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Introduction
Hydrogen is projected to be a $10T (that’s trillion with a “T”) market by 2050, or 
13% of the global GDP,1 and hydrogen fuel cells have seen a surge in growth over  
the past few years as more of the world begins to look seriously at zero carbon 
solutions for transportation. Hydrogen-powered vehicles open up new markets 
around hydrolyzers/electrolyzers where the hydrogen is actually generated at a 
fueling station rather than trucking it long distances as we do with petrol today. 
At the heart of most electrolyzers that produce hydrogen, or fuel cells that use 
hydrogen to produce electricity, is a proton-exchange membrane (PEM), as 
shown in Figure 1. The PEM cell has the advantage of being able to operate at 
a comparatively lower temperature than, along with having a size and weight 
advantage to, other models. As long as hydrogen and oxygen are provided as 
fuel in the right amounts and conditions, this fuel cell produces electricity. The 
electrolyzer is made of similar components and operates basically in reverse: 
electricity is supplied to water, and oxygen and hydrogen are produced.
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Figure 1. PEM fuel cell.2

As PEM fuel cells get used in more transport vehicles like buses, cars, and light  
rail vehicles, it becomes increasingly important to predict failures before they 
occur. The literature3,4 has shown that electrochemical-impedance spectroscopy 
(EIS) techniques can be applied to detect pinhole failures within the PEM, among 
other failure modes. This is typically done on large benchtop instruments sourcing 
currents in the range of 10s to 100s of amperes. However, these instruments are 
large systems and do not scale well to a transportable fuel cell that would permit  
in situ diagnostics. This article describes the challenges of making a portable  
EIS system work with 1 A to 100 A of stimulus currents, along with leveraging  
the advantages of the AD5941W5 EIS engine. This work can be applied to fuel cells, 
electrolyzers, batteries, and other low impedance systems.

Experiments 
The basic measurement engine for this development is the AD5941W from 
Analog Devices, a high precision impedance and electrochemical front end 
that is capable of both potentiostatic and galvanostatic measurements. For 
these tests, a fuel cell (similar to a battery) requires a galvanostatic measurement 
where a current is generated and a voltage is measured. See the block diagram 
shown in Figure 2.
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Figure 2. An AD5941W block diagram showing the high BW AFE path for stimulus and the preci-
sion ADC path for calibration and DFT/EIS analyses.
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This project began with the testing of the CN0510, a battery-specific impedance 
measurement board that ADI made to assist customers in impedance testing 
of batteries leveraging the powerful AD5941W EIS engine that allows for precise 
impedance measurements. Immediately, it became apparent that there were 
limitations in this approach, namely the low currents used for AC stimulus of  
the battery and the 1/f noise corner of the external amplifier used on this board, 
along with the use of AC decoupling for the receiver chain limiting the low 
frequency corner of the stimulus and receive. With expected insights in fuel cells 
occurring at or below ~100 Hz and up to 10s of kHz, along with stimulus currents  
up to 10 A (in order to get above the process noise of the fuel cell), it was clear 
this board would need a revision. The CN0510 is shown in Figure 3.

One way to extend the current excitation range of this approach is to take the 
excitation stimulus signal (CE0 in Figure 3) and send that to a remote-control-
lable electronic load; in this case, the Kikusui PLZ303W.6 This approach is shown 
schematically in Figure 4.
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Figure 4. Electrical connections of Kikusui PLZ303W to a CN0510 board.

It’s important to consider the parasitic inductance of wiring when working with  
10s of amps and to use twisted wiring whenever possible to reduce voltage noise 
pickup. This system produced strong impedance data with standard deviations  
in the ~1 μΩ to 2 μΩ range on a 10 mΩ DUT, as shown in Figure 5.
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Figure 5. Data from a 10 mΩ DUT using Kikusui PLZ303W.

These data were also taken across frequency to get a sense of the roll-off at the 
instrument from excitations, shown in Figure 6 with error bars revealing poor 
repeatability as the excitation frequency gets lower, owing to AC coupling in the 
receiver signal chain.

Figure 3. CN0510 battery impedance system.
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Figure 6. A 10 mΩ DUT measured across frequency using Kikusui PLZ303W.

It’s useful to note that the Kikusui device weighs ~10 kg, so it’s not suitable for 
portable electronics. However, this validates the methodology and pushes us 
toward miniaturization. A standard op amp-based voltage-controlled current 
source (VCCS) was built using the AD8618 op amp. This amplifier was selected for 
appropriate gain BW along with decent precision performance. This is shown 
schematically in Figure 7.

While a complete derivation of the circuit in Figure 7 is beyond the scope of 
this article, it merits attention that any longer wiring should be twisted along 
with using local decoupling to manage for parasitic inductance. C2 in Figure 7 
serves as a noise reduction cap but does contribute to frequency roll-off above  
~1 kHz. Figure 8 shows the updated block diagram for the measurement circuit.

A custom Python script was developed to allow direct control of stimulus 
frequency, and DC and AC amplitudes on the excitation node, along with calibration 
resistor adjustment. The excitation signals and received signals are shown in 
Figure 9.

Figure 7. The circuit used for discrete VCCS testing.
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Figure 9. Excitation and received signals at 1 Hz and 10 Hz from active current sink: Ch 1—
AD5941W CE0 output, Ch 2—excitation current, Ch 3—SNS_P input signal, Ch 4—attenuated 
signal to op amp.

Results are shown in Figure 10 for this active current sink, along with results taken 
with different decoupling capacitors in the receive signal chain in Table 1, which 
shows the standard deviation of error in real impedance across decoupling caps.
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Figure 10. Returned data from 100 mΩ real impedance (N = 10) showing errors at a  
lower frequency.

Table 1. Error Comparisons at 0.1 Hz Excitation,  
100 mΩ DUT

Real Std Imaginary Std

2.2 µF 10.17873 7.712895 mΩ

22 µF 8.63443 6.755872 mΩ

100 µF 3.75349 7.49259 mΩ

It’s clear that the input capacitors in the receiver signal chain are having an 
effect on both the mean impedance measurement but also in its repeatability. 
Larger capacitance values improve the standard deviation of error, and 100 μF  
is the largest size that would physically fit on this board.

Turning down the impedance of the DUT to 10 mΩ shows a similar error at lower 
frequencies and is shown in Figure 11.
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Figure 11. Returned data from 10 mΩ real impedance (N = 10).

This experiment was further extended down to 1 mΩ in order to assess how much 
error creeps into the measurements. This is shown in Figure 12.
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Figure 12. Returned data from 1 mΩ real impedance (N = 10).

Now that the basic electronics capabilities have been proven out using resistors, 
the next step is to apply these methods to an actual fuel cell.

Fuel Cell EIS Measurements
Taking the circuit described in Figure 7, the next step is to look at an actual 
hydrogen fuel cell. A Flex-Stak7 fuel cell was tested to examine the Nyquist plot, 
which is a way of visualizing real/imaginary impedance where the frequencies  
are changed throughout the measurements. This first test is shown in Figure 13.
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Figure 13. A Flex-Stak fuel cell EIS Nyquist plot.

While the impedance of this fuel cell is only in the 100s of mΩ, the AD5941W, 
along with the active current sink, was able to image the impedance of the fuel  
cell from 1 Hz to 5 kHz. The Nyquist plot in Figure 13 roughly approximates what 
was expected from this fuel cell, and the DC excitation was larger than the fuel 
cell’s rated capability, as well as the experiment may have suffered from some 
degree of fuel starvation. The AC perturbation introduced to make the EIS 
measurement was also quite large and outside of the linear response for the DC 
excitation of the measurement. No functional insight should be read into this 
specific test other than showing the capability of the AD5941W EIS circuit. More 
testing would be required to glean insight into the response of this specific fuel 
cell. However, this circuit topology, when applied correctly, gives us the confidence 
to potentially detect hydrogen crossover, oxygen concentration, along with other 
potential failure modes as well.

After testing on a small hydrogen fuel cell, this methodology was then tested 
on a production (66-cell) air-cooled Ballard fuel cell stack to assess its viability 
for in situ diagnostics. This will allow operators of hydrogen fuel cells to better 
understand the complete fuel cell stack and its electrochemical functioning in 
operation. Presently, the only diagnostic available to an operator is the produced 
power from the cell stack. This new analytical technique could be an analogy to 
plugging your car in at a mechanic’s shop and pulling the error codes.

A similar setup to Figure 7 was also used to generate the applied current 
perturbation for the impedance measurement at a small fraction (~5%) of the 
intended DC operating point of the fuel cell stack. This is crucial as this allows  
the electrochemical system to be imaged in the linear range of operation and  
will then permit extrapolation of the impedance data to be applicable to the 
total system.8

The results of comparison testing from using a Kikusui EIS system and the 
AD5941W system are shown in Figure 14.
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Figure 14. Comparison of a Kikusui EIS and an ADI AD5941W EIS system on a Ballard Hydrogen 
Fuel Cell Stack.

Figure 14 shows the resulting Nyquist plots when the DC operating currents 
range from 10 A to 60 A. The EIS measurement range was from 1 Hz (right-side 
half circle) to 5 kHz (left-side). The solid lines (AD5941W instrumentation) and the 
dotted lines (Kikusui) line up well up to the higher frequency levels where  
the designed limits (trade-off between stability and high frequency capability) of  
the discrete VCCS are beginning to be apparent. There is value in the electro-
chemistry at both low and high frequency EIS scans, so the best electronics to 
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use might be use-case dependent. However, this scan shows that a much smaller 
handheld instrument at 1/100th the weight and size of a bench-top instrument is 
feasible for hydrogen fuel-cell stack spectroscopy.

It is this type of innovation in on-board fuel cell diagnostics that should assist in 
permitting the hydrogen economy to potentially scale up to its predicted trillion- 
dollar market size. Collaboratively combining the best knowledge in electronics 
and in electrochemistry and systems design is one possible way that a fully 
green economy based on hydrogen fuel may begin to emerge.
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