
Maxim > Design Support > Technical Documents > Application Notes > A/D and D/A Conversion/Sampling Circuits > APP 213
Maxim > Design Support > Technical Documents > Application Notes > Digital Potentiometers > APP 213
Maxim > Design Support > Technical Documents > Application Notes > General Engineering Topics > APP 213

Keywords: DS1267, DS1867, DS1868, DS3900, 3-wire , digital pots, 3wire, digital potentiometers

APPLICATION NOTE 213

Using a PC with a DS3900 to Communicate with
DS1267s, DS1867s, and DS1868s
Aug 27, 2002

Abstract: This application note describes how to use the DS3900 PC serial port to 3-wire interface to
communicate with the three digital pots, the DS1267, DS1867, and DS1868, which use this shift register
interface for programming. The DS3900 is a module that has a MAX3223 RS-232 transceiver and a
microprocessor which acts as an interface between the PC's serial port the 3-wire device being
controlled. The transceiver allows the module’s microprocessor to communicate with a PC and the
microprocessor implements a command structure, via its parallel port, to allow a PC to read or write the
three digital potentiometers. The application note describes the DS3900 and how to interface it to the
devices under test. The source code described in the article is available on Dallas Semiconductor’s FTP
site.

Introduction
The DS1267, DS1867, and DS1868 are digital potentiometers that use a unique 3-wire protocol that can
be difficult to interface with a PC. This application note provides a simple hardware/software solution to
generate a PC interface to adjust the potentiometer settings and example C++ algorithms to read and
write to these devices. The software shown in Figure 1 and its source code are available on Maxim's
FTP site.

Page 1 of 8

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/2/c/A-D%20and%20D-A%20Conversion-Sampling%20Circuits#c2
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/9/c/Digital%20Potentiometers#c9
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/41/c/General%20Engineering%20Topics#c41

Figure 1. Maxim 3-wire evaluation software (DS3wire.exe).

Hardware
The hardware generated for this application utilizes a DS3900 to communicate with the ICs. The DS3900
is a module that has a MAX3223 RS232 transceiver and a microprocessor. The transceiver allows the
module's microprocessor to communicate with a PC and the microprocessor implements a command
structure to allow a PC to read or write any I/O pin on the module. In addition to the DS3900 and the 3-
wire IC, decoupling capacitors should be used to reduce the noise on VCC caused by the DS3900 and
the potentiometer's digital interface. Figure 2 shows the connections required to communicate to a 3-
wire device using a DS3900 and the DS3Wire application.

Figure 2. Schematic for DS3Wire application.

Page 2 of 8

Software
The software shown in Figure 1 has three primary routines; initialization of the DS3900 and the dialog
box (OnInitDialog), reading the 17-bit register (OnRead), and writing the 17-bit register (OnWrite). These
routines are implemented using a C++ class called "CdsPic." CdsPic contains subroutines that allow
prewritten and tested RS232/DS3900 code to be used to create the 3-wire algorithm. The instance of
the CdsPic class in the DS3Wire application is called "DS3900." The CdsPic class and the RS232
functions are available on Maxim's FTP site for anyone who may be interested. For those not interested
in the specifics of the DS3900 implementation, the function names are generic enough to be viewed as
pseudo-code. A few example function names and their descriptions are listed in Table 1 for reference.

Table 1. CdsPic member function examples
Example Description

DS3900.BoardPresent() Returns TRUE if the DS3900 is detected during the CdsPic class initialization
code, returns FALSE if the DS3900 is not detected.

DS3900.Write1(true) Pin P1 is set to an output and forces its high level. Returns TRUE if no errors
are detected during communications.

DS3900.Write1(false) Pin P1 is set to an output and forces its low level. Returns TRUE if no errors
are detected during communications.

DS3900.Read1(state)
Pin P1 is set to an input, read, and P1's input level is returned to a Boolean
variable "state." Returns TRUE if no errors are detected during
communications.

DS3900Read4(state)
Pin P4 is set to an input, read, and P4's input level is returned to a Boolean
variable "state." Returns TRUE if no errors are detected during
communications.

3-Wire Basics
This particular version of the 3-wire interface is easiest to understand if it is viewed as a 17-bit shift
register with two control signals, clock (CLK) and shift enable ("active-low RST"), and two data signals,
data in (DQ) and data out (COUT). When "active-low RST" is high, the interface is not in reset; therefore,
the shift register is enabled. Any positive edge on CLK received while "active-low RST" is high will cause
the shift register to shift all of the data one position, moving DQ's present value into the 1st position. This
shift will also change the value of COUT, which always displays the current value of the 17th bit in the
register. Once all 17-bits of data are shifted into the device, the reset signal is brought low, which will
transfer the new settings to the registers that control the potentiometer's position and disable the 3-wire
interface.

The COUT pin was designed to provide the ability to cascade multiple 3-wire devices together on the
same 3-wire bus, but it does provide read access to the shift register. A read is performed by enabling
the interface (setting "active-low RST" high) and clocking the 17-bits in the shift register to COUT where
they can be read one bit at a time. When "active-low RST" is deactivated, the values in the shift register
will be the values written to the device by DQ during the read cycle because data is being shifted into
the device as it is being shifted out. This requires DQ to be rewritten to the current value of COUT before
each clock pulse is initiated or the read operation will be destructive. A destructive read operation will
cause the potentiometer to change position when "active-low RST" is deactivated.

This interface has two primary problems to avoid:
1. Partial writes (shifting less than 17 bits) will produce shift register garbage that is a product of the

Page 3 of 8

previous data and the new data. Thus, it is not possible to change one resistor's value without
writing all 17-bits.

2. A read function is destructive unless the data shifted out of the shift register is rotated back into the
shift register.

The first issue is easily addressed, do not perform partial writes. The second issue can be addressed
two different ways. The data sheet shows using a feedback resistor (10kΩ) that will automatically write
the value of COUT to DQ unless DQ is being driven by an output during a write cycle. Although this can
be implemented with a DS3900, the design was implemented with COUT driving a separate input pin.
This demonstrates how to implement the interface when a feedback resistor cannot be used. The
microprocessor, or DS3900 in this instance, will have to perform the feedback resistor's function in
firmware/software. When a value is read on COUT, it will be written to DQ before the 3-wire device is
clocked.

The most common case when the feedback resistor cannot be used is when a 3-wire device is
interfaced to an open-collector I/O port. The open-collector I/O pins will have a pull-up resistor to output
a high voltage level. This resistor will be in contention with the feedback resistor. If the feedback resistor
is smaller than the pull-up, COUT will always be written into DQ, including during write cycles when the
intent is to write new value to the device. If the feedback resistor is larger than the pull-up, DQ will
always be high during reads.

OnInitDialog
OnInitDialog is the function called by Windows to initialize the dialog box. If Microsoft Developer Studio is
used to generate the dialog box, one of the dialog box construction options leaves comments for the
programmer in the code. This will leave a "TODO" comment at the end of this function stating to place
extra initialization code here.

The following code was added in this instance to ensure the DS3900 powered up correctly, set both CLK
and "active-low RST" low, and to initialize the edit boxes with the potentiometer's current position. If the
DS3900 is not detected, an error message will inform the user.

Figure 3. Extra initialization code added to OnInitDialog function

 // TODO: Add extra initialization here <-Developer Studio Comments
 if(DS3900.BoardPresent()) // <- BoardPresent() checks for DS3900
 { // <-If
found path
 m_sEDIT_Status= "DS3900 Found!"; // new
status message, all systems go
 DS3900.Write1(false); //
initialize clock
 DS3900.Write2(false); //
initialize reset
 OnRead(); // read
pots and update edit boxes
 }
 else
 { // <-If
not found path
 m_sEDIT_Status = "DS3900 not found!@#$"; // new
status message, error detect
 UpdateData(FALSE); //
Update Dialog Values
 MessageBox("DS3900 Not Found
Check Power and Serial Cable
Restart
 Applicaion","DS3900 Error");
 }

Page 4 of 8

OnRead
The OnRead function reads the 17-bit shift register. It is executed when the read button is pressed and
during OnInitDialog. The algorithm assumes the COUT pin is connected to a separate DS3900 input as
shown in Figure 2. This requires the software to write the value read on COUT to DQ before the 3-wire
device is clocked or the potentiometers will be adjusted unintentionally during read operations. Figure 4
shows the algorithm used by the application. In addition to reading the 17-bits, it reconstructs the data
into variables representing Pot0, Pot1, and the stack select bit, and it updates the dialog box with the
UpdateData(FALSE) function. Each transmission to the DS3900 from the PC is monitored for errors, and
any disturbance to the communication will result in the termination of the transaction and an error
message. If no errors occur, a "Read Successful" message is written to the status box. This function
takes approximately 95ms to execute, although results may vary depending on the speed of the PC
used.

Figure 4. OnRead function

void OnRead()
{
 //Variables used by subroutine
 int success;
 bool bit;
 unsigned char mask=0x80;
 unsigned char pot0=0;
 unsigned char pot1=0;

 if(DS3900.BoardPresent()) // Only Read if
DS3900 found
 {
 success = DS3900.Write2(true); // Pull reset
high
 if(success) // Abort Read
if comm fail.
 {
 success += DS3900.Read5(bit); // Read Cout
(stack bit first)
 success += DS3900.Write4(bit); // Copy Read
Contents to DQ
 success += DS3900.Write1(true); // Clock bit
 success += DS3900.Write1(false); // Clock bit
 m_RADIO_Stack = bit; // <-Update
Dialog Box Variable
 if(success == 5) // Abort Read
if comm fail.
 {
 for(int x = 0; x <8 ; x++) // Pot 1 Read
Loop
 {
 success += DS3900.Read5(bit); // Read
Cout (stack bit first)
 success += DS3900.Write4(bit); // Copy
Read Contents to DQ
 success += DS3900.Write1(true); // Clock
bit
 success += DS3900.Write1(false); // Clock
bit
 if(bit) // If
bit set, set bit in Pot variable
 pot1 |= mask;
 mask = mask >> 1; //
Adjust Mask for next pass
 }
 m_ucEDIT_Pot1 = pot1; // <-
Update Dialog Box Variable
 mask=0x80; // Reset

Page 5 of 8

Mask
 for(int y = 0; y <8 ; y++) // Pot 0
Read Loop
 {
 success += DS3900.Read5(bit); // Read
Cout (stack bit first)
 success += DS3900.Write4(bit); // Copy
Read Contents to DQ
 success += DS3900.Write1(true); // Clock
bit
 success += DS3900.Write1(false); // Clock
bit
 if(bit) // If
bit set, set bit in Pot variable
 pot0 |= mask;
 mask = mask >> 1; //
Adjust Mask for next pass
 }
 m_ucEDIT_Pot0 = pot0; // <-
Update Dialog Box Variable
 }
 }
 success += DS3900.Write2(false); // Pull reset
low
 if(success == 70) // Determine if
comm has failed

 m_sEDIT_Status = "Successful Read"; // Success
Message
 else
 m_sEDIT_Status = "Read Failed"; // Fail Message
 }
 UpdateData(FALSE); // <-Triggers
Dialog Box Update
}

Notice the last if statement of the read algorithm updates the status message of the dialog box. This will
overwrite the "DS3900 Found!" message of the initialization with "Successful Read" before the dialog box
is displayed if the DS3900 is initialized successfully.

OnWrite
The OnWrite function reads the values typed into the dialog box by the user and writes them to the 3-
wire device. To read the dialog box values, the UpdateData(TRUE) function is called. In addition to
reading the data, UpdateData(TRUE) converts the ASCII strings to unsigned characters for the
potentiometer registers, and to an integer value for the stack select bit's radio button. These values are
automatically stored in the m_ucEDIT_Pot0, m_ucEDIT_Pot1 and m_RADIO_Stack variables. After the
new desired settings are read, the write algorithm instructs the DS3900 to send out the 17-bits of data
one bit at a time.

During the write process, communications to the DS3900 are monitored for errors, and the "success"
variable keeps a running total of the number of successful data transmissions. If every read/write
operation to the DS3900 is successful, the program will update the status box so it reads "Successful
Write"; else it aborts the command and returns an error message. The function, which takes about 70ms
to execute, is shown in Figure 5.

Figure 5. OnWrite function

void OnWrite()
{
 UpdateData(TRUE); //Read values
of Dialog Box
 //variables used by subroutine

Page 6 of 8

 int success;
 unsigned char mask = 0x80;
 unsigned char pot0 = m_ucEDIT_Pot0;
 unsigned char pot1 = m_ucEDIT_Pot1;
 bool bit = false;

 if(m_RADIO_Stack) // place stack
select bit into "bit" variable.
 bit = true;

 if(DS3900.BoardPresent()) // Only Write
if DS3900 Found
 {
 success = DS3900.Write2(true); // Pull reset
high

 if(success) // Write
abortion if comm. fail
 {
 success += DS3900.Write4(bit); // write stack
select bit
 success += DS3900.Write1(true); // Clock bit
 success += DS3900.Write1(false); // Clock bit

 if(success == 4) // Write
abortion if comm. fail
 {
 for(int x = 0; x <8 ; x++) // Loop for 8
bits of pot 1
 {
 if(pot1 & mask) // Read next DQ
value with mask
 success += DS3900.Write4(true);
 else
 success += DS3900.Write4(false);
 success += DS3900.Write1(true); // Clock
bit
 success += DS3900.Write1(false); // Clock
bit
 mask = mask >> 1; //
Adjust mask to next position
 }

 mask = 0x80; // Reset mask
 for(int y = 0; y <8 ; y++) // Loop for 8
bits of pot 0
 {
 if(pot0 & mask) // Read next DQ
value with mask
 success += DS3900.Write4(true);
 else
 success += DS3900.Write4(false);
 success += DS3900.Write1(true); // Clock
bit
 success += DS3900.Write1(false); // Clock
bit
 mask = mask >> 1; //
Adjust mask to next position.
 }
 }
 }
 success += DS3900.Write2(false); // Pull reset
low
 }
 if(success == 53) // Comm.
Pass/Fail notification.

 m_sEDIT_Status = "Successful Write"; // Pass Message
 else

Page 7 of 8

 m_sEDIT_Status = "Write Failed"; // Fail Message
 UpdateData(FALSE); // <-Trigger
Dialog Update
}

Conclusion
This application note provides a simple C++ algorithm for reading and writing to the 3-wire devices
containing 17-bit shift registers using a DS3900. The write operation takes approximately 70ms, and the
read operation, which does not use the feedback resistor, takes about 95ms to execute. Although this is
not fast with respect to the 3-wire interface's maximum data rate, it is adequate to evaluate the
potentiometers. The software shown in Figure 1 can be downloaded from Maxim's FTP site.

NOTE: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL DALLAS
SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Related Parts

DS1267 ±5V Dual Digital Potentiometer Chip Free Samples

DS1867 Dual Digital Potentiometer with EEPROM

DS1868 Dual Digital Potentiometer Chip Free Samples

DS3900 Serial Communications Module For Evaluation Kits

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 213: http://www.maximintegrated.com/an213
APPLICATION NOTE 213, AN213, AN 213, APP213, Appnote213, Appnote 213
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 8 of 8

http://files.dalsemi.com/system_extension/DS3Wire/
http://www.maximintegrated.com/datasheet/index.mvp/id/2676
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1267
http://www.maximintegrated.com/datasheet/index.mvp/id/2809
http://www.maximintegrated.com/datasheet/index.mvp/id/2810
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS1868
http://www.maximintegrated.com/datasheet/index.mvp/id/4968
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an213
http://www.maximintegrated.com/legal

	maxim-ic.com
	Using a PC with a DS3900 to Communicate with DS1267s, DS1867s, and DS1868s - Application Note - Maxim

