes. The box descriptor is then identified as Box 1 (RapID Platform Network Interface), see Figure 17.
3. Click Yes to Activate Free Run, as shown in Figure 18.
4. EEPROM errors will appear in the Error List section (see Figure 19) and the MOD LED on the baseboard flashes red.
5. Program the EEPROM as described in the Imaging the EEPROM in TwinCAT section to resolve these errors. Note that this step must be

executed every time the device descriptions (see Step 4) change and load.
6. Follow the steps in the Imaging the EEPROM in TwinCAT section to test the EtherCAT network.

Figure 11. New Project Window

Figure 12. Reload Device Descriptions Pulldown Menu

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 13 of 180

Figure 13. Scan Device

Figure 14. Scan Warning

Figure 15. NIC Selection

Figure 16. Scan for Boxes Dialog Box

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 14 of 180

Figure 17. TwinCAT with RapID Found

Figure 18. Activate Free Run Dialog Box

Figure 19. EEPROM Error List Section

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 15 of 180

Imaging the EEPROM in TwinCAT
If the device has never been used in an EtherCAT network, image the EEPROM for the RPG2 module with TwinCAT.
Note that the EEPROM of the system is emulated. The evaluation kit does not have an EEPROM chip, rather, the EEPROM data is stored in a
serial flash chip on the RPG2 module.
To image the EEPROM data, take the following steps:
1. Under the Device 5 (EtherCAT) node in the Solution Explorer pane, click the Box 1 (RapID Platform Network Interface) expandable list

and select the EtherCAT tab.
2. Click Advanced Settings (see Figure 20).
3. In the Advanced Settings window, navigate to ESC Access > E²PROM > Hex Editor and click Download from List as shown in Figure

21.
4. Highlight the RapID Platform Network Interface (‑238005760/65537) icon and click OK (see Figure 22).
5. Wait until the status in the pane at the bottom of TwinCAT changes from Writing (see Figure 23) to Ready (see Figure 24). Close the

Advanced Settings dialog box.
6. Power cycle the RPG2 module and restart the Network Interface Example Application Suite.
7. In the Solution Explorer pane, delete the Box 1 (RapID Platform Network Interface) node, right-click Device 5 (EtherCAT), and select

Scan (see Figure 25) to go back to the TwinCAT home screen (see Figure 26), where the Activate Free Run message now appears (see
Figure 18).

8. Click Yes and then navigate to the Online tab. Notice the Current State and Requested State boxes are both set to OP (see Figure 27). A
ladder logic program can now be created that toggles a bit in Item 500.

Figure 20. EtherCAT Tab

Figure 21. EtherCAT Options EEPROM Navigation

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 16 of 180

Figure 22. RapID ESI File

Figure 23. Status Pane: Writing EEPROM

Figure 24. Status Pane: Ready

Figure 25. Scan After Imaging EEPROM

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 17 of 180

Figure 26. TwinCAT Home View

Figure 27. EtherCAT State Machine

Simple Data Flow Example
The following is a simple data flow example:
1. Expand the Box 1 (RapID Platform Network Interface) node and all three modules as shown in Figure 28.
2. Click the Box 1 (RapID Platform Network Interface) node and select the CoE-Online tab. Expand the digital, analog, and control data

indices as shown in Figure 29.
3. Ensure the Current State is set to OP under the Online tab before writing a value to the outputs.
4. Right-click Digital Outs in the Solution Explorer pane (see Figure 30) or the ATTRIBUTES PANE (see Figure 31) and select Online

Write.
5. The Set Value Dialog box (see Figure 32) opens, edit the value, and click OK. The corresponding Digital Ins value then updates to match

the Digital Outs value.
6. Repeat Step 4 and Step 5 for Analog Out Ch1, Analog Out Ch2, and Control Data to see the corresponding input values change.
7. Verify that the inputs match the outputs under the CoE-Online tab (see Figure 33) and under the Online tab for the ATTRIBUTES PANE

(see Figure 31).
8. The Current Output Data then updates in the Network Interface Example Application Suite (see Figure 34).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 18 of 180

Figure 28. Expanded Modules

Figure 29. Expanded Indices Within CoE-Online Tab

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 19 of 180

Figure 30. Online Write via Box 1 (RapID Platform Network Interface) Node < Module 1 (Digital IO) < Digital Outs < Digital Outputs within the Solution Explorer Pane

Figure 31. Online Write via Box 1 (RapID Platform Network Interface) Node Within the ATTRIBUTES PANE < Digital Outputs

Figure 32. Set Value Dialog Box

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 20 of 180

Figure 33. Verify Online Writes Were Successful in TwinCAT Within the CoE-Online Tab

Figure 34. Verify Online Writes Successful in Network Interface Example Application Suite

Running the PLC Example Application
This section demonstrates how to automatically toggle the digital input and output data. For instructions on manually writing the outputs one by
one to see the change in the corresponding inputs, see the Simple Data Flow Example section.
To automatically toggle the digital input and output data, take the followings steps:
1. Within the Solution Explorer pane, go to Solution ‘EtherCAT Quickstart’ (1 project), right-click PLC, and select Add New Item (see

Figure 35).
2. In the PLC Project Creation window that then appears (see Figure 36), select the Standard PLC Project and give the project a name. In

this example, the item is named EtherCAT_Quickstart_PLC. After naming the project, click Add. The new project appears on the left-hand
side of the Solution Explorer pane under the Solution ‘EtherCAT Quickstart’ (1 project) expandable list (see Figure 37).

3. Click EtherCAT_Quickstart_PLC Project for the PLC Project Expanded View to appear (see Figure 38).
4. Right-click GVLs and navigate to the Add > Global Variable List (see Figure 39).
5. Click Global Variable List and rename this variable as desired. In this example, the variable name is RapIDQSG (see Figure 40), and click

Open. Once the variable is named, the Global Variable View window appears (see Figure 41).
The input and output variables are declared in the RapIDQSG.TcGVL file. Declare that the RapidInput and RapidOutput variables are
RapidInput AT %I* : UINT and RapidOutput AT %Q* : UINT, and save the file (see Figure 42).
1. The global variables are now set up, and the user must add a ladder logic diagram. Go to the POUs pulldown menu and select Add > POU.

Name the ladder logic diagram Quickstart_Ladderlogic. Ensure that the implementation language option is set to Ladder Logic Diagram
(LD) and click Open as shown in Figure 43.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 21 of 180

2. The screen now appears as shown in Figure 44 with Quickstart_Ladderlogic on the left and a location for the ladder logic in a new
window to right.

3. Open the MAIN (PRG) tab. On the first line, type Quickstart_Ladderlogic(); (see Figure 45).
4. Navigate back to Quickstart_Ladderlogic (PRG). Click the pink highlighted area shown in Figure 46 and click the Insert Negated Contact

button shown in the upper left portion of the screen.
5. The Negated Contact Inserted window (see Figure 47) appears after selecting the negated contact.
6. With the network highlighted, click the Insert Coil button (see Figure 48 and Figure 49). The input and output are assigned to

the PLC program. There are spaces above the negated contacts with three question marks (? ? ?) above these contacts. Enter
RapIDQSG.RapidInput.0 in the left ? ? ? spot and RapIDQSG.RapidOutput.0 in the right ? ? ? spot to assign the input and output
variables to the negated contacts. The screen then resembles what is shown in Figure 50.

7. Within the Solution Explorer pane, navigate to I/O < Device 5 (EtherCAT) < Box 1 (RapID Platform Network Interface), if it is not
already expanded (see Figure 51).

8. Within the TwinCAT window, go to File > Save All to save the project.
9. Within the TwinCAT window, go to Build > Build Solution to build the solution.
10. After building the solution, within the Solution Explorer pane, navigate to Solution ‘EtherCAT Quickstart’ (1 project) < EtherCAT

Quickstart < I/O < Devices < Device 5 (EtherCAT) < Box 1 (RapID Platform Network Interface) to expand Module 1 (Digital IO) and
expand both Digital Ins and Digital Outs (see Figure 52).

11. Under Digital Ins, right-click Digital Inputs and select Change Link. A message similar to what is shown in Figure 53 will appear. Select
RapIDQSG.RapidInput and click OK.

12. Under Digital Outs, right-click Digital Outputs and select Change Link. The message similar to what is shown in Figure 54 will appear.
Select RapIDQSG.RapIDOutput and click OK.

13. Ensure that both Digital Inputs and Digital Outputs are linked to the RapIDQSG.RapidInput and RapIDQSG.RapidOutput, respectively,
by reviewing the ATTRIBUTES PANE shown in Figure 55.

14. Click the Activate Configuration button (see Figure 56) and the Activate Configuration Warning message appears (see Figure 57).
15. Click OK and the Restart TwinCAT System in Run Mode message appears (see Figure 58).
16. Click OK and then click the green rectangular bracket to log in to the PLC (see Figure 59).
17. If the PLC program does not automatically start, select the green Play button arrow (see Figure 60) to start the PLC program. A screen

similar to Figure 61 then appears.
18. The highlighted red icon, shown in Figure 61, indicates that the user is logged into the PLC and that the PLC example application is

running.
19. The logic elements on the ladder logic screen are now flashing because the input and output data is sampled as shown in Figure 62. In the

Network Interface Example Application Suite window, the LSB of the digital output data toggles quickly between 0 and 1 as shown in Figure
63. The toggling of the digital output data confirms that this data is flowing. The PLC example application creation is now complete.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 22 of 180

Figure 35. Add New Item, PLC

Figure 36. PLC Project Creation

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 23 of 180

Figure 37. PLC Project Home

Figure 38. PLC Project Expanded View

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 24 of 180

Figure 39. Add GVLs

Figure 40. Global Variable List

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 25 of 180

Figure 41. Global Variable View

Figure 42. Global Variable Declarations

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 26 of 180

Figure 43. Add Program Organization Unit (POU)

Figure 44. Ladder Logic File Part 1

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 27 of 180

Figure 45. PLC Project Main

Figure 46. Ladder Logic File Part 2

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 28 of 180

Figure 47. Negated Contact Inserted

Figure 48. Insert Coil

Figure 49. Output Energize Inserted

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 29 of 180

Figure 50. Input and Output Mapping

Figure 51. RapID Input and Output

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 30 of 180

Figure 52. Build Complete and RapID Input and Output Footprint

Figure 53. RapID Digital Inputs

Figure 54. RapID Digital Outputs

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 31 of 180

Figure 55. Linking Digital Input and Output Data

Figure 56. Activate Configuration

Figure 57. Activate Configuration Warning

Figure 58. Restart in Run Mode

Figure 59. Logging Into the PLC

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 32 of 180

Figure 60. Start the PLC Program (Play Button)

Figure 61. Logged into the PLC Program

Figure 62. TwinCAT Ladderlogic Input and Output Toggling Between State 0 (Left) and State 1 (Right)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERCAT QUICKSTART GUIDE

analog.com Rev. A | 33 of 180

Figure 63. Network Interface Example Application Suite: Digital Output Item A Toggling Between State 0 (Up) and State 1 (Down)

NEXT STEP: THE DESIGN PHASE
To customize the example application based on your needs, consult the following user guides:
► The RPG2 Hardware Design Integration Guide section has details of how to interface with and integrate the required hardware.
► The RPG2 Unified Interface User Guide section has details on how to develop, customize, and integrate the software.
► The RPG2 Programming User Guide section has information about reprogramming or loading binary files onto the board.
► The RPG2 I/O Configuration Tool User Guide section has information about how to create a customized input and output footprint for the

system.
► To evaluate another protocol, continue to the quickstart guide of that protocol.

All RPG2 documentation is provided in this reference manual, which can be downloaded from www.analog.com/ADIN2299.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 34 of 180

FEATURES
► Cyclic input data transfer up to 1440 bytes
► Cyclic output data transfer up to 1440 bytes
► Cycle time down to 1 ms (Ethernet application processor interface with an input data of 6 bytes and an output data of 8 bytes)
► Media redundancy protocol
► Support for diagnostics (Siemens and manufacturer specific)

EQUIPMENT NEEDED
► Siemens PLC
► EV-RPG2-PNZ evaluation board
► 1 PC, using 2 PCs may be easier

SOFTWARE NEEDED
► Network interface example application suite (ni-example-app.exe)
► Siemens SIMATIC TIA portal
► Windows WinPcap
► Analog Devices, Inc., general station description markup language (GSDML) file

GENERAL DESCRIPTION
The RapID Platform Generation 2 (RPG2) module is a pretested industrial network interface designed to manage industrial protocols and
network traffic. It supports PROFINET®, PROFINET isochronous real-time (IRT), Ethernet/IP®, Ethernet/IP with device level ring (DLR),
EtherCAT®, and Modbus/TCP. This RPG2 module uses a Unified Interface to communicate with different protocols.
This Unified Interface is a custom protocol by Analog Devices that allows interaction between an application processor and the RPG2 module.
The Unified Interface is agnostic of the industrial protocol.
The Unified Interface ensures that the application processor hardware and software interface does not need to change when switching
or updating protocols. The RPG2 module connects to an application processor via a universal asynchronous receiver transmitter (UART),
Ethernet, or serial peripheral interface (SPI).
The EV-RPG2-PNZ evaluation kit provides end to end evaluation of the communication path from the application processor to the programma-
ble logic controller (PLC) over the Industrial Ethernet interface (using the network interface example application suite (ni-example-app.exe)).
This user guide describes how to use the kit to set up and run a PLC example application.
For the example described in this quickstart guide, the application processor is a PC, and the PC communicates to the RPG2 module via an
Ethernet network interface card (NIC).

EVALUATION KIT SETUP FOR PROFINET
Refer to the RPG2 RapID Platform Generation 2 User Guide section to set up the hardware. Note that the default link type is Ethernet. When a
change of link type to UART is required, refer to the Link Configuration File section of this document. See Figure 64 and Figure 65 for the setup
for running the PROFINET application example with the default link type for one PC or two PCs, respectively.
Use one PC if having both the total integrated automation (TIA) portal application and the network interface example application suite
(ni-example-app.exe) on one PC is acceptable. Use two PCs if there is a requirement to clearly distinguish between the two applications.
For the rest of this user guide, the two PC setup is used for setting up the TIA portal PLC application and for running the network interface
example application suite (ni-example-app.exe).
When LED A6/A7 is green (see Figure 64 and Figure 65), this color indicates that the board is preloaded with PROFINET, and the startup
process is complete.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 35 of 180

Figure 64. Setup for Running the PROFINET Application Example with the Default Link Type and One PC

Figure 65. Setup for Running the PROFINET Application Example with the Default Link Type and Two PCs

NETWORK INTERFACE APPLICATION SUITE WITH A PC RUNNING THE SIEMENS TIA PORTAL
Communication between the application processor and the RPG2 module on the baseboard is enabled using an Ethernet RJ-45 connector on
the baseboard. In addition to the evaluation kit, the following items (at a minimum) are required:
► A PC running the ADIN2299 host processor simulator (ni-example-app).
► A PC running the Siemens TIA portal
► A Siemens PLC

Note that this user guide is not a general introduction into the TIA portal or the configuration and programming of Siemens PLCs. It is assumed
that the user is comfortable using relevant Siemens SIMATIC technologies.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 36 of 180

Application Processor Simulator Software SetUp
Obtain the network interface example application suite by taking the following steps:
1. Go to the ADIN2299 main product page at www.analog.com/adin2299.
2. Select the ADIN2299 ni-example-application tab.
3. Review the Terms and Conditions and accept.
4. Extract the contents of the .zip file. In the extracted folder is the ni-example-app.exe file that must run from the command line of your PC.
5. To see the available Ethernet devices from the command line prompt, enter ni-example-app.exe –l ETH –n and a list of available

Ethernet NICs will display. Running this command gives the network device numbers in the following format: XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX. Use this list along with the Network and Sharing Center name in Windows® to determine which of the listed
numbers to use. An example command is shown on Figure 66.

6. Once this number is known, enter the following command: ni-example-app.exe –l ETH –n XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX and it will run the proper initialization and application processor functionality (see Figure 67).

Note that if you see FATAL Bad Memory Block while running the network example application suite, ensure that you have the most updated
version of Windows WinPcap on your PC. The NIC identifier begins with DeviceNPF_.
See Table 2 for the RPG2 input and output modules for the PROFINET sample configuration.

Figure 66. Network Interface Example Application Suite Command Log

Figure 67. Network Interface Example Application Suite

Setting up the PROFINET Network With the Siemens TIA Portal
This user guide describes an example of how to use a PC running the Siemens TIA portal with a Siemens PLC. This PLC example application
assumes the RPG2 module is configured as detailed in Table 2. This configuration defines three items with different types of input and output
(I/O). Item 500 defines 2 bytes of input and output data, Item 501 defines 4 bytes of analog input and analog output data, and Item 502

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/media/en/evaluation-boards-kits/evaluation-software/rapid_ni_example_applications_software_suite.exe

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 37 of 180

represents 2 bytes of control data (digital data). For more information on these items, refer to the RPG2 I/O Configuration Tool User Guide
section.
This section provides instructions for setting up and using the RPG2 module with the link type set to Ethernet. Note that the RPG2 module
must connect to a PC running the network interface example application suite (which is the leader network program) and a Siemens PLC that is
configured by another PC.
Figure 68 shows the setup used by the following sections. See the Evaluation Kit Setup for PROFINET section for details on how to set up the
test network.
Table 2. RPG2 Input and Output Modules for the PROFINET Sample Configuration
Item Number Item Type Input Size (Bytes) Output Size (Bytes) Module ID Submodule
500 (Digital Inputs and Outputs) Cyclic 2 2 0x10400000 0x10440001
501 (Analog Inputs and Outputs) Cyclic 4 4 0x10500000 0x10550001
502 (Control Register) Cyclic 0 2 0x10600000 0x10660001

Figure 68. Sample Application Hardware Setup

Configuring the PLC Setup in the Siemens TIA Portal
Take the following steps to use the Siemens TIA portal to configure the PROFINET network:
1. Double-click to start the TIA portal to display the new project wizard window (see Figure 69).
2. Click Create New project to display the naming the new project window (see Figure 70).
3. Rename the project as it makes sense for your application.
4. Click Create to open the open project setup view window (see Figure 71).
5. Click Project view > Open the project view. Note that loading this view can take a while (see Figure 71).
6. When loading finishes, the main test project window displays (see Figure 72).
7. Click Add new device and the window shown in Figure 73 appears.
8. Select the Siemens PLC in use and click OK (see Figure 74) to display the PLC slot window (see Figure 75).
9. Select the Network view tab to display the PROFINET network with the PLC added (see Figure 76).
If a user is going to use the Siemens TIA portal to run this example configuration, it is assumed the user is familiar with how to use Siemens TIA
portal.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 38 of 180

Note that this section varies from user to user because of the different PLCs a user may have. While the following example uses the Siemens
TIA portal, there are other vendors who produce PROFINET leader software. Use this user guide to walk through the application. However, the
PROFINET specific portions may differ depending on the software chosen.

Figure 69. New Project Wizard Window

Figure 70. Naming New Project Window

Figure 71. Project Setup View Window

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 39 of 180

Figure 72. Main Test Project Window

Figure 73. PLC Selection Window

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 40 of 180

Figure 74. Selecting the PLC in Use

Figure 75. PLC Slot Window

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 41 of 180

Figure 76. PROFINET Network with PLC Added

Installing the General Description File
Take the following steps to install the general description file:
1. Go to the Options dropdown menu (see Figure 77) and select Manage general station description files (GSD).
2. The Manage general station description files window then displays (see Figure 78) your flash drive or hard drive directory location for the

RapID stock GSDML file (GSDML-V2.34-Analog-Devices-Rapid-Example-20200226-020800.xml). Note that the user must have the most
up to date GSDML file from the Profinet Software at www.analog.com/adin2299.

3. Select the GSDML file box and click Install to install the GSDML file (see Figure 79).
4. Click Close. The Updating the hardware catalog window then displays (see Figure 80).

Figure 77. Main Test Project Window

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 42 of 180

Figure 78. Add GSD File

Figure 79. Successful Installation of the GSDML File

Figure 80. Updating the Hardware Catalog

Creating the PROFINET Network
Take the following steps to create the PROFINET network within the Siemens TIA portal:
1. Within the main test project window, click Devices & networks (see Figure 81).
2. Expand the Hardware catalog pane on the right-side of the window and select PROFINET FIDO5000 REM (see Figure 81).
3. Drag the PROFINET FIDO5000 REM device into the Network area under the Network view tab (see Figure 82).
4. Click the Not assigned link (see Figure 82) within the Network view tab to bring up a yellow pop-up with the text appearing in the same

format as a URL link, PLC_1.PROFINET_interface_1 (see Figure 83). Note that the actual text that is seen may differ depending on the
PLC of the user.

5. Click this yellow pop-up to connect the network by using the green line (see Figure 84).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 43 of 180

Figure 81. Main Test Project Window

Figure 82. RapID Device Installed onto the Network

Figure 83. Assigning the RapID Device to the PROFINET Network

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 44 of 180

Figure 84. PROFINET Network Created

Getting Online With the PROFINET Network
Take the following steps to get online with the PROFINET network:
1. Double-click the PLC_1 icon shown in Figure 84.
2. Select PLC_1 and click Download to Device to select the network to download (see Figure 85).
3. Select the appropriate PLC in this window and click Load (see Figure 86).
4. In the Load preview window, click Load (see Figure 87).
5. Right-click the PROFINET FIDO5000 REM icon across from the PLC and click Assign name to display the Assign PROFINET device

name window (see Figure 88).
6. Click the orange Go online button at the top of the window to go online with the PROFINET network (see Figure 89). Taking this step

causes the outline of the screen to turn orange and green checkmarks to appear on all devices, which indicates that the system is actively
communicating (see Figure 89). Communication between the PC of the user and the Siemens PLC is now good.

7. Click the blue Go offline button (see Figure 89) to complete this process.

Figure 85. Network Download Selection

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 45 of 180

Figure 86. PLC Load Selection

Figure 87. Load Preview Window

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 46 of 180

Figure 88. Main Test Project Name Assignment Window

Figure 89. Main Test Project Window

Configuring the Optional PROFINET IRT
Take the following optional steps to activate IRT communication for your PROFINET network (make sure you use a PROFINET PLC that
supports IRT communication):
1. In the Devices & networks window select the Topology view tab.
2. Draw a line from the connected PLC port (PLC_1) to the connected device port (rapidni) (see Figure 90).
3. Select the PLC (PLC_1) and open the Properties window.
4. In the Properties window, select PROFINET interface [X1], Advanced options, Real time settings, and Synchronization, then set the

Synchronization role dropdown menu to Sync master (see Figure 91).
5. Select the device (rapidni) and open the Properties window.
6. In the Properties window, select PROFINET interface [X1], Advanced options, Real time settings, and Synchronization, then activate

the IRT radio button (see Figure 92).
7. Check Update time of the PLC and device to ensure update times are identical.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 47 of 180

Figure 90. Topology View Window

Figure 91. Synchronization Role PLC

Figure 92. Synchronization Properties Device

Creating a Ladder Logic Application
Take the following steps to create a ladder logic application:
1. Within the Network Overview pane (see Figure 84), go to GSD_device > rapidni to display the 16-bit Digital I/O module.
2. Drag the 16-bit Digital I/O icon into the slot.
3. Go to PLC tags < Show all tags on the left-hand side of the Project tree window to display the PLC tags dropdown menu (see Figure 93).
4. Right-click to add two new tags and select New Tag for each new tag. The result of adding these tags brings up the screen shown in Figure

94. For this example, the Input_0 tag is Address &I0.0 and the Output_0 tag is Address &Q0.0. These correspond with the 0 index byte
of the digital I/O item.

5. Within the Project tree > Devices pane (see Figure 95), navigate to PLC-1[1511-1-PC] > Program blocks > Main [OB-1] and type in the
inputs and outputs over the rungs, for example, Network 1 and Network 2.

6. Click the Compile button to build the program (see Figure 96). Once the program is built, it can be transferred to the PLC.
7. Click the Download button to transfer the program to the PLC (see Figure 96).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 48 of 180

8. Click Go online (see Figure 96). You will now see the ladders in the ladder logic toggling and the LSB in the ni-example-app.exe toggling
at the same time (see Figure 97).

This completes the PROFINET Quickstart Guide Example. See the Next Step: The Design Phase section for more information on how to create
your PROFINET device with customized parameters.

Figure 93. PLC Tags Menu

Figure 94. Adding New PLC Tags

Figure 95. PROFINET Network with Added Logic

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROFINET QUICKSTART GUIDE

analog.com Rev. A | 49 of 180

Figure 96. Compile and Download Button Locations

Figure 97. Output Toggling for Bit 16 of Item A in the ni-example-app

NEXT STEP: THE DESIGN PHASE
To customize the example application based on your needs, consult the following user guides:
► The RPG2 Hardware Design Integration Guide section details how to embed and integrate the example software and other required

hardware.
► The RPG2 I/O Configuration Tool User Guide section details how to create a customized I/O footprint for the RPG2 solution.
► The RPG2 Unified Interface User Guide section describes the language used by the ni-example-app application processor simulator to talk

to the RPG2 solution. The Unified Interface is used with the RPG2 I/O Configuration Tool User Guide section to create a user application.
► To evaluate another protocol, continue to the quickstart guide of that protocol.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 50 of 180

FEATURES
► Implicit input data transfer up to 1440 bytes
► Implicit output data transfer up to 1440 bytes
► Cycle time down to 2 ms (Ethernet application processor interface)
► DLR functionality
► Class 1 I/O connections
► Class 3 I/O connections

EQUIPMENT NEEDED
► EV-RPG2-EIP evaluation board
► Rockwell PLC
► 1 PC, using 2 PCs may be easier

SOFTWARE NEEDED
► Network interface example application suite (ni-example-app.exe)
► Rockwell Studio 5000 (RS Logix)

GENERAL DESCRIPTION
The RapID Platform Generation 2 (RPG2) module is a pretested industrial network interface designed to manage industrial protocols and
network traffic. It supports PROFINET®, PROFINET isochronous real-time (IRT), Ethernet/IP®, Ethernet/IP with device level ring (DLR),
EtherCAT®, and Modbus/TCP. The RPG2 module uses the Unified Interface to communicate with different protocols.
The Unified Interface is a custom protocol by Analog Devices, Inc., that allows interaction between an application processor and the RGP2
module. The Unified Interface is agnostic of the industrial protocol.
The Unified Interface ensures that the application processor hardware and software interface does not need to change when switching
or updating protocols. The RPG2 module connects to an application processor via a universal asynchronous receiver transmitter (UART),
Ethernet, or serial peripheral interface (SPI).
The EV-RPG2-EIP evaluation kit provides end to end evaluation of the communication path from the application processor to the programmable
logic controller (PLC) over the Industrial Ethernet interface (using the network interface example application suite).
This user guide describes how to use the kit to set up and run a PLC example application.
For the example described in this quickstart guide, the application processor is a PC, and it communicates with the RPG2 module via an
Ethernet port.

EVALUATION KIT SETUP FOR ETHERNET/IP
Refer to the RPG2 RapID Platform Generation 2 User Guide section to set up your hardware. Note that the default application processor link
type is Ethernet. When a change to the link type to UART is required, refer to the Link Configuration File section of this document. See Figure
98 through Figure 101 for the setup for running the EtherNet/IP application example with the default link type for one or two PC(s). See Figure
100 or Figure 101 to set up the board with UART as the link type.
Use one PC if having both the Rockwell Studio 5000® RS Logix application and the network interface example application suite on a single PC
is acceptable. Use two PCs if there is a requirement to clearly distinguish between the two applications.
For the rest of this user guide, two PCs are used to set up the Rockwell Studio 5000, RS Logix, and PLC application and to run the network
interface example application suite.
Note that LED A6/A7 is green in Figure 98 through Figure 101, which indicates that the board is preloaded with EtherNet/IP and that the startup
process is complete.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 51 of 180

Figure 98. Setup for Running the EtherNet/IP Application Example with the Default Link Type and One PC

Figure 99. Setup for Running the EtherNet/IP Application Example with the Default Link Type and Two PCs

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 52 of 180

Figure 100. Setup for Running the EtherNet/IP Application Example with the UART Link Type and One PC

Figure 101. Setup for Running the EtherNet/IP Application Example with the UART Link Type and Two PCs

NETWORK INTERFACE APPLICATION SUITE WITH A PC RUNNING RS LOGIX
Enable communication between the application processor and the RPG2 module on the baseboard by using the USB virtual COM port on the
baseboard. In addition to the RPG2 module evaluation kit, users must have the following items (at a minimum):
► A PC running the network interface example application suite (ni-example-app.exe)
► A PC running the Rockwell Studio 5000 RS Logix
► A Rockwell PLC

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 53 of 180

Setting Up the Host Processor Simulator Software
Obtain the network interface example application suite from the main product page.
1. Go to the main product page.
2. Click the RPG2 Network Interface Example Application Suite (ZIP) link.
3. Review the Terms and Conditions and accept.
4. Extract the contents of the .zip file. The extracted folder includes the ni-example-app.exe file that users must run from their command line.
5. To see the syntax to start up the example application using any link type, type ni-example-app.exe –h in the command line. To use the

default link type, see Figure 102 but ensure you change the identifier of the network interface card (NIC) to the local NET device to use.
Note that if you see FATAL Bad Memory Block while running the network interface example application suite, ensure that you have the most
updated version of Windows® WinPcap on your PC. The NIC identifier begins with DeviceNPF_.

Figure 102. Network Interface Example Application Suite

EtherNet/IP Sample Configuration Setup
This user guide uses a PC running the Rockwell Studio 5000 RS Logix with a Rockwell PLC. This PLC example application assumes the
module is configured as detailed in Table 3.
This configuration defines three items with different input and output types. Item 500 defines 2 bytes of input and output data, Item 501 defines
4 bytes of analog input and analog output data, and Item 502 represents 2 bytes of control data (digital data). For more information on items,
refer to the RPG2 I/O Configuration Tool User Guide section.
This section provides instructions for setting up and using the RPG2 module with the link type selected as Ethernet. Note that the RPG2 module
must connect to a PC running the network interface example application suite (which is the leader network program) and a Rockwell PLC that is
configured by another PC.
Figure 103 shows the setup used in the following sections. See the Evaluation Kit Setup for EtherNet/IP section for details on how to set up the
test network.
Table 3. EtherNet/IP Input and Output Sample Configuration

Item Number Item Type Consumer Size (Bytes) Producer Size (Bytes)
Assembly Instance ID

Consumer Producer
1 (Digital Inputs and Outputs) Cyclic 2 2 100 101
2 (Analog Inputs and Outputs) Cyclic 4 4 102 103
3 (Control Register) Cyclic 0 2 Not applicable 104

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 54 of 180

Figure 103. Sample Application Hardware Setup

Installing the EDS File
The following steps walk a user through using the Rockwell Studio 5000 RS Logix to register the electronic data sheet (EDS) file for the RPG2
module evaluation kit.
1. In the Rockwell Studio 5000 RS Logix main window, go to Tools and select the EDS Hardware Installation Tool in the dropdown menu to

bring up the EDS installation options.
2. The EDS Wizard window displays two options: Register a single file or Register a directory of EDS files. This example only covers

registering the default RPG2 EDS file as a single installation. In the Named box, navigate to where the EDS file is installed on the PC with
the Rockwell Studio 5000 RS Logix and click Next.

3. The screen that appears next shows a green checkbox by the EDS file location, which indicates that the EDS file was found successfully.
4. Click Next to bring up the Change Graphic Image window. The Basic REM Rapid Test Device default image comes up as a suboption

under the Communications Adapter folder.
5. Click Next to bring up the Final Task Summary window.
6. A dialogue box then appears asking Do you want to register the Basic REM Rapid Test Device.
7. Click Next and a window will appear confirming that you have successfully completed the EDS installation wizard.
8. Click Finish to complete this installation.
Note that the EDS file is located in the software zip file (EDS_6_x.eds RPG2_EtherNetIP_Firmware.zip) found on the main product page.
This installation process can be done at any time before adding the RPG2 evaluation kit onto the EtherNet/IP network. For example, the task of
adding the EDS file was arbitrarily done before creating the EtherNet/IP network.

Creating the EtherNet/IP Network
Take the following steps to create the EtherNet/IP network:
1. In the Rockwell Studio 5000 RS Logix main window, select File > New to bring up the New Controller window.
2. Under the New Controller > Type pulldown menu, the user must select the applicable EtherNet/IP controller in the dropdown menu. For

the purposes of this example, the 1769-L18-ERM-BB1B was selected. Note that any other EtherNet/IP controller can be used and that the
overall logic for the example does not change.

3. Under the New Controller > Type dropdown menu, there is an Expansion I/O option. This example uses a controller with no modules for
expansion I/O. Therefore, there are 0 I/O modules used for the controller, and the 0 modules option must be selected within the Expansion

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 55 of 180

I/O window. If the user has expansion I/O, the user must indicate this in the Expansion I/O window because not doing this will cause an
error in downloading the project later.

4. Ensure that the applicable version of the Rockwell Studio 5000 RS Logix software is in use. For this example, Version 20 was selected.
However, there may be a more recent revision. The overall logic of the example does not change. Therefore, ensure that the software
version corresponds with the existing version of RS Logix in use.

5. In the Rockwell Studio 5000 RS Logix window, go to the Path dropdown menu to select the name and IP address that matches the
controller in use. The Path relays to your PC what to expect with regards to the type of leader (the EtherNet/IP PLC) and what the IP
address of the controller is.

6. Click Download and the Done Downloading message appears.
7. In the Rockwell Studio 5000 RS Logix main window, go to the Communications dropdown menu, select Change to Remote Run, and

click Yes.
8. The main Rockwell Studio 5000 RS Logix window now has an Ethernet option on the tab on the left-hand side. Expanding this tab shows

the PLC and IP address in use as a suboption within the Ethernet box.
9. The status of the network now shows that the PLC is found and that the basis for the network is established, which is shown under the Rem

Run dropdown menu (Run Mode, Controller OK, and I/O OK are now all green).
10. If there is a yellow triangle with an exclamation point visible in the Rem Run dropdown menu, users should power cycle and reset the PLC

and Rockwell Studio 5000 RS Logix.

Adding the EtherNet/IP Device
The purpose of this section is to add the RPG2 evaluation kit to the EtherNet/IP network that was created in the previous section. See Figure
103 for the setup used in this example, where a PC running Studio 5000 (RS Logix), the Rockwell PLC, and RPG2 evaluation kit lie on the
same daisy chain.
In a similar configuration, the PLC is supposed to have two Ethernet RJ45 connectors. These two ports must be set as linear and/or DLR in the
controller properties so that a single IP address is assigned to both ports, and so that these ports work as part of the same ring. To set up the
controller as dynamic host configuration protocol (DHCP) enabled and the Ethernet ports in linear and/or DLR mode, refer to the controller user
guide from the Rockwell Automation website.
EtherNet/IP protocol specifications recommend using a DHCP server to assign an IP address, which is the behavior of the RPG2 evaluation kit
out of the box. A DHCP server must be running on the same PC as the Rockwell Studio 5000 RS Logix software to run the application example.
The RPG2 EtherNet/IP device must have an assigned IP address by the DHCP server before proceeding with the following steps:
1. In the Rockwell Studio 5000 RS Logix main window, expand the icon showing the PLC previously referenced and an Ethernet icon will

display three devices daisy-chained on network.
2. Click New Module to open the Select Module Type window.
3. Within the Select Module Type window, under the Module Type Category Filters section, select Communications Adapter, if not

already selected.
4. Within the Select Module Type window, under the Module Type Vendor Filters, select Analog Devices, if not already selected.
5. The New Module window now appears. Users can fill in the Name, IP Address, and Module Definition fields. Users can name the

EtherNet/IP device anything they want but must provide the IP address that was assigned by the DHCP server. For the purposes of this
example, the module is named RPG2. Note that this naming directly affects the names used in Step 7 and Step 8 of the Running the
EtherNet/IP Application section.

6. Click the Module Definition tab to bring up the Digital Connection Point window with a connection having 2 bytes of input and 2 bytes
of output selected. This is the connection for Item 500 in the RPG2 I/O Configuration Tool User Guide section (see Table 32). Consult
the RPG2 I/O Configuration Tool User Guide section for a more detailed discussion on the contents of this item. For this example, this
connection is used.

7. Click OK to return to the Rockwell Studio 5000 RS Logix main window.
8. Right-click on the RPG2 Module that now appears in the main window and click Properties.
9. On the left side of the main Rockwell Studio 5000 RS Logix window, click Connection and set the Requested Packet Interval (RPI) field to

50 ms.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 56 of 180

Running the EtherNet/IP Application
Take the following steps to run the EtherNet/IP application:
1. In the Rockwell Studio 5000 RS Logix main window, go to Tasks > Main Task > Main Program and click Main Routine to bring up a blank

Ladder Logic Rung window.
2. The network is simple with a Nominally Closed Input (Examine Off) as the first part of the rung and an Output Energize (Energize Coil)

on the end of the rung (see Figure 104).

Figure 104. Sample Network
3. From the Rockwell Studio 5000 RS Logix main window, navigate to Tasks > MainTask > MainProgram > Parameters and Local Tags to

name the input and output variables needed for the application.
4. Expand the options under Program Tags for the input data to RPG2/RPG2.data/RPG2.I1.data[0]. This is the byte that will be used for

Nominally Closed Input.
5. Expand the options under Program Tags for the input data to RPG2 > RPG2.data > RPG2..O1data[0]. This is the byte that will be used for

Output Energize.
6. Navigate back to the Tasks > MainTasks > MainProgram > MainRoutine.
7. Click the Nominally Closed Input (Examine Off) icon (see Step 2), go to Main Program > MainRoutine, and type RPG2.I1.data[0].0.
8. Click the Output Energize (Energize Coil) icon, go to MainProgram > MainRoutine, and type RPG2.O1.data[0].0.
9. Click Communications > Download and it prompts the user to change to Remote Run.
10. Click Yes to show the Nominally Closed Input (Examine Off) and Output Energize (Energize Coil) icons changing from green to white

which indicates that the I/O is toggling on the network side. Note that the application processor simulator (ni-example-app) also shows in
the I/O toggling.

Figure 105. I/O Toggling on the Host Simulator

NEXT STEP: DESIGN PHASE
After a module has been initialized and configured to use the EtherNet/IP inputs and outputs, the next phase is the design.
For more information on how to progress to the design phase, consult the following user guides:
► The RPG2 Hardware Design Integration Guide section explains how to embed and integrate the module for use into the system. The RPG2

Hardware Design Integration Guide section also includes:
► Detailed descriptions of the signals on the module.
► Information about the AC, DC, thermal, and power requirements.
► Further details about the host interface.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 ETHERNET IP QUICKSTART GUIDE

analog.com Rev. A | 57 of 180

► The pin configuration of the RPG2 module.
► The RPG2 I/O Configuration Tool User Guide section explains how to create a customized input and output footprint for the system.
► The RPG2 Unified Interface User Guide section explains how to interact with the Analog Devices RPG2 module (embedded or otherwise) via

the Unified Interface. The Unified Interface is how a host processor communicates with a network interface module by means of a UART, a
parallel interface, or Ethernet.

► To evaluate another protocol, continue to the quickstart guide of that protocol.

The Unified Interface is the custom protocol that allows interaction between a host processor and the modular solution. When the Unified
Interface commands are integrated into the host software, the solution takes care of the Industrial Ethernet protocol communication.
The standard Analog Devices configuration for EtherNet/IP uses the three items detailed in Table 3.
Note that the needs of a system are not typically encompassed in the default configuration data that is provided in the network interface
module. The configuration tool allows the user to create a configuration that fits the needs of a particular system.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 58 of 180

INTRODUCTION
The Unified Interface is an interface by which an application processor communicates through an industrial Ethernet network with another
system to configure and interact with it.
The Unified Interface provides a common messaging protocol across a variety of different link types. This common messaging protocol allows
the application processor to be industrial Ethernet protocol agnostic as the core set of messages have nothing to do with any particular
industrial protocol. Extensions may exist to take advantage of protocol specific features but are not a required part of the core messaging
protocol.

BLOCK DIAGRAM FOR EMBEDDED DESIGN AND MODULE USERS

Figure 106.

UNIFIED INTERFACE BACKGROUND
A Unified Interface includes the following:
► A communication controller, which is the embedded processor responsible for managing transmission and/or reception of Unified Interface

messages on the communication side and running the industrial Ethernet protocol software.
► A communication side, consisting of the ADSP-CM409F hardware with the Unified Interface application software and an industrial networking

application software running on it.
► An application processor, which is the processor responsible for configuring the communication side via the Unified Interface protocol as well

as the application specific input and output (I/O), for example, the motor control, ADC, and more.
► An application side, which is the system portion that includes the processor in use by the user containing the API described in the Unified

Interface API section.
► A link, which is the low level hardware interface used between the application processor and the communication controller to transfer Unified

Interface messages. For example, serial peripheral interface (SPI), UART, and Ethernet. See the Application Processor Link Type section for
more information.

► A Unified Interface protocol, which is a set of messages that makes up the Unified Interface.
► An I/O application, which is the main function that provides the entry point for the embedded firmware.
► A Unified Interface application, which is the I/O application that implements the Unified Interface protocol.
► A system, which is the combination of the application side components and the communication side components that make up the industrial

Ethernet device.
► A transaction, which is the transfer of type Unified Interface message bytes over the configured link.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/ADSP-CM409F?doc=RPG2-Unified-Interface-User-Guide-UG-1846.pdf

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 59 of 180

DESIGN FLOW USING THE UNIFIED INTERFACE
See Figure 107 and the following sections for an outline of the steps to make an industrial Ethernet device using a Unified Interface.
Prior to a user performing the porting exercise, the user must run through the quickstart guide example for the chosen protocol of the user.
Refer to the main product page to download the protocol specific quickstart guide and run the application processor example for that given
protocol. The Unified Interface is the same no matter what protocol is chosen.

Run the Quickstart Guide Example
Regardless of the protocol, the quickstart guide for each protocol directs users on how to use the ni-example-app executable. Refer to the
RPG2 EtherCAT Quickstart Guide, RPG2 EtherNet IP Quickstart Guide, and RPG2 Profinet Quickstart Guide sections of this reference manual.

Design Hardware for the Industrial Ethernet Device
While this step can occur during several portions of the design phase, doing so before creating the needed link porting layer may be the most
efficient. However, this need can vary from device to device. Refer to the Link Configuration section of this document for more information.

Create a Link Porting Layer for the Applications Processor
The link porting layer is the responsibility of the customer to create. It is the software layer that hooks up the Unified Interface stack to the
hardware drivers for any given platform. Refer to the Porting and Customization section for more details on how to implement this task.

Port the Example to the Applications Processor
There are examples distributed for both a Windows®-based application and one that is based on an Arm® Cortex®-M4-based platform. The
intention is to port specific portions of the code as needed and develop the others. Refer to the Porting and Customization section for more
details on what a user must include in the user environment. Table 4 also outlines what the responsibilities of the customer are vs. what is
provided by Analog Devices. See the NI Example Application for Windows section for a complete breakdown of the Windows application and
some of the modification steps.

Make Modifications to the Example Using the Unified Interface Application Programming Interface
The Unified Interface application processor interface (API) is a driver that enables the user to interact with the RapID Platform Generation 2
(RPG2) solution. The user makes additions, modifications, or subtractions as applicable to the device and system needs of the user. The needs
of every system varies, and the user must determine what to implement or not based on the system needs of the user. See the Unified Interface
API section for a detailed description of the API.

Figure 107. Application Side Software Architecture

APPLICATION PROCESSOR LINK PORTING LAYER
The link porting layer is the layer between the Unified Interface stack and the drivers of a customer that is used to control the hardware on the
application processor. The user is expected to provide a driver and modify the link porting layer to interact with that driver.
Figure 108 shows the architecture of the application processor software, and Table 4 details which party is responsible for implementing this
architecture. While there may be some specific processor examples for the link porting layer, the user is ultimately responsible for this porting.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 60 of 180

Application I/O Drivers
The application I/O drivers are the portion of the code where the application processor does all of its tasks that are not part of the networking
part of the device. Examples are toggling physical I/O, physically starting or stopping the motor, and passing data to a liquid crystal display
(LCD). The application I/O drivers layer is not part of the RPG2 product and is therefore not supported.

Application
The application is where the user makes calls to the API provided by the Unified Interface. The user can set or retrieved the I/O data or
communicate with the communications processor to do other Ethernet related tasks.

Ni-api-srv
Ni-api-srv is the actual Unified Interface driver that a user incorporates into the software environment of the user.
The ni-api-srv has many different functions delivered for interaction with the ADIN2299 from a host processor. They all do different items, the
main highlights are covered in this document. Beyond that, please see the .h files to get an idea of what can be done with the ni-api.

Ui-stk
Ui-stk is the software stack where the Unified Interface messages are handled and processed to and from the network. Ui-stk must be included
in the software environment of the user.

Ui-xxx-lpl-srv
Ui-xxx-lpl-srv is a project/file where the user links the physical hardware (drivers) of the user with the Unified Interface stack. There are sample
link porting layers distributed for Windows and the ADSP-CM409F.

Link Hardware Drivers
The link hardware drivers are the drivers that the user has for the application processor interface type (UART, SPI or Ethernet) of the user.

Figure 108. User Software Layers

Table 4. Software Layer Development
Layer Developed By Modification
Application I/O Drivers Analog Devices and provided as an example For creation, modification, and maintaining by the customer only
Application Analog Devices and provided as an example For modification by the customer only
Ni-api-srv Analog Devices Not modified by the customer
Ui-stk Analog Devices Not modified by the customer
Ui-xxx-lpl-srv Analog Devices and provided as an example For modification by the customer

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/ADSP-CM409F?doc=RPG2-Unified-Inteface-User-Guide-UG-1846.pdf

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 61 of 180

Table 4. Software Layer Development (Continued)
Layer Developed By Modification
Link Hardware Drivers Analog Devices and provided as an example For modification by the customer

PORTING AND CUSTOMIZATION
This section describes how to implement a link type into the Unified Interface. The available software zip file contains examples for Ethernet,
SPI, and UART link types for an embedded platform, and the zip file also contains Ethernet and UART link type examples for a Windows-based
platform.

Link Porting Layer Customization
To customize the link porting layer for link type hardware and/or a driver for the processor, add a new header and C source file that contains
functionality for the following items:
► Link initialization
► Link configuration
► Message transmission
► Message receive handling
► Link deinitialization

Note that the link porting layer library can be renamed during the customization process.

Link Initialization
Use the link initialization function to set up the link hardware. A pseudo code example follows:

LinkInitialization(Link-specific parameters)
{
Initialize the link
if link initialization error
then return LPL_ERROR;
return LPL_OK;
}

Link Configuration
Use the link configuration function to configure link specific parameters. A pseudo code example follows:

LinkConfiguration(Link-specific parameters)
{
Configure the link
if link configuration error
then return LPL_ERROR;
return LPL_OK;
}

If required, the link configuration can be performed inside the link initialization function. A pseudo code example follows:

LinkInitialization(Link-specific parameters)
{
Initialize the link
if Link initialization error
then return LPL_ERROR;

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 62 of 180

Configure the link
if link configuration error
then return LPL_ERROR;
return LPL_OK;
}

Message Transmission
Use the message transmission function to send a message from the Unified Interface stack via the link. This function is called by the ui-stk via
a function pointer. The signature (return type, argument types, and argument order) of this function must match UI_TxFunc_t. A pseudo code
example follows:

MessageTransmission(data location, message size)
{
Transmit the Unified Interface message on the link
if data transmission error
then return LPL_ERROR;
return LPL_OK;
}

Message Receive Handling
Message receive handling receives incoming data from the link and forwards this data to the Unified Interface stack. This handling can be
accomplished in a tread or an interrupt handler. To minimize the amount of data movement, the Unified Interface stack allows incoming data
to be directly copied into its input buffer space. To obtain the location where the incoming data must be placed, call UI_GetRxLocation(). The
incoming data then is sequentially copied starting at that location. From there, UI_ProcessMsgData() is called to begin processing of the newly
received data. A pseudo code example follows:

MessageReception()
{
Request the current receive location → UI_GetRxLocation()
Read the incoming data and place the data into the buffer
Call UI_ProcessMsgData();
}

To keep the internal data pointers in sync, for every call to UI_ProcessMsgData(), there has to be a preceding call to UI_GetRxLocation().

Link Deinitialization
Use the link deinitialization function to deinitialize the link hardware. This function may not be required for all platforms. The designer must
decide if this functionality is required for the platform in use. A pseudo code example follows:

Link Deinitialization()
{
Deinitialize the link
if link deinitialization error
then return LPL_ERROR;
return LPL_OK;
}

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 63 of 180

Porting the Platform Support Service
This section describes the functions available in the platform support service of the example application and how to port these functions to the
destination platform. These functions are examples that must be modified and adapted by the user. The platform support service is hardware
specific.

PLAT_StartupSystem()
The PLAT_StartupSystem() function initializes the platform the example application runs on. This function turns on clocks and sets up any
peripherals that are required for the operation of the platform. If the platform successfully initializes, this function returns PLAT_OK, and if an
error occurs during initialization, this function returns PLAT_ERROR.

PLAT_ProcessArgs()
The PLAT_ProcessArgs() function processes the passed in command line arguments. If the command line arguments successfully processed,
this function returns PLAT_OK. If no command line arguments were supplied, and no error occurred, this function returns PLAT_NO_ARGS.
If any of the command line arguments did not process, this function returns PLAT_ ERROR. If no command line arguments have to be
processed, this function simply returns a success code. If the embedded application does not have a command line capability, do not call on
this function from ni-example-app.

PLAT_InitLink()
The PLAT_InitLink() function initializes the local link where Unified Interface messages are transmitted and received. If the link initialization
was successful, this function returns a pointer to the function that must be used to transmit the Unified Interface messages. If the link
initialization failed, it returns a NULL pointer.
The included example application allows for link type selection at run time. If only one link type is required, use the function as follows:

UI_TxFunc_t *PLAT_InitLink()
{
int32_t result;
UI_TxFunc_t *msgTx_p;
result = LPL_CustomInit(Link specific parameters);
if (result != LPL_OK)
msgTx_p = NULL;
else
msgTx_p = LPL_CustomTxMsg;
return msgTx_p;
}

PLAT_StartTimeUpdate()
The PLAT_StartTimeUpdate() function starts the process that notifies the network interface API service that a given time interval has elapsed
(that is, calls NI_TimeUpdate()) by using platform specific tasking and/or timing resources. On a platform with an operating system (for
example, Windows), this this functionality can be a thread that calls NI_TimeUpdate() periodically. On a platform without an operating system,
implement this functionality as a periodic interrupt handler. There are no predefined requirements on the actual implementation of this function
other than that this function must reliably supply ticks to the network interface API service. The time update process, whether it is a thread or a
timer interrupt, must run at a higher priority than the application. Otherwise, the time does not advance from the perspective of ni-api-srv and
the timeouts do not work.

PLAT_StartApplication()
The PLAT_StartApplication() function starts the example application layer. The startup of the application is dependent on the platform. On an
embedded platform, this function can call NI_application(). On a platform with an operating system (for example, Windows), this function can
spawn a thread that calls NI_application().

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 64 of 180

PLAT_TerminateExecution()
The PLAT_TerminateExecution() function is called by the example application to terminate execution. This function gives the platform support
library the opportunity to trap errors and then clean up and/or release resources. This function is an expected exit point for the executable, and
this function is not expected to return. If applicable, a success or failure code returns to the operating system.

PLAT_ProtectUiStack()
The PLAT_ProtectUiStack() function can take the mutex on a system with an operating system so that each thread or process must wait for
ownership of the mutex before the function can access the Unified Interface stack. On a system without an operating system, this function may
disable interrupts.

PLAT_UnprotectUiStack()
The PLAT_UnprotectUiStack() function reverses the actions of the PLAT_ProtectUiStack() function. On a system with an operating system,
this function can release the ownership of the mutex so that other threads or processes can access the Unified Interface stack. On a system
without an operating system, this function can enable interrupts.

NI Example Application for Windows
The example application for Windows is called ni-example-app. This application is an application processor simulator that contains the needed
API calls to interact with the Communications Controller. The ni-example-app application can be downloaded from the main product page.
Extract the zipped file to a local directory and navigate to ..ni-example-appprojectvsni-example-app.
Open ni-example-app.sln with Visual Studio 2015 or later.
The Solution Explorer will show the following five projects:
► ni-api-srv
► ni-example-app
► ni-windows-support-srv
► ui-stk
► ui-windows-lpl-srv

If not already selected, select ×86 as the Solution Platform.
Note that ni-example-app exists as an example for how to interface with a processor. This does not mean it is real time from industrial protocol
standards. Therefore the intent is to use ni-example-app for how to implement code. For final embedded devices, it is recommended customers
do not use the PC as a host.

Specifying the Endianness
To specify the endianness, take the following steps:
1. In the Solution Explorer, right-click ui-stk.
2. Under Configuration Properties, expand C/C++.
3. Select Preprocessor.
4. Select Preprocessor Definitions (see Figure 109).
5. Click the dropdown arrow and select <Edit…>.
The default definition is UI_LITTLE_ENDIAN. A preprocessor definition is required either UI_LITTLE_ENDIAN or UI_BIG_ENDIAN. For a
Windows platform, little endian is expected. For an embedded processor, endianness is something that varies depending on the application
processor chosen.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 65 of 180

Figure 109. Specifying the Endianness

Setting the Command Arguments
To set the Command Arguments, take the following steps:
1. In the Solution Explorer, right-click ni-example-app.
2. Under Configuration Properties, select Debugging.
3. Select Command Arguments.
Click the dropdown arrow and select <Edit…>.

Ethernet as Application Processor Interface
To set the Ethernet as an application processor interface, take the following steps:
1. To see all available network devices, enter -l ETH under Command Arguments (see Figure 110).
2. Click Apply.
3. Click OK.
4. Press Ctrl + Shift + B to build the solution.
5. Press Ctrl + F5 to start without debugging.
The following output appears in the Console window:

>ni-example-app.exe -l ETH
[......srcNI_main.c:75] INFO: Welcome to ni-example-app!
[......srcNI_main.c:78] INFO: Processing arguments...
A network device must be specified if the ETH link type is chosen.
Use the -n option to set the desired network device.
List of available network devices:
1: DeviceNPF_{080146B3-7B09-488E-8C10-BC05B800F39B}, (Microsoft)
2: DeviceNPF_{9AC18211-0815-4F54-8060-C5904AD9C4F2}, (NdisWan Adapter)
3: DeviceNPF_{8767E47B-BAF3-4821-8A1D-F8EDE935F8C5}, (Microsoft)
4: DeviceNPF_{E26E29A0-5899-4925-B0EF-2499B98570C8}, (Realtek USB NIC)
5: DeviceNPF_{CAB0CB19-2CCA-4018-9FB5-B816CD055359}, (NdisWan Adapter)
6: DeviceNPF_{F1F73818-E911-448D-9C9A-40511FB69628}, (Microsoft)
7: DeviceNPF_{A550E718-E38D-49ED-8873-71E7B6A74923}, (NdisWan Adapter)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 66 of 180

[......srcNI_main.c:81] INFO: FAILED

Figure 110. Ethernet Command Arguments

Take the following steps to set the Ethernet Command Arguments:
1. Select the appropriate network device and change the Command Arguments to -l ETH -n DeviceNPF_ {E26E29A0-5899-4925-

B0EF-2499B98570C8}.
2. Click Apply.
3. Click OK.

Figure 111. Setting Ethernet Command Arguments

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 67 of 180

UART as Application Processor Interface
To set the UART as an application processor interface, take the following steps:
1. Open the Device Manager and expand the Ports (COM & LPT) section. A list of two Silicon Labs dual CP2105 USB to UART bridge:

enhanced COM ports appears as follows:
a. Silicon Labs Dual CP2105 USB to UART Bridge: Enhanced COM Port (COM6)
b. Silicon Labs Dual CP2105 USB to UART Bridge: Standard COM Port (COM7)

2. Note the name of the enhanced COM port and enter -l UART -c COM6 under Command Arguments.
3. Click Apply.
4. Click OK.

Figure 112. Setting the UART Command Arguments

Running Ni-example-app in Debug Mode
Take the following steps to run ni-example-app in debug mode:
1. Before running the ni-example-app, users must set up the EV-RPG2 board chosen as detailed in the RPG2 RapID Platform Generation 2

User Guide section.
2. Press Ctrl + Shift + B to build the solution.
3. Press Ctrl + F5 to start without debugging.
The following output appears in the Console window:

[......srcNI_main.c:75] INFO: Welcome to ni-example-app!
[......srcNI_main.c:78] INFO: Processing arguments...
[......srcNI_main.c:86] INFO: DONE
[......srcNI_main.c:90] INFO: Performing system startup...
[......srcNI_main.c:96] INFO: DONE
[......srcNI_main.c:100] INFO: Start time update process...
[......srcNI_main.c:106] INFO: DONE
[......srcNI_main.c:110] INFO: Starting up example application...
[......srcNI_main.c:137] INFO: DONE
[......srcNI_main.c:140] INFO: Link init...
[......srcNI_main.c:146] INFO: DONE
[......srcNI_main.c:150] INFO: Unified Interface stack init...

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 68 of 180

[......srcNI_main.c:159] INFO: DONE
[......srcNI_main.c:164] INFO: Set response timeout...
[......srcNI_main.c:170] INFO: DONE
[......srcNI_main.c:175] INFO: Find Network Interface...
[......srcNI_main.c:186] INFO: DONE
[......srcNI_main.c:190] INFO: Set transmit modes...
[......srcNI_main.c:204] INFO: DONE
[......srcNI_main.c:208] INFO: Get installed protocol...
[......srcNI_main.c:220] INFO: DONE (EtherNet/IP)
[......srcNI_main.c:281] INFO: Set device 400...
[......srcNI_main.c:292] INFO: DONE
[......srcNI_main.c:296] INFO: Add item 500 to location 1...
[......srcNI_main.c:307] INFO: DONE
[......srcNI_main.c:311] INFO: Add item 501 to location 2...
[......srcNI_main.c:322] INFO: DONE
[......srcNI_main.c:326] INFO: Add item 502 to location 3...
[......srcNI_main.c:337] INFO: DONE
[......srcNI_main.c:342] INFO: Finalize configuration...
[......srcNI_main.c:353] INFO: DONE

The item and device constructs are the default values for the predistributed sample industrial Ethernet configuration database. For more
information, see the RPG2 I/O Configuration Tool User Guide section.
While not in the Console display, once the user has called the configuration complete in the application processor code, the user then must
make calls specific to the inputs and outputs as shown in Table 6 (NI_SetInputData and NI_GetOutputData).
The program then continuously calls the NI_ProcessEvents() function to process events. Inside of NI_ProcessEvents() there is an input data
subroutine and an output data subroutine.
It should also be noted that the ni-example-app line numbers are put out as a reference only, actual line numbers may change as the
executable goes through changes.
Table 5. Commands to API Calls Pre ConfigComplete
Console Output Line Number API Function
Find Network Interface… 175 NI_Init()
Set transmit modes 190 NI_SetTransmitModes()
Get installed protocol 208 NI_GetProtocol()
Set device 400 281 NI_SetDevice()
Add item 500 to location 1 296 NI_AddItem()
Add item 501 to location 2 311 NI_AddItem()
Add item 502 to location 3 326 NI_AddItem()
Finalize configuration 342 NI_ConfigComplete()
NO LONGER in Config Time 353 and on Not applicable
Not Applicable 358 NI_ProcessEvents()

Table 6. Cyclic I/O Processing in NI_API.c
Line Number API Function Notes
467 NI_OutputDataHandler() Calls NI_GetOutputData()
472 NI_InputDataLatchHandler() Calls NI_SetInputData()
367 NI_GetOutputData() Gets data from the network through the communications controller
424 NI_SetInputData() Sends data to the network through the communications controller

void NI_ProcessEvents(void) {
int32_t result;
UI_msgType_t msgType;

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 69 of 180

// Call any time-dependent handlers
if (NI_inDataTransmitMode_g == NI_transmitMode_onTime) {
if (NI_time_us_g >= NI_nextInDataTxTime_g) {
NI_InputDataLatchHandler();
NI_nextInDataTxTime_g += NI_inDataTxPeriod_us_g;
}
}
/* Checks for additional calls to time-dependent handlers go here */
// Call any message-dependent handlers
result = UI_GetNextMsgType(UI_msgSetEvent, &msgType);
if (result == UI_OK) {
switch (msgType) {
case UI_itemOutData:
NI_OutputDataHandler();
break;
case UI_itemInDataLatch:
UI_ParseItemInDataLatch();
NI_InputDataLatchHandler();
break;
default:
// TODO: Flush unrecognized messages
break;
}
}
}

UNIFIED INTERFACE API
The Unified Interface API is protocol agnostic. The user makes calls into the given functions as applicable for the application of the user. It
should be noted that not all commands are detailed in this document, a user should use the .h header files for understanding the API of the
Unified Interface. Shown below are some of the highpoints of the API.
The RapID Platform Generation 2 (RPG2) block diagram is shown in Figure 113. As shown in Figure 114, the RPG2 is a black box that users
must only worry about when using the Unified Interface API.
Figure 115 shows a diagram of some of the main Unified Interface messages and details of when these messages are seen in the time of the
system. Message validity is determined pre and post ConfigComplete, which is shown in Figure 115 for the system. To do industrial Ethernet
communication, call ConfigComplete first.

Figure 113. RPG2 Systm Block Diagram

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 70 of 180

Figure 114. RPG2 System Block Diagram with the RapID Platform Generation 2 as a Black Box

Figure 115. RPG2 System Block Diagram

Some functions are valid only before the NI_ConfigComplete() function. Some functions are valid only after the NI_Config Complete()
function. Some are valid in either case, which is dependent on the industrial Ethernet protocol currently used. Table 7 lists the valid time for NI
functions.
Table 7. Command Valid After NI_ConfigComplete()
Command Valid Time
NI_Init Before
NI_GetProtocol Both
NI_SetDevice Before
NI_AddItem Protocol dependent
NI_ConfigComplete Not applicable
NI_GetOutputData After
NI_SetInputData After
NI_TimeUpdate Both
NI_SetResponseTimeout Before
NI_OutputDataHandler After
NI_InputDataLatchHandler After
NI_SetDataTransmitModes Before
NI_GetBasket Before
NI_ProcessEvents After
NI_MsgReadyCallback After

NI_Init()
The NI_Init() function initializes the Unified Interface and gets the Unified Interface to where the Unified Interface is stable and able to receive
additional messages that are required. This function cannot be called after the NI_ConfigComplete() function.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 71 of 180

NI_Init() Function Prototype
The prototype of this function follows:

/* Initialize the local API software in preparation for communication via the
* Unified Interface and attempt to detect an attached Network Interface module
*
* maxAttempts The maximum number of attempts this function will make to
* detect an attached Network Interface module
*
* Returns NI_OK on successful initialization
* NI_ERROR on failure during initialization
* NI_ERROR if Network Interface module found but response incorrect
* NI_NOT_FOUND if couldn't detect a Network Interface module
*/
int32_t NI_Init(uint16_t maxAttempts);

The main purpose of NI_Init() is to determine if the application processor interface is correctly connected and ready for further Unified Interface
communication. The user can specify the maximum number of times the application processor of the user attempts to find the module.

NI_GetProtocol()
The NI_GetProtocol() function returns the current protocol that the module is running.

NI_GetProtocol() Function Prototype
The prototype of this function follows:

/* Get the Industrial Ethernet protocol installed on the attached Network
* Interface module
*
* No parameters
*
* Returns >=0: the installed Industrial Ethernet protocol (typecast returned
* value to NI_protocol_t to get enumerated value)
* <0: NI_TIMEOUT if operation timed out
* NI_ERROR if a Unified Interface stack error was detected
*/
int32_t NI_GetProtocol(void);

This function either times out or gives an enumeration as dictated by the protocol used. Table 8 lists the possible returns and their
corresponding protocol code.
Table 8. Protocol Codes
Code Protocol
2 PROFINET
3 EtherNet/IP
4 Modbus/TCP
7 EtherCAT
8 POWERLINK

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 72 of 180

NI_SetDevice()
The NI_SetDevice() function sets the device that exists from the module configuration data. This function is not valid after NI_ConfigCom-
plete() is called.

NI_SetDevice() Function Prototype
The prototype of this function follows:

/* Set the system device according to the indicated ID
*
* deviceId ID of the device to be set for the system
*
* Returns NI_OK on success
* NI_ERROR if device not found in IO config data
* NI_ERROR if called after configuration completed
* NI_TIMEOUT if operation timed out
*/
int32_t NI_SetDevice(uint16_t deviceId);

NI_AddItem()
The NI_AddItem() function adds an item from the configuration database of the user. This function can be valid after NI_Config Complete
depending on the protocol that is in use (see Table 9). This function also has no use in the IP use case.
Table 9. Validity After NI_ConfigComplete for NI_AddItem
Protocol Valid
PROFINET Yes
EtherNet/IP No
Modbus/TCP No
EtherCAT No
POWERLINK No

NI_AddItem() Function Prototype
The prototype of this function follows:

/* Add an item to the system
*
* itemId ID of the item to be added to the system
* location into which the item should be installed
*
* Returns >= 0: item handle
* <0: NI_INVALID_PARAM if location out of range (must be >0)
* NI_ERROR if item not found by ID
* NI_ERROR if items not currently permitted to be added
* NI_TIMEOUT if operation timed out
*/
int32_t NI_AddItem(uint16_t itemId, uint32_t location);

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 73 of 180

NI_ConfigComplete()
The NI_ConfigComplete() function is called to indicate that the application processor has no more options to configure the communication
controller and is ready for Ethernet communication. After this function is called, some functions become available to the application processor
and some cease being available.

NI_ConfigComplete() Function Prototype
The prototype of this function follows:

/* Indicate that configuration should be completed
*
* No parameters
*
* Returns NI_OK on success
* NI_ERROR if there is a problem with the system
* NI_TIMEOUT if operation timed out
*/
int32_t NI_CompleteConfig(void);

NI_GetOutputData()
The NI_GetOutputData() function obtains the newly received output data from the Unified Interface stack. Call this function in response to the
NI_OutputDataHandler() function.

NI_GetOutputData() Function Prototype
The prototype of this function follows:

/* Get the newly-received output data
*
* Use this function to retrieve the newly-received output data from the
* Unified Interface stack.
*
* This function should be called as a response to the notification of new
* output data. It should either be called from or immediately after
* NI_OutputDataHandler() is called. It should never be called otherwise.
*
* dataStatus_p Pointer to location into which the status of the item
* output data should be copied (see NI_ioStatus_t)
* itemHandle_p Pointer to location into which the item handle to
* which the output data corresponds should be copied
* outDataSize_p Location into which the size (in bytes) of the received
* output data should be copied
* outData_p Pointer to location into which the received output data
* should be copied
*
* Returns NI_OK on success retrieving output data
* NI_ERROR if there was a problem parsing the received output data
* message
* NI_TIMEOUT if operation timed out
*/
int32_t NI_GetOutputData(int32_t *dataStatus_p,
int32_t *itemHandle_p,
uint16_t *outDataSize_p,

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 74 of 180

uint8_t *outData_p);

NI_SetInputData()
The NI_SetInputData() function sets the input data that is sent to the industrial Ethernet network.

NI_SetInputData() Function Prototype
The prototype of this function follows:

/* Set the most-recent input data
*
* Use this function to push the latest input data into the NI API for
* transmission to the Network Interface module. This function should be called
* in either of the following scenarios:
*
* A) At the application side's discretion in order to update the input data
* supplied on the network
* B) From NI_InputDataLatchHandler() in order to complete an isochronous
* network cycle
*
* itemHandle Handle to the item for which the input data is being supplied
* inDataSize Size (in bytes) of the supplied input data
* inData_p Pointer to the input data to be supplied for the indicated
* item
* complete Flag indicating whether or not the write of the input data to
* the Network Interface module is complete
*
* NOTE: Use NI_ALL_ITEMS as the item handle parameter value if the supplied
* input data is for all installed items and is already packed.
*
* NOTE: Setting the 'complete' flag will cause the NI API to notify the
* Network Interface module that this input cycle is complete. Clearing
* this flag will simply tell provide the input data to the Network
* Interface module. If NI_ALL_ITEMS is supplied as the item handle,
* the NI API will automatically tell the Network Interface module that
* this input cycle is complete (the 'complete' flag is ignored).
*
* Returns NI_OK on success setting input data
* NI_ERROR if there was a problem creating the input data message
* NI_TIMEOUT if operation timed out
*/
int32_t NI_SetInputData(int32_t itemHandle,
uint16_t inDataSize,
uint8_t *inData_p,
uint8_t complete);

NI_TimeUpdate()
Use this NI_TimeUpdate() function to get the time the function was last called. Users can call this several times in their code to monitor the
timing between different parts of their application.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 75 of 180

NI_TimeUpdate() Prototype
The prototype of this function follows:

/* Notify this library that time has passed
*
* Use this function to tick this library and let it know how much time has
* passed since the last call. This allows it to monitor things like response
* message arrivals and the associated timeouts.
*
* NOTE: The precision of response timeouts is subject to how often this
* function is called. The more often this function is called, the more
* precise timeouts will be - at the cost of increased overhead. The
* less often this function is called, the less precise timeouts will
* be but at the benefit of decreased overhead.
*
* elapsedUs The number of microseconds that have passed since the last
* call to this function
*
* Returns nothing
*/
void NI_TimeUpdate(uint32_t elapsedUs);

NI_SetResponseTimeout()
The NI_SetResponseTimeout() function sets the time duration that is acceptable between an API call and its corresponding response.
This function gives users the ability to set parameters for acceptable delays in communication between the application processor and the
communication processor.

NI_SetResponseTimeout() Function Prototype
The prototype of this function follows:

/* Set the timeout time for expected response messages
*
* Use this function to override how long the application will wait before
* timing a response out and considering it lost. This setting applies to all
* responses.
*
* timeout_us Timeout duration (in us)
*
* Returns NI_OK on success setting timeout value
* NI_INVALID_PARAM if timeout duration invalid
*/
int32_t NI_SetRespTimeout(uint32_t timeout_us);

NI_OutputDataHandler()
The NI_OutputDataHandler() function serves as a notification to the application processor that output data has arrived from the network. The
user must call NI_GetOutputData as a response to this function. This call can be done right away or when the users must decouple their inputs
and outputs.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 76 of 180

NI_OutputDataHandler() Function Prototype
The prototype of this function follows:

/* Application output data handler
*
* This function is implemented by the application and called the Network
* Interface API service. It is called immediately after new output data from
* the module has arrived. It serves as a notification that NI_GetOutputData()
* should be called. NI_GetOutputData() MUST be called once for every call to
* this function. If the output data and associated metadata is not of interest
* to the output data handler, all parameters to NI_GetOutputData() can be set
* to NULL.
*
* It is permissible to call NI_GetOutputData() from this function or after
* execution of this function completes.
*
* The application can handle this data however it would like. Some typical
* actions might be:
* - Scenario 1: A) Store the output data to be applied later (along with
* supplying input data)
* - Scenario 2: A) Apply the output data to the physical outputs
* B) Read the physical inputs to latch the input data
* C) Push the latched input data into the NI API to be
* transmitted to the Network Interface module
*
* NOTE: Unless the NI API was configured to use a polling approach, this
* function will be called from the same context (i.e. ISR or non-ISR)
* as the LPL function that called the Unified Interface stack.
*
* NOTE: If no items were added to the system that contain output data, this
* function will never be called by the NI API.
*
* No parameters
*
* Returns nothing
*/
void NI_OutputDataHandler(void);

NI_InputDataLatchHandler()
The NI_InputDataLatchHandler() function is called directly after the network interface module has indicated that the current input data must be
latched. The NI_SetInputData() function must be called to write new input data to the network interface module and to complete the I/O cycle.

NI_InputDataLatchHandler() Function Prototype
The prototype of this function follows:

/* Application input data latch handler
*
* This function is implemented by the application and called by the Network
* Interface API service. It is called immediately after the NI module has
* indicated that the input data should be latched. It serves as a notification
* that NI_SetInputData() should be called in order to write fresh input data
* to the NI module and complete the current network IO cycle.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 77 of 180

*
* No parameters
*
* Returns nothing
*/
void NI_InputDataLatchHandler(void);

NI_SetTransmitModes()
The NI_SetTransmitModes() function sets the input data and output data transmit modes. Supported output data transmit modes are on
request, on time (that is, periodically), on change, or on network (that is, every network cycle). Supported input data transmit modes are on time
(that is, periodically) or on network (that is, every network cycle).

NI_SetTransmitModes() Function Prototype
The prototype of this function follows:

/* Set the input and output data transmit modes
*
* Use this function to set what triggers transmission of output data from the
* NI module and what triggers transmission of input data to the NI module.
*
* Output data may be transmitted 'on request', 'on time' (i.e. periodically),
* 'on change' or 'on network' (i.e. every network cycle). This setting affects
* the trigger that causes the NI module to transmit messages that contain
* output data. If 'on request' is selected, the application must send a
* message requesting that the NI module send output data. The timing of this
* request is the responsibility of the application. If 'on time' is selected,
* the NI module will send output data periodically with no respect to network
* cycle. If 'on change' is selected, the NI module will send output data in
* synchronization with the network cycle but only when the data has changed.
* If 'on network' is selected, the NI module will send output data every
* network cycle in synchronization with the network cycle.
*
* Input data may be transmitted 'on time' (i.e. periodically) 'on network'
* (every network cycle). This setting affects the trigger that causes
* NI_InputDataLatchHandler() to be called. If 'on time' is selected,
* NI_InputDataLatchHandler() will be called periodically based on the local
* time and the supplied input data transmit period parameter. If 'on network'
* is selected, NI_InputDataLatchHandler() will be called as a follow on action
* to a received 'latch inputs' event message.
*
* NOTE: If an isochronous application is desired, the selected output data
* transmit mode must be either 'on change' or 'on network'. The other
* modes are not compatible with isochronous operation.
*
* NOTE: If an isochronous application is desired, the selected input data
* transmit mode must be 'on network'.
*
* NOTE: The supported transmit modes for output data are
* - 'on request'
* - 'on time'
* - 'on change'
* - 'on network'
*

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 78 of 180

* NOTE: The supported transmit modes for input data are
* - 'on time'
* - 'on network'
*
* outTxMode The output data transmit mode for which the NI module should
* be configured
* outTxPeriod_us The period (in us, subject to NI system tick rounding) at
* which output data should be transmitted (only valid if
* 'on time' transmit mode is selected, ignored for all others)
* inTxMode The input data transmit mode for which the local system
* should be configured
* inTxPeriod_us The period (in us, subject to local system time update
* rounding) at which input data should be transmitted from the
* local system (only valid if 'on time' transmit mode is
* selected, ignored for all others)
*
*
* Return NI_OK on success setting transmit modes
* NI_INVALID_PARAM on unrecognized transmit mode
* NI_INVALID_PARAM if selected transmit mode is invalid for a given
* data direction (e.g. if selected input data transmit
* mode is 'on change')
* NI_INVALID_PARAM if invalid input or output data transmit period
* (only returned if selected transmit mode is
* 'on time')
* NI_TIMEOUT if operation timed out
* NI_ERROR if NI module reported an error while setting transmit mode
*/
int32_t NI_SetTransmitModes(NI_transmitMode_t outTxMode,
uint32_t outTxPeriod_us,
NI_transmitMode_t inTxMode,
uint32_t inTxPeriod_us);

NI_GetBasket()
The NI_GetBasket() function gets a basket from the configuration database of the user. This function can be valid after NI_Config Complete
depending on the protocol that is in use.
Table 10. Validity After NI_ConfigComplete for NI_GetBasket()
Protocol Valid
PROFINET Yes
EtherNet/IP No
Modbus/TCP No
EtherCAT No
POWERLINK No

NI_GetBasket() Function Prototype
The prototype of this function follows:

/* Get a basket from the system
*
* basketId ID of the basket to be retrieved
* basket_pp Pointer to location into which the pointer to the retrieved

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 79 of 180

* basket data should be copied (out parameter)
*
* Returns NI_OK on success (basket_pp updated)
* NI_ERROR if basket not found (basket_pp not updated)
*/
int32_t NI_GetBasket(uint16_t basketId, NI_basket_t **basket_pp);

NI_ProcessEvents()
Use the NI_ProcessEvents() function to check if an event occurred and then call the proper event handler function to notify the application.

NI_ProcessEvents() Function Prototype
The prototype of this function follows:

/* Process events
*
* Process any events that have come in since the last call to this function
* (or since the beginning of time).
*
* This function will check if any events have been occurred and then call the
* appropriate event handler to notify the application of the event and its
* information.
*
* In order to expedite event handling, this function should be called
* repeatedly and as often as possible.
*
* No parameters
*
* Returns nothing
*/
void NI_ProcessEvents(void);

NI_MsgReadyCallback()
The NI_MsgReadyCallback() function is a pointer to the function the stack must call when a new message arrives and is ready for parsing.
When a new message is received and queued for parsing by the application, the application implements this function and calls the function by
the stack.

NI_MsgReadyCallback() Function Prototype
The prototype of this function follows:

/* Unified Interface message ready handler
*
* During Unified Interface stack initialization, the application should point
* the stack at this function to handle received messages
*
* This library will manage waiting for the required response on behalf of the
* application
*
* NOTE: Conforms to the requirements set by the Unified Interface stack in
* UI_common.h. Parameters and return values are not discussed here.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 80 of 180

*/
UI_MsgReady_t NI_MsgReadyCallback;

APPLICATION PROCESSOR LINK TYPE
The application processor is the system processor where users develop and create their industrial Ethernet device. The customer interfaces the
application processor to the ADSP-CM409F processor that exists as part of the RPG2 solution. The link type is the hardware connections for
the application processor to the ADSP-CM409F.
The following are the link types that are supported by the link porting layer:
► Ethernet
► UART
► SPI

In the software zip files found within the RPG2 Unified Interface User Guide section, there are link porting layers that are available as examples
for a variety of platforms.

Link Type Selection

Board Configuration File Method
There are two methods by which the link type is selected. The first method is to allow the user to determine this by loading a different board
configuration file. A board configuration file pre-exists for each Unified Interface link type in the software zip file download from the main product
page as well as one for the strapping option method. The board configuration file overrides what is physically strapped for the design.
The user may completely bypass the board configuration file if they strap the link type selector pins (LT1, LT2, LT3 on the ADIN2299) and do
not load a contradictory Link Configuration File. The contents of the file system are blank upon arrival, therefore, if a user does not add a link
configuration file it will follow what is on the pins which by default is Ethernet.

Strapping Option Method
A user can also elect to utilize the three strapping pins to select an application processor interface type. This method is over-written by the
board configuration file if there is a conflict.

Ethernet
Unified Interface messages can be sent via Ethernet. In this case, the Unified Interface message follows a standard Ethernet header. The
Ethernet link type can be either direct or indirect. A direct Ethernet link consists of two directly connected reduced media independent interfaces
(RMIIs), one on the application side and one on the communication side. An indirect Ethernet link consists of two RMIIs connected to each
other through a physical layer (PHY) on either end with an Ethernet cable in between.
The Unified Interface is agnostic to direct vs. indirect connections.
For Ethernet signal connections, refer to the Link Configuration section of this document. In addition, the message format is handled
automatically by the Unified Interface stack. Forming up these messages is done automatically by the interaction between the link porting layer
and the stack. Therefore, this section is for informational purposes only.

Transaction Details
Unified Interface messages are encapsulated in a standard Ethernet frame, immediately following the EtherType.
This frame keeps the application processor software lighter weight (no need for a TCP/IP stack) and obviates the need for supporting protocols
like address resolution protocal (ARP) on the communication side, which is required in most cases if a higher level transport protocol was
selected.
Essentially, Unified Interface messages are transmitted using raw sockets.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/ADSP-CM409F?doc=RPG2-Unified-Inteface-User-Guide-UG-1846.pdf
https://www.analog.com/ADSP-CM409F?doc=RPG2-Unified-Inteface-User-Guide-UG-1846.pdf
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 UNIFIED INTERFACE USER GUIDE

analog.com Rev. A | 81 of 180

Virtual local area network (VLAN) tagged frames are ignored when received from the application side and are not transmitted from the
communication side. Table 11 shows the format of the Ethernet message.
Table 11. Ethernet Frame Format
Frame Byte Value
0 Destination MAC Address Byte 1
1 Destination MAC Address Byte 2
2 Destination MAC Address Byte 3
3 Destination MAC Address Byte 4
4 Destination MAC Address Byte 5
5 Destination MAC Address Byte 6
6 Source MAC Address Byte 1
7 Source MAC Address Byte 2
8 Source MAC Address Byte 3
9 Source MAC Address Byte 4
10 Source MAC Address Byte 5
11 Source MAC Address Byte 6
12 Most significant byte of the ether type
13 Least significant byte of the ether type
14 Through n Unified Interface data

UART
Unified Interface messages can be sent or received over a UART.
In addition, the message format is handled automatically by the Unified Interface stack. Forming these messages is done automatically by the
interaction between the link porting layer and the stack. Therefore, this section is for informational purposes only.

Transaction Details
Each byte of a Unified Interface message is framed with an optional parity bit and the configured number of stop bits.
Table 12. UART Transaction
Frame Field Start Bit Message Byte Parity Bit Stop Bit(s)
Bit Length 1 8 0 to 1 1 to 2

The baud rate, parity setting (none, even or odd), and number of stop bits (1 or 2) is configured via the board configuration data.
In each transmission via the UART, there are as many UART frames as there are message bytes. For example, a 6 byte Unified Interface
message causes six UART frames to transmit.
Message bytes transmit LSB first.
Because a UART is not a leader and follower interface or half duplexed, there is no need for either side to request permission from the other
side to transmit or check that the other side is currently transmitting.
Because a UART is full duplexed, it is permissible for two Unified Interface messages to be on the wire simultaneously.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 82 of 180

GENERAL DESCRIPTION
The RapID Platform Generation 2 (RPG2) input/output (I/O) configuration tool is used to generate information that describes the input and
output footprint of the final product data of the user on an industrial automation network. The configuration tool allows the user to enter the
desired configuration values and export a file that can then be loaded into the product so the product can set up the input and output as the
input values, output values, and device parameters appear on the network. Although data in the files produced by the RPG2 I/O configuration
tool is specific to the network protocol in use (such as PROFINET®, Ethernet/internet protocol (IP), and Modbus/transmission control protocol
(TCP)), the data is created and used in such a way that the host system does not need to understand how to create messages as needed for
each network protocol.
After entering the information necessary to create the desired input and output configuration into the RPG2 I/O configuration tool, the tool
exports a configuration file containing this information in a format understood by the software of the product of the user. If the final product
supports multiple network protocols, the tool can create configurations for each protocol. After a configuration file exports and loads into the
nonvolatile product memory, the product is ready to start network communications.
The process of creating and loading a configuration often occurs as follows:
► Use this tool to define one or more devices in the device library. See the Devices section for more information.
► Use this tool to define one or more items in the item library. See the Items section for more information.
► Optionally, users can place a device from the device library and one or more items from the item library into a basket. More than one basket

can be created. Baskets can also logically group a single device in the device library with one or more items in the item library. See the
Baskets section for more information.

► Export selected devices, items, and baskets to a configuration file. See the Configuration File Formats section for more information. Note that
newly exported configuration files load into the product by using either a Joint Action Test Group (JTAG) interface or the web server on the
RPG2 module/embedded reference design.

RPG2 I/O CONFIGURATION TOOL FUNCTIONALITY AND INSTALLATION

Functionality
Any configuration information saved using the RPG2 I/O configuration tool saves in a database file, such as the .rpc file. This database file
allows the user to keep all configuration information created by the user in one central location, even if the information is for more than
one protocol. After populating the database, it is possible to export selected database information or all of the database information as a
configuration file in binary (bin) format. Similarly, it is possible to import configuration files that are in binary format into the user database.
Figure 1 shows the ability of the configuration tool to open, save, and close a database file, as well as to import or export a configuration file.

Installation
To install the RPG2 I/O configuration tool, copy the configuration tool executables to a directory on the host computer. Once the executables are
copied, the RPG2 I/O configuration tool is ready to run.
The ConfigurationTool.exe file is stored on the supplied USB drive or this file can be downloaded in .zip format from the Tools Files directory
from the ADIN2299 main product page at www.analog.com/adin2299. Copy this file to a convenient working directory on the host computer.

CONFIGURATION OBJECTS
The database created and stored by the RPG2 I/O configuration tool contains devices, items, and baskets. Each object type can be used for a
different purpose, but a 16-bit ID uniquely identifies each object type. The ID of each object is user selectable, but the ID must be unique within
the object type and protocol. For example, two Ethernet/IP devices cannot have an ID of 120. The RPG2 I/O configuration tool keeps track of
each object, its ID, and the protocol under which the object falls, thereby keeping objects with the same ID but different protocol association
separated from each other. For example, this tracking allows the user to have an Ethernet/IP device with an ID of 100 and a Modbus/TCP
device with an ID of 100 in the same database.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 83 of 180

Devices
Use device objects to define the overall device. Although the data in a device object is dependent on the protocol in use, the device contains
an ID, name, and several other communication parameters. Details on these parameters, as well as the difference based on protocol, are in the
following sections.

PROFINET Devices
The PROFINET device configuration consists of elements related to the general station description markup language (GSDML) file, the
identification and maintenance (I&M) interface, and simple network management protocol (SNMP) descriptions. Table 13 details the PROFINET
devices.

Ethernet/IP Devices
The Ethernet/IP device object contains data identity data (used by the Ethernet/IP identity object), default factory data (used by the Ethernet/IP
and TCP/IP object), and system options (see Table 14). Refer to the ODVA Ethernet/IP Specification Volume 2 for details concerning specific
objects and attributes.
Most of the remaining device data (from static IP address to address conflict detection (ACD) enable) is used when a Type 1 reset is requested
by a controller, as noted in the ODVA Ethernet/IP Specification Volume 1. The Type 1 reset causes the system to discard all prior nonvolatile
communications settings and reverts to the settings defined in this user guide. The reset provides a way to return the system to the factory
configuration and is required for conformance to Ethernet/IP specifications.
Table 13. PROFINET Devices
Device Name Description
PROFINET Vendor ID Same as GSDML file
PROFINET Device ID Same as GSDML file
PROFINET Profile ID NonGSDML item, PROFINET specific profile ID, use 0 for nonprofile device
PROFINET Profile Type NonGSDML item, PROFINET specific profile ID, use 3 for input and output module
Device Type ProductFamily parameter in GSDML file, 240 characters maximum
Order ID OrderNumber parameter in GSDML file, 20 characters maximum
Module ID (DeviceAccessPointItem or ModuleIdentNumber parameter in GSDML file
Submodule ID (VirtualSubmoduleItem) or SubmoduleIdentNumber parameter in GSDML file
Software Major Revision SoftwareRelease parameter in GSDML file
Software Minor Revision SoftwareRelease parameter in GSDML file
Software Internal Revision SoftwareRelease parameter in GSDML file
Revision Counter NonGSDML item, necessary for PROFINET stack
SNMP System Description NonGSDML item, 256 characters maximum
SNMP Enterprise ID NonGSDML item, private SNMP object identifier (OID)
Internal Interface Description NonGSDML item, 256 characters maximum
Port 1 Interface Description NonGSDML item, 256 characters maximum
Port 2 Interface Description NonGSDML item, 256 characters maximum

Table 14. Ethernet/IP Devices
Device Name Description
Vendor ID Ethernet/IP identity object, Attribute 1
Device ID1 Ethernet/IP identity object, Attribute 2
Product Code1 Ethernet/IP identity object, Attribute 3
Major Revision1 Ethernet/IP identity object, part of Attribute 4
Minor Revision1 Ethernet/IP identity object, part of Attribute 4
Product Name1 Ethernet/IP identity object, Attribute 7
Static IP Address Part of Attribute 5
Subnet Mask2 Part of Attribute 5
Gateway Address2 Part of Attribute 5

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 84 of 180

Table 14. Ethernet/IP Devices (Continued)
Device Name Description
Primary and Secondary Domain Name System (DNS) Server IP Addresses2 Part of Attribute 5
Dynamic Host Configuration Protocol (DHCP) Enable Flag2 Part of Attribute 3
Domain Name String2 Part of Attribute 5
Host Name String2 Attribute 6
Multicast Time to Live (TTL) Value2 Attribute 8
Multicast Allocation Control2 Part of Attribute 9
Number of Multicast Addresses2 Part of Attribute 9
Multicast Start Address2 Part of Attribute 9
ACD Enable2 Attribute 10
Link Speed Part of Attribute 6; used by Ethernet/IP Ethernet link object, one per port
Link Duplex Part of Attribute 6; used by Ethernet/IP Ethernet link object, one per port
Link Autonegotiation Enable Flag Part of Attribute 6; used by Ethernet/IP Ethernet link object, one per port
Ethernet Link Administrative State Flag Attribute 9; used by Ethernet/IP Ethernet link object, one per port
Enable Device Level Ring (DLR)3 Enables system DLR functionality

1 Unless otherwise specified, these devices are the source for the attributes of the Ethernet/IP identity object.
2 Unless otherwise specified, these devices are the source for the attribute values of the Ethernet/IP TCP/IP interface object.
3 When cleared, the resulting devices does not support DLR, nor does it expose the DLR common industrial protocol (CIP) object. As such, the system designer can decide

whether the end device supports DLR. If the flag is set, the DLR capability enables, and the DLR CIP object is exposed. The type of DLR used depends on the hardware of
the module. If the fido2100 DLR Ethernet switch is used, DLR implementation is beacon based. If the Micrel Ethernet switch based module is used, the DLR is announced
based.

Modbus/TCP Device
The parameters detailed in Table 15 define the Modbus/TCP device.
Table 15. Modbus/TCP Device Parameters
Parameter Name Description
Follower ID Single byte that is reported in the report follower ID response packet.
Follower ID Additional Data Byte string (30 bytes maximum) that forms the additional information section in the report follower ID response packet.
Order ID Not used.
Support Email Address Not used.
Manufacturer Website Address Not used.
TCP Keepalive Period Number of milliseconds between keepalive pings. The Modbus/TCP product periodically pings all of the connected clients. If a client

does not respond to two consecutive pings at any time after the TCP connection is established, the product declares the connection
dead, and the client connection is removed. If the keepalive timeout is 1000, and a client does not respond to any keepalive pings,
the connection is declared dead after 3000 ms and removed. A keepalive value of 0 disables the keepalive timer. However, disabling
this way is not recommended.

Watchdog Period Minimum activity period (in ms). If the output data of the device is not updated within the activity period, the outputs are reset to
0, and the common interface input and output status is set to CI_IO_INVALID. Setting the activity watchdog value to 0 disables the
activity watchdog.

Cycle Period Number of milliseconds between updates to the network. The recommended cycle period is 100 ms.
Major Revision Major revision value for product.
Minor Revision Minor revision value for product.

EtherCAT Devices
An EtherCAT device supplies information (such as the device name) to the corresponding CANopen over EtherCAT (CoE) objects. EtherCAT
devices allow the user to customize the device and insert unique information, such as the vendor ID and product code.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/fido2100

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 85 of 180

Table 16. EtherCAT Devices
Device Name Description
Vendor ID 32-bit EtherCAT vendor ID placed in Object 0x1018. Contact the EtherCAT Technology Group (ETG) for information on how to obtain an EtherCAT

vendor ID.
Product Code 32-bit EtherCAT product code placed in Object 0x1018 that uniquely identifies the user device to the leader among others.
Device Name 32-character string placed in Object 0x1008 that provides the model number or a brief description of the device.
Hardware Version 8-character string placed in Object 0x1009, which is the version of the hardware this device is using.
Software Version 8-character string placed in Object 0x100A, which is the software version this device is using.
Major Revision 16-bit revision number concatenated with the minor revision and placed in Object 0x1018, which is the major revision number of the device.
Minor Revision 16-bit revision number concatenated with the major revision and placed in Object 0x1018, which is the minor revision number of the device.

POWERLINK Devices
A POWERLINK device supplies information such as the device name to the corresponding CoE objects. POWERLINK devices allow the user to
customize their device and insert information such as the vendor ID and product code.
Table 17. POWERLINK Devices
Device Name Description
Vendor ID 32-bit POWERLINK vendor ID placed in Object 0x1018. Contact the Ethernet POWERLINK Standardization Group (EPSG) for information on how

to obtain a POWERLINK vendor ID.
Product Code 32-bit POWERLINK product code placed in Object 0x1018 that uniquely identifies the user device to the leader.
Revision Number 32-bit integer.
Serial Number 32-bit integer.
Device Name 32-character string placed in Object 0x1008 that provides the model number or a brief description of the device.
Hardware Version 8-character string placed in Object 0x1009, which is the version of the hardware this device is using.
Software Version 8-character string placed in Object 0x100A, which is the software version this device is using.

Items
Items define the overall input and output sizes or types of the product. Like the device object, the data this object contains varies based on
protocol.

PROFINET Items
The two distinct PROFINET item types are cyclic and acyclic.

Cyclic PROFINET Items
Cyclic items specify the input and output modules, either virtual or physical, plugged into a given device. Cyclic items contain the parameters
detailed in Table 18. These elements correspond to the description of a module in the GSDML file and can evaluate the expected configuration
sent by the PROFINET controller to the device during the connection process. When adding cyclic items at run time, the location parameter is
used as the slot. Cyclic items must be added in the order of their slot numbers.
A device with a fixed input and output can be built with a single cyclic item to represent all cyclic inputs and outputs. A more complex device
with multiple possible configurations can be modeled with multiple cyclic items. For example, a modular input and output device can have a
separate cyclic item type for each type of module installed in the device. Multiple copies of a given item type can be installed by the user
application.

Acyclic PROFINET Items
Acyclic PROFINET items link other kinds of data that are not part of the cyclic data flow to the network. The configuration of each acyclic items
contains the fields detailed in Table 19.
In addition, slot number is an important parameter consideration for acyclic items. The location parameter must correspond to the desired
slot number when creating a basket or add the item by calling CI_AddItem(). Acyclic items can be allocated to the same slot number as

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 86 of 180

cyclic items, allowing parameterization data and diagnostic data to allocate for a module. Similarly, multiple acyclic items (indices/sizes) can be
associated with a single slot number.

Ethernet/IP Items
Ethernet/IP items specify the details of the assembly object instances exposed by the product. An item can reference input data only, output
data only, or both. There are three distinct types of cyclic Ethernet/IP items: unique, incrementing, and accumulating. There are also two types
of acyclic Ethernet/IP items: configuration and diagnostic. Items of different types are defined by the configuration data installed into the system
and are primarily distinguished by what happens when an item is added to the system or when more than one item of a given ID is added to the
system.
All Ethernet/IP items contain the parameters detailed in Table 20. Ethernet/IP items can be created to support all connection types identified
in the specifications. A maximum of 32 Ethernet/IP items can be added to the system. There can be no more than 16 Ethernet/IP assembly
instances created. Although there are more Ethernet/IP items available than assembly instances, it is possible to run out of assembly instances
before Ethernet/IP items because the item type determines whether the item creates a new assembly instance or accumulates input and output
data into another existing item.
Table 18. Cyclic PROFINET Parameters
Name Description
Item Module ID Module ID associated with item
Item Submodule ID Submodule ID associated with item
Number of Input Bytes Number of bytes available to the controller to read the item
Number of Output Bytes Number of bytes available to the controller to write the item

Table 19. Acyclic PROFINET Parameters
Field Description
Index Used by the controller to address data (0x0001 through 0xFFFF)
Input Bytes Number of bytes available to the controller to read the index
Output Bytes Number of bytes available to the controller to write the index
Slot Number Used by the controller to access data

Table 20. Ethernet/IP Parameters
Name Description
Item Type Type of item (unique, incrementing, accumulating, or configuration)
Consume Assembly Instance ID Originator to target assembly instance ID
Consumption Size Base number of consumed bytes
Production Instance ID Target to originator assembly instance ID
Production Size Base number of produced bytes

Unique Ethernet/IP Items
When adding a unique item, the system searches the item table for any existing entries with this type and item ID. If any existing entries are
found, an error returns and a new item does not create. If no matching item is found, the new item is allocated and added to the list. Searching
the item table ensures that an item and its associated assembly instance IDs are unique within the system. When data is written to unique
items, the data is immediately relayed to the Ethernet/IP stack for transmission over the network.

Incrementing Ethernet/IP Items
When adding an incrementing item, the system searches the item table for the last entry of this type and its item ID. The system then attempts
to allocate a new item with the sequential assembly instance IDs. Both the produce instance IDs and consume instance IDs are incremented.
After incrementing the instance IDs, the table searches again, this time searching for an item corresponding to either of the new assembly
instance IDs. If a match is found, an error returns. If a match is not found, the new item is allocated and added to the list. As such, a new
assembly object with the size defined by the input and output configuration data is created. However, this new assembly object receives a new
and unique set of assembly instance IDs. When writing data to incrementing items, the data relays immediately to the Ethernet/IP stack for
transmission over the network.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 87 of 180

Accumulating Ethernet/IP Items
When adding an accumulating item, the system searches the item table for the last entry of this type and its item ID. The system then attempts
to allocate a new item with the same assembly instance IDs and the same input and output size. The system uses an increasing offset in the
expanding input and output data based on the item size. If adding this new item causes the accumulated input and output data size to exceed
the allowed maximum for a single assembly object (500 bytes), an error returns and the new item is not added. If the size is not exceeded, a
new item that references the same assembly instances but with the input and output data is placed at the next offset and is added to the list.
As such, a single assembly instance object is created with the data size accumulating as each new item is added. When writing data to items of
this type, the data is not relayed to the Ethernet/IP stack until all data input and output is complete.

Configuration Ethernet/IP Items
Add a configuration item to support a CIP configuration assembly. This item only contains the consume instance ID and size and is added to
the device so that the system accepts the configuration data provided by the Ethernet/IP programmable logic controller (PLC) at the time the
forward open issues. Users do not typically establish a Class 1 connection to this item, and as such, configuration items are defined as acyclic
data items. The consume assembly instance ID must be unique for this item. Do not add this item more than once to the system or more than
once to a given basket.

Diagnostic Ethernet/IP Items
Adding a diagnostic item provides a produce assembly that can send system health information to the network. This item only contains a
produce instance ID and size. It is possible to establish a Class 1 connection to this item, but typically, diagnostic items are used with explicit
messaging in an acyclic fashion. The assembly instance ID for this item must be unique in the system. Multiple diagnostic items can be added
to the system or used in the same basket, assuming each has a distinct ID.

Modbus/TCP Items
Use Modbus/TCP items to map the input and output data of the product to discrete inputs, coils, holding registers, and input registers in the
Modbus/TCP register and bit space.
To accommodate systems with different endianness needs or systems that store or transfer up to 64-bit values in consecutive registers, 32-bit
and 64-bit swapping is available. Take care when swapping because the input and output data size must be an integer multiple of 4 for 32-bit
swapping, and the input and output data size must be an integer multiple of 8 for 64-bit swapping. Never swap bit data.
The RPG2 I/O configuration tool allows input and output data to be mapped virtually anywhere in the bit or register space. Accomplish mapping
by setting the register address mapping and the bit address mapping to the desired values when creating an item. When a contiguous
Modbus/TCP bit and register space is required, the RPG2 I/O configuration tool can place items in auto mode. When an item is set to auto
mode, the address for the Modbus/TCP register that corresponds to the input and output data calculates automatically at run time. If all of the
items are set to auto mode, the data for the first item maps to Address 0. All items added subsequently map to an address that sequentially
follows the item added before it so that the register and bit space can appear gapless and linear.
On an item by item basis, holding and input registers can be mirrored together. When mirroring registers together, data written to the holding
registers from the network automatically write to the input registers with the same addresses immediately after the writes to the holding register
completes. In addition, when writing items from the host side, the data writes to the input registers as well as the holding registers. As such, the
Modbus/TCP controller can write to both holding and input register spaces, and the host can write to both holding and input register spaces.
Take care during this process because items that are register only in auto mode only increment addresses in the register space. Likewise, bit
only items in auto mode only increment addresses in the bit space. When adding items to the system, add the items in ascending register and
bit address order unless auto addressing mode is in use. Adding items out of ascending order results in an error when attempting the addition.
Modbus/TCP items contain the fields detailed in Table 21.
Table 21. Modbus/TCP Item Parameters
Field Name Description
Swap Mode Selects swapping mode (none, 16-bit, 32-bit, or 64-bit).
Register Space Mapping Selects whether register space mapping enables for this item. If mapping enables, this item also selects auto addressing mode or use

selected.
Bit Space Mapping Selects whether bit space mapping enables for this item. If mapping enables, this item also selects auto addressing mode or use selected.
Input Size Number of input bytes to map to the Modbus/TCP register or bit space. Enter 0 if no input data is required for this item.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 88 of 180

Table 21. Modbus/TCP Item Parameters (Continued)
Field Name Description
Output Size Number of output bytes to map to the Modbus/TCP register or bit space. Enter 0 if no output data is required for this item.
Register Offset Specifies the beginning register space address where the item data must be mapped if register space addressing mode is set to use

selected.
Bit Offset Specifies the beginning bit space address where the item data must be mapped if bit space addressing mode is set to use selected.
Mirror Registers Mirrors the input and holding registers represented by this item together.

EtherCAT Items
Use EtherCAT items to create objects (such as transmission process data objects (TxPDOs), receiving project data objects (RxPDOs), input
entries, and output entries) that represent product data on the EtherCAT network. The three types of EtherCAT items are process data,
configuration, and diagnostic.
A process data item is a cyclic item that contains the process data the product consumes and produces on the EtherCAT network. The
configuration and diagnostic items are acyclic. These items contain data that the EtherCAT leader can send to the product during system
startup to set parameters, or data that the leader can read from the device to determine what faults the product application must indicate. For
any item, the total size of the input and output data (the sum of the sizes of the input and output subindices) is displayed in the item size
summary field (see Figure 26 to Figure 28).

Process Data Items
A process data item creates a RxPDO (Index 0x16xx) or TxPDO (Index 0x1Axx), along with input and output entries (Index 0x6xxx and Index
0x7xxx). The exact index numbers of the TxPDOs, RxPDOs, and input and output entries depends on the location where the process data item
installs (see Table 22). When adding the item to the system, select the location of the item.
The created RxPDO or TxPDO automatically populate with the input and output entry information when the RapID system starts. As such, the
product application does not need to populate the TxPDO. If a process data item does not specify input data, the TxPDO and input entry object
for that module does not create. Similarly, if a process data item does not specify any output data, the RxPDO and output entry object for that
module does not create. After processing the item, the process data represented by that item is available to the EtherCAT leader via traditional
TxPDOs and RxPDOs, as well as CoE objects.
If the data type for the subindices in an input or output object is none, the object name is ignored and that object and its corresponding TxPDO
or RxPDO does not create. Note that this process allows the creation of input or output only items.
When selecting a process data item, it is possible to set the data (see Table 23).

Configuration Items
A configuration item creates an object with an index of 0x8xxx. The exact index number depends on the location where an item of this type
installs. The index of the configuration data object is calculated as 0x8000 + ((Location − 1) × 0x10). When adding the item to the system,
select the location of the item. Regardless of location, install process data items in the same location as configuration items.
This object holds configuration data sent from the EtherCAT leader to the product. As such, consider a configuration item output only. All input
options for a configuration item are disabled. Configuration data is not available to the EtherCAT network in an output entry, and this data is
acyclic data.
When selecting a configuration item, it is possible to set the data (see Table 24).
Table 22. Object Address Formulas
Object Name Address
TxPDO Index 0x1600 + (Location − 1)
RxPDO Index 0x1A00 + (location − 1)
Input Entry Index 0x6000 + ((Location − 1) × 0x10)
Output Entry Index 0x7000 + ((Location − 1) × 0x10)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 89 of 180

Table 23. Process Data Item Parameters
Parameter Description
Input and Output Object Name Name of the object (Index 0x6xxx or Index 0x7xxx) that represents the input and output data of the item.
Input and Output Subindex Selects the subindex within the input and output object currently displayed or edited.
Input and Output Subindex Name Sets the name of the currently selected subindex. Via CoE, the EtherCAT leader can request this name. If left blank, the

system uses the subindex (index number) as the name for this subindex.
Input and Output Subindex Data Type Selects the data type that the user specifies for the subindex of the item
Total Input and Output Size Add the size of the input and output subindices as defined by the selected data type to calculate this size.

Table 24. Configuration Item Parameters
Parameter Description
Output Object Name Name of the object (Index 0x8xxx) that represents the configuration data of the item.
Output Subindex Selects the subindex within the configuration object currently displayed or edited.
Output Subindex Name Sets the name of the currently selected subindex. Via CoE, the EtherCAT leader can request this name. If left blank, the system uses

the subindex (index number) as the name for this subindex.
Output Subindex Data Type Selects the data type that the user specifies for the subindex of the item.
Total Output Size Add the size of the output subindices as defined by the selected data type to calculate this size.

Diagnostic Items
A diagnostic item creates an object with an index of 0x9xxx. The exact index number depends of the location where an item of this type installs.
The index of the diagnostic data object is calculated as 0x9000 + ((Location − 1) × 0x10). When adding the item to the system, select the
location of the item. Regardless of location, install a process data item in the same location as a diagnostic item.
This object holds diagnostic data sent from the EtherCAT leader regarding the state of the input and output on the product. As such, consider a
diagnostic item input only. All output options for a diagnostic item are disabled. Diagnostic data is not available to the EtherCAT network in an
input entry, and this data is acyclic data.
When selecting a diagnostic item, it is possible to select the data (see Table 25).

POWERLINK Items
Use POWERLINK items to create objects such as input entries and output entries that represent the product data on the POWERLINK network.
The two types of POWERLINK items are analog and digital. These items are both cyclic items that contain the process data the product
consumes and produces on the POWERLINK network.

Analog Items
If a user selects an analog item for the item type, the options are 1, 2, or 4 bytes for input or output. When more than 4 bytes of input or output
are required, create multiple quantities for that particular item. Multiple quantities fill in the subindices with the specified number of quantities for
that item. As such, when creating an item, enter the fields detailed in Table 26.

Digital Items
If a user selects a digital item, only 1 byte is available for input or output. When more than 1 byte of input or output is required, create multiple
quantities for that particular item. Multiple quantities fill in the subindices with the specified number of quantities for that item. See Table 26.

Baskets
Baskets hold a device and one or more items. Baskets can group a set of the available items with a given device. Baskets can only contain a
single device, although baskets can contain multiple or duplicate items. The devices and items in a basket must exist in the same database file.
Table 25. Diagnostic Item Parameters
Parameter Description
Input Object Name Name of the object (Index 0x9xxx) that represents the diagnostic data of the item.
Input Subindex Selects the subindex within the diagnostic object currently displayed or edited.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 90 of 180

Table 25. Diagnostic Item Parameters (Continued)
Parameter Description
Input Subindex Name Sets the name of the currently selected subindex. Via CoE, the EtherCAT leader can request this name. If left blank, the system uses the

subindex (index number) as the name for this subindex.
Data Type Selects the data type that the user specifies for the subindex of the item.
Total Input Size Add the size of the input subindices as defined by the selected data type to calculate this type.

Table 26. Analog and Digital Item Parameters
Parameter Description
Item Type Analog or digital.
Item Size If the item type is analog, the item size can be 1, 2, or 4 bytes, and if the item type is digital, the item size defaults to 1 byte.
Input Quantity Number of input subindices for the item between 0 and 254.
Output Quantity Number of output subindices for the item between 0 and 254.

USING THE RPG2 I/O CONFIGURATION TOOL

Starting the RPG2 I/O Configuration Tool
To start the RPG2 I/O configuration tool, navigate to the directory where the RPG2 I/O configuration tool was installed and double-click the
ConfigurationTool.exe file.

User Interface Overview
When the RPG2 I/O configuration tool first starts up, the window shown in Figure 3 appears.
From this window, the user can begin adding objects to the database or opening previously created databases. For a brief description of what
the toolbar buttons do, hover your cursor over that button.

Device, Item, and Basket Operations
The three basic database operations for any object type are add, edit, and delete.

Adding a Device
To add a device to the database, go to the Device Library tab and click Add Device. The user must then select the device protocol for the new
device (see Figure 116). The user can also add the device via the menu bar, the context menu, or the toolbar.

Figure 116. Device Protocol Select Window

Select the protocol for device creation and click OK, which then opens a window to add the protocol selected. See the Example Configurations
sections for example device windows. From this window, the user can enter all desired device settings. Once information is entered, click Add
Device. To stop creating a device and discard any changes, click Cancel.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 91 of 180

Figure 117. Main RPG2 I/O Configuration Tool Window

Figure 118. Device Protocol Select Window

To overwrite the information in all fields with the database default device values for that protocol, click Load Default Device (see Figure 118).
A default device is useful when creating a large number of similar devices. The user can load the default device for that protocol and then only
make minor changes to the device information values.

Setting a Default Device
The user can load a new default device when adding a device or beginning to edit an existing device. To edit the default device, click Edit >
Default > Device and then select the corresponding protocol of the default device to edit. When done editing the device, click Commit to save
the default device to the database. It is now possible to load the modified default device by clicking Load Default Device in windows to add or
edit devices for the corresponding protocol. To stop editing a default device and discard any changes, click Cancel.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 92 of 180

Editing a Device
To edit a device in the database, select the device to edit in the Device Library and then click Edit Device. The resulting window contains
editable device settings. Right-click the device to edit or select Edit Device from the context menu to open the device for editing. To commit the
device changes to the database, click Commit. To replace this device information with the information of the default device, click Load Default
Device. To discard any changes, click Cancel.

Deleting a Device
To delete a device from the database, select the device to delete and click Delete. A prompt to confirm the deletion of this device then appears.
Before deleting the device from the database, remove the device from any baskets using the device. The user can also right-click on the device
to delete and select Delete.

Adding an Item
To add an item to the database, go to the Item Library tab and click Add Item. A prompt to select the protocol for the new item appears (see
Figure 119). The user can also add the item via the menu bar, the context menu, or the toolbar.

Figure 119. Item Protocol Select Window

Select the protocol for the item and click OK. A window then opens to add the protocol selected. See the Example Configurations sections
for example device windows. From this window, the user can enter all desired item settings. Once information is entered, click Add. To stop
creating a device and discard any changes, click Cancel.
To overwrite the information in all fields with the database default device values for that protocol, click Load Default Device (see Figure 4).
A default item is useful when creating a large number of similar items. The user can load the default item for that protocol and then only make
minor changes to the device information values. For information on changing the configuration tool default item, see the Setting a Default Item
section.

Setting a Default Item
The user can load a new default item when adding an item or beginning to edit an existing item. To edit the default item, click Edit > Default >
Item and then select the corresponding protocol of the default item to edit. When done editing the item, click Commit to save the default item
to the database. It is now possible to load the modified default item by clicking Load Default Item to add or edit items for the corresponding
protocol. To stop editing a default item and discard any changes, click Cancel.

Editing an Item
To edit an item, select the item in the Item Library and then click Edit Item. The resulting window contains editable item settings. Right-click
the item to edit or select Edit Item from the context menu to open the item for editing. To commit item changes to the database, click Commit.
To replace the information of an item with the information of the database default item, click Load Default Item. To discard any changes, click
Cancel.

Deleting an Item
To delete an item from the database, select the item to delete and click Delete Item. A prompt to confirm deletion of this item then appears.
Before deleting the item from the database, remove the item from any baskets using the item. The user can also right-click on the item to delete
and select Delete Item.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 93 of 180

Adding a Basket
To add a basket to the database, go to the Basket Library tab and click Add Basket. A prompted to select the protocol for the new basket
appears (see Figure 120). The user can also add the basket via the menu bar, the context menu, or the toolbar.

Figure 120. Basket Protocol Select Window

Select the protocol for the basket and click OK. The Add Basket window then opens (see Figure 121). There must be at least one device and
one item in the database for the protocol selected to begin adding a basket.

Figure 121. Add Basket Window

In the Add Basket window, the user can add the device and any desired items, as well as set the order of the items inside the basket. Once all
information is entered, click Add to add the item to the database. Before the basket can be added to the database, exactly one device for the
basket, and at least one item, must be added to the basket. To stop creating a basket and discard any changes, click Cancel.
Each item in a basket has a location parameter associated with it. This parameter refers to the location where the item must install when added
to the system at software run time. For Ethernet/IP and Modbus/TCP implementations, set the location parameter to 1 for all items.
Each item also has an Info A and Info B parameter associated with it. The Unified Interface does not process these parameters. Both of these
values are unsigned 32-bit numbers that are user assignable. These parameters can store custom information about each item in a basket that
the software can use when the basket fetches at run time.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 94 of 180

Editing a Basket
To edit a basket, select the basket to edit in the Basket Library and click Edit Basket. The resulting window contains editable item settings.
Right-click the basket to edit or select Edit Basket from the context menu to open the basket for editing. To commit basket changes to the
database, click Commit. To discard any changes, click Cancel.

Deleting a Basket
To delete a basket from the database, select the basket and click Delete. A prompt to confirm deletion of this basket appears. Alternatively, the
user can right-click on the basket and select Delete from the context menu.

Database Operations

Starting a Database
After opening the configuration tool, users can start building a database by adding a device or an item to any protocol list. See the Adding
a Device section and Adding an Item section for details on adding devices and items. After adding at least one device and one item for a
particular protocol, place those objects in a basket.

Saving a Database
After building a database, save it for storage or for future editing. To save the database, click File > Save Database. Select a location, enter a
filename, and then click Save.

Opening a Database
To open a previously saved database, click File > Open. Select the database file to open and click Open.

Closing a Database
To close the database being working on, click File > Close Database. If the database is not saved, a prompt appears to choose to save it.
Once the existing database closes, a new, empty database opens.

Database Export and Import Operations

Exporting a Database Report File
During development of a database, it can be useful to have a summary of the objects contained in the database. The RPG2 I/O configuration
tool provides the ability to export a database report file. This file contains the same data that is visible in the tool in a .txt file.
To export a database report file, click Import/Export > Export Database Report. Navigate to the directory where you want to save the report
file, select a file name, and click Save.

Exporting a Configuration File
After creating a database with the necessary devices, items, and baskets, export the database to a configuration file so that the configuration
information can be loaded onto the product and referenced by the industrial protocol software. The file format chosen by the user depends on
the production time needs and the method used to load the configuration information onto the product.

Selecting Objects for Export
To export a configuration file, select the objects to export by setting the configuration tool to export select mode. To put the tool into export
select mode, click Import/Export > Select Objects to Export. The objects in the database are then available for selection. To select an object,
check off the check box next to the object. To export all devices, items, or baskets under a certain protocol, check off the check box next to the
protocol.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 95 of 180

Exporting Selected Objects
To export the selected objects, click Import/Export > Export Selected Object To and select the file format by which to export the objects.
See the Selecting Objects for Export section and Configuration File Formats section for more information. A prompt then appears for directory
selection location and file naming. After entering a file name, click Save. Click Cancel to stop exporting a configuration file.
After an executable and linkable format (ELF) configuration file exports, there is the option to generate a batch file. When the batch file runs, it
loads the ELF configuration file generated into the product via JTAG. The batch file does not need to run from the command line and can run
by double-clicking the file. Before the batch file runs, install the CodeSourcery tool chain and JTAG wiggler drivers and connect a JTAG wiggler
to the host computer. For the load process to work properly, the ELF file, the generated batch file, and Rapid.xml file must all be in the same
directory when the batch file runs.
A warning appears when attempting to export a configuration file if selecting a device in a certain protocol for export but no items in that
protocol are selected. Likewise, a warning appears if selecting an item in a protocol for export but no devices in that protocol are selected.

Configuration File Formats
The RPG2 I/O configuration tool can export configuration files in four different formats. However, the only one that is used for the RPG2 product
line is the .bin option. Do not use the other formats for this solution because the other formats are specific to testing only.

Importing a Configuration File
During development, it may be convenient to populate the database with information contained in configuration files. To import a configuration
file, click Import/Export > Import File, select the configuration file to import, and click Open.
If the database currently open in the tool is not empty, the Discard Duplicates? window opens (see Figure 122). Click Yes to keep any
duplicate objects in the database and to discard the duplicate objects in the configuration file during the import. Click No to discard any
duplicate objects in the database and replace these objects with the duplicate objects in the configuration file. Click Cancel to cancel the import.

Figure 122. Discard Duplicates? Window

EXAMPLE CONFIGURATIONS
The following section shows how to create configurations for five products that all have the same input and output features but communicate
via PROFINET, Ethernet/IP, EtherCAT, POWERLINK, and Modbus/TCP. In the following examples, the input and output features are one set of
16-bit digital inputs and outputs, two sets of 16-bit analog inputs and outputs, and one 16-bit control value that is received from the controller
but not sent to it.

PROFINET Example Configuration

Example PROFINET Device
The device object for the example PROFINET device appears in Figure 9.

Example PROFINET Items
Four PROFINET items represent the input and output data for the example product: one for the digital input and output data, one for the analog
input and output data, one for the control data, and one for the module data that is associated with each of previous three items that are used
for input and output.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 96 of 180

The digital input and output data appears in Figure 10, the analog input and output data appears in Figure 11, the control data appears in Figure
12, and the module data appears in Figure 13.
The controller provides this acyclic data as defined by the included example GSDML file as module data. The value of the module data is
arbitrary.

Example PROFINET Basket
If defining at least one device and one item for the product, place the device and item in a basket to make adding them to the system at run
time easier. Using a basket to add a device and set of items is not a requirement. The device and set of items can also be added individually.
An example PROFINET basket appears in Figure 128.
Acyclic Data Item ID 503 was added to the example basket three times. Each instance of this item has a location that matches one of the other
data items. As such, each input and output data item has corresponding acyclic module data.

Figure 123. Example PROFINET Device

Figure 124. Example PROFINET Item (Digital Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 97 of 180

Figure 125. Example PROFINET Item (Analog Data)

Figure 126. Example PROFINET Item (Control Data)

Figure 127. Example PROFINET Item (Module Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 98 of 180

Figure 128. Example PROFINET Basket

Current IRT Example PROFINET Configuration
With the implementation of PROFINET IRT, a new GSDML file has been introduced. The current IRT example configuration has a single digital
input and output data item representing eight separate submodules in the included example GSDML file. Each of these submodules can be
added as part of the ni-example-app source code. See the sample configuration and the GSDML file for details, as shown in Figure 129 to
Figure 131.

Figure 129. Add Profinet Device Window

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 99 of 180

Figure 130. Add Profinet Item Window

Figure 131. Add Basket Window

Ethernet/IP Example Configuration

Example Ethernet/IP Device
The device object for the example Ethernet/IP product appears in Figure 15.

Example Ethernet/IP Items
Three Ethernet/IP items represent the input and output data for the example product: one for the digital input and output data, one for the
analog input and output data, and one for the control data.
The digital input and output data appears in Figure 16, and the analog input and output data appears in Figure 17, and the control data appears
in Figure 18.

Example Ethernet/IP Basket
If defining at least one device and one item for the product, place the device and item in a basket to make adding them to the system at run
time easier. Using a basket to add a device and set of items to the system is not a requirement. The device and items can also be added
individually.
The example Ethernet/IP basket appears in Figure 136. The Ethernet/IP network application does not use the location parameter. The location
parameter must be set to 1 for all items in an Ethernet/IP basket.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 100 of 180

Figure 132. Example Ethernet/IP Device

Figure 133. Example Ethernet/IP Item (Digital Data)

Figure 134. Example Ethernet/IP Item (Analog Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 101 of 180

Figure 135. Example Ethernet/IP Item (Control Data)

Figure 136. Example Ethernet/IP Basket

Modbus/TCP Example Configuration

Example Modbus/TCP Device
The device object for the example Modbus/TCP product appears in Figure 20.

Example Modbus/TCP Items
Three Modbus/TCP items represent the input and output data for the example product: one for the digital input and output data, one for the
analog input and output data, and one for the control data. In Figure 21 and Figure 22, the Register Offset box and Bit Offset box are disabled
because register space mapping is disabled, and the bit space mapping is in auto mode for this item. This item configuration prevents the digital
data from mapping into the register space and allows the digital data to map automatically into the bit space.
The digital input and output data appears in Figure 21, the analog input and output data appears in Figure 22, and the control data appears in
Figure 23. The Register Offset box is enabled and the Bit Offset box is disabled in Figure 23 because the bit space mapping is disabled, and

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 102 of 180

the use selected option is selected for register space mapping. Configuring the item this way prevents control data from being mapped into the
bit space and allows control data to be mapped into a specific area of the register space away from the input and output data.

Example Modbus/TCP Basket
If defining at least one device and one item for the product, place the device and item in a basket to make adding them to the system at run
time easier. Using a basket to add a device and set of items to the system is not a requirement. The device and items can also be added
individually.
An example Modbus/TCP basket appears in Figure 141. The Modbus/TCP network application does not use the location parameter. The
location parameter must be set to 1 for all items in a Modbus/TCP basket.

Figure 137. Example Modbus/TCP Device

Figure 138. Example Modbus/TCP Item (Digital Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 103 of 180

Figure 139. Example Modbus/TCP Item (Analog Data)

Figure 140. Example Modbus/TCP Item (Control Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 104 of 180

Figure 141. Example Modbus/TCP Basket

EtherCAT Example Configuration

Example EtherCAT Device
The device object for the example EtherCAT product appears in Figure 25.

Example EtherCAT Items
Three items represent the input and output data for the example product: one for the digital input and output data, one for the analog input and
output data, and one for the control data.
The digital input and output data appears in Figure 26, the analog input and output data appears in Figure 27, and the control data appears in
Figure 28.

Example EtherCAT Basket
If defining at least one device and one item for the product, place the device and item in a basket to make adding them to the system at run
time easier. Using a basket to add a device and set of items to the system is not a requirement. The device and items can also be added
individually. An example EtherCAT basket appears in Figure 146.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 105 of 180

Figure 142. Example EtherCAT Device

Figure 143. Example EtherCAT Item (Digital Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 106 of 180

Figure 144. Example EtherCAT Item (Analog Data)

Figure 145. Example EtherCAT Item (Control Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 107 of 180

Figure 146. Example EtherCAT Basket

POWERLINK Example Configuration

Example POWERLINK Device
The device object for the example POWERLINK object appears in Figure 30.

Example POWERLINK Items
Three items represent the input and output data for the example product: one for the digital input and output data, one for the analog input and
output data, and one for the control data.
The digital input and output data appears in Figure 31, the analog input and output data appears in Figure 32, the control data appears in
Figure 33.

Example POWERLINK Basket
If defining at least one device and one item for the product, place the device and item in a basket to make adding them to the system at run
time easier. Using a basket to add a device and set of items to the system is not a requirement. The device and items can also be added
individually. An example POWERLINK basket appears in Figure 151.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 108 of 180

Figure 147. Example POWERLINK Device

Figure 148. Example POWERLINK Item (Digital Data)

Figure 149. Example POWERLINK Item (Analog Data)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 109 of 180

Figure 150. Example POWERLINK Item (Control Data)

Figure 151. Example POWERLINK Basket

PROFINET GSDML FILES
A sample set of system configuration and GSDML files is part of the software zip file download from the ADIN2299 main product page at
www.analog.com/adin2299. The configuration follows the examples described in this user guide, and the GSDML file reflects that as well. The
configuration data contains three items that describe three modules with an associated parameter data item. The second configuration data file
has eight modules.
The GSDML file details how these three modules connect a PROFINET controller to the example device. Then, to describe the user device,
modify the configuration and GSDML files. Review the example configuration in this section thoroughly before modifying the configuration and
associated GSDML files.
This configuration tool creates the configuration file, and the configuration file uploads to the network interface module, which contains data that
describes the input and output items and the physical device.
When this data is entered into this configuration tool, each configuration entity, for example, a device or item, is given a unique ID number.
The module runtime uses these ID numbers to locate the device settings and input or output date of the item. The ID numbers are arbitrary,
or the user can assign the ID numbers in any way desired. However, the values must be unique. When the device and all the necessary items
are created, the data is placed into a basket, which is referenced singularly by the host software. The example configuration provides a single
device (ID 400 or ID 403) and three input and/or output items (Item 500, Item 501, and Item 502, or alternatively multiples of Item 700). In this
example, all of this information is placed into a basket with the ID of 1000.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 110 of 180

See Table 27 for details on Item 500 through Item 502.

GSDML File Generation Guidelines
The PROFINET GSDML file must follow the current specification from PROFIBUS International. The specification and a GSDML viewer is
downloaded via the PROFIBUS internal website. Note that users must be a member to obtain this information from PROFIBUS International.
The GSDML viewer checks the GSDML for specification errors. However, this viewer does not detect all .xml syntax errors, and an .xml editor
with a syntax checker is also required.
The user system can modify the following sections of the GSDML file.

DeviceIdentity Section
This section of the file defines the vendor ID and device ID, which must match the vendor ID and device ID in the device description of the
configuration file. Each PROFINET vendor must have a vendor ID issued by PROFIBUS International. Send a request to info@profibus.com for
the vendor ID. Note that there is no charge for the ID.

DeviceAccessPointList Section
This section describes which modules can plug into which slots and the physical device. The ModuleIdentNumber and SubmoduleIdentNumber
must match the Module ID and Sub Module ID in the device description of the configuration file. If the product family has multiple
DeviceAccessPointItems, the configuration file must contain device descriptions for each DeviceAccessPointItem.

ModuleList Section
The data in this section describes the input and output modules of the product, which can be physical modules that plug into a back plane or a
description of the input and output of a single device. Each ModuleItem must have a matching cyclic item description in the configuration file.

ParameterDataRecordItem Section
Each module can have a ParameterDataRecordItem, which is predefined data set when making a connection. If a module has a ParameterDa-
taRecordItem item, define an acyclic item in the configuration file and add this item to the same slot as the associated cyclic item. The acyclic
item must have the same index and data size as the ParameterDataRecordItem item of the module.

GraphicsList Section
Use this section of the GSDML file to include a graphic for the device in the controller software. Each DeviceAccessItem item can be associated
with a unique graphic.

CategoryList Section
This section of the file organizes the device modules into a directory structure in the controller software.
Table 27. Item 500 to Item 502 and Item 700 Descriptions (Item 700 Appears in the Second I/O Configuration File)

Item ID PROFINET Module ID PROFINET Submodule ID
Data Size (Bytes)

Consumer Output and Input Data Producer Output and Input Data
Item 500 0x10400000 0x10440001 2 2
Item 501 0x10500000 0x10550001 4 4
Item 502 0x10600000 0x10660001 2 Not applicable
Item 700 0x00000023 0x00000001 8 8

ETHERNET/IP EDS FILES
A sample set of system configuration and EDS files is part of the software zip file download from the ADIN2299 main product page at
www.analog.com/adin2299. The configuration and the EDS files follow the examples described in this user guide in the following sections.
The configuration data contains three items that describe five instances of EtherNet/IP assembly objects. Descriptions of these five objects
are within the EDS file such that an industrial PLC can connect to the example device with minimal effort. Closely examine the example
configuration before modifying the configuration and EDS files to conform to the needs of your specific application.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
mailto:info@profibus.com
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 111 of 180

The example configuration data is contained in two files: EIP_demo_cfg (no file extension) and EIP_demo_cfg.bin. The EIP_demo_cfg file is
raw data that this configuration tool creates and consumes. The EIP_demo_cfg.bin file contains the same data as the EIP_demo_cfg file in a
format that the RPG2 module can consume. This configuration tool automatically creates the .bin file when the configuration file is saved.
The example EDS file is in the EIP_demo_cfg.EDS file.
This configuration tool creates the configuration file, and the details of that process are described in this user guide. After the file creates, it
then loads to the network interface module. The file contains data that describes the input and output items, as well as the device itself. Each
configuration entity (for example, a device or item) is given a unique ID number when data is written to the tool. The module run time uses these
ID numbers to locate the device settings and input and output data of the item. The ID numbers are arbitrary and can be assigned by the user in
any way desired, but each ID number must be unique.
When the device and all the necessary items are created, this configuration tool places the data into a basket (also contained in the file). The
host software must only reference this basket ID. The example configuration provides a single device (ID 400) and three input items (Item 500,
Item 501, and Item 502) that are placed into a basket with an ID of 1000.
Table 28 describes the input and output details of the example configuration.
A description of the EtherNet/IP EDS file corresponding to this example configuration follows. In addition, information is included that can assist
with modifying this example EDS file to suit the needs of an individual system.

EDS File Generation Guidelines
The EDS file describes the valid connection points and assembly objects within the device. The params sections are referenced by the
connection points and can be used to specify details such as offset, scaling, and engineering units. Refer to the provided demonstration file,
EIP_demo_cfg.eds. This file is heavily commented and provides an example implementation that matches the example configuration data.
The network interface module implements all of the Ethernet/IP objects necessary to support explicit messaging and Class 1 input and output
connections and does not support the use of parameter objects or parameter object stubs. Rather, the EDS file has a number of params
sections.
Comments in the EDS file start with a dollar sign ($) and continue to the end of the line. For full details of the EtherNet/IP EDS syntax file see
the ODVA Specification Volume 1, Chapter 7.
Table 28. Input and Output Parameters for Example EtherNet/IP Configuration

Valid EtherNet/IP Connection Types Configuration Item ID
Consume Assembly Object Produce Assembly Object

Instance ID Size (Byte) Instance ID Size (Bytes)
Exclusive Owner (EO), Input Only (IO), Listen Only (LO),
and Output Only (OO)

500 100 2 101 2

EO, IO, LO, OO 501 102 4 103 4
EO, OO 502 104 2 None Not applicable

Table 29. Sample Connection Parameters
Parameter Description
O → T Originator to target, which refers to the direction the Class 1 data flows.
T → O Target to originator, which refers to the direction the Class 1 data flows.
EO Exclusive owner, which refers to a type of Class 1 connection point, and the input and output data flows in both directions.
LO Listen only, which refers to a type of Class 1 connection point. LO is dependent on another connection, and the input and output data only flows in the T

→ O direction.
IO Input only, which refers to a type of Class 1 connection point, and the input and output data only flows in the T → O direction.
OO Output only, which refers to a type of Class 1 connection point, and the input and output data only flows in the O → T direction.
Originator The EtherNet/IP scanner, for example, the PLC.
Target The EtherNet/IP adapter, for example, the network interface module.
Class 1 The cyclic CIP input and output connection.
CIP The common industrial protocol.
ODVA Open DeviceNet Vendor Association.
Consume Refers to the adapter consuming Class 1 input and output data. Used to drive device outputs.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 112 of 180

Table 29. Sample Connection Parameters (Continued)
Parameter Description
Produce Refers to the adapter producing Class 1 input and output data. Derived from device inputs.

The EDS file is broken into several sections, each of which delimits by a keyword contained in square brackets. The following are sections of
importance for this application:
► File
► Device
► Params
► Assembly
► Connection Manager

Ignore the remaining sections and use as is.

File Section
This section describes the device in general terms, names, and versions the EDS file. This data refers to the EDS file itself, not the device. The
revision field has no relationship to the revision field in the device section. See the ODVA Specification, Volume 1, Section 7-3.6.2.

Device Section
The data in the device section must match the data provided by the device in the identity object. This configuration tool specifies the identity
object data and this data is stored in the device object of the configuration data. Part of this data is an ODVA Vendor ID, which is only obtained
by joining ODVA. See the ODVA Specification, Volume 1, Section 7-3.6.3.

Params Section
The demo file contains five items in the params section: Param1 through Param5. None of these items are addressable within the device itself
(the link path field is a null string). The EDS file contains these items so the user can specify engineering units, scaling, offsets, and so forth.
The sample EDS file has one param item for each of the five assembly objects defined in the demonstration configuration data. The params
section is one of two locations where the data size and data type of each assembly object is specified (the type codes are found in the ODVA
Specification, Appendix C-6.1). The assem items in the assembly section refer to these params as Param1 through Param5. The data size here
must match the size specified in the assembly section. The offset and scaling fields are left blank in this example but can be changed to suit the
user application. See the ODVA Specification, Volume 1, Section 7-3.3.6.

Assembly Section
Leave most of the assembly section unchanged. To suit a configuration, the user can require an adjustment in the MaxInst and Max_Num-
ber_Of_Static_Instances variables. All assembly object instances in the network interface module are static. The example EDS file sets this
field to 5 by default.
To suit an application, the Assem1 through Assem5 items within this section can require some adjustments. More or less of these items can be
required depending on how many assembly objects the device has. Use these items to name and size the assembly objects. The other fields
used in these items are member size and member reference. The param size must match the size of the items in the configuration data. See
the ODVA Specification, Volume, 1 Section 7-3.6.8.1.

Connection Manager Section
Leave most of the items in the Connection Manager section unchanged. There is only one Connection Manager object in the network interface
module.
Use the Connection1 through Connection5 items in the connection manager section to make any adjustments to suit your application. More or
less of these items can be required, depending on how many Class 1 input and output connection points the device has. These items describe
the particulars of the Class 1 input and output connection points in the device. The PLC uses the connection points to exchange cyclic data with
the device.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 113 of 180

There are four types of connection points defined within the ODVA specification: EO, IO, OO, and LO.
Support for redundant owner connections is not available. See the ODVA Specification, Volume 1, Section 3-6.4. The network interface module
supports the EO, IO, and LO connection points.
It is possible to define an OO connection point. The ODVA specification does not call out the definition for this connection point explicitly but OO
can exist. The OO connection sends data to a device output only, and in this example, is used to create a device control register. The device
control register can also be written to with an explicit message. The Connection5 parameter in the EDS file shows the OO connection as a
Class 1 connection point. Writing to the control register with an explicit message allows connection to the control register with a Class 1 cyclic
connection.
The following are EDS connection point item fields that are significant to this application:
► Bits[24:27] of the trigger and transport mask (the application type field, see the ODVA Specification, Section 7-3.6.10.1.1)
► Bits[8:10] and Bits[12:14] of the connection parameters word (the O → T and T → O fields, see the ODVA Specification, Section

7-3.6.10.1.2)
► The connection name and help string (see the ODVA Specification, Section 7-3.6.10.1.10 and Section 7-3.6.10.1.11)
► The connection path (ODVA Specification, Section 7-3.6.10.1.12 and Section 3-5.5.1.12)

The sample EDS file is heavily commented and shows each connection point type in use. The connection type (EO, IO, LO, and OO)
determines the application type field of the trigger and transport mask and determines the appropriate values for the O → T and T → O header
fields of the connection parameters word.
Table 30 describes the connection types and values of these fields.
The last item in the connection point definition section is the link path. The link path is heavily commented in the example EDS file. The
following describes the link path in more detail:
► This item consists of four pairs of bytes (hexadecimal) that describe the CIP connection path within the network interface module.
► The ODVA Specification, Section 3-5.5.1.12 describes the exact decoding of this data.
► The last three pairs of bytes are the config, consume, and produce objects in the device that the Class 1 connection point references.
► The network interface module does not use the config path (Byte 3 and Byte 4). Therefore, do not change the provided values.
► The last two pairs of bytes (consume and produce), Byte 6 and Byte 8, specify the assembly instance IDs that the connection point uses.
► All values in these fields specified in hexadecimal.
► For specific examples, see the detailed comments in the example EDS file.

Note that Byte 6 and Byte 8 of the link path are affected by the connection type (EO, IO, LO, and OO). Table 31 describes the conditions
required for each byte to adhere to a connection type.
Table 30. EtherNet/IP Connections Overview
Connection Type Application Type Field O → T Field T → O Field
EO 4 4 0
IO 2 3 0
LO 1 4 3
OO 4 4 3

Table 31. EtherNet/IP Connection Types for Example Configuration
Connection Type Byte 6 Byte 8
EO O → T (consume) assembly instance ID T → O (produce) assembly instance ID
IO FE (specifies instance 254) T → O (produce) assembly instance ID
LO FF (specifies instance 255) T → O (produce) assembly instance ID
OO O → T (consume) assembly instance ID FE

EDS File Details Pertaining to Configuration Assemblies
Refer to the example EDS file, Test_Product_With_CFG_Data.eds. This file works in conjunction with the common interface configuration
data file, EIP_demo_cfg. These files are included with the EtherNet/IP system software download. Within the EDS file, any text beginning with

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 114 of 180

a dollar sign ($) represents a comment. The example EDS file is heavily commented. Refer to these comments when using this user guide.
Note that the configuration data file, EIP_w_CFG, contains Item 500 and Item 501 for EtherNet/IP.
In the params section in the EDS file, the params provide a way to create elements that can be referenced by other sections of the EDS file.
In this example, the params define the allowable requested packet interface (RPI) range of the exclusive owner connection and define the
configuration and the input and output data size and format. The defined params are as follows:
► Param1: RPI range, used in the connection manager section by Connection1.
► Param2 and Param3: output (consume) assembly data size and format, used in the assembly section by Assem101.
► Param4 through Param6: input (produce) assembly data size and format, used in the assembly section by Assem102.
► Param7 through Param11: config assembly data size format, used in the assembly section by Assem100. These params specify the data

format, bit fields, and resulting PLC tag names.
► Param7: creates a 16-bit (INT) controller tag, Start_Ramp.
► Param8: creates a 16-bit (INT) controller tag, Stop_Ramp.
► Param9: creates a pair of bit field (BOOL) controller tags, Selection_1_0 and Selection_1_1.
► Param10: creates a bit field (BOOL) controller tag, Selection_2_0.
► Param11: creates an 8-bit (byte) controller tag, Bitwise_Selection.
► Enum11: creates a set of named tags aliased for each bit in the bytes listed in this section.

The data type and data size fields in each param must match. See the data type field codes in the CIP Specification, Volume 1, Appendix C-6.
The minimum, maximum, and default fields are important to the RPI range param. The RPI is limited to a minimum of 2 ms, a maximum of 200
ms, and a default of 20 ms. These fields specify the range and default values for the configuration assembly data.
The assembly section references these params. Specifically look at the member size and reference pair of each Assemxxx item, which defines
the size and format of the assembly item. Most importantly, note the use of these reference pairs in the Assem100 configuration assembly. This
format is specified to the bit field level, and the user can insert pad fields to control where the configuration data appears in a particular byte.
See the CIP Specification, Volume 1, Section 7-3.6.8.1.7 and Section 7-3.6.8.1.8.
Next, review the connection manager section, in which a single exclusive owner connection, Connection1, must be defined. Connection1 is
defined in terms of the param and assem items in the following fields:
► O → T RPI
► O → T size
► O → T format
► T → O RPI
► T → O size
► T → O format
► Target config size
► Target config format
Table 32. Item 500, Configuration Item
Item Type Configuration
Consume ID 100 (assembly instance ID in decimal)
Consume Size 6 bytes
Produce ID 0 (must be 0 for configuration assembly type)
Produce Size 0 (must be 0 for configuration assembly type)

Table 33. Item 501, Unique Item
Item Type Unique
Consume ID 101 (assembly instance ID in decimal)
Consume Size 6 bytes
Produce ID 102 (assembly instance ID in decimal)
Produce Size 8 bytes

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 115 of 180

The final field in the Connection1 element, the path field, specifies the logical path (in hexadecimal) used by the protocol to specify the
assembly object instance IDs used to create a Class 1 connection to the device. The 20 04 24 64 2C 65 2C 66 value is specified for this logical
path. Refer to the CIP Specification, Volume 1, Section 3-5.5.1.12 for a detailed discussion of this field.
When defining the EDS file, review the following examples:
► The 20 04 is the application segment and denotes the assembly object class (04).
► The next three pairs of bytes represent the configuration, the consume (O → T) and the produce (T → O) assemblies, respectively.
► The first byte of each pair refers to the logical segment. The encoding of this byte is described in the CIP Specification in Volume 1, Appendix

C, Section C-1.4.2. Byte 24 and Byte 2C are required here.
► The second byte of each pair is the desired assembly instance ID. In hexadecimal, these IDs are 64, 65, and 66. In decimal, these IDs are

100, 101 and 102.
Note that these assembly instance IDs correspond to the assembly instance IDs used in the module configuration data described in this user
guide. Also, refer to the CIP Specification, Volume 1, Section 7-2.6.10.1.
To import the EDS file, use RSLogix 5000 software, Version 20 or above, from Rockwell Automation, to create a device and the necessary
controller tags that correspond to these items.

ETHERCAT ESI FILES
This section describes the creation of an ESI to use with the network interface module for EtherCAT. For additional details, see the ETG.2000
document from the EtherCAT Technology Group website.
A sample set of system configuration and ESI files is part of the software zip file download from the ADIN2299 main product page at
www.analog.com/adin2299. The configuration and ESI files follow the examples described in this user guide. The configuration data contains
three items that describe the modular device profile (MDP) of the EtherCAT device. These three items correspond with the sample ESI file
included in the EtherCAT software download.
The ECAT_example_cfg (no file extension) and ECAT_example_cfg.bin files contain the example configuration data. The first file is the raw
data created and consumed by this configuration tool, and the second file contains the same data in a format that the RPG2 reference design
can consume. This configuration tool automatically creates the .bin file when the configuration file in the same directory as this configuration
tool.
The Analog_Devices_Sample_ESI.xml file contains the example ESI file.
This configuration tool creates the configuration file as described in this user guide. After the configuration file creates, the file loads onto the
network interface module, containing data that describes the input and output items and the physical device. Each configuration entity, for
example, items and devices, has an assigned unique ID number when entered into this configuration tool. The module runtime uses these ID
numbers to locate the device settings and input and output data of the item. The ID numbers are arbitrary, or these numbers can be assigned
by the user in any way desired. However, the values must be unique.
When the device and the necessary items are created, this configuration tool places the data in a basket (also contained in the file). The host
software only references this basket ID (ID 1000). The example configuration provides a single device (ID 400) and three input and output items
(Item 500, Item 501, and Item 502).
Table 34 describes the input and output details of the example configuration.
Table 34. Input and Output Item Details for Example Configuration
Item ID Number Input Size (Bytes) Output Size (Bytes)
Item 500 2 2
Item 501 4 4
Item 502 Not applicable 2

Device Modification With the ESI Files
Users can use the example ESI file as a baseline and modify the file to suit the application and design requirements. To create a suitable ESI
file, modify the following elements.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 116 of 180

Modifying the Device Parameters
To create a custom ESI file based on the device configuration made with this configuration tool, modify the following EtherCATInfo parameter
and subparameters.

Vendor
To set the vendor ID, set ID to the vendor ID from the device structure of the configuration data. The vendor ID for Analog Devices is
#x00ADCAFE and differs from the vendor ID of the user.

Descriptions > Groups > Group
Set the following:
► Set the SortOrder attribute to the ordinal value that indicates where in the list of device groups this group must appear (for example, 0 for

first, 1 for second).
► Set the Type element to a brief string that describes this group of devices.
► Set the Name element to the desired general name for the group (for example, RapID_NI).
► Set the ImageData16x14 element to the hex data string that describes the desired icon for this device group.

Descriptions > Devices > Device > Type
Set the following:
► Set the ProductCode to the product code from the device structure of the configuration data. Use the #x prefix to indicate a hexadecimal

number.
► Set the RevisionNo to the major revision number, shifted up 16 bits and OR’ed with the minor revision number. For example, if the major

revision is 2 and the minor revision is 10, the RevisionNo is 0x0002000A. Use the #x prefix to indicate a hexadecimal number.
► Set the value of this element to the order ID of the device. Note that the order ID is not contained anywhere in the configuration data, and

that the order ID is arbitrary and selected by the manufacturer to logically group devices.

Descriptions > Devices > Device > Name
Set the Name text to the device name from the device structure of the configuration data.

Descriptions > Devices > Device > GroupType
Set the Type text to the Group Type from the device structure of the configuration data.
Figure 152 shows the location to modify the device descriptions.

Figure 152. ESI Device, Tree View

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 117 of 180

Modifying the Item Parameters
When integrating item structure data, all modifications occur in the device element (for example, profile, TxPdo, or RxPdo) rather than a module
element. This procedure assumes that a basic element structure already exists and that the user is proceeding with modification. See the
ETG.2000 EtherCAT Slave Information (ESI) Specification from the EtherCAT Technology Group for information on the structure of a Device
element (or the ESI file as a whole) if a basic element structure does not exist and must be created.
The procedure described in this user guide is atypical because defining a TxPdo > Entry or RxPdo > Entry element requires that the name of
the corresponding data type be supplied.
The instructions in the following example refer to the DataType Dictionary, the Object Dictionary, and the TxPDO/RxPDO list.
The DataType Dictionary is all of the elements under EtherCATInfo > Descriptions > Devices > Device > Profile > Dictionary >
DataTypes. The Object Dictionary is all of the elements under EtherCATInfo > Descriptions > Devices > Device > Profile > Dictionary >
Objects. The TxPDO/ RxPDO list is all of the TxPdo or RxPdo type elements under EtherCATInfo > Descriptions > Devices > Device.

DataType Dictionary Overview
Base DataTypes are the building blocks (unsigned byte, signed integer) for other more complicated data structures (such as, input and output
process data object data types, and configuration and diagnostic data types).
The base DataTypes typically define the type for a single subindex within an object.
Object DataTypes are custom data types that use the base DataTypes to define the structure of an object.
Table 35 details the supported base DataTypes. Keep the base DataTypes together at the top of the list of DataTypes.
Table 35. Supported Base DataTypes
Configuration Tool Name Description DataType Name (ESI File) Remark
Unused Unused subindex Not applicable Not applicable
INT8 8-bit signed value SINT Not applicable
INT16 16-bit signed value INT Not applicable
INT32 32-bit signed value DINT Not applicable
INT64 64-bit signed value LINT Not applicable
UINT8 8-bit unsigned value USINT Not applicable
UINT16 16-bit unsigned value UINT Not applicable
UINT32 32-bit unsigned value UDINT Not applicable
UINT64 64-bit unsigned value ULINT Not applicable
REAL32 32-bit floating point REAL Not applicable
BITARR8 Bit array (8 bits) BITARR8 Not applicable
BITARR16 Bit array (16 bits) BITARR16 Not applicable
BITARR32 Bit array (32 bits) BITARR32 Not applicable
INT8ARR Array of signed 8-bit values ARRAY[0..n] of SINT Where n is the length of the array minus 1
INT16ARR Array of signed 16-bit values ARRAY[0..n] of INT Where n is the length of the array minus 1
INT32ARR Array of signed 32-bit values ARRAY[0..n] of DINT Where n is the length of the array minus 1
UINT8ARR Array of unsigned 8-bit values ARRAY[0..n] of BYTE Where n is the length of the array minus 1 (note that

this is an array of bytes)
UINT16ARR Array of unsigned 16-bit values ARRAY[0..n] of UINT Where n is the length of the array minus 1
UINT32ARR Array of unsigned 32-bit values ARRAY[0..n] of UDINT Where n is the length of the array minus 1

Profile > Dictionary > DataTypes (SubIdx > DataTypes)
The following list defines the Profile > Dictionary > DataTypes (SubIdx, DataTypes) for each of the subindex data types used:
► If the subindex uses a nonarray type, the DataType is already provided, and no work is necessary. All supported nonarray data types are

predefined in the example DataType Dictionary and do not require definition by the user.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 118 of 180

► If the subindex uses an array type, an example array DataType is provided and can require modification. Examples of supported array
DataTypes are given. However, because it is impossible to know the final array size for any application at the example stage, the examples
can require modification or duplication to fit the requirements of the application.

► Confirm that an array type definition in the DataType Dictionary already exists and matches the subindex described as follows:
► If the array type definition exists and matches the subindex, no work is necessary.
► If the array type definition does not exist and/or match the subindex, find an adequate array DataType definition with the proper base type,

for example, UINT, and duplicate the array.
► Modify the duplicated array DataType to the proper length by doing the following:
► Set the Name element to indicate the length of the new DataType, for example, ARRAY [0..7] of UINT to ARRAY [0..5] of UINT to modify the

array from an 8 element UINT array to a 6 element UINT array.
► Set the BitSize element to indicate the number of bits in the new DataType, in other words, the number of bits in the BaseType × the

number of elements in the array.
► Set the ArrayInfo < Elements element to indicate the number of elements in the array. Note that the number of elements in the array is not

the same as the number of bytes in the array.
Figure 153 shows where to modify the DataTypes portion of the ESI file.

Figure 153. EtherCAT Device Expanded View

Device > Profile > Dictionary > DataTypes (Input, Output, Configuration, and Diagnostic Object
DataTypes)
For each data item in use, take the following steps to modify the ESI file:
1. If the item has input data associated with it, create or modify a DataType to describe the structure of the input object.
2. Set the name element to reflect the name of the DataType, as well as the object it represents, for example, DT6000.

The name of these DataTypes indicate the index of the object they describe, for example, DT6000 to describe Object 0x6000.
The index of the object depends on the type of object and the order that the software processes the object.
Input data object indices start at 0x6000 and increase by 0x0010 for each new object.
For example, the first input data object installed by the software has an index of 0x6000, and the second input data object installed by the
software has an index of 0x6010.

3. Set the BitSize element to the sum of the following:
a. 8 (for the size of Subindex 0 to a USINT value).
b. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
c. The total bit size of all of the input data this object represents, for example, four subindices each representing UINT values has a bit

size of 4 bits × 16 bits = 64 bits).
4. Create or modify the first SubItem element (under the DataType element) and set it as follows:

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 119 of 180

a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: 8
e. BitOffs: 0
f. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).

5. For each of the subindices defined in the input data portion of the configuration data item, create or modify a SubItem element following the
first one to describe the subindex as follows:
a. If the subindex is unused, omit the SubItem element.
b. Set the SubIdx element to the subindex number this element describes.
c. Set the Name element to the name of the corresponding subindex in the input portion of the configuration data item.
d. Set the Type element to the name of the DataType previously created for this subindex.
e. Set the BitSize element to the size of this subindex (in bits), which must be the same as the BitSize from the DataType previously

created for this subindex.
f. Set the BitOffs element to the sum of the BitSize elements of all of the previous SubItem elements in this DataType list, plus eight to

account for the alignment byte.
g. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).
3. PdoMapping: T for input data object.

6. If the item has output data associated with it, create or modify a DataType element to describe the structure of the output object.
7. Set the Name element to reflect the name of the DataType element, as well as the object the element represents, for example, DT7000.

The name of these DataType elements indicate the index of the object the elements describe, for example, DT7000 to describe Object
0x7000.
The index of the object depends on the type of object and the order that the software processes the object.
The output data object indices start at 0x7000 and increase by 0x0010 for each new object.
For example, the first output data object installed by the software has an index of 0x7000, and the second output data object installed by the
software has an index of 0x7010.

8. Set the BitSize element to the sum of the following:
a. 8 (for the size of Subindex 0 to a USINT value).
b. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
c. The total bit size of all of the output data this object represents, for example, four subindices each representing UINT values have a bit

size of 4 bits × 16 bits = 64 bits.
9. Create or modify the first SubItem element (below the DataType element) and set the element as follows:

a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: 8
e. BitOffs: 0
f. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 120 of 180

10. For each of the subindices defined in the output data portion of the configuration data item, create or modify a SubItem element following
the first element to describe the subindex as follows:
a. If the subindex is unused, omit the SubItem element for that subindex.
b. Set the SubIdx element to the subindex number this element describes.
c. Set the Name element to the name of the corresponding subindex in the output portion of the configuration data item.
d. Set the Type element to the name of the previously created DataType element for this subindex.
e. Set the BitSize element to the size of this subindex in bits. This value must match the BitSize element from the previously created

DataType element values for this subindex.
f. Set the BitOffs element to the sum of the BitSize elements of all of the previous SubItem elements in this DataType list, plus eight to

account for the alignment byte.
g. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).
3. PdoMapping: R for output data object.

Figure 154. SubIndex, Tree View

For each configuration item in use, take the following steps to modify the ESI file:
1. Set the Name element to reflect the name of the DataType element, as well as the object this element represents, for example, DT8000.

The name of these DataType elements indicate the index of the object they describe, for example, DT8000 to describe Object 0x8000.
The index of the object depends on the type of object and the order in which the software processes the object.
Configuration data object indices start at 0x8000 and increase by 0x0010 for each new object.
For example, the first configuration data object installed by the software has an index of 0x8000 and the second configuration data object
installed by the software has an index of 0x8010.

2. Set the BitSize element to the sum of the following:
a. 8 (for the size of Subindex 0 to a USINT value).
b. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
c. The total bit size of all of the configuration data that this object represents, for example, two subindices that each represent USINT

values and have a bit size of 2 bits × 8 bits = 16 bits.
3. Create or modify the first SubItem element (under the DataType element) and set it as follows:

a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 121 of 180

d. BitSize: 8
e. BitOffs: 0
f. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).

4. For each of the subindices defined in the configuration data portion of the configuration data item, create or modify a SubItem element
following the first element to describe the subindex as follows:
a. If the subindex is unused, omit the SubItem element for it.
b. Set the SubIdx element to the subindex number this element describes.
c. Set the Name element to the name of the corresponding subindex in the configuration portion of the configuration data item.
d. Set the Type element to the name of the previously created DataType for this subindex.
e. Set the BitSize element to the size of this subindex in bits, which must be the same as the BitSize element of the previously created

DataType element for this subindex.
f. Set the BitOffs element to the sum of the BitSize elements of all of the previous SubItem elements in this DataType list, plus eight to

account for the alignment byte.
g. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).

For each diagnostic item used, make the following edits to the ESI file:
1. Set the Name element to reflect the name of the DataType element, as well as the object that the element represents, for example,

DTA000.
The names of these DataType elements indicate the index of the object they describe, for example, DTA000 to describe Object 0xA000.
The index of the object depends on the type of object and the order in which the software processes the object.
Diagnostic data object indices start at 0xA000 and increase by 0x0010 for each new object.
For example, the first diagnostic data object installed by the software has an index of 0xA000, and the second diagnostic data object
installed by the software has an index of 0xA010.

2. Set the BitSize element to the sum of the following:
a. A (for the size of Subindex 0 to a USINT value)
b. A (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
c. The total bit size of all of the diagnostic data this object represents, for example, two subindices that each represent USINT values have

a bit size of 2 bits × 8 bits = 16 bits).
3. Create or modify the first SubItem element (under the DataType element) and set it as follows:

a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: A
e. BitOffs: 0
f. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).

4. For each of the subindices defined in the diagnostic data portion of the diagnostic data item, create or modify a SubItem element following
the first element to describe the subindex as follows:
a. If the subindex is unused, omit the SubItem element for the subindex.
b. Set the SubIdx element to the subindex number this element describes.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 122 of 180

c. Set the Name element to the name of the corresponding subindex in the diagnostic portion of the diagnostic data item.
d. Set the Type element to the name of the previously created DataType element for this subindex.
e. Set the BitSize element to the size of this subindex in bits. This value must match the BitSize element value of the previously created

DataType element for this subindex.
f. Set the BitOffs element to the sum of the BitSize elements of all of the previous SubItem elements in this DataType list, plus A to

account for the alignment byte.
g. Set the Flags element as follows:

1. Access: ro (read only).
2. Category: m (mandatory).

Device > Profile > Dictionary > Objects (TxPDO Map and RxPDO Map Object DataTypes)
The process data object (PDO) subindices larger than 30 bytes require a subindex in the corresponding RxPDO or TxPDO map object to
describe each 30 byte block in the PDO subindex. For example, if PDO has one subindex that is 512 bytes in size, the RxPDO map DataType
element must define 19 SubItem elements: 1 to represent Subindex 0 of the PDO, 17 SubItem elements to represent the first 510 bytes (17
SubItem elements × 30 bytes) of the PDO, and 1 to represent the last two bytes of the PDO. Use this approach because each RxPDO/TxPDO
map entry only contains a 1 byte field to describe the size of PDO subindex. As a result, each RxPDO/TxPDO map object entry describes the
PDO subindices in 30 byte blocks.
For each data item used, make the following edits to the ESI file:
1. Set the Name element to reflect the name of the DataType, as well as the object the element represents, for example, DTA000.

The index of a TxPDO map object depends on how many input data objects with Index 0x6000 or greater are installed, and the order in
which these objects are installed.
The TxPDO map object indices start at 0x1A00 and increase by 0x0001 for each new object.
If an item does not have input data, a TxPDO map object is not required, and the index for that TxPDO map object is skipped.
If adding an output only item, and then an input and output item, it is not required to describe Object 0x1A00, and the system does not add
this object to the online object dictionary. In addition, the TxPDO map object data types begin at Index 0x1A01.

2. Set the BitSize element to the sum of the following:
a. 8 (for the size of Subindex 0 to a USINT value).
b. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
c. The total bit size of all of the used TxPDO map entries.

Typically, one TxPDO map entry describes one subindex for base DataType elements from the corresponding input data object.
If using an array DataType element in the input data object, and the array is larger than 30 bytes, it is required to use more than one
TxPDO map entry to describe the large subindex.
Typically, to calculate the bit size of all of the used TxPDO map entries for a single subindex larger than 30 bytes, use the following
equation:
(32 × (floor((PDO Subindex Size in Bytes) ÷ 30) + 1))
For example, the bit size of all of the TxPDO map entries used for a 64-byte subindex and a 512-byte subindex follows:
(32 × (floor(64 bytes ÷ 30) + 1)) + (32 × (floor(512 bytes ÷ 30) + 1)) = (32 × 3) bytes + (32 × 18) bytes = 96 bytes + 576 bytes = 672
bytes

3. Create or modify the first SubItem element (under the DataType element) and set it as follows:
a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: 8
e. BitOffs: 0

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 123 of 180

f. Set the Flags element as Access: ro (read only)
4. For each used TxPDO map entry, following the first element, create or modify a SubItem element to describe the TxPDO map entry as

follows:
a. SubIdx: TxPDO map entry number described (1-based).

For example, set the entry number to 2 for the second 30 byte block of the 64 byte subindex described by the TxPDO map, Entry 1 to
Entry 3, or for an additional example, set the entry number to 6 for the third 30 byte block of the 512 byte subindex described by the
TxPDO map, Entry 4 to Entry 21.

b. Name: SubIndex xxx, where xxx is the TxPDO map described, for example, SubIndex 003 for the third TxPDO map entry described.
c. Type: USINT.
d. BitSize: 32.
e. Set the BitOffs element to the sum of the BitSize elements of all of the previously created SubItems in this DataType list, plus eight to

account for the alignment byte. For example, the BitOffs element value for the fourth SubItem element is 8 bits + 32 bits + 32 bits + 8
bits = 80 bits.

f. Set the Flags element as Access: ro.
If the item has output data associated with it, create or modify a DataType element to describe the structure of the RxPDO map object as
follows:
1. Set the Name element to reflect the name of the DataType element, as well as the object the element represents, for example, DT1600.

The index of an RxPDO map object depends on how many output data objects are installed, and the order in which the objects are
installed.
RxPDO map object indices start at 0x1600 and increase by 0x0001 for each new object.
If an item does not have output data, an RxPDO map object is not required, and the index for that RxPDO map object is skipped.
If adding an input only item and then an input and output item to the system, it is not required to describe Object 0x1600, and the system
does not add this object to the online object dictionary.
In addition, the RxPDO map object data types begin with an index of 0x1601.

2. Set the BitSize element to the sum of the following:
a. 8 (for the size of Subindex 0 to a USINT value).
b. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
c. Total bit size of all of the used RxPDO map object entries.

Typically, one RxPDO map entry describes one subindex from the corresponding output data object.
If using an array DataType in the output data object, and the array is larger than 30 bytes, use more than one RxPDO map entry to
describe the large subindex.
Typically, to calculate the bit size of all RxPDO map entries used for a single subindex larger than 30 bytes, use the following equation:
(32 × (floor((PDO Subindex Size in Bytes) ÷ 30) + 1))
For example, the bit size of all RxPDO map entries used for a 64 byte subindex and a 512 byte subindex follows:
(32 × (floor(64 ÷ 30) + 1)) + (32 × (floor(512 ÷ 30) + 1)) = (32 × 3) + (32 × 18) = 96 + 576 = 672

3. Create or modify the first SubItem element (under the DataType element) and set this element as follows:
a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: 8
e. BitOffs: 0
f. Set the Flags element as Access: ro (read only)

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 124 of 180

For each previously created RxPDO map entry, take the following steps:
1. Create or modify a SubItem element following the first element to describe the RxPDO map entry as follows:

a. SubIdx: RxPDO map entry number described (1-based). For example, set an entry number of 2 for the second 30 byte block of the 64
byte subindex described by the RxPDO map, Entry 1 to Entry 3, or as another example, set a value of 6 for the third 30 byte block of the
512 byte subindex described by the RxPDO map, Entry 4 to Entry 21.

b. Name: SubIndex xxx, where xxx is the RxPDO map entry described, for example, SubIndex 003, for the third RxPDO map entry
described.

c. Type: UDINT
d. BitSize: 32
e. Set the BitOffs element to the sum of the BitSize elements of all of the previously created SubItem elements in this DataType list, plus

eight to account for the alignment byte. For example, the sum of the BitOffs element for the fourth SubItem element is 8 bits + 32 bits +
32 bits + 8 bits = 80 bits.

f. Set the Flags element as Access: ro.
Note that the TxPDO and RxPDO map objects are not required for configuration or diagnostic data objects.

Device > Profile > Dictionary > DataTypes (TxPDO Assign and RxPDO Assign Object DataTypes)
The TxPDO and RxPDO assign objects contain lists of the TxPDO and RxPDO map objects used. Therefore, a storage DataType element
must be defined for these objects.
To define the TxPDO assign object DataType element, take the following steps:
1. Create or modify a DataType element to describe the UINT array of the TxPDO assign object as follows:

a. Set the Name element to DT1C13ARR.
b. Set the BitSize element to 16× number of TxPDO map object DataType elements created.
c. Set the ArrayInfo elements to LBound = 0 and Elements to the number of TxPDO map object DataTypes created.

2. Create or modify a DataType element to describe the TxPDO assign object as follows:
a. Set the Name element to DT1C13.
b. Set the BitSize element to the sum of the following:

1. 8 (for the size of Subindex 0 to a USINT value).
2. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned).
3. The BitSize of the DT1C13ARR DataType element.

3. Create or modify the first SubItem element (under the DataType element) and set it as follows:
a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: 8
e. BitOffs: 0
f. Set the Flags element as follows:

1. Access: ro (read only)
2. Category: m

4. Create or modify an additional SubItem element following the element previously created, and set the element as follows:
a. Name: Elements
b. Type: DT1C12ARR
c. BitSize: size of the DT1C12ARR DataType element
d. BitOffs: 16
e. Set the Flags element as follows:

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 125 of 180

1. Access: ro (read only)
2. Category: m

To define an RxPDO assign object DataType element, take the following steps:
1. Create or modify a DataType element to describe the UINT array of the RxPDO assign object as follows:

a. Set the Name element to DT1C12ARR
b. Set the BaseType element to UINT
c. Set the BitSize element to 16 × the number of RxPDO map object DataType elements.
d. Set the ArrayInfo elements to LBound = 0 and set Elements to the number of RxPDO map object DataType created.

2. Create or modify a DataType to describe the RxPDO assign object as follows:
a. Set the Name element to DT1C12.
b. Set the BitSize element to the sum of the following:

1. 8 (for the size of Subindex 0 to a USINT value)
2. 8 (for an alignment byte between Subindex 0 and Subindex 1 to keep the subindices 16-bit aligned)
3. The BitSize element of the DT1C12ARR DataType element.

3. Create or modify the first SubItem element (under the DataType element) and set it as follows:
a. SubIdx: 0
b. Name: SubIndex 000
c. Type: USINT
d. BitSize: 8
e. BitOffs: 0
f. Set the Flags element as follows:

1. Access: ro (read only)
2. Category: m

4. Create or modify one additional SubItem element (following the most recently created SubItem element) and set it as follows:
a. Name: Elements
b. Type: DT1C13ARR
c. BitSize: size of the DT1C13ARR DataType element
d. BitOffs: 16
e. Set the Flags element as follows:

1. Access: ro (read only)
2. Category: m

Device > Profile > Dictionary > Objects (Input, Output, Configuration, and Diagnostic)
For each previously created input data object DataType element, take the following steps to edit the ESI file:
1. Create or modify an Object element to describe the input data object as follows:

a. Set the Index element to the hexadecimal string representation of the index of the input object, for example, #x6010 for Object 0x6010.
b. Set the Name element to the name of the input data object from the configuration data item.
c. Set the Type element to the name of the previously created DataType element for this object, for example, DT6010 for Object 0x6010.
d. Set the BitSize element to the same BitSize element as the DataType element referenced in this set of instructions.

For each previously created output data object DataType element, take the following steps to edit the ESI file:
1. Create or modify an Object element to describe the output data object as follows:

a. Set the Index element to the hexadecimal string representation of the index of the output object, for example, #x7020 for Object
0x7020.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 126 of 180

b. Set the Name element to the name of the output data object from the configuration data item.
c. Set the Type element to the name of the previously created DataType element for this object, for example, DT7020 for Object 0x7020.
d. Set the BitSize element to the same BitSize element as the DataType element.

For each previously created configuration data object DataType element, take the following steps to edit the ESI file:
1. Create or modify an Object element to describe the configuration data object as follows:

a. Set the Index element to the hexadecimal string representation of the index of the input object, for example, #x8000 for Object 0x8000.
b. Set the Name element to the name of the output object from the configuration data item.
c. Set the Type element to the name of the previously created DataType for this object, for example, DT8000 for Object 0x8000.
d. Set the BitSize element to the same BitSize value as the DataType element.

For each previously created diagnostic data object DataType element, take the following steps to edit the ESI file:
1. Create or modify an Object element to describe the diagnostic data object as follows:

a. Set the Index element to the hexadecimal string representation of the index of the input object, for example, #xA040 for Object 0xA040.
b. Set the Name element to the name of the input object from the configuration data item.
c. Set the Type element to the name of the previously created DataType element for this object, for example, DTA040 for Object 0xA040.
d. Set the BitSize element to the same BitSize value as the DataType element.

Device > Profile > Dictionary > Objects (TxPDO Map and RxPDO Map)
For each previously created TxPDO map object DataType, take the following steps to edit the ESI file:
1. Create or modify an Object element to describe the TxPDO map object as follows:

a. Set the Index element to the hexadecimal string representation of the index of the TxPDO map object, for example, #x1A00 for Object
0x0x1A00.

b. Set the Name element to the concatenation of the name of the input data object from the configuration object and the string TxPDO
map. For example, if the name of the input data object is Digital Ins, the name of the TxPDO map object is Digital Ins TxPDO Map.

c. Set the Type element to the name of the previously created DataType element for this object, for example, DT1A00 for Object 0x1A00.
d. Set the BitSize element to the same BitSize value as the DataType element.

For each previously created RxPDO map object DataType, take the following steps to edit the ESI file:
1. Create or modify an Object element to describe the RxPDO map object as follows:

a. Set the Index element to the hexadecimal string representation of the index of the RxPDO map object, for example, #x1601 for Object
0x0x1601.

b. Set the Name element to the concatenation of the name of the output data object from the configuration object and the string RxPDO
map. For example, if the name of the output data object is Analog Outs, the name of the RxPDO map object is Analog Outs RxPDO
Map.

c. Set the Type element to the name of the previously created DataType element for this object, for example, DT1601 for Object 0x1601.
d. Set the BitSize element to the same BitSize value as the DataType element.

Device > Profile > Dictionary > Objects (TxPDO Assign and RxPDO Assign)
The TxPDO and RxPDO assign objects remain largely unchanged. The only element in these objects that require modification is the BitSize
element.
To modify the BitSize elements in the TxPDO and RxPDO assign objects, take the following steps:
1. In the Object element that corresponds to the TxPDO, change the BitSize element to the same value as the BitSize element in the

DT1C13 DataType element.
2. In the Object element that corresponds to the RxPDO, change the BitSize element to the same value as the BitSize element in the

DT1C12 DataType element.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 127 of 180

Device > RxPdo

For each input data object previously created, take the following steps to edit the ESI file:
1. Create or modify a TxPdo element as follows:

a. Set the Fixed attribute to 1.
b. Set the Mandatory attribute to 1.
c. Set the Sm attribute to 3.
d. Set the Index element to the index of the TxPDO map object, for example, #x1A01 for Object 0x1A01, which contains the input object

information.
The TxPDO map object of Input Object 0x6000 is Object 0x1A00, the TxPDO map object of Input Object 0x6010 is Object 0x1A01, and
the TxPDO map object of Input Object 0x6020 is Object 0x1A02.

e. Set the Name element to the name of the input object from the configuration data item.
For each subindex in the input data object, take the following steps to edit the ESI file:
1. Create or modify an Entry element.
2. If the subindex is unused, take the following steps:

a. Set the Index element to 0.
b. Set the SubIndex element to the subindex number currently described.
c. Set the BitSize element to the same value as the BitSize element of the DataType element that describes this subindex.
d. Set the Name element to the subindex name from the configuration data item.
e. Omit the DataType element.

3. If the subindex is 30 bytes in size or less, take the following steps:
a. Set the Index element to the index of the input data object, for example, #x6010 for Object 0x6010.
b. Set the SubIndex element to the subindex number currently described.
c. Set the BitSize element to the same value as the BitSize element of the DataType element that describes this subindex.
d. Set the Name element to the subindex name from the configuration data item.
e. Set the DataType element to the name of the DataType element that describes this subindex.

4. If the subindex is more than 30 bytes in size, take the following steps:
a. Set the Index element to the index of the output data object, for example, #x6010 for Object 0x6010.
b. Set the SubIndex element to the subindex number currently described.
c. Set the BitSize element to 240.
d. Set the Name element to the subindex name from the configuration data item.
e. Set the DataType element to the name of the DataType element that describes this subindex.
f. For (Floor((Subindex Size in Bytes) ÷ 30)) times, create another Entry element description that sets the Entry element as follows:

1. Index: 0.
2. SubIndex: 0.
3. BitLen: 240. If this is the last Entry element, change the BitLen element to ((Subindex Size in Bytes) ÷ 30) × 8.

For example, for a 512 byte subindex, the BitLen value of the last Entry element (for example, the 18th Entry element) is (512 ÷
30) × 8 = (2 × 8) = 16×.
If the subindex size is evenly divisible by 30, the BitLen element of the last Entry element is 0 (required).

Device > TxPdo

For each previously created input data object, take the following steps to edit the ESI file:
1. Create or modify an RxPdo element.

a. Set the Fixed attribute to 1.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 128 of 180

b. Set the Mandatory attribute to 1.
c. Set the Sm attribute to 3.
d. Set the Index element to the index of the RxPDO map object, for example, #x1601 for Object 0x1601, which contains the input object

information.
The RxPDO map object of Input Object 0x7000 is Object 0x1600, the RxPDO map object of Input Object 0x7010 is Object 0x1601, and
the RxPDO map object of Input Object 0x7020 is Object 0x1602.

e. Set the Name element to the name of the input object from the configuration data item.
For each subindex in the input data object, take the following steps to edit the ESI file:
1. Create or modify an Entry element.
2. If the subindex is unused, take the following steps:

a. Set the Index element to 0.
b. Set the SubIndex element to the subindex number currently described.
c. Set the BitSize element to the same value as the BitSize element of the DataType element that describes this subindex.
d. Set the Name element to the subindex name from the configuration data item.
e. Omit the DataType element.

3. If the subindex is 30 bytes in size or less, take the following steps:
a. Set the Index element to the index of input data object, for example, #x7010 for Object 0x7010.
b. Set the SubIndex element to the subindex number currently described.
c. Set the BitSize element to the same value as the BitSize element of the DataType element that describes this subindex.
d. Set the Name element to the subindex name from the configuration data item.
e. Set the DataType element to the name of the DataType element that describes this subindex.

4. If the subindex is more than 30 bytes in size, take the following steps:
a. Set the Index element to the index of output data object, for example, #x7010 for Object 0x7010.
b. Set the SubIndex element to the subindex number currently described.
c. Set the BitSize element to 240.
d. Set the Name element to the subindex name from the configuration data item.
e. Set the DataType element to the name of the DataType element that describes this subindex.
f. For (Floor((Subindex Size in Bytes)/30)) times, create another entry description that sets the Entry element as follows:

1. Index: 0.
2. SubIndex: 0.
3. BitLen: 240. If this is the last entry element, change the BitLen element to ((Subindex Size in Bytes) ÷ 30) × 8).

For example, for a 512 byte subindex, the BitLen value of the last entry (in other words, the 18th Entry element) is (512 ÷ 30) × 8 =
(2 × 8) = 16×.
If the subindex size is evenly divisible by 30, the BitLen of the last Entry element is 0 (required).

Device > Sm

EtherCAT devices have four synchronization managers (Sm elements) to handle network communications. The last two synchronization
managers are specific to the input and output data. Therefore, the user must modify the size to reflect the configuration data produced by this
configuration tool.
Take the following steps to modify the size of the Sm elements:
1. Modify the third Sm element. Set the DefaultSize attribute to the total size of all of the output data covered by all output data objects (in

bytes).
2. Modify the fourth Sm element. Set the DefaultSize attribute to the total size of all of the input data covered by all input data objects (in

bytes).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 129 of 180

Icon Files

The text inside all ImageData16x14 elements is a string of hexadecimal characters that represent the data inside a 16 pixel × 14 pixel bitmap
image.
To create icon data for an ImageData16x14 element, create the image from scratch or modify an existing image.
To create the image from scratch take the following steps:
1. Create a bitmap image that uses 16 colors and is 16 pixels wide by 14 pixels high in an image editing application, such as Microsoft Paint.
2. Open the bitmap image in a hex editor.
3. Copy the hexadecimal representation of the data as a string into the ImageData16x14 element (with no spaces).
To modify an existing image, take the following steps:
1. Create a new file in a hex editor.
2. Copy the existing ImageData16x14 text for the icon to modify.
3. Paste the string into the hex editor.
4. Save the file with a .bmp extension.
5. Open the created .bmp with an image editing application, such as Microsoft Paint.
6. Edit the image as desired.
7. Save the image.
8. Open the image in a hex editor.
9. Copy the hexadecimal representation of the data as a string into the ImageData16x14 element (with no spaces).

POWERLINK XDD FILES
This section describes the creation of an XDD file to use with the POWERLINK module. A sample set of system configuration and XDD files
is part of the software zip file download from the ADIN2299 main product page at www.analog.com/adin2299. The configuration file follows the
examples described in this user guide, and the XDD file was created to reflect that example. The configuration data contains three items that
describe the modular device profile (MDP) of the POWERLINK device. These three items correspond with the sample XDD file included in the
POWERLINK software download (see the main product page).
The plink_std_demo (no file extension) and plink_std_demo.bin files contain the example configuration data. The plink_std_demo file is the
raw data created and consumed by this configuration tool, and the plink_std_demo.bin file contains the same data as the plink_std_demo file
in a format that the network module bootloader can consume. The fido-none-elf-binarygen.exe tool processes the raw configuration tool data
into the .bin file format. This configuration tool automatically creates the .bin file in the same directory as this configuration tool.
The 0xffff0012_RapID_POWERLINK_STD_DEMO_CN.xdd file contains the example XDD file.
This configuration tool creates the configuration file described in this user guide. After the configuration file is created, the bootloader uploads
the file to the network interface module. The configuration file contains data that describes both the input and output items and the actual device
itself. Each configuration entity (device, item) has a unique ID number when entering the data in the configuration file into this configuration
tool. The module runtime uses these ID numbers to locate the device settings and the input and output data of the item. The ID numbers are
arbitrary, or these numbers can be assigned by the user in any way required. However, the ID numbers must be unique.
When the device and all the necessary items are created, this configuration tool places the data in a basket (also contained in the file). The host
software only references this basket ID. The example configuration provides a single device (ID 400) and three input and output items (Item
500, Item 501, and Item 502). In this example, all of this information is placed into a basket with the ID of 1000.
The default XDD file resembles the standard configuration database (see Table 36).

Device Modification With the POWERLINK XDD Files
Users can begin device modification with the example XDD file as a baseline and modify the example file to suit the needs of their application.
Most of the information in the XDD file does not require modification because the user device behaves in the same manner as the sample
device with respect to POWERLINK network behavior.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 130 of 180

A POWERLINK device for the RapID platform is preloaded and defines device data as it applies to the RapID platform device. Modify the
example XDD file with the needed device parameters. The device data is mostly identity related.
The following parameters require modification because these parameters are specific to the device of the user, and the sample defaults contain
values that are specific to Analog Devices:
► Vendor ID: this value distributes as 0xFFFF0012, which must be modified to the specific vendor ID of the user. This ID number is in the

Device Identity Field of the XDD file and in the Communication Profile Area. The POWERLINK organization assigns the vendor ID.
► Product code: by default, the device ships with a product code of 0xf1d05200. The user changes this product code in the Communications

Profile Area of the XDD file to a value that is specific to the product/application of the user.
► Revision number: change this number in the Communications Profile Area.
► Serial number: change this number in the Communications Profile Area.
► Device name: change this number in the Communications Profile Area. The device ships with a default device name, RapID POWERLINK

device. Rename the device to reflect the device of the user.
► Hardware version: change the version in the Communications Profile Area and the Device Identity Field.
► Software version: change the version in the Communications Profile Area and the Device Identity Field.
Table 36. Sample POWERLINK Input and Output Parameters
Item Number Item Type Item Size (Bits) Input Quantity Output Quantity
Item 500 Digital 8 2 2
Item 501 Analog 16 2 2
Item 502 Digital 8 0 2

Item Modification With the POWERLINK XDD Files
The only location to be modified for the XDD file exists in the Standardized Device Profile Area. The current entries that correspond to the
default configuration file appear as shown in the following code example.

<!-- Standardised Device Profile Area (0x6000 - 0x9FFF): may be used according to a CiA device
profile. The profile to be used is given by NMT_DeviceType_U32 -->

<Object index="6000" name="DigitalInput_00h_AU8" objectType="8" dataType="0005">
<SubObject subIndex="00" name="NumberOfEntries" objectType="7" dataType="0005" accessType="const" de►
faultValue="2" PDOmapping="no"/>
<SubObject subIndex="01" name="DigitalInput" objectType="7" dataType="0005" accessType="ro" PDOmap►
ping="TPDO"/>
<SubObject subIndex="02" name="DigitalInput" objectType="7" dataType="0005" accessType="ro" PDOmap►
ping="TPDO"/>
</Object>

<Object index="6200" name="DigitalOutput_00h_AU8" objectType="8" dataType="0005">
<SubObject subIndex="00" name="NumberOfEntries" objectType="7" dataType="0005" accessType="const" de►
faultValue="4" PDOmapping="no"/>
<SubObject subIndex="01" name="DigitalOutput" objectType="7" dataType="0005" accessType="rw" PDOmap►
ping="RPDO"/>
<SubObject subIndex="02" name="DigitalOutput" objectType="7" dataType="0005" accessType="rw" PDOmap►
ping="RPDO"/>
<SubObject subIndex="03" name="ControlByte" objectType="7" dataType="0005" accessType="rw" PDOmap►
ping="RPDO"/>
<SubObject subIndex="04" name="ControlByte" objectType="7" dataType="0005" accessType="rw" PDOmap►
ping="RPDO"/>
</Object>

<Object index="6401" name="AnalogueInput_00h_AI16" objectType="8" dataType="0003">
<SubObject subIndex="00" name="NumberOfEntries" objectType="7" dataType="0005" accessType="const" de►

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 I/O CONFIGURATION TOOL USER GUIDE

analog.com Rev. A | 131 of 180

faultValue="2" PDOmapping="no"/>
<SubObject subIndex="01" name="AnalogueInput" objectType="7" dataType="0003" accessType="ro" PDOmap►
ping="TPDO"/>
<SubObject subIndex="02" name="AnalogueInput" objectType="7" dataType="0003" accessType="ro" PDOmap►
ping="TPDO"/>
</Object>

<Object index="6411" name="AnalogueOutput_00h_AI16" objectType="8" dataType="0003">
<SubObject subIndex="00" name="NumberOfEntries" objectType="7" dataType="0005" accessType="const" de►
faultValue="2" PDOmapping="no"/>
<SubObject subIndex="01" name="AnalogueOutput" objectType="7" dataType="0003" accessType="rw" PDOmap►
ping="RPDO"/>
<SubObject subIndex="02" name="AnalogueOutput" objectType="7" dataType="0003" accessType="rw" PDOmap►
ping="RPDO"/>
</Object>

For each subindex defined for a given item, add another entry of duplicate size until the item size reaches the required value, while
incrementing the subindex.
The subindices for digital items are always one byte as shown in this RPG2 I/O configuration tool user guide. The sample XDD file contains four
entries for digital output to correspond with the 4 bytes and two entries for digital input to correspond with the 2 bytes.
The subindices for the analog items can be 1 byte, 2 bytes, or 4 bytes. This particular example uses a subindex of 2 bytes. Modifying the type
of subindex changes the relationship of mapping the input and output footprint for the device. There are two 2 byte entries for both the analog
input and analog output channels.
When adding input and output data based on the needs of the configuration database, follow this index number convention:
► Digital/input/8-bit: 0x6000
► Digital/output/8-bit: 0x6200
► Analog/input/8-bit: 0x6400
► Analog/input/16-bit: 0x6401
► Analog/input/32-bit: 0x6402
► Analog/output/8-bit: 0x6410
► Analog/output/16-bit: 0x6411
► Analog/output/32-bit: 0x6412

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 132 of 180

FEATURES
► Programming over the API
► Programming by means of the embedded web server
► Programming by means of JTAG

EQUIPMENT NEEDED
► JTAG programmer: J-Link
► Ethernet cable
► UART cable
► API: UART, Ethernet, and SPI

DOCUMENTS NEEDED
► The following documents are available for download from the main product page.

► Embedded design materials
► Schematics
► Bill of materials
► Example module layout
► RPG2 I/O Configuration Tool User Guide section of this document.
► RPG2 Unified Interface User Guide section of this document

SOFTWARE NEEDED
► Link Configuration file
► Web Server file
► I/O Configuration file
► Flash Image firmware
► Segger J-Flash software
► Python Software Foundation (PSF) Python 3

GENERAL DESCRIPTION
The RapID Platform Generation 2 (RPG2) module provides support for multiple industrial Ethernet protocols. When the RPG2 evaluation kit is
purchased, there is a predetermined software set loaded in the evaluation kit. When a user has performed the evaluation of the RPG2 solution
using the evaluation kit, the kit can be reprogrammed to either evaluate another industrial Ethernet protocol or to customize the RapID platform
to fit the needs of the system of the user.
To reprogram the RPG2 solution, choose one of the three following methods: over the application processor interface (API), by means of the
web server, or by means of JTAG.
The first method to reprogram the kit is by sending unified interface commands over the API. Note that a specific API must be used with
specific function calls to accomplish this. The programming process is touched upon procedurally within this user guide. However, the exact API
function is described in detail in the RPG2 Unified Interface User Guide section.
The second method to reprogram the RPG2 solution is by using the embedded web server, which is predistributed in all RPG2 evaluation kits
and is included as part of the RPG2 software solution. For the embedded web server, access to the server varies on a protocol by protocol
basis because the RPG2 device requires an IP address, and how the IP address is obtained also varies on a protocol by protocol basis.
The third method to reprogram the RPG2 solution is by means of JTAG by using J-Flash, which requires PSF Python 3, a J-Flash installation,
and a J-Flash license for production purposes.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 133 of 180

COMMUNICATIONS CONTROLLER APPLICATIONS AND IMAGES
There are several pieces of code (elements) that must be loaded onto the flash of the ADSP-CM409F for the RPG2 evaluation kit or for the
embedded reference design. This group of pieces of code is a three part list that functions as an industrial Ethernet device.
Some of the elements are stored in flash, while others are stored on the file system in the RPG2 solution. Elements that are stored in flash
are referred to as flash elements, and elements that are stored in the file system are referred to as data elements. A breakdown of where the
different code pieces are ultimately stored is shown in Table 37.
Table 37. System Elements
Element Element Type
Network Application Flash
Unified Interface Flash
Bootloader Flash
Link Configuration File Data
I/O Configuration File Data
Web Server Content Data

Elements that are programmed as flash element types all need to be programmed as one binary image. The data element types can be loaded
individually.

Network Application
The network application controls all Ethernet functionality on a given device that uses the RPG2 solution.
Ethernet functionality includes industrial Ethernet protocol management, web server traffic, and other forms of Ethernet traffic. The protocol
stacks are included as part of the precompiled binaries. Therefore, there is no need to obtain any protocol stacks when designing a new
industrial Ethernet device.
Table 38 gives the supported industrial Ethernet protocol images, which for evaluation purposes, either use an Ethernet application processor
link type out of the box or adhere to the link configuration file that is in the file system.
Table 38. Flash Elements
Protocol Image Name
PROFINET rapid-profinet-software-suite.bin
EtherNet/IP rapid-ethernetip-software-suite.bin
EtherCAT rapid-ethercat-software-suite.bin

The network application is programmed as part of the flash element image.

Unified Interface
The unified interface is the input and output application that controls the total functionality of the industrial Ethernet device. The unified interface
can be the same regardless of the industrial Ethernet protocol in use. Refer to the RPG2 Unified Interface User Guide section of this document
for more additional details on the unified interface.
The unified interface is programmed as part of the flash element image.

Bootloader
The bootloader controls the start-up sequence and authentication of other images that are loaded into the RPG2 flash memory.
In the RPG2 evaluation kit, some application image mismatches can potentially produce errors and illuminate light emitting diodes (LEDs) on
the evaluation kit. The system behavior at start-up described in the RPG2 Hardware Design Integration Guide section relies on these optional
LEDs. The customer can choose whether or not to implement LED5 and LED6 and LED7 and LED8 in the embedded reference design or the
evaluation kit in the end application.
The bootloader is programmed as part of the flash element image.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adsp-cm409f
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 134 of 180

Link Configuration File
The link configuration file is included as part of the application suite. Users program the link configuration to change the link type or link
parameters. Refer to RPG2 Hardware Design Integration Guide section for additional details on changing the link type. The link configuration
file is a data element.

I/O Configuration File
The I/O configuration file is what determines the I/O footprint and protocol specific device parameters. Once a user is done with the evaluation,
the user then moves to creating custom configuration data to use on the RPG2 module. The I/O configuration file is a data element. Refer to the
RPG2 I/O Configuration Tool User Guide section for additional information.

Web Server Content
The web server content must be loaded. The web server is also a data element. Custom web content can be created for the RPG2 solution,
which is described in more detail in the RPG2 Web Server User Guide section of this document.

NEEDED IMAGES FOR THE RPG2 SOLUTION
To have an industrial Ethernet device, an RPG2 user must load several things onto the device. There are two high level pieces that must be
part of the RPG2 software load. One is the flash image, and the other is the file system.

Flash Element
The flash image is the firmware stored in the flash of the RPG2 module. This image is industrial Ethernet protocol specific and one of the
following:
► PROFINET
► EtherNet/IP
► EtherCAT

Each of these protocols contains all of the pieces of the software stored in flash and the flash elements shown in Table 38.

Data Elements
Data elements are stored in the file system, and some customization can be done, such as the following:
► Web server file
► IO configuration file
► Link configuration file
► MAC address file

The web server file and the IO configuration file are required to do any industrial Ethernet communication with the RPG2 module. The following
sections detail what the expected file system and flash image combinations are.

RPG2 Programming Out of the Box
When loading the RPG2 module as an evaluation kit, embedded reference design, or in any other fashion, some content must be loaded for the
RPG2 module to function as an industrial Ethernet device. At the top level, the following must be programmed onto the RPG2 module:
► The file system, which contains the data elements
► A firmware image, which is the flash element

The file system can come as a precompiled binary or be created based on the needs of the system of the user. The firmware image contains
the needed application for an industrial Ethernet binary.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 135 of 180

Loading PROFINET
The actual content when loading the files needed to create a PROFINET device with the RPG2 module follows:
► file-system
► private
► pki
► ca.crt
► server.crt
► server.key
► public
► web server
► io-config.bin
► link-config.txt
► rapid-profinet-software.bin

Note that if a user is programming the RPG2 embedded reference design for the first time, the file system portion must be loaded first. See the
Programming by Means of JTAG section for more information.

Loading EtherNet/IP
The actual content when loading the files needed to create a EtherNet/IP device with the RPG2 module follows:
► file-system
► private
► pki
► ca.crt
► server.crt
► server.key
► public
► web server
► io-config.bin
► link-config.txt
► rapid-ethernetip-software.bin

Note that if a user is programming the RPG2 ERD for the first time, the file system portion must be loaded first. See the Programming by Means
of JTAG section for more information.

Loading EtherCAT
The actual content when loading the files needed to create a EtherCAT device with the RPG2 module follows:
► file-system
► private
► pki
► ca.crt
► server.crt
► server.key
► public
► web server
► io-config.bin
► link-config.txt

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 136 of 180

► rapid-ethercat-software.bin

Note that if a user is programming the RPG2 ERD for the first time, the file system portion must be loaded first. See the Programming by Means
of JTAG section for more information.

PROGRAMMING BY MEANS OF THE API
When programming the RPG2 module or embedded design by sending commands over the API, there are several commands that are used to
complete this process. This process varies if the user is going to update the flash elements or the data elements.
The basic process for reprogramming flash elements is conceptually shown in Figure 155, and Figure 156 shows the user how to update the
data elements.
Follow this process to update the flash elements:
► Call NI_FileSave() with the appropriate image (see the Flash Element section for additional information) as the argument to transfer the

needed file over the link and save the image in the flash of the RPG2 module.
► Call NI_MarkSoftwareUpdate() for that image to indicate to the RPG2 module that upon reset that the saved file is loaded and used.
► Call NI_Reset() to reset the device and use the newly updated files.

More information on the specific arguments for the API can be found in both the source code for the ni-example-app and in the RPG2 Unified
Interface User Guide section.
The process for updating data elements is one step. Call NI_FileSave() with the appropriate image (see Table 39 for additional information) as
the argument to transfer the file over the link. Each data element has its own user guide where it is defined, which include the following:
► IO Configuration File—RPG2 I/O Configuration Tool User Guide section
► Link Configuration File—RPG2 Hardware Design Integration Guide section
► Web Server File—RPG2 Web Server User Guide section

For the data elements, the updated file does not require a reset for use. The file is available for use immediately.
These functions and additional file management functions are detailed in the RPG2 Unified Interface User Guide section.
Additionally, the specific image names detailed in Table 39 are expected by the RPG2 file system.
Table 39. Data Elements, Local File Name, and Image Name
Data Element Local File Name Image Name on the File System
IO Configuration File User defined io-config.bin
Link Configuration File User defined link-config.txt
Web Server File User defined Customizable

Figure 155. Updating Flash Elements

Figure 156. Updating Data Elements

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 137 of 180

An Example for Reprogramming Over the API When Using the Ni-Example-App
This section describes an example for both programming data elements and flash elements.
The following arguments are used to reprogram either the flash or data elements.
► ni-example-app.exe—always used.
► -l (universal asynchronous receiver transmitter (UART) or Ethernet (ETH)—the out of the box configuration is Ethernet, however, UART can

be used as well.
► If the link type is Ethernet, the next arguments are as follows:
► -n
► String for the Ethernet network interface card (NIC) identifier
► If the link type is UART, the next arguments are as follows.
► -c
► COMx, where x is the COM port on the PC in use, usually a virtual COM from a USB connection
► Location of the file on the RPG2 module that is loaded to.
► Local path for the file to be loaded onto the RPG2 module.

Two examples of the command line inputs follow:
► ni-example-app.exe -l ETH -n {0CF10A5B-A995-4AC8-8E69-1B9225308092} –-file-save io-config.bin “C: UsersDesktopio-config-lo-

cal.bin”.
► The actual string following -n and the io-config-local.bin file are variable depending on where the user has the file, how the file is named,

and the actual device string for the Ethernet NIC.
► ni-example-app.exe -l UART -c COM11 –-file-save io-config.bin “C:UsersDesktopio-config-local.bin”.
► The actual string following -n and the io-config-local.bin file are variable depending on where the user has the file, and x for the COMx is

dependent on the COM port in use (this can be found by typing mode from a command line)

Data Elements
A sample console command is shown in Figure 157 using the ni-example-app.

Figure 157. Programming Data Elements

io-config.bin is what the name of the IO configuration file must be saved as in the file system for the RPG2 module. This file must also be
saved at the root directory peer to the private and public folders, which is also true for the link configuration file. The link configuration file must
be saved as link-config.txt. Formatting for the link configuration file is discussed later in this document. Formatting for the IO configuration

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 138 of 180

file is taken care of by the IO-Configuration-Utility.exe and is discussed in the RPG2 I/O Configuration Tool User Guide section. Figure 158
shows a screenshot of what the file system looks like at the root directory.

Flash Elements
Flash elements can be programmed by using the ni-example-app that is presupplied. In the console output shown in Figure 159, an example
of saving the application into the file system and marking it for use upon reset is shown. This flash element can then be marked and used upon
reset. For this example, the binary saved onto flash is rapid-ethernetip-software-suite.bin.
Note that for a module user, there is a predistributed EtherNet/IP network application that allows the API to initialize and send the needed
commands to reprogram both the data and flash elements. While it is predistributed with EtherNet/IP, it is recommended to reload the
EtherNet/IP software from the portal when moving to conformance testing so that the software is up to date.

Figure 158. File System Root Directory

Figure 159. Updating Flash Elements

PROGRAMMING BY MEANS OF THE EMBEDDED WEB SERVER
The RPG2 solution gives a user the means of updating files by using the embedded web server that exists on the device. There are several
steps to take to perform this operation.

Accessing the Device Web Page
The web server is accessed like other devices by the IP address in a browser. Before a user can access the web page, the device needs an IP
address, and how it obtains an IP address varies depending on the protocol that is in use.

PROFINET
For PROFINET, it is required for conformance purposes that the device obtain an IP address from the leader on the PROFINET network. The
controller assigns the RPG2 device a name and an IP address, and the IP address is then used by the RPG2 device.

EtherNet/IP
For an EtherNet/IP device, typically the device obtains an IP address by means of a dynamic host configuration protocol (DHCP) server, which
is the recommended method for use by the Open DeviceNet Vendor Association (ODVA). The device is allowed to have a static IP address,
and this option is also available for the user as well.

EtherCAT
For an EtherCAT device, the only way to access the device web server is by means of Ethernet over EtherCAT (EOE), which is due to
the features of the industrial Ethernet EtherCAT protocol. Note that, this implementation of Ethernet over EtherCAT varies depending on the
EtherCAT leader that is in use.

Other Protocols
All protocols have their own way of obtaining an IP address. The rules of the protocol must be adhered to in order to obtain an IP address
before accessing the embedded web server.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 139 of 180

The Device Web Page and the Reprogramming Process
This section explains the procedure by which the firmware on the device is updated, assuming that the final binary is built and available. The
final binary includes the IO application, the network application, and the bootloader in a single binary file. The firmware update can be carried
out using the web server, and the LEDs (LED1 and LED2) indicate the firmware update status.
The I/O configuration file and link configuration file can be reprogrammed using the same process. However, unlike the other parts of the
application space, this data and file can be updated separately using a .bin output from the RPG2 I/O Configuration Tool User Guide section of
this document or the required link configuration file. Consult the RPG2 I/O Configuration Tool User Guide section for more information on the
I/O configuration file.

Figure 160. Web Page View

Once the RPG2 web page is accessed from the main product page, upload files as follows:
► Open the web page of the RPG2 module with a web browser. (The IP address must be prefixed with an https. For example, enter

https://192.168.1.1 to access a device at 192.168.1.1).
► Click User Upload in the left-hand column.
► Authenticate the web server with the username and password provided or set. Be sure to use the user account.
► Upload the applicable file, which is either in the RPG2 I/O Configuration Tool output, the link configuration file, web server content, or one of

the binaries referenced (PROFINET, EtherNet/IP, or EtherCAT).
► After the upload reaches 100%, click User Update. Then, select the update.pkg file that just uploaded in the list, and click Submit to kick off

the firmware update.
► The device of the user automatically reboots and performs the secure firmware update. To verify, refer to the LEDs to confirm that the update

is occurring (see Table 40).
► The bootloader indicates which step of the authenticating and booting applications process the device is in with the NET and MOD LED (see

Table 40).
► After the bootloader finishes booting, it turns all LEDs off.
Table 40. LED Behavior Descriptions for Bootloader
Bootloader Step Progress Status LED1 LED2
Update Found, Authentication in Progress Green Off
Application Verification and Download in Progress Off Green
Boot Process Complete Green Green
Firmware Update Finished Off Off

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 140 of 180

PROGRAMMING BY MEANS OF JTAG
The RPG2 solution can be programmed by means of JTAG using J-Flash, or a user can use the Python 3 script that is distributed on the main
product page under the normal software download files. Note that it is up to the user to obtain a license for production programming when this is
done.
► RapID PROFINET software suite
► RapID EtherCAT software suite
► RapID EtherNetIP software suite

Inside each zip file is the .bin file that must be entered to program by means of JTAG.

Using J-Flash
When using J-Flash, users must select the following:
► Device: ADSP-CM409BSWZ-AF
► Interface: JTAG
► Speed: 4 kHz
► Data File, which is the .bin file obtained in the zip file.
► Program Address: 0x18000000

Selecting anything else causes the RPG2 solution to not function. Loading these binaries as the flash element allows other means of
programming to load data elements onto the RPG2 module.

Erasing the Flash Image
When reprogramming the RPG2 module from one flash image to another using JTAG, the flash must be erased before reprogramming, and
LED2 indicates when this can be done. When the device powers up, the user must wait until LED2 illuminates to click Erase Chip on the main
screen in J-Flash. Once erasing completes, the user can then reprogram using the Python 3 scripts.

Using a Python Script
When using a Python 3 script, several things must be specified. The Python 3 script has four arguments that are specified in more detail within
in the following sections.
► The link configuration file is found in the RapID_ Example_Content zip file.
► The file system is created using the existing pieces on the ADIN2299 main product page at www.analog.com/adin2299 from the different zip

files as specified in the needed images for the RPG2 solution.
► The network application binary, which is the protocol specific software.
► The format option formats the file system before loading the new one onto the RPG2 solution.

The Board Configuration
The board configuration file is found in the util subdirectory under the RapID_Programming_Utility_Suite. For the purposes of this example in
using the script, the name is ADIN2299.bin. This name can vary but must always be obtained under the util subdirectory.

The File System
The file system is flexible and can contain many different pieces, such as the following:
► Web server content, which is the default or the custom web content found in the RapID_Example_Content_Library. The web server

content is not included by default and must be specified in the file system when loading. Consult the RPG2 Web Server User Guide section
for more information.

► IO configuration file, which is always saved as io-config.bin and found in the RapID_Example_Content_ Library or generated using the
IO-Configuration-Utility.exe.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/ADSP-CM409F?doc=RPG2-Programming-Guide-UG-1884.pdf
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 141 of 180

► Link configuration file, which is always saved as link-config.txt and is selected from content in the RapID_ Example_Content_Library and
renamed as described in the RPG2 Hardware Design Integration Guide section.

► The MAC configuration file, which is always saved as rems-interface.txt and found in the RapID_Example_ Content_Library. This file is
formatted as shown in Figure 161.

Figure 161. MAC Configuration File

For the purposes of using the script in this example, the file system proposed only has a MAC address file, IO configuration data, a link
configuration file, and no web server content.

The Network Application
The network application is a .bin file that is the flash element and predistributed as detailed in Table 37. For the purposes of this example, the
file used is rapid-ethernetip-software-suite.bin.
All available software suites are on the main product page on a protocol by protocol basis. Check the ADIN2299 main product page at
www.analog.com/adin2299 for the industrial Ethernet protocol of interest.

Programming Script Usage
The following is an example of how to use the Python 3 script. When using a command line with the Python 3 script, the command line prompt
must run as elevated. Load the following files:
► rapid-ethernetip-software-suite.bin
► File-System
► io-config.bin, which can be either the default configuration file or the configuration file the customer created using the RPG2 I/O Configuration

Tool User Guide section of this document.
► link-config.txt, which can be either the default link configuration file or the custom link configuration file of the customer.
► Private/settings/rems-interface.txt, which defines the MAC address of the RPG2 design.

Note that loading files for the ADIN2299 from the load script can be accomplished by clicking on Load.bat from the main zip file.
It is not a requirement that the user supply all three arguments, and programming with the script can be done with any of the files individually.
Upon success, something similar to the messages shown in Figure 163 and Figure 164 are seen.
The total process once the script is entered takes approximately 30 seconds to one minute to invoke J-Flash from Python 3. Note that there are
two points where the command line instructs the user to press any key. Follow the instructions on the command line to go through the script.
After programming the file system image, LED2 flashes green continuously. After programming the flash image, LED2 blinks green once and
then the optional LEDs (LED3 and LED4) are solid green. If the RPG2 design does not have LED3 and LED4, the SDONE signal goes high
once the device is ready for programming. SDONE is connected to LED3 in the RPG2 sample schematic on the main product page.
If something fails, a log file displays peer to the script, and an error message appears. In addition, if there is a problem, it displays on the
command line as well.
There is also a command to format the file system called fs-format that formats the file system before writing files. It is recommended to use this
command especially when reprogramming the RPG2 module. The help screen for the Python 3 script shows a use case in Figure 165.
For most use cases, the —board-config option can be omitted because it is only required for certain hardware.

Figure 162. Sample Python 3 Script Command

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 142 of 180

Figure 163. Python Script Success Messages Part 1

Figure 164. Python Script Success Messages Part 2

Figure 165. RPG2 Python 3 Help Screen

PROGRAMMING METHODS BY USE CASE
When programming the RPG2 solution, there are different use cases that must also be considered. The three use cases include the evaluation
kit, the module, and the embedded reference design.
For an RPG2 embedded reference design, the only way to program initially is by means of JTAG. It is the responsibility of the user to obtain
a J-Link license for production purposes. After the embedded design has been programmed with a flash image and file system by means of

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 143 of 180

JTAG, the user can use the API to configure the design, if desired. For maintenance purposes, the web server can be used for this use case as
well.
Table 41. Different Systems
Use Case Method Supported Out of the Box Notes
Evaluation Kit JTAG Yes Not applicable

API Yes Not applicable
Web server Yes Not applicable

Module JTAG Yes Need JTAG connector on design
API No Not applicable
Web server Yes Default method

Embedded Reference Design JTAG Yes Only initial method
API No Not applicable
Web server No Not applicable

PROGRAMMING METHODS BY STATE OF DESIGN

Evaluation
During the evaluation phase, there are several methods to program and reprogram the RGP2 evaluation kit. The most straightforward way is
with the ni-example-app.exe file. There is a reprogram option that can be entered from the command line that allows a user to change the
I/O configuration data or upload a merged image containing what is required. Refer to Programming by Means of the API section for additional
information.
The embedded web server can also be used as long as the device is assigned an IP address, which is generally not something that is expected
of the customer during the evaluation phase. Once the device has an IP address, follow the Programming by Means of the API section for
additional information.
JTAG can be used, and there are predistributed Python 3 scripts that load and reload the required flash element image along with the
evaluation data element images. See the Programming by Means of JTAG section for further information.
Table 42. Method of Programming by Stage of Design
Stage in Design JTAG API Web Server
Evaluation Yes Yes Unlikely
Development Yes (for flash elements) Yes Unlikely
Production Yes (for flash elements) Yes Unlikely
Maintenance Very unlikely Yes Yes

Software Development

Changing the API Link Type
All of the evaluation kits are shipped with no link configuration file. Therefore meaning the LT pins will be used to determine link type. If this is
not desirable and the user wants to make the link type(SPI, UART or Ethernet) ignore the selector pins, then this need is determined by the link
configuration file.
When changing the link configuration file, users must consider that the file is no longer accessible via the original parameters defined in the link
configuration file. In other words, if a user changes the API from Ethernet to UART, the API no longer communicates via Ethernet, and the only
way to interact with the RPG2 module is to use the newly programmed link type. Note that the link type change takes immediate effect. Figure
166 shows an example command of how to change the link type from Ethernet to UART.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 PROGRAMMING USER GUIDE

analog.com Rev. A | 144 of 180

Production Programming Considerations
During production, some methods of programming are more useful than others.
For initial loading of the flash memory, a user may require the use of JTAG. The user must load the required flash element image onto the
embedded reference design, which then allows interaction with the RPG2 solution and determines the proper bring up from there.
Reprogramming the link configuration file and the I/O configuration file for the embedded design with JTAG involves putting these files in the file
system.
Table 43. Configuring the Link Type for the RPG2 Solution
API Type New Link Configuration Required? Configurable Board Configuration Parameters
Ethernet No Off
UART Yes Baud rate, parity, stop bit
SPI Yes Speed, clock phase, clock polarity

Figure 166. Command for Changing Link Type

Maintenance Programming Considerations
For maintenance purposes, it is assumed for many cases that the user does not have JTAG access for the end device of the user. Therefore,
when the user gets to a situation where maintenance programming must happen, the user likely uses the web server for updating out in the
field.
Some users may store update files on the API for the purpose of updating devices in the field, and it is up to the user how this is done. See the
RPG2 Unified Interface User Guide section for more additional information.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 145 of 180

FEATURES
► Customizable network input and output configuration
► Customizable link types

► Ethernet
► SPI
► UART

EVALUATION KIT CONTENTS
► 1 baseboard with the RPG2 module installed with the protocol specific software preloaded
► 1 wall mount AC adapter, 90 V ac to 264 V ac to 12 V dc, 12 W, 1 A
► 4 power supply plug adapters (Type A, Type C, Type G, and Type I)
► 1 USB A male to USB Micro B male cable
► 1 Ethernet cable

EQUIPMENT NEEDED
► JTAG programmer: J-Link LITE or J-Link BASE
► 1 Ethernet cable

DOCUMENTS NEEDED
► The following documents are available for download from the main product page.

► Embedded design materials
► Schematics
► Bill of materials
► Example module layout

SOFTWARE NEEDED
► The following files are available for download on the ADIN2299 main product page.
► Link Configuration file
► I/O Configuration file
► Network Configuration file (EDS, GSDML, or ESI, which can be found in the IO_Configuration_Utility.zip file within the IO Configuration file)

GENERAL DESCRIPTION
The RapID Platform Generation 2 (RPG2) hardware design integration guide provides the engineering details to integrate the hardware
components needed to interface with the RPG2 Embedded Reference Design zip file. The software within is used to configure the hardware. As
shown in Figure 167, this user guide requires the EV-RPG2 evaluation kit set up to run the example application.

DEVELOPMENT OVERVIEW
Note that all of these documents are self contained in this reference manual.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/EV-RPG2

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 146 of 180

Figure 167. Development Overview with the Associated Documentation

INTRODUCTION
The RPG2 EtherCAT Quickstart Guide section, RPG2 EtherNet IP Quickstart Guide section, and the RPG2 Profinet Quickstart Guide section
of this document provide instructions to connect the items in the EV-RAPID evaluation kit and run an application that demonstrates end-to-end
communication from an application processor to a programmable logic controller (PLC). For the example described in these previous quickstart
guides, the application processor is a PC that communicates with the module via an Ethernet network interface card (NIC). Users can switch
between the three link types, universal asynchronous receiver transmitter (UART), Ethernet, or serial peripheral interface (SPI), by following the
steps outlined in the Obtaining and Modifying the Link Configuration File section. A PLC or a controller simulator running on a PC can be used.
When the application is running, it is possible to switch out the PC for the actual application processor and verify end to end communication
from the application processor to a PLC or controller simulator. Update the board configuration file and program the board to use the desired
link type. The next step in the configuration process is to modify the example code to work with the final application software.
See the Software Integration section for a description on how to integrate the example code into the application processor, as well as how to
use the link configuration file that is located in the RapID Software Downloads. (Note that the usage of this file is detailed in the Obtaining
and Modifying the Link Configuration File section). In addition, see the RPG2 I/O Configuration Tool User Guide section of this document for
additional information on how to generate the input and output configuration data, and for details on how data is organized in an ESI, XDD,
GSDML, EDS, or ModbusTCP.
Take the following steps to integrate the field device application software:
1. Modify the application processor software.
2. Create an application processor software .bin to program the embedded reference design. Refer to the Considerations for Production and

Maintenance section of the Programming section.
3. Execute the examples shown in the quickstart guides with your own embedded reference design.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/EV-RPG2
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 147 of 180

See the Hardware Integration section for a description on how to embed the design into the circuit card of the final application hardware.
Take the following steps to integrate the field device application hardware:
1. Create an electronic network configuration file. Refer to the Network Configuration File and the I/O Configuration section and the RPG2 I/O

Configuration Tool User Guide section of this document for additional information.
2. Create and program the I/O configuration file. Refer to the Network Configuration File and the I/O Configuration section and the RPG2 I/O

Configuration Tool User Guide section of this document for additional information.
3. Configure the application processor link type using the board configuration file. Refer to the Obtaining and Modifying the Link Configuration

File section.
See the Communication Interfaces Between the Application Processor and RPG2 section for information on how to load the RPG2 module
with the output of the I/O configuration utility (IO_Configuration_Utility.exe). If the RPG2 module requires an update to a new version of the
EtherNet/IP, PROFINET or EtherCAT software, the .bin files are contained in the software downloads:
► RapID PROFINET Software Suite
► RapID EtherNetIP Software Suite
► RapID EtherCAT Software Suite

These links download the following zip files that contain the proper .bin file for RPG2:
► RapID_PROFINET_Software_Suite.zip, which is found in the bin/rapid_profinet_software_xxxxx.bin location, where xxxxx is the current

version of the software.
► RapID_EtherNetIP_Software_Suite.zip, which is found in the bin/rapid_ethernetip_software_xxxxx.bin location, where xxxxx is the current

version of the software.
► RapID_EtherCAT_Software_Suite.zip, which is found in the bin/rapid_ethercat_software_xxxxx.bin location, where xxxxx is the current

version of the software.
See the RPG2 Programming User Guide section for how to reprogram the RPG2 module with the binaries previously listed. In addition to
instructions on how to reprogram RPG2 with the binaries previously listed, this guide describes how to load the file system with the output of the
I/O configuration utility (IO_Configuration_Utility.exe, which can be found in the zip file downloaded under the RPG2 I/O Configuration Tool
User Guide section of this document and the main product page), the link configuration file (see the RPG2 I/O Configuration Tool User Guide
section for additional information), and the application processor interface (API) software.
All documentation and required files for the application described in this user guide are located on the main product page for the ADIN2299.

Tools and Project Phases
Developing a field device with the RPG2 module requires different tools throughout the phases of the life cycle of a device. Figure 168 shows
the tools that are required for each particular phase of the life cycle of the device. Not all tools, such as those required to design the circuit card
assemblies, are shown because tools are application specific.
In the evaluation phase, the EV-RAPID or the RPG2 module is required. To run the end to end communication example, a PLC or controller
simulator is required, as well as a PC to run the Network Interface Example Application Processor (ni-example-app.exe). The Network
Interface Example Application Processor simulator is located in the main product page under the Network Interface Example Application Suite
link. Click Network_Interface_Example_Application_Suite to download the Network_Interface_Example_Application_Suite.zip file, which
contains the ni-example-app.exe executable file under ni-example-appprojectvsni-example-appRelease.
In the development phase, the application processor development environment replaces the Network Interface Example Application Suite
(ni-example-app.exe). If the user intends to modify the I/O configuration data as well as the link type, refer to the I/O Configuration Utility Suite
and the link configuration file (see the RPG2 I/O Configuration Tool User Guide section and the Obtaining and Modifying the Link Configuration
File section for additional information).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/EV-RPG2
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 148 of 180

Figure 168. Tools Associated with the Development Phases of a Field Device

HARDWARE INTEGRATION

Embedded Design
The RPG2 solution can be embedded in the application hardware of a field device. RPG2 reference schematics are included to assist in the
design process and are provided on the main product page. Refer to the RPG2 Embedded Reference Design schematic along with the detailed
design information in this reference manual when embedding the RPG2 solution into a design. Users are required to follow the component
selection listed in the bill of materials of the RPG2 Embedded Reference Design zip folder.
When the RPG2 Embedded Reference Design schematic is implemented directly on the customer board, the only option for programming out
of the box is through a Joint Test Action Group (JTAG) connection using the SEGGER Embedded Studio toolchain. Note that a serial wire
debug connection is not supported. See the RPG2 Programming User Guide section of for more information.
The recommended JTAG wigglers include the following:
► J-Link LITE
► J-Link BASE

GPIO Requirements of the RPG2 Embedded Reference Design
The GPIO_x pins must have a maximum sourcing and sinking current of 4 mA.

Power Requirements of the RPG2 Embedded Reference Design
The embedded design consumes approximately 1.8 W, supplied from a single 3.3 V supply. The minimum power supply requirements for
voltage and current are 3.3 V ± 10% and 800 mA. It is best practice to use a 3.3 V and 1 A power supply for this application. The 3.3 V power is
supplied to the +3V3 signal, and ground is connected to the GND signal.

Reset Requirements of the RPG2 Embedded Reference Design
The embedded design requires a power monitoring reset, supervisor chip with a 2.9 V threshold. This design must be connected to the
SYS_HWRST (K02 pin of ADSP-CM409CBCZ-AF, which is the processor for the RPG2 Embedded Reference Design). SYS_HWRST must be
driven and cannot be left floating.
Regardless of how the embedded design is reset, it is not available for communication until the software has initialized the embedded design
and entered the operating state (1.0 sec after the receipt of a valid reset pulse or after power is valid if no external reset source is used).

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/ADSP-CM409F?doc=RPG2-Hardware-Design-Integration-Guide-UG-1860.pdf

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 149 of 180

Thermal Management Guidelines of the RPG2 Embedded Reference Design
The printed circuit board (PCB) plane layer structure is critical for thermal management. Generally, each power supply must have a dedicated
plane layer. The embedded design utilizes a single 3.3 V power supply. The 3.3 V supply must have a dedicated plane layer, and the ground
must have at least one dedicated plane layer. It is recommended to use an even number of plane layers to maintain PCB flatness. Note that the
2.5 V power supply is embedded in the embedded design.
Minimize the number of vias used. Each via puts a hole in the copper planes that adversely affects electrical and thermal performance.
Perforating the plane layer with too many poorly placed vias makes it impossible to completely isolate the central power connections of a
CSP_BGA.
Balance via minimized via usage with enough vias on the power supply connections for good electrical and thermal performance. Power supply
vias are a significant factor in removing heat from the IC.
Avoid routing signals on the plane layers to prevent cutting up the plane and inhibiting the flow of heat and current.
The following design considerations reduce the power consumption of the design. Low dropout (LDO) type voltage regulators are inherently
inefficient and must be avoided. It is recommended to use switching power supplies that can be implemented in a relatively small footprint.

Communication Interfaces Between the Application Processor and RPG2

UART Application Processor Interface
If the UART interface is selected, connect the application processor interface to the RPG2 Embedded Reference Design as shown in Table 44
using the pins indicated within. The UART is configured for 115,200 bps with 8 data bits, no parity, and one start and one stop bit.
Table 44. UART Application Processor Interface Pins
Mnemonic Direction Description
UART0_TX Output UART0 transmit output
UART0_RX Input UART0 receive input

Figure 169. UART Application Processor Interface

SPI Application Processor Interface
If the SPI interface is selected, connect the application processor interface to the RPG2 module as shown in Figure 170 using the pins indicated
in Table 45. The SPI follower connection supports a 10 MHz maximum clock rate with the clock phase (CPHA) = 0 so that data is captured
on leading edge and the clock polarity (CPOL) = 0 with the leading clock edge rising. The Unified Interface protocol is described in the RPG2
Unified Interface User Guide section of this document.

Figure 170. SPI Application Processor Interface

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 150 of 180

Table 45. SPI Application Processor Interface Pins
Mnemonic Direction Description
SPI0_SEL3_SS Input SPI0 follower select input
SPI0_CLK Input SPI0 clock input
SPI0_MOSI Input SPI0 leader out, follower in
SPI0_MISO Output SPI0 leader in, follower out
INT_OUT Output Signal to notify the application side that a message is ready to be read
BUSY/UART0_TX Output Busy signal, indicating to the application side that the communication side is busy

Ethernet Application Processor Interface
The Ethernet link type can be either direct or indirect. A direct Ethernet link consists of two directly connected reduced media independent
interfaces (RMIIs), one on the application side and one on the communication side. An indirect Ethernet link consists of two RMIIs connected
through a physical layer (PHY) on either end or an Ethernet cable in between. The Unified Interface application software is agnostic to direct vs.
indirect connections.
If the Ethernet interface is selected, connect the application processor interface to the RPG2 module as shown in Figure 171 or Figure 172
depending on whether you opt for a direct or an indirect connection using the pins indicated in Table 46.

Figure 171. Direct Connection Through RMII

Figure 172. Indirect Connection

Table 46. Ethernet Application Processor Interface Pins
Mnemonic Direction Description
ETH0_REFCLK Input EMAC0 reference clock. Externally supplied Ethernet clock
ETH0_CRS/CRS/RXDV Input EMAC0 carrier sense (ETH0_CRS). Multiplexed on alternate clock cycles.

Input CRS is asserted by the PHY when either the transmit or receive medium is not idle, and CRS is deasserted when both are
idle (CRS).

Input RXDV is asserted by the PHY when the data on ETH0_RXD_0 is valid (RXDV.
ETH0_RXD0 Input EMAC0 Receive Data 0. Receive data bus.
ETH0_RXD1 Input EMAC0 Receive Data 1. Receive data bus.
ETH0_TXEN Input/output EMAC0 transmit enable. When asserted, this pin indicates that the data on TXD_0 is valid.
ETH0_TXD0 Output EMAC0 Transmit Data 0. Transmit data bus.
ETH0_TXD1 Output EMAC0 Transmit Data 1. Transmit data bus.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 151 of 180

Required Support Circuitry
Table 47 lists the required external components for the RPG2 Embedded Reference Design.
Table 47. External Components
Component Description Manufacturer Part Number
Capacitors Decouple each voltage rail (3.3 V) with a 47 µF capacitor and a 0.1 µF capacitor. User specified User specified
LEDs MOD, NET, dual color LEDs, green and red Kingbright KPBA-3010ESGC
Resistors 470 Ω resistors, LED, current limit User defined User Defined
Ferrite Bead 1.5 A, 120 Ω ferrite bead at 100 MHz Murata BLM15EG121SN1D
MagJack RJ45 jack, module connector with integrated magnetics and LEDs Würth Electronics 7499010121A
Reset Supervisor 2.9 V power monitoring reset supervisor chip Analog Devices AMD708SARZ

SOFTWARE INTEGRATION
Software integration of the application processor is the same, regardless of the protocol. The information in this section applies to all protocol
versions of the RPG2 including the following:
► PROFINET
► EtherNet/IP
► EtherCAT

To modify the example code, see the RPG2 Unified Interface User Guide section of this document.

Network Configuration File and the I/O Configuration File Installation and Modification
To install and modify the network configuration file (in EDS, ESI, GSDML, XDD, or Modbus/TCP format) and the I/O configuration file, refer to
the RPG2 I/O Configuration Tool User Guide section of this document. Once you have modified both files, refer to the RPG2 Programming User
Guide section of this document to program the board with the input and output configuration data.

Obtaining and Modifying the Link Configuration File
Go to the ADIN2299 main product page and download a software package to find the link configuration file.
Note that the link configuration file must be constructed as follows:
LINK TYPE: ETH
SPI CLOCK POLARITY: 0
SPI CLOCK PHASE: 0
UART BAUD RATE: 115200
UART PARITY: None
The link configuration file is used as a .txt file and then programmed into the ADIN2299.
Table 48 details all the possible link configuration file parameters.
Table 48. Application Processor Interface Link Type Parameters
Parameter Usable Variables Default Interpreted As Notes
LINK TYPE Ethernet (ETH), SPI,

UART, PINS
ETH STRING If the string entered does not match exactly what is in the Usable

Variables window, RPG2 defaults to ETH and, therefore, is an
Ethernet application processor interface.

SPI CLOCK POLARITY 0, 1 0 Unsigned 32-bit decimal
integer

Ignored unless the SPI link type is selected (by the file or by the
selection pins).

1 Unsigned 32-bit decimal
integer

If an integer value greater than 1 is used, it is ignored, and 0 is
used instead.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 152 of 180

Table 48. Application Processor Interface Link Type Parameters (Continued)
Parameter Usable Variables Default Interpreted As Notes
SPI CLOCK PHASE 0, 1 0 Unsigned 32-bit decimal

integer
Ignored unless the SPI link type is selected (by the file or by the
selection pins).

1 Unsigned 32-bit decimal
integer

If an integer value greater than 1 is used, it is ignored, and 0 is
used instead.

UART BAUD RATE 9600 to 1000000 115200 Unsigned 32-bit decimal
integer

The communication side performs minimum and maximum baud
rate verification. If an out of range baud rate is selected,
the default is used. Certain baud rates are not practical or
possible. Other baud rates can cause an unacceptably high error
percentage on either the application or communication side. It
is up to the customer to select a practical and feasible baud
rate that yields an acceptable error percentage on both the
application and communication sides.

UART PARITY NONE, ODD, or EVEN NONE String If a string is detected that is not a member of this list, the default
is used.

UART STOP BITS 1 1 7 Reserved

See the RPG2 Programming User Guide section for more information on how to load the link configuration file, which is the same way that the
I/O configuration file is loaded onto the RPG2.

Strapping Option Method
Refer to this section if the PINS option is selected in the link configuration file.
A user can also elect to use the three strapping pins to pick the desired application processor link type. Table 49 details what signals must be
logic high and logic low to select a given application processor link type.
Note that the default link type in the board configuration file is what is strapped from the pins. If the user wants a specific applications processor
interface, then they can load a link configuration file as part of their integration.
Table 49. Application Processor Interface Strapping Options

Link Type Selector
Pin 2 Pin 1 Pin 0 Link Type Code Unified Interface Link Type
0 0 0 0 Ethernet, default
0 0 1 1 Reserved
0 1 0 2 SPI
0 1 1 3 Reserved
1 0 0 4 UART0
1 0 1 5 Reserved
1 1 0 6 Reserved
1 1 1 7 Reserved

CONSIDERATIONS FOR PRODUCTION AND MAINTENANCE
There are three methods for configuring and programming the RPG2 during the production of end use systems:
► JTAG
► Ethernet
► Programming via the application processor interface

When implementing the Embedded Design the only option for programming out of the box is through a JTAG connection using the SEGGER
Embedded Studio toolchain. A serial wire debug connection is not supported. See the Embedded Design section for more information.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 153 of 180

JTAG Method
The JTAG method is used during production and maintenance when it comes to the embedded design. The JTAG method is used only during
production when used directly with the RPG2 module. Refer to the RPG2 Programming User Guide section to program the module or the
embedded design using this method.

Ethernet Method
The Ethernet method is used only during maintenance when used with a module or an embedded design. The Ethernet method is used
primarily for field updates. Refer to the RPG2 Programming User Guide section of this reference manual to program the embedded design or a
module using this method.

Application Processor Interface Method
The application processor interface method is used only during maintenance when used with a module or an embedded design. The application
processor interface method is used primarily for field updates. Refer to the RPG2 Programming User Guide section to program the embedded
design or a module using this method.

CONNECTING TIMERS FOR RPG2 EMBEDDED REFERENCE DESIGN
Eight timers in the embedded reference design are connected in the RPG2 Embedded Reference Design. Some timers are used by protocols
for different purposes, and some timers are left in the design for future use. The inclusion of the timers is detailed in Table 50.
Table 50. API Strapping Options
Timer Protocol Used Notes
0 EtherNet/IP No Unused.
1 EtherNet/IP No Unused.
2 EtherNet/IP No Unused.
3 EtherNet/IP No Unused.
4 EtherNet/IP No Unused.
5 EtherNet/IP No Unused.
6 EtherNet/IP No Unused.
7 EtherNet/IP No Unused.
0 PROFINET No Unused.
1 PROFINET No Unused.
2 PROFINET No Unused.
3 PROFINET No Unused.

4 PROFINET Yes
This timer shows synchronization for PROFINET isochronous real time (IRT). For conformance, this timer must be connected to an
external test point to verify synchronization.

5 PROFINET No Unused.
6 PROFINET No Unused.
7 PROFINET No Unused.
0 EtherCAT No Unused.
1 EtherCAT No Unused.
2 EtherCAT No Unused.
3 EtherCAT No Unused.
4 EtherCAT No Unused.
5 EtherCAT No Unused.
6 EtherCAT Yes Sync 1 pulse for EtherCAT distributed clock functionality.
7 EtherCAT Yes Sync 0 pulse for EtherCAT distributed clock functionality.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 154 of 180

LED BEHAVIOR
The LED behavior is dictated by the protocol or the application. Figure 173 shows the LEDs in the EV-RAPID used to demonstrate protocol
and application behavior. The LEDs from the RPG2 Embedded Reference Design, LED1/2 and LED3/4, are referred to as MOD and NET,
respectively, for this guide and by the ODVA.

LED Color
The LEDs are a specific color in the RPG2 evaluation kits. See Table 51 for the specific LEDx colors.
Table 51. NET Behavior Descriptions EtherNet/IP Protocol
LED Number Color
LED1 Green
LED2 Red
LED3 Green
LED4 Red
LED5 Green
LED6 Red
LED7 Green
LED8 Red

Deviating from the color scheme shown in Table 51 can cause conformance failures for some protocols.

Industrial Protocol Specific Behavior

LEDS and EtherNet/IP
The LED behavior of the RPG2 module is specified by the protocol. If the solution is embedded into the hardware design and the LEDs are
connected as shown in the reference schematics available on the main product page, the protocol software in use controls the behavior of the
LEDs.
Table 52. MOD Behavior Descriptions for EtherNet/IP Protocol
MOD Indicator System Status
Off No power
Steady Green Device operational
Flashing Green Standby
Steady Red Major fault
Flashing Red Minor fault
Flashing Red or Green Self test

Table 53. NET Behavior Descriptions EtherNet/IP Protocol
NET Indicator System Status
Off Not powered or no IP address
Steady Green Connected
Flashing Green No connections
Steady Red Duplicate IP
Flashing Red Connection timeout
Flashing Red or Green Self test

LEDs and PROFINET
The LED behavior of the RPG2 module is specified by the protocol. If the solution is embedded into the hardware design and the LEDs are
connected as shown in the reference schematics available on the main product page, the protocol software in use controls the behavior of the
LEDs. Profibus International has no requirements for labeling or naming LEDs. For the purposes of this guide, the LEDs are referred to as NET
and MOD.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/EV-RPG2
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 155 of 180

Table 54. MOD Behavior Descriptions for PROFINET Protocol
MOD Indicator System Status
Off Startup
Blinking Green Blink test
Solid Green Configuration complete

Table 55. NET Behavior Descriptions for PROFINET Protocol
NET Indicator System Status
Off Startup
Blinking Red No PLC connection
Solid Green PLC connected

Figure 173. Labels of LEDs in EV-RAPID

LEDs and EtherCAT
The LED behavior of the RPG2 module is specified by the protocol. If the solution is embedded into the hardware design and the LEDs are
connected as shown in the reference schematics available on the main product page, the protocol software in use controls the behavior of the
LEDs.
For EtherCAT, the term used for the devices are RUN and ERR as opposed to NET and MOD. LED1/2 and LED3/4 are referred to as RUN and
ERR, respectively, for this guide and by ETG.
Table 56. NET Behavior Descriptions for the EtherCAT Protocol
RUN Indicator System Status
Off Initialization
Blinking Preoperational
Single Flash Safe operational
Double Flash Not applicable
On Operational

Table 57. MOD Behavior Descriptions for the EtherCAT Protocol
ERR Indicator System Status
Off No error
Blinking Invalid configuration
Single Flash Local error
Double Flash Process data watchdog timeout or EtherCAT watchdog timeout
On Application controller failure

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 156 of 180

LEDs and Modbus/TCP
The LED behavior of the RPG2 module is specified by the protocol. If the solution is embedded into the hardware design and the LEDs are
connected as shown in the reference schematics available in the main product page, the protocol software in use controls the behavior of the
LEDs. There are no LED labeling requirements for a Modbus/TCP device. The LEDs are referred to as NET and MOD, respectively.
Table 58. MOD Behavior Descriptions for Modbus/TCP Protocol
MOD Indicator System Status
Off Configuration
Red On Connecting (IP not OK, link down)
Red On Connecting (IP not OK, link up)
Green Flashing Run (IP OK, link down)
Green Flashing Run (IP OK, link up)

Table 59. NET Behavior Descriptions for Modbus/TCP Protocol
NET Indicator System Status
Off Configuration
Red On Connecting (IP not OK, link down)
Off Connecting (IP not OK, link up)
Red On Run (IP OK, link down)
Green On Run (IP OK, link up)

LEDs and POWERLINK
The LED behavior of the RPG2 module is specified by the protocol. If the solution is embedded into the hardware design and the LEDs are
connected as shown in the reference schematics available on the main product page, the protocol software in use controls the behavior of the
LEDs. The LED indicators have no relationship to the Ethernet Powerlink Standardization Group (EPSG) specification. The LEDs are described
as NET and MOD, respectively, for this guide, however, there are no labeling requirements as such for a POWERLINK device.
Table 60. MOD Behavior Descriptions for POWERLINK Protocol
MOD Indicator System Status
Off Initialization
Solid Green Unified interface initialization complete
Solid Red Error initializing the unified interface

Table 61. NET Behavior Descriptions for POWERLINK Protocol
NET Indicator System Status
Off No PLC connection
Solid Green Connected to a PLC
Solid Red Error or disconnect from a PLC

LEDs Bootloader and System Startup
If the solution is embedded into the hardware design and the LEDs are connected as shown in the reference schematics available in the main
product page, the application processor software in use controls the behavior of the LEDs. Note that the Status 1 and Status 2 LEDs map
directly to LED4 and LED5 and LED6 and LED7 and are optional for a user. The LEDx behavior has meaning during startup and not during
protocol operation as the protocol specific LED behavior detailed in Table 62 to Table 66. The ultimate effect is that if the startup happened
and there are no errors on the RPG2 platform, Status 1 and Status 2 are solid green in a steady state and ready for communication from the
application processor.

Optional Status LEDs
There are four LEDs on the RPG2 Embedded Reference Design that have some meaning and will behave a certain way when controlled by the
software. The inclusion of these LEDs is optional.
In Table 66, Status 1 corresponds to LED4 and LED5 and Status 2 corresponds to LED6 and LED7.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 HARDWARE DESIGN INTEGRATION GUIDE

analog.com Rev. A | 157 of 180

Table 62. Security Status LED Behavior Descriptions for Bootloader
Bootloader Error Status MOD NET Status 1 Status 2
Invalid I/O Signature Green Yellow Off Yellow
Invalid Net Signature Yellow Green Off Yellow
Invalid I/O Header Red Off Off Yellow
Invalid Net Header Off Red Off Yellow
Invalid Public Key Yellow Yellow Off Yellow
Invalid Secure Boot Header Yellow Red Off Yellow
Invalid Image Version Red Yellow Off Yellow
I/O, Hardware, or Platform Error Red Red Off Yellow

Table 63. LED Behavior Descriptions for Application Error Status
Bootloader Step Progress Status MOD NET Status 1 Status 2
Invalid Board Configuration (Must Be Steady State) Off Off Off Off
Invalid Hardware Red Red Red Red
Hardware Driver Error Off Off Off Red
Invalid Network Application Red Off Off Red
Initialization Error Off Red Off Red

Table 64. LED Behavior Unified Interface Status
Bootloader Step Progress Status MOD NET Status 1 Status 2
Startup Done Ready for Messages (Follows the Signal SDONE) Off Off Green Off
Fatal Internal Error Off Off Red Off

Table 65. LED Behavior Protocol Execution Status
Bootloader Step Progress Status MOD NET Status 1 Status 2
Update Found, Authentication in Progress Off Off Off Green
Application Verification and Download in Progress Off Off Off Green
Boot Process Complete Off Off Off Green

Table 66. Status LED Behavior Descriptions for the Bootloader
Bootloader Step Progress Status Status 1 Status 2
Update Found, Authentication in Progress Green Not applicable
Application Verification and Download in Progress Not applicable Green
Boot Process Complete Green Green

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 158 of 180

FEATURES
► TLS with a maximum of two client connections at a time
► CGI using SSI directives
► HTTP Digest Authentication
► Firmware upgrade

EQUIPMENT NEEDED
► RPG2-EVK-PNZ
► RPG2-EVK-ENZ
► RPG2-EVK-ECZ

DOCUMENTS NEEDED
► RPG2 Unified Interface User Guide section

SOFTWARE NEEDED
► RPG2 Profinet software
► RPG2 EtherNet/IP software
► RPG2 EtherCAT software

GENERAL DESCRIPTION
To simplify interfacing with multiple industrial automation protocols, the RapID Platform Generation 2.0 (RPG2) solution uses Unified Interface,
which is a protocol between the module and the host processor that isolates the host from network protocol details. The Unified Interface
consists of a set of tools that allows users to define the common interface (CI) data envelope used by the device. This results in CI configuration
data that, when loaded into the RPG2 solution, allows the RPG2 to expose the data to an industrial automation network. The CI item types
supported include input and output data, configuration data, and diagnostic data.
The data associated with these item types is also accessed in the RPG2 Web Server. In addition to the CI data types, the RPG2 Web Server
can also access nonCI data types, such as the module IP address and subnet mask. The RPG2 Web Server uses a simple item naming
syntax to read and write the data associated with each item, whether CI or nonCI. The user provided web content uses this item naming syntax
combined with a simple set of common gateway interface (CGI) functions to operate the data.
To address the need for security, the RPG2 Web Server provides the following two levels of password protection: administrator (admin) and
user. Password protection can protect any particular web page. In addition, to enhance the web experience, the HTML content can include
cascading style sheets or JavaScript elements.

INTRODUCTION
The RPG2 supports an embedded RPG2 Web Server with the following features:
► Transport layer security (TLS) with a maximum of two client connections at a time
► CGI using server side include (SSI) directives
► HTTP Digest Authentication
► A firmware upgrade

When a browser establishes an initial connection to the RPG2 Web Server, there is usually no specific file name requested. In this case, the
RPG2 Web Server uses the default file name of index.html. Therefore, when a user creates and loads actual web content onto the RPG2
module, the user must have a file with the index.html name. (If users do not load any web content into the RPG2 module, the web server
serves a simple built-in version.) If users have loaded specific web content and that content includes an index.html file, that file is served,
and the built-in version is not used. Note that the RPG2 Web Server files are stored in the /public/web-server/ folder in the flash file system.
Certificates and keys are stored in the /private/pki/ folder. Refer to the Loading RPG2 Web Server Files section for additional information on
how to load the RPG2 Web Server files to the file system. The file system contains the private and public directories.
The CGI functions within the web browser use specific SSI directives to perform the reading and writing of the device data work. These
directives take the form of special text strings that are embedded within the HTML content stored within the RPG2 module. The directives look

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 159 of 180

like a simply comment to any HTML parser (that is the browser of the user). However, the text of these directives is normally never encountered
by the browser because these directives are intercepted by the RPG2 Web Server before these directives are transmitted to the browser. In
fact, as the RPG2 Web Server is transmitting the web content, it is also examining the stream of text transmitted looking for these directives to
perform the work requested.
Note that the SSI directive examination process is only performed if the web content file name has an .shtml or .stm file extension. If the file
has any other file extension (such as .html), the file transmits without this examination, resulting in any embedded SSI directives being ignored.
Any file that contains SSI directives must have a filename that ends in .shtml or .stm for the SSI directives to work properly, which means SSI
directives cannot be used for homepages. However, if users must use SSI directives on the first page that is served by the RPG2 Web Server,
users can use the automatic redirection feature. When using this feature, the normal home page file (index.html), when requested, causes the
browser to redirect to another page, for example, index.stm, where the SSI directives can be used.
The HTML text for this redirection follows:

<html>
<head>
<meta http-equiv="refresh"
content="0;URL='/index.stm'">
</head>
<body>
Redirecting index.html to index.stm </body>
</html>

It is also possible to make any page reload or refresh itself by using the following code inside the head tag:

<meta http-equiv="refresh" content="5">

RPG2 WEB SERVER SECURITY

User and Administrative Level Security
The RPG2 Web Server provides two permission levels: admin and user, with a distinct, 8-character password for each level. The admin
permission level allows access to all web content (that is, insecure pages, user level pages, and admin level pages). However, the user
permission level only allows access to insecure and user level pages. Note that access to admin level pages is not provided to users. The
passwords are stored in a flash file system, and these passwords are used to allow the creation of secure web pages. To create a secure web
page, use a prefix on the file name. Use the admin- prefix to secure a web page at the admin level or the user- prefix to secure a web page at
the user level.
Each time the RPG2 Web Server is asked to serve a page, it looks at the file name to see if it has one of the special security prefixes. If it
does, the RPG2 Web Server forces the browser to ask for a username and password. To obtain access to a secured page, the user must enter
a username that is either user or admin and a password. Note that the usernames are fixed. The password that is entered must match the
password that is stored in the flash file system for that security level. The default passwords for both levels are password. However, passwords
can be changed by using the ReadPoint.cgi function. The ReadPoint.cgi function is invoked by using the proper SSI code embedded into a
page. See the ReadPoint.cgi Function section and Table 72 for additional information on the ReadPoint.cgi function. Note that this function
must only be done using a secure web page with admin level security.
If the user has forgotten the passwords, it is possible to reset the passwords back to their defaults. Resetting the passwords can be handled by
deleting the password file (/private/admin-passwd.txt). It is up to the specific application on how to reset the password.

TLS Level Security

Certificate Authorization
TLS mutual authentication is not supported because the RPG2 Web Server does not verify the certificate of the client. The web browser checks
the authenticity of the web server by verifying the certificate of the web server sent during the TLS handshake.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 160 of 180

For a device certificate to be trusted by web browsers, the certificate must be authentic and issued by a trusted certificate authority which is
typically embedded in the trusted store of the browser. If the browser does not support a given root certificate authority (CA), it must be installed
in the browser. The certificate of the device can be signed by the root CA or one or more intermediate CAs.
A device specific certificate must be placed in the respective location in the device where the mbed TLS fetches and validates from. (mbed TLS
is an implementation of the TLS and SSL protocols, and the respective cryptographic algorithms and support code required.)

Private Key
Private key with passphrase is not supported in the present implementation. Private key size restrictions (if any) as per the standard do apply.
For the Rivest–Shamir–Adleman (RSA) public key cryptosystem, standard key sizes are 1024, 2048, 4096, and 8192 bits. For an Elliptic curve
cryptosystem, the standard sizes are 192, 224, 256, 384, 512, and 521 bits. These are all the sizes supported by mbed TLS and, therefore, this
solution as well (mbed TLS, Version 2.5.1). There are no special limitations on the private key size in the firmware.

Device Specific Certificate and Key Files
Place the device certificate and the private key files in the flash file system of the device in the /private/pki directory. The RPG2 Web Server
identifies the certificate with the server.crt file name and the key with the server.key file name. Use any offline method to copy these files to the
file system, such as a file loader app.
When the certificate must be changed, for example, a different certificate or a present certificate expires, both the key files and the certificate
must be generated for successful authentication, not just the certificate alone.
The new certificate is effective only if any of the following actions are performed:
► The application calls the application programming interface (API), CI_WebserverCertificateReload().
► Reboot of the board.

This solution supports certificates signed by intermediate CA. The device where the browser is running must install the intermediate CA, which
signed the device under test (DUT) certificate, to properly verify the certificate chain.

TLS Connection
This solution supports only TLS Version 1.2.
The following cipher suites are supported for TLS handshake:
► TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
► TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
► TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
► TLS_ECDHE_ECDSA_WITH_AES_128_CCM
► TLS_DHE_RSA_WITH_AES_128_CCM
► TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
► TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
► TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
► TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
► TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
► TLS_DHE_RSA_WITH_AES_128_CBC_SHA
► TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
► TLS_DHE_RSA_WITH_AES_128_CCM_8

The elliptic curves with the following order are supported for Elliptic Curve Diffie Hellman (ECDHE) key exchange:
► Secp192k1
► Secp192r1
► Secp224k1

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 161 of 180

► Secp224r1
► BrainpoolP256r1,
► Secp256k1
► Secp256r1
► BrainpoolP384r1
► Secp384r1
► BrainpoolP512r1
► Secp521r1

Currently, TLS is configured to support a maximum of two concurrent TLS sessions.
The present implementation uses 30 seconds as timeout inactivity on the TLS session to expire. After timeout, the session terminates, and the
client must perform a new TLS connection, if required.

CI ITEM, NAME REFERENCE SYNTAX
To the RPG2 module, the CI data is a simple byte stream, and the data has no inherent format. However, to the user, the data is typically
highly structured, which means that the RPG2 Web Server must be provided with a way to know how to reference these structured data items
within the input and output byte stream. The RPG2 Web Server understands a simple item naming syntax. To demonstrate this, the example
configuration data provided with the RPG2 module can be used, which is found in the main product page under the IO Configuration Tool
download. The item data can be zoomed into to access just the desired byte(s) or bit(s). The example configuration that is provided with the
RPG2 module shows a typical device with the following input and output data format:
► 16 discrete digital input and output lines identified by the Common Interface ID Number 500.
► A pair of 16-bit scaled analog input and output signals identified by the Common Interface ID Number 501.
► A single 16-bit control register (sent to the RPG2 module, not provided by it) identified by the Common Interface ID Number 502.

Note that although it is not specifically described as such in this example, the control register can represent device configuration information
(any particular input item can represent device diagnostic data).
To the RPG2 module, the digital data item is simply a pair of bytes exchanged with the host, and the analog data is simply a series of four such
bytes. If using the Unified Interface, the host sees this data packaged together in a single package, or if the user is a developer solution user,
code of the user reads each CI item by its CI item handle. Either way, the host (or developer solution code) knows how to interpret the data in
exact detail. The RPG2 Web Server, however, runs inside the RPG2 module and has no additional information about the meaning of the data.
Therefore, the question becomes how does the RPG2 Web Server reference a single, arbitrary bit from the 16 bits of digital data used by Item
500? Or, how does the RPG2 Web Server reference the second analog value from the four bytes used by Item 501? The answers to these
questions are provided in the item naming syntax that follows.
The RPG2 Web Server can support bit, bit range, byte, word, and double word (dword) data formats and can reference any of these formats
from any portion of the input and output data. The HTML content provided by the user to the RPG2 Web Server uses the SSI directives to
provide the CGI functions with a CI item name using the following basic structure:

point_vvv_xx_y_szl

This name is composed of a series of fields delimited by the underscore (_) character. The fields and associated descriptions are detailed in
Table 67.
Table 67. Bits and Fields
Field Description
point The point field is a fixed string that begins the item name.
vvv The vvv field is the CI item ID number (for example, 500).
xx The xx field is the CI item instance number. If the user wanted to reference the second instance of the vvv item, the user uses 01. If the user is only

using a single instance of the vvv item, this field must always be 00.
y The y field is the CI item data direction. Use the i character for the input data associated with the vvv item or the o character for the output data

associated with the vvv item.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 162 of 180

Table 67. Bits and Fields (Continued)
Field Description
s The s field is an optional prefix to indicate that the referenced data is signed. If this field is omitted, the data is considered unsigned.
z The z field defines the specific bit, bit range, byte, word, or dword of the data to use. See the following text and Table 68 for additional information on

this field.
l The l field is an optional suffix that causes the data to be interpreted as little Endian. If this field is omitted, the data is interpreted as big Endian.

The input and output direction can be confusing. Here, the inputs are defined as data that is produced by the host (that is, input to the network)
and the outputs as data that is consumed by the host (that is, output from the network.)
The z field is where users can specifically describe which part of the data the user wants to reference. This field can be a single character, such
as b, to simply specify the first byte of the data, or this field can be a multiple character string, such as d3.24-26 to denote a specific range of
bits (Bits[26:24] within a specific dword (the third dword) in the data).
Specifically, the z field begins with the data size designator followed up by the data reference specifics. The first (and possibly only) character is
one of the characters listed in Table 68, and it denotes the base size of the referenced data.
Table 68. Z Field
Character Description
b Byte (8 bits)
w Word (16 bits)
d Dword (32 bits)
f Float (IEEE 754, 32-bit single precision)
l Double (IEEE 754, 64-bit double precision)

If there is only one character in the z field, the resulting data is a simple byte, word, dword, or floating point value, and no more explanation is
needed. The following characters, however, if present, can be used to select a more specific part of the data. For example, using a b as the
data size designator allows the options shown in Table 69.
For the other data size designators (w or d), the result is similar, except that the base data being referenced is more than a single byte.
Table 69 list the f or l size designator options.
Table 69. Base Data Larger Than a Byte
Size Designator Description
f or l References a floating point value starting at the first byte of the item data
fn or ln References a floating point value starting at the nth byte of the item data
f.x-y or l.x-y References a floating point value starting at the first byte of the item data and format (for reading) using an x character

field with y digits to the right of the decimal point
fn.x-y or ln.x-y References a floating point value starting at the nth byte of the item data and format (for reading) using an x character

field with y digits to the right of the decimal point

Use the f for single precision values or the l for double precision values.
Also, the s prefix and/or the l suffix (described in Table 67) can be included to further refine the resulting data used by the RPG2 Web Server.
Because this method can reference any data item defined within the CI, it can be used to reference any of the internal data types such as input
and output and configuration or diagnostic data. Therefore, this technique allows the returned data to be
► Extracted (read) from or inserted (written) into the item data in a variety of ways
► Shifted right, if necessary (to become zero based)
► Interpreted as either signed or unsigned
► Interpreted as either big Endian or little Rndian

These items can be accessed using the same CGI functions as the CI data items. Note that some items are read only.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 163 of 180

Table 70. Bit(s) Reference
Designator Reference Shift Signed Returns Conditions for x and y
bn References the nth byte of the item

data
Not applicable Signed or unsigned Returns 0 to +255 if

unsigned or −128 to +127
if signed

Not applicable

b.x References the xth bit of the first byte
of the item data

Not applicable Not applicable Returns 0 or 1 x must be less than 8

b.x-y References Bit x through Bit y of the
first byte of the item data

Shifted right to be
returned as a zero
based number

Never signed Not applicable x must be less than y, and both
x and y must be less than 8

bn.x-y References Bit x through Bit y of the
nth byte of the item data

Shifted right to be
returned as a zero
based number

Never signed Not applicable x must be less than y, and both
x and y must be less than 8

br.x-y Bit range (Bits[x: y]) of the first byte of
the item data without shifting the data

Not applicable Never signed Not applicable x must be less than y, and both
x and y must be less than 8

brn.x-y Bit range (Bits[x:y]) of the nth byte of
the item data without shifting the data

Not applicable Never signed Not applicable x must be less than y, and both
x and y must be less than 8

NONCI ITEM, NAME SYNTAX
In addition to the CI data items (input and output, and configuration or diagnostic), the RPG2 Web Server must access other nonCI data within
the RPG2 module such as the IP address and subnet mask of the device. Accessing this data is much simpler than the CI data because the
format is inherently defined by the data type. For example, accessing the IP address of the device always results in a set of four bytes and has
a typical presentation as a dotted string surrounded by quotes (“192.168.21.12”). A list of the nonCI data items including the RPG2 Web Server
reference item name is provided in Table 71.
Table 71. Item Name Reference Table
Data Item RPG2 Web Server Name Format Comment
Admin Password apassword Text Maximum length 8 characters
User Password upassword Text Maximum length 8 characters
IP Address ipaddress Dotted text For example, xxx.xxx.xxx.xxx
Subnet Mask subnet Dotted text For example, xxx.xxx.xxx.xxx
Gateway gateway Dotted text For example, xxx.xxx.xxx.xxx
DNS Server 1 dns1 Dotted text For example, xxx.xxx.xxx.xxx
DNS Server 2 dns2 Dotted text For example, xxx.xxx.xxx.xxx
Hostname hostname Text Maximum length 63 characters
Domain Name domainname Text Maximum length 48 characters
Dynamic Host Configuration Protocol (DHCP)/Static Flag dhcpenable Text flag 1 = enable

0 = disable
Port 1 Ethernet Link Speed eth1speed Text flag 1 = 100 Mbps

0 = 10 Mbps
Port 1 Ethernet Link Duplex eth1duplex Text flag 1 = full

0 = half
Port 1 Ethernet Link Autonegotiation Enable eth1auto Text flag 1 = enable

0 = disable
Port 2 Ethernet Link Speed eth2speed Text flag 1 = 100 Mbps

0 = 10 Mbps
Port 2 Ethernet Link Duplex eth2duplex Text flag 1 = full

0 = half
Port 2 Ethernet Link Autonegotiation Enable eth2auto Text flag 1 = enable

0 = disable
Industrial Ethernet Protocol in Use protocol Text (read only) Maximum length = 32 characters
NI Version niversion Text (read only) Maximum length = 8 characters

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 164 of 180

Table 71. Item Name Reference Table (Continued)
Data Item RPG2 Web Server Name Format Comment
SW Version swversion Text (read only) Maximum length = 8 characters
MAC Address macaddress Colon delimited text (read only) For example, xx:xx:xx:xx:xx:xx
Device Serial Number serialnum Text (read only) Maximum length = 8 characters
Device Hardware Revision hwrevision Text (read only) Maximum length = 8 characters

SSI DIRECTIVES
To allow the RPG2 Web Server to distinguish between the normal HTML content and the commands the web designer intends it to internally
process, use SSI directives. These directives have a simple syntax, which follows:

<!--#directive="value"-->

Note that the syntax does not allow spaces between the leading <!-- sequence and the #directive or between the "value" and the trailing "-->"
sequence. In addition, the quotation marks are required.
While some commercial web servers (such as Apache) support a wide variety of SSI directives, the embedded RPG2 Web Server in the RPG2
module only supports two: include and exec. The include directive is used to include a common piece of HTML code within an HTML file to
simplify things like HTML navigation bars. An example of the syntax for an include directive follows:

<!--#include="/navbar.html"-->

The exec directive is used to execute a CGI function that reads or writes a (CI or nonCI) data item, opens the HTML Tunnel (that is described
as follows), or requests a system reboot. An example of the syntax for the exec directive follows:

<!--#exec="/ReadPoint.cgi?
point_500_00_o_b.0"-->

or

<!--#exec="/WritePoints.cgi?
point_500_00_o_b.0&value=On"-->

The value portion of the SSI is further delimited into subfields by a question mark (?) and/or by an ampersand (&) symbol. The question mark
separates the CGI function name from its arguments, and the ampersand separates the arguments into multiple subarguments, which is shown
in the previous examples.
Making use of these directives is simply a matter of embedding the directives into the appropriate location within the HTML file so that the
directives can accomplish their intended purpose. The include directive causes the specified file to be inserted in the HTML stream, and
the exec directive causes the specified CGI function to be executed treating the data after the question mark (?) as an argument. The
ReadPoint.cgi function causes the referenced data item to be read and its value inserted into the HTML stream, while the WritePoints.cgi
function causes one or more items to be written to the provided value(s). See the ReadPoint.cgi Function section and the WritePoints.cgi
Function section for additional information on these functions.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 165 of 180

CGI FUNCTIONS
The following four CGI functions are provided by the RPG2 Web Server:
► To read a CI or nonCI data item, use /ReadPoint.cgi.

<!--#exec="/ReadPoint.cgi?
point_500_00_o_b.0&option=0"-->

► To write one or more CI or nonCI data items, use /WritePoints.cgi.

<!--#exec="/WritePoints.cgi"-->

► To open the HTML Tunnel, use /HTML_Tunnel.cgi.

<!--#exec="/HTML_Tunnel.cgi"-->

► To request a system reboot, use /reset.cgi.

<!--#exec="/reset.cgi"-->

Note that the slash character (/) is an integral part of the CGI function name and must be present.
The user can register specific CGI handlers using the CI_registerCgiEntry API. Only call this function after the configuration is complete
(CI_ConfigComplete()) in the NI_ConfigComplete (see the RPG2 Unified Interface User Guide section for more detail on this API function).

CI_registerCgiEntry API
This function shows how to register a CGI entry using the RPG2 Web Server functionality.

int32_t CI_registerCgiEntry(CI_cgiEntry_t *entry_p, uint32_t numEntries)

The entry_p argument is a CI_cgiEntry_t struct as follows.

typedef struct {
const char *url_p;
CI_cgiHandler_tp handler_p;
} CI_cgiEntry_t;

Where the CG handler, CI_cgiHandler_tp, is defined as the following:

typedef void (*CI_cgiHandler_tp)(CI_cgiRequest_t, CI_cgiResponse_t *);

The CGI request structure, CI_cgiRequest_t, is defined as the following:

typedef struct {
CI_cgiMetaVariable_t metaVar;
const char *msgBody_p; /*Request message body */
} CI_cgiRequest_t;
/*CGI meta variables structure*/

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 166 of 180

typedef struct {
int contentLength; /* Content-Length: size of message body */
int serverPort; /* Server’s tcp port number */
int remotePort; /* client tcp port number */
const char *authType_p; /* Authentication scheme(Basic, Digest) */
const char *contentType_p; /* Requested message content type */
const char *documentArgs_p; /* Query string of the active SSI document */
const char *queryString_p; /* URL encoded search or parameter string */
const char *remoteUser_p; /* User identification
string supplied by as part of the user authentication
*/
const char *requestMethod_p; /* HTTP request
method (‘GET’, ‘POST’, ‘HEAD’, etc.,)*/
const char *scriptName_p; /* URI path which
identify the CGI script*/
const char *remoteAddress_p; /* User identification
string supplied by client as part of user
authentication */
} CI_cgiMetaVariable_t;

The CGI response structure, CI_cgiResponse_t, is defined as the following:

typedef struct {
char *msgBody_p; /* Response buffer */
int msgBodyMaxLen; /* Maximum length of
response buffer */
const char *contentType_p; /* content type of the
response */
int msgBodyLen; /*Length of the response */
} CI_cgiResponse_t;

Example Code
The following is the example code for CGI handlers:

CI_cgiEntry_t cgiTable_g[] = {
{ "/Example1.cgi", CgiHandler1 },
{ "/ Example2.cgi", CgiHandler2 },
}
/* CGI Handler */
void CgiHandler1(CI_cgiRequest_t req, CI_cgiResponse_t *resp_p)
{
char* handlerResp_p = "Example response";
if (resp_p) {
resp_p->msgBodyLen = snprintf(resp_p->msgBody_p,
resp_p->msgBodyMaxLen,
"%s",
handlerResp_p);
}
}
/* Register CGI handlers */
int32_t RegisterCgiHandlers(void)
{

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 167 of 180

uint32_t numEntries = sizeof(cgiTable_g)/sizeof(CI_cgiEntry_t);
return CI_RegisterCgiEntry(cgiTable_g, numEntries);
}

ReadPoint.cgi Function
An example of the use of the ReadPoint.cgi function follows:

<!--#exec="/ReadPoint.cgi?
point_500_00_o_b.0&option=0"-->

Table 72 shows how the ReadPoint.cgi function is broken down.
The purpose of this CGI function is to read a CI or a nonCI data item and to produce the appropriate text for the HTML form or page being
transmitted. The text generated by the ReadPoint.cgi function is inserted directly into the HTML stream being transmitted and can simply
display the value of the item or be used within a form element to cause that element to be modified in a useful way. This function can cause a
radio button to become pushed or a check box to become checked. It has the CGI function name of /ReadPoint.cgi and always has a single CI
or nonCI item name reference as an argument. Additional arguments may or may not be present. If other arguments are, these arguments are
delimited by an ampersand (&) character.
Note that additional arguments are optional, and intended uses for additional arguments are detailed in Table 73.
If no argument is present, the ReadPoint.cgi function simply reads the item and directly returns its value as a quoted string.
Table 72. ReadPoint.cgi Function Breakdown
Description Text
SSI Directive Start <!--#exec="
CGI Function Name /ReadPoint.cgi
CGI Function Name and Argument Delimiter ?
CGI Function Arguments Delimiter (the & Character) point_500_00_o_b.0&option=0
SSI Directive End "-->

Table 73. ReadPoint.cgi Additional Arguments
Argument Text Used With Effect
radio_On Radio buttons used to control single-bit values Modifies the ReadPoint.cgi function to return the text checked = checked if the referenced bit is a 1.
radio_Off Radio buttons used to control single-bit values Modifies the ReadPoint.cgi function to return the text checked = checked if the referenced bit is a 0.
checkbox Check boxes used to control single-bit values Modifies the ReadPoint.cgi function to return the text checked = checked if the referenced bit is a 1.

option=xxx
Dropdown lists used to present enumerated
options

Modifies the ReadPoint.cgi function to return the text selected if the referenced item is equal to the
option value (that is, the xxx).

WritePoints.cgi Function
See the following for the WritePoints.cgi function example:

<!--#exec="/WritePoints.cgi?
point_500_00_o_b.0&value=On"-->

Table 74 details how the WritePoints.cgi function is broken down.
The purpose of this function is to write data to one or more CI or nonCI items. The arguments are always in pairs: name&value=xxx (delimited
by the ampersand (&) character.) More than one pair of arguments can be (and usually are) present. Each pair is the name of an item followed
by the value to be written to that item. The WritePoints.cgi function can be used directly. However, this function is more commonly used to

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 168 of 180

process the data submitted by an HTML form. To process this data, place the WritePoints.cgi function into an .stm or .shtml file (usually at the
top of the <body> section) without arguments.

<!--#exec="/WritePoints.cgi"-->

This way, when the web browser submits the HTML form results, the WritePoints.cgi function immediately receives this data and can perform
the requested item write operations.

HTML_Tunnel.cgi Function
See the following for the HTML_Tunnel.cgi function example:

<!--#exec="/HTML_Tunnel.cgi"-->

Table 75 details how this function is broken down.
The following things happen when the HTML_Tunnel.cgi function is called:
► The HTML Tunnel opens so the host can directly produce HTML content.
► The HTML request data is received from the web browser and provided to the host.
► The HTML content is received from the host and provided to the web browser.

When the RPG2 Web Server encounters a request for a page that contains the HTML_Tunnel.cgi function, it looks to see if any data was
posted to the RPG2 Web Server (that is, the user hit a submit button), and if so, the RPG2 Web Server retrieves this data and sends the data to
the host. If not, this function simply sends the URL of the web page to the host. The expected response from the host is for some sort of HTML
data to display in place of the HTML_Tunnel.cgi function. Once the data is received from the host, the HTML_Tunnel.cgi simply sends this
data directly to the web browser. It is possible to display custom HTML forms and to interact with the user in complex ways using this feature.
See Section 4 of the example RPG2 Web Server content for full details including example code.
Table 74. WritePoints.cgi Function Breakdown
Description Text
SSI Directive Start <!--#exec="
CGI Function Name /WritePoints.cgi
CGI Function Name and Argument Delimiter ?
CGI Function Arguments Delimiter (the & Character) point_500_00_o_b.0&value=On
SSI Directive End "-->

Table 75. HTML Tunnel CGI Function Breakdown
Description Text
SSI Directive Start <!--#exec="
CGI Function Name /HTML_Tunnel.cgi
SSI Directive End "-->

Reset.cgi Function
See the following for the rest.cgi function example:

<!--#exec="/reset.cgi"-->

Table 76 details how the rest.cgi function is broken down.
The purpose of the rest.cgi function is to request a reset (or a reboot) of RPG2. Like the others, the rest.cgi function immediately executes
when encountered by the RPG2 Web Server. Users simply place this function onto a page, and when that page is requested, the system

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 169 of 180

automatically and unconditionally resets. If used this simply, this feature may not be that useful. This function is more useful if the browser is
directed to ask the user if a reset is really desired.
The key to providing this functionality is to use JavaScript within a standard HTML web page. It is this JavaScript (running within the browser
of the user) that asks the user for confirmation, and if the user allows it, triggers the CGI function by requesting the web page that contains the
rest.cgi function. Two files must be added to the RPG2 Web Server content. One file that has a standard .html file naming extension, contains
the JavaScript, and is directly exposed to the user, and one file that has an .stm or .shtml file naming extension, contains the SSI directive, and
is not directly exposed to the user. For a complete example of how this is accomplished, see the Example RPG2 Web Server Content section.
Table 76. Reset CGI Function Breakdown
Description Text
SSI Directive Start <!--#exec="
CGI Function Name /reset.cgi
SSI Directive End "-->

EXAMPLE RPG2 WEB SERVER CONTENT
The following block of code places the SSI directive to call the CGI function, WritePoints.cgi, directly into the HTML with no relation to anything
else within the HTML. For example, the code block is not used as a part of an input element in a form. Moreover, the code block is placed in the
RPG2 Web Server code without any arguments (to WritePoints.cgi). At first glance, this may seem confusing and unnecessary, but code block
is there for a purpose. Because the pages also have HTML forms, this SSI directive is provided to capture the posted data (when the submit
button is pressed).
This function works because these pages all contain what can be referred to as a self referential HTML form. The action attribute of the form tag
is set to refer to the same page that contains the form itself. For example, within the radio button form, users see the following:

...
<!-- ----- A form to allow outputs to be displayed and modified ----- -->
<form action="/radioform.stm" method="post">

Note that the text action="/radioform.stm" is contained within the form tag, and this bolded text is what is referred to as the self referential
part. That is, as long as the HTML content is in a file named "/radioform.stm", submitting the form requests the RPG2 Web Server resource
“/radioform.stm” that redisplays the same form submitted.
The following is an example use case for input points as these points apply to the ReadPoint.cgi function:

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title>RapID Platform Generation 2.0 Input Item Display Page</title>
</head>
<body>
<hr> <h1> RapID Platform Generation 2.0 Form To Display Input Points</h1> <hr>
Item ID 500, input bit 0 (point_500_00_i_b.0) is
<!--#exec="/ReadPoint.cgi?point_500_00_i_b.0"-->

Item ID 500, input bit 1 (point_500_00_i_b.1) is
<!--#exec="/ReadPoint.cgi?point_500_00_i_b.1"-->
<hr>
Home
</body>
</html>

Users may wonder why this seemingly unnecessary call to WritePoints.cgi was added. The answer is that this is the CGI function that
captures data being posted to the web server when the submit button is pressed.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 170 of 180

Note that even if users do not use a self referential page, to successfully write to the CI and nonCI data items, the page used to capture and
process submitted data must contain this SSI directive.

Display Only Pages (Display Form)
The display only pages display the data item values only (not to change them), shown as Display Form in Figure 174. In this case, no HTML
forms are required, and the ReadPoint.cgi function is the only one used. The SSI directive for this CGI function is simple, consisting of the
ReadPoint.cgi function and a single item name reference to read as the only argument. For example, see the following:

<!--#exec="/ReadPoint.cgi?
point_500_00_i_b.0"-->

Each time this code is encountered, the ReadPoint.cgi function is called, the referenced item is read, and the resulting HTML text provided is
substituted into the HTML stream. The net result is the value of the item inserted into the web page.
The example HTML for such a page can be found in the RPG2 Sample Web Server Content Suite found within the ADIN2299 main product
page at www.analog.com/adin2299. In the zip folder of this suite, the file name is display.stm.

Radio Forms
Radio buttons are used to display and control the value of discrete (that is, single-bit) items. To allow the user to make changes and submit
the changes, an HTML form is required. The form uses radio buttons as the input elements, two for each item (bit) controlled. One radio button
must specify a value attribute of On, and the other attribute must specify a value attribute of Off. Each radio button must have its name attribute
set to the desired item name reference. In addition, each radio button must include the SSI directive for the ReadPoint.cgi function and provide
two arguments. (Note that, the argument(s) to the CGI function are the text beginning after the CGI function name delimited by a question mark
(?).) The arguments are separated by an ampersand (&) character and are the CI item name with either the radio_On or radio_Off text. Use
the former for the on value radio button (radio_On), and use the latter for the off valued radio button (radio_Off).
When the web page displays, the ReadPoint.cgi function is called twice for each radio button pair. The first time getting <item name>&ra-
dio_On as an argument, and the second time getting <item name>&radio_Off as an argument. The radio_On argument causes the function
to look at the value of the item and provides checked="checked" if the value of the item is true. The function supplies an empty string if the
data of the item is false. The radio_Off argument causes the function to look at the value of the item and provides checked="checked" if the
value of the item is false, and an empty string if the value of the item is true, which ensures that the correct radio button is initially selected.
When the web page is submitted for each pair (on/off) of radio buttons, the WritePoints.cgi function gets either <item name>=On or <item
name>=Off depending on which radio button is selected.
The HTML for such a page follows. To use this example HTML with the example homepage, it is recommended to name the file radioform.stm.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 Write Form</title>
</head>
<body>
<!-- this line does the item writing by acting on the posted form submission data -->
<!--#exec="/WritePoints.cgi"-->
<hr>
<h1> RapID Platform Generation 2.0 Form To Demonstrate Radio Buttons</h1>
<hr>
<!-- ----- A form to allow outputs to be displayed and modified ----- -->
<form action="/radioform.stm" method="post">
Item ID 500, output bit 0 (point_500_00_o_b.0):
<input type="radio" name="point_500_00_o_b.0" value="On"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.0&radio_On"--> > On
<input type="radio" name="point_500_00_o_b.0" value="Off"

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 171 of 180

<!--#exec="/ReadPoint.cgi?point_500_00_o_b.0&radio_Off"--> > Off

Item ID 500, output bit 1 (point_500_00_o_b.1):
<input type="radio" name="point_500_00_o_b.1" value="On"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.1&radio_On"--> > On
<input type="radio" name="point_500_00_o_b.1" value="Off"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.1&radio_Off"--> > Off

<input type="submit" value="Submit">
</form>
<hr>
Home
</body>
</html>

CheckBox Forms
Check boxes are used to display and control the value of discrete (single-bit) item data. To allow the user to make changes and submit these
changes, an HTML form is required. The form uses check boxes as the input elements, two for each item (bit) controlled. One check box is
displayed by the browser to accept the input of the user, and the other is present on the form but is not displayed to the user. This second
check box is present to tell the WritePoints.cgi function which items are controlled by the form. The first check box (that is, the visible one)
must specify a value attribute of On, and the other check box (that is, the hidden one) must specify a value attribute of present. The hidden
check box must also specify that it is checked by including checked="checked". Each check box must have its name attribute set to the
desired item name. The visible check box must include the SSI directive for the ReadPoint.cgi function and provide two arguments. (Note that,
the argument(s) to the CGI function is the text beginning after the CGI function name delimited by a question mark (?).) The arguments are
separated by an ampersand (&) character and are the CI item name followed by the checkbox text.
When the web page displays, the ReadPoint.cgi function is called once for each check box pair (that is, for the visible one). When the
ReadPoint.cgi function is called, the visible check box provides <item name>&checkbox as an argument. The argument checkbox causes
the function to look at the value of the item and provide checked="checked" if the item is true. The function provides an empty string if the
item is false, which ensures that the check box is initially selected or not selected according to the value of the bit.
When the form is submitted (using an example with two check boxes: A and B), the WritePoints.cgi function gets the following when only one
check box is checked:

<item name A>=On&<item name A>=Present&<item name B>=Present

If two check boxes are checked, the WritePoints.cgi function gets the following:

<item name A>=On&<item name B>=On&<item name A>=Present&<item name B>=Present

When the form is submitted, the net result is that the present argument is always provided by the hidden check boxes, which allows the
function to build a list of what check boxes are present on the form. The function must do this because if a (visible) check box is not checked
when the form is submitted, there is nothing in the data posted to the RPG2 Web Server to tell it that the unchecked check boxes are simply
omitted from the posted data. This way, because this hidden check box is always checked (present), it always posts to the CGI function to let
the RPG2 Web Server determine if a visible check box is omitted or not.
The HTML for such a page follows. To use this example HTML with the example homepage, it is recommended to name the file
chkboxform.stm.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 172 of 180

<title> RapID Platform Generation 2.0 Check Box Form</title>
</head>
<body>
<!-- this line does the item writing by acting on the posted form submission data -->
<!--#exec="/WritePoints.cgi"-->
<hr>
<h1> RapID Platform Generation 2.0 Form To Demonstrate Check Boxes</h1>
<hr>
<!-- ----- A form to allow outputs to be displayed and modified ----- -->
<form action="/chkboxform.stm" method="post">
Item ID 500, output bit 0 (point_500_00_o_b.0):
<input type="checkbox" name="point_500_00_o_b.0" value="On"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.0&checkbox"--> >
<input hidden style="visibility:hidden;" type="checkbox" name="point_500_00_o_b.0"
value="present" checked="checked">

Text Forms
Text boxes are used to display and control the value of numeric (floating point or integer) items. To allow the user to make changes and submit
these changes, an HTML form is required. This form uses text boxes as the input elements, one for each item controlled. Each text box must
set its name attribute to the desired item name reference. In addition, each text box must include the SSI directive for the ReadPoint.cgi
function and provide a single argument. (Note that, the argument(s) to the CGI function is the text beginning after the CGI function name
delimited by a question mark (?).) The argument is simply the CI item name.
When the web page displays, the ReadPoint.cgi function is called once for each text box. Because no additional arguments are provided to the
ReadPoint.cgi function, this function simply returns the value of the item, which causes the text box to display it.
When the form is submitted, the WritePoints.cgi function gets the following:

<item name>=128

where 128 (as an example) is the numeric text entered by the user.
The HTML for such a page follows. To use this example HTML with the example homepage, it is recommended to name the file textform.stm.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 Text Box Form</title>
</head>
<body>
<!-- this line does the item writing by acting on the posted form submission data -->
<!--#exec="/WritePoints.cgi"-->
<hr>
<h1> RapID Platform Generation 2.0 Form To Demonstrate Text Fields</h1>
<hr>
<!-- ----- A form to allow outputs to be displayed and modified ----- -->
<form action="/textform.stm" method="post">
Item ID 500, output bit 0 (point_500_00_o_b.0):
<input type="text" name="point_500_00_o_b.0" size="4"
value=<!--#exec="/ReadPoint.cgi?point_500_00_o_b.0"--> >

Item ID 500, output bit 1 (point_500_00_o_b.1):
<input type="text" name="point_500_00_o_b.1" size="4"

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 173 of 180

value=<!--#exec="/ReadPoint.cgi?point_500_00_o_b.1"--> >

 <input type="submit" value="Submit">
</form>

Pull-Down List Forms (Drop Form)
Pull-down lists (Drop Form shown in Figure 174) allow users to make a selection from an enumerated list. To allow the user to make changes
and submit these changes, an HTML form is required. The form uses a select element with multiple option fields. The selected element
must have its name attribute set to the desired item name reference. Each option field must have its name attribute set to the text choice of
the option, and the value attribute to a numeric value assigned to that choice. In addition, this option must include the SSI directive for the
ReadPoint.cgi function and provide two arguments. (Note that, the argument(s) to the CGI function is the text beginning after the CGI function
name delimited by a question mark (?).) The arguments are separated by an ampersand (&) character and are the CI item name followed by
the option=n text, where n is the numeric assignment value.
The following block of code is used for implementation of the dropdown menu in conjunction with the WritePoints.cgi function:

html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 Drop Down Form</title>
</head>
<body>
<!-- this line does the item writing by acting on the posted form submission data -->
<!--#exec="/WritePoints.cgi"-->
<hr>
<h1> RapID Platform Generation 2.0 Form To Demonstrate Drop Down Menus</h1>
<hr>
<!-- ----- A form to allow outputs to be displayed and modified ----- -->
<form action="/dropform.stm" method="post">
Item ID 500, output bit 0 (point_500_00_o_b.0):
<select name="point_500_00_o_b.0">
<option name="Zero" value="0"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.0&option=0"--> >
Zero
</option>
<option name="One" value="1"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.0&option=1"--> >
One
</option>
</select>

Item ID 500, output bit 1 (point_500_00_o_b.1):
<select name="point_500_00_o_b.1">
<option name="Zero" value="0"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.1&option=0"--> >
Zero
</option>
<option name="One" value="1"
<!--#exec="/ReadPoint.cgi?point_500_00_o_b.1&option=1"--> >
One
</option>
</select>

<input type="submit" value="Submit">
</form>

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 174 of 180

<hr>
Home
</body>
</html>

When the web page displays, the ReadPoint.cgi function is called once for each possible option choice. The function gets the item name and
the possible option as an argument each time. Because the argument has the keyword option added, the function compares the assigned
numeric value of the option to the actual value of the item, and, if the numeric value and actual value of the item match the return selected.
If the numeric value and actual value of the item do not match, nothing returns, which causes the correct option to be initially selected in the
dropdown list.
When the web page is submitted, the WritePoints.cgi function gets the new value in this form:

<point_name>=n

where n is the assigned numeric value.
The example HTML for such a page can be found in the RPG2 Sample Web Server Content Suite found within the ADIN2299 main product
page at www.analog.com/adin2299. In the zip folder of this suite, the file name is dropform.stm.

Password Protected Forms (Security Form Listed)
There is nothing special about a secure web page other than the file name prefix. Any HTML page (whether it has SSI content or has an .stm
or.html file extension) can be protected. To create a secure web page, simply change the file name so that it starts with a special prefix.
Administration level pages start with the prefix text admin-, and the user level pages start with the prefix user-. (See Figure 174 for Security
Form Listed.)
To allow the user to see and change the passwords, use a text box form. The item name reference follows the nonCI item naming syntax that
follows. To change the administration level password, use apassword. To change the user level password, use upassword.
The HTML for such a page follows. To use this example HTML with the example homepage, it is recommended to name this file
admin-passwords.stm.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 HTML Password Set Page</title>
</head>
<body>
<!-- this line does the item writing by acting on the posted form submission data -->
<!--#exec="/WritePoints.cgi"-->
<hr>
<h1> RapID Platform Generation 2.0 Secure Form To Allow Passwords to be Changed</h1>
hr>
Note: Access to this page requires admin level security.
<hr>
<!-- ----- A form to allow non-CI items to be displayed and modified ------->
<form action="/admin-passwords.stm" method="post">
The admin level user name is "admin", the password is
<input type="text" name="apassword" size="12"
value=<!--#exec="/ReadPoint.cgi?apassword"--> >

The user level user name is "user", the password is
<input type="text" name="upassword" size="12"
value=<!--#exec="/ReadPoint.cgi?upassword"--> >

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 175 of 180

<input type="submit" value="Submit">
</form>
<hr>
Home
</body>
</html>

The HTML Tunnel
The purpose of the HTML Tunnel is to provide a way for the RPG2 Unified Interface to interact with the web browser in ways that are
not immediately available through the built-in RPG2 Web Server and CGI functions (see the RPG2 Unified Interface User Guide section for
additional information). The process starts when the web browser of the user issues a request for a web page containing the HTML Tunnel SSI
directive. The HTML content within that page are streamed to the web browser of the user in the normal fashion, and then, when the RPG2
Web Server encounters the SSI directive, it calls the registered callback handler. The callback handler prepares the response and sends the
response back to the RPG2 Web Server with the HTML Tunnel data. This response is assumed as valid HTML data and is inserted into the
HTML stream by the RPG2 Web Server. Inserting data into the HTML stream can be thought of as replacing the SSI directive contained on
the original HTML page with content provided by RPG2 Unified Interface (see the RPG2 Unified Interface User Guide section for additional
information). After sending the HTML Tunnel content data, the RPG2 Web Server transmits the remainder of the original page content to
complete the presentation of the web page originally requested.
The overall sequence of operations looks like the following:
► User sets up an HTML Tunnel handler function in the RPG2 Unified Interface (see the RPG2 Unified Interface User Guide section for

additional information) by using CI_SetHttpTunnelHandler(CI_httpTunnelHandler_tp handler_p).
► The web browser of the user requests a web page containing the HTML Tunnel SSI directive.
► The RPG2 Web Server detects the directive on the requested page and calls the registered tunnel handler.
► The handler function prepares the valid HTML Tunnel response data in the following steps:

► Allocates a buffer to hold the response data.
► Copies the response tunnel data into the allocated buffer.

► The RPG2 Web Server transmits the HTML response data to the web browser and then frees the buffer containing the response data,
request data.

When the HTML_Tunnel.cgi function executes, it looks to see if any data was posted to the RPG2 Web Server (that is, the user hit a submit
button). If so, this function retrieves this data and sends it (along with the URL that contains the HTML_Tunnel.cgi function) to the host. If not,
the function sends the URL of the web page to the host. Either way, after the data is sent to the host, the function expects to get HTML data
back from the host. When the data is provided, the function simply streams it out as a part of the HTML content. The HTML for such a page
follows. To use this example HTML with the example homepage, it is recommended to name the file tunnel.stm.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 HTML Tunnel Test Page</title>
</head>
<body>
<hr> <h1> RapID Platform Generation 2.0 Form To Demonstrate the HTML Tunnel</h1> <hr>
The Host's content should appear below:
<hr> <!-- -------- The host will provide the content that goes here --------- -->
<!--#exec="/HTML_Tunnel.cgi"-->
<hr>
Home
</body>

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 176 of 180

</html>

Requesting a System Reboot
As previously discussed in the Reset.cgi Function section, it is possible to reset the system using an SSI directive. This example shows how to
do this by using a JavaScript to ask for confirmation and then to trigger the /reset.cgi function. There are a few web page files required to do
this. The first page is a standard HTML file that has the JavaScript, a button to trigger it, and no SSI directives, while the second page is the
one that does the work by executing the CGI function. In addition, the first page is made directly available to the user (via an HTML link or other
means), but the second page is not. This way, a system reset only occurs when the user requests the visible page, presses the reset button,
runs the JavaScript, and confirms the request.
The HTML for such a page follows. To use this example HTML with the example homepage, it is recommended to name this file reset.html.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 Reset Test Page</title>
<script language="JavaScript">
<!-- Begin
function confirmation() {
var answer = confirm("Are you sure you want to RESET the system?")
if (answer)
window.location = "reset.stm";
}
// End -->
</script>
</head>
<body>
<hr>
<h1> RapID Platform Generation 2.0 Form To Test The Reset CGI Function</h1>
<hr>
Press this button to request a reset:
<form>
<input type="button" onclick="confirmation()" value="Reset the System" />
</form>
<hr>
Home
</body
</html>

The HTML for the second page follows:

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 Point Access Syntax Form</title>
</head>
<body>
<h2>System Reset In Progress</h2>

<hr>
Please wait a few seconds and then press the link below.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 177 of 180

<hr>

[Home]
<hr>
<!-- ------------ This is what requests the system to reset -------------- -->
<!--#exec="/reset.cgi"-->
</body>
</html>

Of course, any RPG2 Web Server content is incomplete without a home page. Therefore, a simple HTML page that can be used with the other
examples provided follows. It is recommended to name this file index.html.

<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso8859-1">
<title> RapID Platform Generation 2.0 Check Box Form</title>
</head>
<body>
<hr>
<h1> RapID Platform Generation 2.0 WEB Server Demonstration Pages</h1>
<hr>
Display Only Page

Text Box Page

Radio Button Page

Check Box Page

Drop Down Menu Page

Password Page

Tunnel Page

Reset Page

</body>
</html>

FIRMWARE UPGRADE
To update the firmware on the device, follow the procedures outlined in this section. Note that it is assumed that the final binary is built and
available. The final binary includes io-app, network-app, bootloader, and board-config in a single binary file. The firmware update is carried out
using the RPG2 Web Server on the device as follows. The network status (LED-1, NET) and module status (LED-2, MOD) indicate the firmware
update status.

Performing a Secure Firmware Update to the Device
Take the following steps to perform a secure firmware update to the device:
1. Open the web page of the device with a web browser.
2. Click on the link in the left-hand column for User Upload.
3. Authenticate to the RPG2 Web Server with the username and password provided or set. Use the user account. See the Password

Protected Forms (Security Form Listed) section for additional information.
4. Upload the update.pkg file that was created and provided by the vendor.
5. After the upload reaches 100%, click the User Update link. Select the update.pkg file that was uploaded in Step 4 from the list and click

Submit.
6. The device then automatically reboots and performs a secure firmware update. Verify that the update is occurring by viewing the firmware

update status LEDs.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 178 of 180

Verifying the LEDs
To verify the LEDS, take the following steps:
1. The bootloader indicates which step of the authenticating and booting application process it is in with the NET and MOD LEDs.
2. After the bootloader finishes booting, it turns all LEDs off.
A chart of the LED behavior can be found in the RPG2 Hardware Design Integration Guide section.

Figure 174. RPG2 Web Server Upload Page

Figure 175. RPG2 Web Server Upload Submit Button

MBEDTLS
The RPG2 Web Server uses mbedTLS Version 2.5.1 for TLS communication. For mbedTLS declaration and definitions, refer to its source code,
which can be downloaded from the ARM Limited, arm MBED website.

LOADING RPG2 WEB SERVER FILES
Application software is agnostic to the HTML pages loaded on to the system. The following procedure describes the high level steps to follow to
load the device with the required HTML pages. The Analog Devices, Inc., software package (EtherNet/IP, Profinet, or EtherCAT) has example
HTML pages for loading. These webpages can be replaced with customer specific HTML pages. This user guide also details how to create
webpages with Analog Devices supported features throughout. This process can only be done if a user has access to the IAR Embedded
Workbench for ARM, which can be obtained via the IAR Systems website. A user with a different applications processor must load up files onto
the RPG2 file system by using JTAG or the API. See the RPG2 Programming User Guide section and the RPG2 Unified Interface User Guide
section, respectively, for more information on how to do this.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html

Reference Manual ADIN2299
RPG2 WEB SERVER USER GUIDE

analog.com Rev. A | 179 of 180

The RPG2 solution supports the LittleFS file system. The device specific files must be copied to the LittleFS file system. The folder structure is
depicted in Figure 176.

Figure 176. Web Server Content Structure Block Diagram

All RPG2 Web Server pages must be copied to /public/web-server. The /private folder typically includes the certificates and keys for secure
connections for the different protocols. However, the /private/pki folder includes the RPG2 Web Server specific certificate and key files.

Load Files to the Device
Take the following steps to load the files to the device:
1. Load or flash the application specific HTML pages to the flash file system of the device while the RPG2 Web Server fetches these pages

when accessing the pages from the client (the web browser).
This loading procedure is carried out by using the File Loader application tool provided by Analog Devices, which is provided in the
software download packages (see Step 2 for additional information on this application tool). This procedure is a one-time process where the
HTML pages load. This procedure is not needed unless the product HTML pages must be updated.

2. Load files by using the File Loader application tool as follows:
a. Find the File Loader application file (fs-blobber.exe) in the file-loader-app project folder in the Analog Devices provided sample RPG2

Web Server content folder (see the Example RPG2 Web Server Content section for additional information).
b. Open the directory containing the fs-blobber.exe file in the Command Prompt.
c. Enter the command that follows:

fs-blobber.exe -i <input file path> (Note that the <input file path> must point to the folder path on the Windows® PC that consists of
the files that must be loaded to file system.)

d. The generated blob file stores in the default directory location ($PROJ_DIR$/../../toLoad/fs_blob.bin).
e. Copy the file-loader-app file into the same folder where the input and output application was built.
f. Open the File Loader app project file (file-loader-app.eww) found in the file-loader-appprojectiar folder and build it.
g. When the build is successful, run the project.
h. Once loading of the files completes, the module status LED (LED-2, MOD) blinks green.

3. Stop and close the IAR project.

https://www.analog.com/adin2299
http://www.analog.com/en/index.html
https://www.analog.com/adin2299

Reference Manual ADIN2299
NOTES

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary
protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of
functionality.

Legal Terms and Conditions
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents
or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered
trademarks are the property of their respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be
disassembled, decompiled or reverse engineered. Analog Devices’ standard terms and conditions for products purchased from Analog Devices can be found at: http://www.analog.com/en/content/
analog_devices_terms_and_conditions/fca.html

©2023-2024 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
One Analog Way, Wilmington, MA 01887-2356, U.S.A.

Rev. A | 180 of 180

https://www.analog.com/adin2299
http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html
http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html
http://www.analog.com/en/index.html

	Introduction
	RPG2 RapID Platform Generation 2 User Guide
	Evaluation Kit Options
	Evaluation Kit Contents
	Additional Hardware Needed
	Documents Needed
	General Description
	Evaluation Kit Photograph
	Evaluation Board Setup
	Electrostatic Sensitive Device (ESD) Warning
	Power Supply and Grounding
	Hardware Setup
	Connecting the Ethernet Host Interface
	Connecting to the Industrial Ethernet

	Protocol Specific Quickstart Guides

	RPG2 EtherCAT Quickstart Guide
	Features
	Evaluation Kit Contents
	Equipment Needed
	Software Needed
	General Description
	EtherCAT Example Application Setup
	Network Interface Example Application Suite With PC Running TwinCAT
	Obtaining the Network Interface Example Application Suite
	Configuring TwinCAT as the PLC
	Imaging the EEPROM in TwinCAT
	Simple Data Flow Example
	Running the PLC Example Application

	Next Step: The Design Phase

	RPG2 Profinet Quickstart Guide
	Features
	Equipment Needed
	Software Needed
	General Description
	Evaluation Kit Setup for PROFINET
	Network Interface Application Suite With a PC Running the Siemens TIA Portal
	Application Processor Simulator Software SetUp
	Setting up the PROFINET Network With the Siemens TIA Portal
	Configuring the PLC Setup in the Siemens TIA Portal
	Installing the General Description File
	Creating the PROFINET Network
	Getting Online With the PROFINET Network
	Configuring the Optional PROFINET IRT
	Creating a Ladder Logic Application

	Next Step: The Design Phase

	RPG2 EtherNet IP Quickstart Guide
	Features
	Equipment Needed
	Software Needed
	General Description
	Evaluation Kit Setup for EtherNet/IP
	Network Interface Application Suite With a PC Running RS Logix
	Setting Up the Host Processor Simulator Software
	EtherNet/IP Sample Configuration Setup
	Installing the EDS File
	Creating the EtherNet/IP Network
	Adding the EtherNet/IP Device
	Running the EtherNet/IP Application

	Next Step: Design Phase

	RPG2 Unified Interface User Guide
	Introduction
	Block Diagram for Embedded Design and Module Users
	Unified Interface Background
	Design Flow Using the Unified Interface
	Run the Quickstart Guide Example
	Design Hardware for the Industrial Ethernet Device
	Create a Link Porting Layer for the Applications Processor
	Port the Example to the Applications Processor
	Make Modifications to the Example Using the Unified Interface Application Programming Interface

	Application Processor Link Porting Layer
	Application I/O Drivers
	Application
	Ni-api-srv
	Ui-stk
	Ui-xxx-lpl-srv
	Link Hardware Drivers

	Porting and Customization
	Link Porting Layer Customization
	Link Initialization
	Link Configuration
	Message Transmission
	Message Receive Handling
	Link Deinitialization
	Porting the Platform Support Service
	PLAT_StartupSystem()
	PLAT_ProcessArgs()
	PLAT_InitLink()
	PLAT_StartTimeUpdate()
	PLAT_StartApplication()
	PLAT_TerminateExecution()
	PLAT_ProtectUiStack()
	PLAT_UnprotectUiStack()
	NI Example Application for Windows
	Specifying the Endianness
	Setting the Command Arguments
	Ethernet as Application Processor Interface
	UART as Application Processor Interface

	Running Ni-example-app in Debug Mode

	Unified Interface API
	NI_Init()
	NI_Init() Function Prototype
	NI_GetProtocol()
	NI_GetProtocol() Function Prototype
	NI_SetDevice()
	NI_SetDevice() Function Prototype
	NI_AddItem()
	NI_AddItem() Function Prototype
	NI_ConfigComplete()
	NI_ConfigComplete() Function Prototype
	NI_GetOutputData()
	NI_GetOutputData() Function Prototype
	NI_SetInputData()
	NI_SetInputData() Function Prototype
	NI_TimeUpdate()
	NI_TimeUpdate() Prototype
	NI_SetResponseTimeout()
	NI_SetResponseTimeout() Function Prototype
	NI_OutputDataHandler()
	NI_OutputDataHandler() Function Prototype
	NI_InputDataLatchHandler()
	NI_InputDataLatchHandler() Function Prototype
	NI_SetTransmitModes()
	NI_SetTransmitModes() Function Prototype
	NI_GetBasket()
	NI_GetBasket() Function Prototype
	NI_ProcessEvents()
	NI_ProcessEvents() Function Prototype
	NI_MsgReadyCallback()
	NI_MsgReadyCallback() Function Prototype

	Application Processor Link Type
	Link Type Selection
	Board Configuration File Method
	Strapping Option Method

	Ethernet
	Transaction Details

	UART
	Transaction Details

	RPG2 I/O Configuration Tool User Guide
	General Description
	RPG2 I/O Configuration Tool Functionality and Installation
	Functionality
	Installation

	Configuration Objects
	Devices
	PROFINET Devices
	Ethernet/IP Devices
	Modbus/TCP Device
	EtherCAT Devices
	POWERLINK Devices
	Items
	PROFINET Items
	Cyclic PROFINET Items
	Acyclic PROFINET Items

	Ethernet/IP Items
	Unique Ethernet/IP Items
	Incrementing Ethernet/IP Items
	Accumulating Ethernet/IP Items
	Configuration Ethernet/IP Items

	Diagnostic Ethernet/IP Items
	Modbus/TCP Items
	EtherCAT Items
	Process Data Items
	Configuration Items
	Diagnostic Items

	POWERLINK Items
	Analog Items
	Digital Items

	Baskets

	Using the RPG2 I/O Configuration Tool
	Starting the RPG2 I/O Configuration Tool
	User Interface Overview
	Device, Item, and Basket Operations
	Adding a Device
	Setting a Default Device

	Editing a Device
	Deleting a Device
	Adding an Item
	Setting a Default Item

	Editing an Item
	Deleting an Item
	Adding a Basket
	Editing a Basket
	Deleting a Basket
	Database Operations
	Starting a Database
	Saving a Database
	Opening a Database
	Closing a Database
	Database Export and Import Operations
	Exporting a Database Report File
	Exporting a Configuration File
	Selecting Objects for Export
	Exporting Selected Objects
	Configuration File Formats

	Importing a Configuration File

	Example Configurations
	PROFINET Example Configuration
	Example PROFINET Device
	Example PROFINET Items
	Example PROFINET Basket
	Current IRT Example PROFINET Configuration
	Ethernet/IP Example Configuration
	Example Ethernet/IP Device
	Example Ethernet/IP Items
	Example Ethernet/IP Basket
	Modbus/TCP Example Configuration
	Example Modbus/TCP Device
	Example Modbus/TCP Items
	Example Modbus/TCP Basket
	EtherCAT Example Configuration
	Example EtherCAT Device
	Example EtherCAT Items
	Example EtherCAT Basket
	POWERLINK Example Configuration
	Example POWERLINK Device
	Example POWERLINK Items
	Example POWERLINK Basket

	PROFINET GSDML Files
	GSDML File Generation Guidelines
	DeviceIdentity Section
	DeviceAccessPointList Section
	ModuleList Section
	ParameterDataRecordItem Section
	GraphicsList Section
	CategoryList Section

	Ethernet/IP EDS Files
	EDS File Generation Guidelines
	File Section
	Device Section
	Params Section
	Assembly Section
	Connection Manager Section
	EDS File Details Pertaining to Configuration Assemblies

	EtherCAT ESI Files
	Device Modification With the ESI Files
	Modifying the Device Parameters
	Vendor
	Descriptions > Groups > Group
	Descriptions > Devices > Device > Type
	Descriptions > Devices > Device > Name
	Descriptions > Devices > Device > GroupType

	Modifying the Item Parameters
	DataType Dictionary Overview
	Profile > Dictionary > DataTypes (SubIdx > DataTypes)
	Device > Profile > Dictionary > DataTypes (Input, Output, Configuration, and Diagnostic Object DataTypes)
	Device > Profile > Dictionary > Objects (TxPDO Map and RxPDO Map Object DataTypes)
	Device > Profile > Dictionary > DataTypes (TxPDO Assign and RxPDO Assign Object DataTypes)
	Device > Profile > Dictionary > Objects (Input, Output, Configuration, and Diagnostic)
	Device > Profile > Dictionary > Objects (TxPDO Map and RxPDO Map)
	Device > Profile > Dictionary > Objects (TxPDO Assign and RxPDO Assign)
	Device > RxPdo
	Device > TxPdo
	Device > Sm
	Icon Files

	POWERLINK XDD Files
	Device Modification With the POWERLINK XDD Files
	Item Modification With the POWERLINK XDD Files

	RPG2 Programming User Guide
	Features
	Equipment Needed
	Documents Needed
	Software Needed
	General Description
	Communications Controller Applications and Images
	Network Application
	Unified Interface
	Bootloader
	Link Configuration File
	I/O Configuration File
	Web Server Content

	Needed Images for the RPG2 Solution
	Flash Element
	Data Elements
	RPG2 Programming Out of the Box
	Loading PROFINET
	Loading EtherNet/IP
	Loading EtherCAT

	Programming by Means of the API
	An Example for Reprogramming Over the API When Using the Ni-Example-App
	Data Elements
	Flash Elements

	Programming by Means of the Embedded Web Server
	Accessing the Device Web Page
	PROFINET
	EtherNet/IP
	EtherCAT
	Other Protocols
	The Device Web Page and the Reprogramming Process

	Programming by Means of JTAG
	Using J-Flash
	Erasing the Flash Image
	Using a Python Script
	The Board Configuration
	The File System
	The Network Application
	Programming Script Usage

	Programming Methods by Use Case
	Programming Methods by State of Design
	Evaluation
	Software Development
	Changing the API Link Type
	Production Programming Considerations
	Maintenance Programming Considerations

	RPG2 Hardware Design Integration Guide
	Features
	Evaluation Kit Contents
	Equipment Needed
	Documents Needed
	Software Needed
	General Description
	Development Overview
	Introduction
	Tools and Project Phases

	Hardware Integration
	Embedded Design
	GPIO Requirements of the RPG2 Embedded Reference Design
	Power Requirements of the RPG2 Embedded Reference Design
	Reset Requirements of the RPG2 Embedded Reference Design
	Thermal Management Guidelines of the RPG2 Embedded Reference Design
	Communication Interfaces Between the Application Processor and RPG2
	UART Application Processor Interface
	SPI Application Processor Interface
	Ethernet Application Processor Interface
	Required Support Circuitry

	Software Integration
	Network Configuration File and the I/O Configuration File Installation and Modification
	Obtaining and Modifying the Link Configuration File
	Strapping Option Method

	Considerations for Production and Maintenance
	JTAG Method
	Ethernet Method
	Application Processor Interface Method

	Connecting Timers for RPG2 Embedded Reference Design
	LED Behavior
	LED Color
	Industrial Protocol Specific Behavior
	LEDS and EtherNet/IP
	LEDs and PROFINET
	LEDs and EtherCAT
	LEDs and Modbus/TCP
	LEDs and POWERLINK
	LEDs Bootloader and System Startup
	Optional Status LEDs

	RPG2 Web Server User Guide
	Features
	Equipment Needed
	Documents Needed
	Software Needed
	General Description
	Introduction
	RPG2 Web Server Security
	User and Administrative Level Security
	TLS Level Security
	Certificate Authorization
	Private Key
	Device Specific Certificate and Key Files
	TLS Connection

	CI Item, Name Reference Syntax
	NonCI Item, Name Syntax
	SSI Directives
	CGI Functions
	CI_registerCgiEntry API
	Example Code
	ReadPoint.cgi Function
	WritePoints.cgi Function
	HTML_Tunnel.cgi Function
	Reset.cgi Function

	Example RPG2 Web Server Content
	Display Only Pages (Display Form)
	Radio Forms
	CheckBox Forms
	Text Forms
	Pull-Down List Forms (Drop Form)
	Password Protected Forms (Security Form Listed)
	The HTML Tunnel
	Requesting a System Reboot

	Firmware Upgrade
	Performing a Secure Firmware Update to the Device
	Verifying the LEDs

	MbedTLS
	Loading RPG2 Web Server Files
	Load Files to the Device

	Notes

