
Maxim > Design Support > Technical Documents > Application Notes > Display Drivers > APP 1034

Keywords: LED display drivers, LED drivers, display drivers, SPI, I2C, serial, blink, 3V displays,
message, message board, Noticeboards, Notice boards, Wallboards, Wall boards, Topper, Information
Displays

APPLICATION NOTE 1034

Software Control of the MAX6952 and MAX6953
LED Drivers in Graphic Applications
Jul 17, 2002

Abstract: This application note discusses software design techniques to build monocolour and bicolour
graphic message boards using the MAX6952 and MAX6953 SPI and I2C 5 x 7 matrix LED display
drivers.

This application note is one of two application notes that discuss the software and processor interface
issues in the application of the MAX6952 and MAX6953 LED drivers to build a sea-of-dots LED matrix
graphic panel for message boards and animated graphic displays. This note covers the software aspects
of the panel design. The other note, "Building LED Dot Matrix Graphic Panels with the MAX6952 and
MAX6953," covers the electrical aspects of the panel design, and should be read first.

The MAX6952 and MAX6953 are 4-digit cathode-row 5x7 matrix LED display drivers that are controlled
through a high-speed SPI™ (MAX6952) or I²C (MAX6953) serial interface. These drivers are primarily
intended for character display applications where individual 5x7 matrix digits are physically spaced apart
to form one or more character lines (Figure 1).

Figure 1. Example of an 8 character by 2 lines matrix display panel using 5x7 matrix characters.

The MAX6952 and MAX6953 treat 4 individual 5x7 matrix LEDs as 4 character digits. The user controls
which of 104 fixed and 24 user-defined characters is displayed on each digit. The user can up-load
custom characters into the 24 user-defined fonts after power-up, if required. The display is controlled
using digit registers to select a character from the 128-character font. This methodology is fast and
efficient for character displays, but inappropriate for graphic displays.

For graphic applications using the MAX6952 or MAX6953, the control technique is the opposite. The
fixed fonts are ignored, and the 24 user-defined fonts are used for direct graphical display control. The
digit registers are each set to point to a different user-defined font location, and the fonts themselves are
manipulated to adjust the graphic display in 5x7 sections. If blink control isn't required, then only 4 user-
defined font locations are needed, one for each 5x7 section (Table 1). 8 user-defined font locations are

Page 1 of 8

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/10/c/Display%20Drivers#c10
http://www.maximintegrated.com/app-notes/index.mvp/id/1033
http://www.maximintegrated.com/app-notes/index.mvp/id/1033

needed if blink is used, one for each blink phase (P1 and P0) for each 5x7 section (Table 2). The digit
registers need only be written once with the appropriate RAMxx character address, and the fonts
themselves are manipulated to set up the graphic image.

Table 1. The MAX6952 or MAX6953 user-defined font allocation (blink facility not used)
 Digit 0 Digit 1 Digit 2 Digit 3

Font Location RAM00 RAM01 RAM02 RAM03

Table 2.The MAX6952 or MAX6953 user-defined font allocation (blink facility used)
 Digit 0 Digit 1 Digit 2 Digit 3

Blink Phase P1 P0 P1 P0 P1 P0 P1 P0

Font Location RAM00 RAM04 RAM01 RAM05 RAM02 RAM06 RAM03 RAM07

The simple scheme outlined above is adequate for static displays, where the graphic image is uploaded
relatively infrequently to the display, perhaps using blink to provide some animation effects. However, it is
possible to get a high degree of artifact-free image manipulation by making full use of more of the user-
defined fonts. There are 24 user-defined font locations available, and only 4 (without blink) or 8 (with
blink) font locations are actually needed to store the displayed graphic image. The extra font locations
can be used to pre-load graphic frames. A graphic frame is the complete display image that is stored in
the display driver in order to be displayed. The 24 user-defined fonts allow the display driver to store 3
complete graphic frames (one of which being displayed) with blink control on the pixel level (Table 4), or
6 complete frames without blink control (Table 3). Pre-loading is the art of sending image data to the
display drivers before it is required to be displayed.

Table 3. The MAX6952 or MAX6953 user-defined font allocation to specific graphic frames (blink
facility not used)
 Digit 0 Digit 1 Digit 2 Digit 3

Frame 1 Font Locations RAM00 RAM01 RAM02 RAM03

Frame 2 Font Locations RAM04 RAM05 RAM06 RAM07

Frame 3 Font Locations RAM08 RAM09 RAM0A RAM0B

Frame 4 Font Locations RAM0C RAM0D RAM0E RAM0F

Frame 5 Font Locations RAM10 RAM11 RAM12 RAM13

Frame 6 Font Locations RAM14 RAM15 RAM16 RAM17

Table 4. The MAX6952 or MAX6953 user-defined font allocation to specific graphic frames (blink
facility used)
 Digit 0 Digit 1 Digit 2 Digit 3

Blink Phase P1 P0 P1 P0 P1 P0 P1 P0

Frame 1 Font Location RAM00 RAM04 RAM01 RAM05 RAM02 RAM06 RAM03 RAM07

Frame 2 Font Locations RAM08 RAM0C RAM09 RAM0D RAM0A RAM0E RAM0B RAM0F

Frame 3 Font Locations RAM10 RAM14 RAM11 RAM00 RAM15 RAM12 RAM13 RAM17

The challenge to displaying dynamic images is to change the picture seamlessly without transient effects
(artifacts) visible to the audience. The smaller the amount of data that has to be sent to the drivers every

Page 2 of 8

time the image is changed, the easier this is to achieve. A common artifact seen on message boards is
scrolling ripple, because the controller cannot shift all the display data fast enough. Minimizing the data
flow minimizes the processor load, and the interface data rate can be slower too.

The advantage to using the frames is that flipping the display from one pre-loaded frame to another pre-
loaded frame requires fewer control words to be sent to the drivers than changing the display image
itself. To change frame, the 4 digit registers of each MAX6952 or MAX6953 are written with user-defined
font values corresponding with the new frame. This involves 4 writes (one write per digit register) to each
MAX6952 or MAX6953. Directly changing the display image instead would involve 20 writes (5 writes
each for 4 user-defined fonts) to each MAX6952 or MAX6953. Of course the frame data still has to be
loaded some time, so these 20 writes to the 4 user-defined fonts still have to be performed. A good time
to do this is during the power-up initialization.

The recommended technique for changing the image seamlessly requires blink to be enabled, although it
is not necessary to have any blinking segments in the image. Presume for the moment that Frame 1 is
in use, so the image being displayed uses RAM00 to RAM07 for Digit 0 through Digit 3 (Table 4). Note
that if RAM00 data = RAM04 data, RAM01 data = RAM05 data, RAM02 data = RAM06 data, and
RAM03 data = RAM07 data then the image doesn't blink because the image in blink planes P1 and P0
are the same. Another complete image can then be loaded into Frame 2, i.e., RAM08 to RAM0F. The
upload can be performed as slowly or as fast as the microprocessor allows, because the image is not
being displayed yet. The trick here to flip the display seamlessly from Frame 1 to Frame 2 is to change
the digits' P0 data during the P1 blink phase, and then change the digits' P1 data during the P0 blink
phase. The current blink phase can be monitored either on the Blink output pin, or by reading the status
of the P bit in the configuration register. Note that the blink timing now sets the response time for
changing the image, since an image update is synchronized to blink. If the application will use segment
blinking, then weigh the competing requirements of a visibly slow segment blink speed, versus a
reasonably fast response time when flipping between different images. The blink speed setting controls
both these parameters.

Using frames also makes slow speed animation easy. The MAX6952 or MAX6953 drivers can store 6
frames of an animation. Again, the technique is to change the digit data for the P0 blink phase while the
P1 phase is being displayed, and change the digit data for the P1 blink phase while the P0 phase is
being displayed (Table 6). Segment blinking isn't used for animation, so the blink speed simply sets the
animation speed or frame rate. This can be set from 4 frames a second (OSC = 8MHz) to one frame
every 2 seconds (OSC = 1MHz).

The user actions in Table 5 ensure the next blink phase displays a new frame, circulating around the six
available frames. The sequence therefore controls a 6 step animation, which repeats indefinitely. The
animation could step through fewer than 6 frames if required; for example, the drivers could store two 3-
step animations. Note that the time synchronization of successive frames is entirely set by the MAX6952
or MAX6953 drivers' blink clock. The user's task is simply to write 4 words of digit data to each
MAX6952 or MAX6953 driver during each blink phase to control the animation. Not shown in Table 5 is
the one-time task to upload all the frames of the animation data into the user-defined fonts of all the
MAX6952 or MAX6953 drivers.

Table 5. Simple animation using 6 repeated frames

 Digit 0 Digit 1 Digit 2 Digit 3 Blink
Phase

Blink Output Pin
Level
(Configuration
register P bit)
(During Current
Blink Phase)

User Action During
Current Blink Phase

Page 3 of 8

Initialization
Write animation data to
RAM00 - RAM17

Frame 1 RAM00 RAM01 RAM02 RAM03 P0 High

Write 0x04 to address
0x40 (Digit 0 P1)
Write 0x05 to address
0x41 (Digit 1 P1)
Write 0x06 to address
0x42 (Digit 2 P1)
Write 0x07 to address
0x43 (Digit 3 P1)

Frame 2 RAM04 RAM05 RAM06 RAM07 P1 Low

Write 0x08 to address
0x20 (Digit 0 P0)
Write 0x09 to address
0x21 (Digit 1 P0)
Write 0x0A to address
0x22 (Digit 2 P0)
Write 0x0B to address
0x23 (Digit 3 P0)

Frame 3 RAM08 RAM09 RAM0A RAM0B P0 High

Write 0x0C to address 0x40
(Digit 0 P1)
Write 0x0D to address 0x41
(Digit 1 P1)
Write 0x0E to address 0x42
(Digit 2 P1)
Write 0x0F to address 0x43
(Digit 3 P1)

Frame 4 RAM0C RAM0D RAM0E RAM0F P1 Low

Write 0x10 to address 0x20
(Digit 0 P0)
Write 0x11 to address 0x21
(Digit 1 P0)
Write 0x12 to address 0x22
(Digit 2 P0)
Write 0x13 to address 0x23
(Digit 3 P0)

Frame 5 RAM10 RAM11 RAM12 RAM13 P0 High

Write 0x14 to address 0x40
(Digit 0 P1)
Write 0x15 to address 0x41
(Digit 1 P1)
Write 0x16 to address 0x42
(Digit 2 P1)
Write 0x17 to address 0x43
(Digit 3 P1)

Frame 6 RAM14 RAM15 RAM16 RAM17 P1 Low

Write 0x00 to address 0x20
(Digit 0 P0)
Write 0x01 to address 0x21
(Digit 1 P0)
Write 0x02 to address 0x22
(Digit 2 P0)
Write 0x03 to address 0x23

Page 4 of 8

(Digit 3 P0)

To run a continuously changing animation sequence, more work is required by the system processor
(Table 6). The user action during each frame now includes updating the font RAM for each MAX6952 or
MAX6953 because the frame data is ever-changing, not stored permanently (once) as before. However
the time synchronization of successive frames is still controlled by the MAX6952 or MAX6953 drivers'
blink clock. The processor, again, simply has to deliver a packet of data sometime within each blink
phase. The packet contains 4 words of digit data as before, plus 20 words of font data.

It is worth exploring the size limits for a graphic display when limited by the interface speed (Table 7).
The table shows theoretical maximum display size with the serial interface running continuously at
maximum bit rate running a continuous animation sequence. The practical limit will be at least a little (or
maybe a lot) lower than the theoretical limit, depending on the background processing that the processor
has to perform, and whether the serial interface is a hardware synchronous serial port or bit-banged I/O.

Table 6. Full animation using continuously changing frames

 Digit 0 Digit 1 Digit 2 Digit 3 Blink
Phase

Blink Output
Pin Level
(Configuration
register P bit)
(During
Current Blink
Phase)

User Action During
Current Blink Phase

Initialization
Write animation data to RAM00
- RAM17

Frame 1 RAM00 RAM01 RAM02 RAM03 P0 High

Write 0x04 to address 0x40 (Digit 0
P1)
Write 0x05 to address 0x41 (Digit 1
P1)
Write 0x06 to address 0x42 (Digit 2
P1)
Write 0x07 to address 0x43 (Digit 3
P1)
Ensure RAM04-RAM07 is updated
for Frame 2
Can update RAM08-RAM17 if
processor time and frame data are
available

Frame 2 RAM04 RAM05 RAM06 RAM07 P1 Low

Write 0x08 to address 0x20 (Digit 0
P0)
Write 0x09 to address 0x21 (Digit 1
P0)
Write 0x0A to address 0x22 (Digit 2
P0)
Write 0x0B to address 0x23 (Digit 3
P0)
Ensure RAM08-RAM0B is updated
for Frame 3
Can update RAM0C-RAM17,
RAM00-RAM03 if processor time

Page 5 of 8

and frame data are available

Frame 3 RAM08 RAM09 RAM0A RAM0B P0 High

Write 0x0C to address 0x40 (Digit 0
P1)
Write 0x0D to address 0x41 (Digit 1
P1)
Write 0x0E to address 0x42 (Digit 2
P1)
Write 0x0F to address 0x43 (Digit 3
P1)
Ensure RAM0C-RAM0F is updated
for Frame 4
Can update RAM10-RAM17,
RAM00-RAM07if processor time
and frame data are available

Frame 4 RAM0C RAM0D RAM0E RAM0F P1 Low

Write 0x10 to address 0x20 (Digit 0
P0)
Write 0x11 to address 0x21 (Digit 1
P0)
Write 0x12 to address 0x22 (Digit 2
P0)
Write 0x13 to address 0x23 (Digit 3
P0)
Ensure RAM10-RAM13 is updated
for Frame 5
Can update RAM14-RAM17,
RAM00-RAM0Bif processor time
and frame data are available

Frame 5 RAM10 RAM11 RAM12 RAM13 P0 High

Write 0x14 to address 0x40 (Digit 0
P1)
Write 0x15 to address 0x41 (Digit 1
P1)
Write 0x16 to address 0x42 (Digit 2
P1)
Write 0x17 to address 0x43 (Digit 3
P1)
Ensure RAM14-RAM17 is updated
for Frame 6
Can update RAM00-RAM0F if
processor time and frame data are
available

Frame 6 RAM14 RAM15 RAM16 RAM17 P1 Low

Write 0x00 to address 0x20 (Digit 0
P0)
Write 0x01 to address 0x21 (Digit 1
P0)
Write 0x02 to address 0x22 (Digit 2
P0)
Write 0x03 to address 0x23 (Digit 3
P0)
Ensure RAM00-RAM03 is updated
for Frame 1

Page 6 of 8

Can update RAM04-RAM13 if
processor time and frame data are
available

Table 7. Maximum display size limited by interface speed

 Mono-color 40x56 pixel sub-block
(16 MAX6952/3 drivers)

Bi-color 40x56 pixel sub-block
(32 MAX6952/3 drivers)

Simple
Animation
4 words per
driver per frame

Full Animation
24 words per
driver per frame

Simple
Animation
4 words per
driver per frame

Full Animation
24 words per
driver per frame

I²C Interface bits/frame 18 x 4 x 16 = 1152
bits

18 x 24 x 16 = 6912
bits

18 x 4 x 32 = 1304
bits

18 x 24 x 32 =
13824 bits

SPI Interface bits/frame 16 x 4 x 16 = 1024
bits

16 x 24 x 16 = 6144
bits

16 x 4 x 32 = 2048
bits

16 x 24 x 32 =
12288 bits

400k bits-1 I²C Interface
maximum display size 342 sub-blocks 57 sub-blocks 171 sub-blocks 28 sub-blocks

26M bitss-1SPI
Interfacemaximum display
size

25200 sub-blocks 4200 sub-blocks 12600 sub-blocks 2100 sub-blocks

The SPI interface is likely to be the preferred interface for all but the smallest display size. Each I²C
MAX6953 can be set to one of 16 I²C addresses. This means that each mono-color sub-block
comprising 16 MAX6953s must be run on its own I²C bus to avoid addressing conflicts. A moderate size
graphic display with, say, 224 x 80 pixels would use 6 mono-color sub-blocks requiring 12 processor I/O
lines to handle the 6 I²C buses. The same panel could be driven instead by 2 processor I/O lines if the
SPI MAX6952s were used daisy-chained (cascaded SPI interface) instead.

Using MAX6952s, the limiting display size is 2100 sub-blocks for a bi-color panel with full animation. A
practical design example may have a processor than can devote a quarter of its time to the interface,
running at 10 Mbits-1 (over an RS-485 link). The display size limit therefore drops to (2100 x 10/26 x
1/4) = 200 sub-blocks for this application. The largest bi-color panel that can be driven is therefore 10
sub-blocks by 20 sub-blocks, perhaps arranged as 1120 x 400 bi-color pixels. A mono-color panel twice
this size could be driven instead.

Related Parts

MAX6952 4-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5 x 7 Matrix LED
Display Driver

Free Samples

MAX6953 2-Wire Interfaced, 2.7V to 5.5V, 4-Digit 5 x 7 Matrix LED
Display Driver

Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support

Page 7 of 8

http://www.maximintegrated.com/datasheet/index.mvp/id/3379
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX6952
http://www.maximintegrated.com/datasheet/index.mvp/id/3291
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX6953
http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 1034: http://www.maximintegrated.com/an1034
APPLICATION NOTE 1034, AN1034, AN 1034, APP1034, Appnote1034, Appnote 1034
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 8 of 8

http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an1034
http://www.maximintegrated.com/legal

	maxim-ic.com
	Software Control of the MAX6952 and MAX6953 LED Drivers in Graphic Applications - Application Note - Maxim

