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1 While there’s no accepted standard for target safety, between 94% and 98% of accidents can be attributed, at least in part, to human error—see the white paper “Safety First for Automated Driving” (SaFAD) at daimler.com.
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Introduction
Technology has always been a tool to free us from our most boring tasks. For 
many of us in the modern world, few things are more tiresome than being stuck  
in traffic on our morning commutes, or dealing with highway hypnosis and 
long weekend traffic for hours on end. While this has fueled much excitement 
over autonomous vehicles (AVs), the prospect of 2-ton pieces of metal zooming 
around unattended has also led to a renewed focus on technology to enable their 
safe operation.

In order to achieve superhuman safety1, a detailed 3D map of various dynamic 
objects (such as other cars, pedestrians, and bicycles) is generally considered 
essential to an AV. Light detection and ranging (LIDAR) sensors are often consid-
ered among the most useful systems to have on board, as they are capable of 
forming such detailed maps. An example of such a map is shown in Figure 1.

The farther away a self-driving car can reliably detect the presence of an object 
on the road, the easier an evasive maneuver becomes. Researchers based at 
Analog Garage (Analog Devices’ technology center) have investigated extending 
the detection range of LIDAR systems and developed a way of using physical 
constraints on the movement of objects to extend range. To understand this,  
we first explain the principle of operation of LIDAR.

How LIDAR Works
LIDAR systems fire a laser pulse at an object and measure the time it takes for 
the light to reflect off the object and return to the sensor, as shown in Figure 2.  
By scanning the laser along the horizontal and vertical directions, a LIDAR system 
forms a complete 3D map of the scene in front of it. Every such map is called 
a frame. Modern LIDAR systems typically have frame rates between 10 and 30 
frames per second (fps). 

Figure 1. LIDAR map.
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Figure 2. Principle of operation of LIDAR.
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Once the laser has fired in a particular direction, a sensor records the light coming 
from that direction, converts it into an electrical signal, and searches that signal 
for the location of the laser pulse shape, using a technique called a matched 
filter. The output of the matched filter is compared to a threshold, and if the 
signal crosses the threshold, a detection is declared.

Detection Limits
Of course, nothing in the real world is ideal. The detection process in LIDAR 
introduces noise—both electrical noise from the various components of the 
receiver and optical noise from the detector itself. Thus, an object is detectable 
only so long as enough light is received from it that the matched filter is able to 
distinguish that signal from noise. 

Physics tells us that the intensity of light falls off as the square of the distance 
that it has traveled from its source. Practically, that means that the amount of 
reflected laser light received by the LIDAR system from an object 200 m away is 
only a quarter of the light that would have been received had the same object 
been 100 m away. 

It follows that our matched filter will have a harder time seeing objects farther 
away, and, in the extreme, when an object gets far enough away, it will become 
invisible to the LIDAR system. Figure 3 demonstrates this—the return signal 
amplitude from the car we are imaging falls off precipitously with the distance, 
and at 220 m away, the signal is essentially indistinguishable from noise and is 
missed by the detection threshold set.

We could get around this problem by setting a really low threshold of detection, 
so that the car at 220 m in Figure 3 is visible. Obviously, given the SNR level, we’d 
also detect a lot of noise. Now, a full 3D frame of data has a number of flashes 
in it—some of which correspond to an object, and some of which are just noise. 
As an example, Figure 4 shows all the detections (post-thresholding) in just one 
vertical slice (that is, at a fixed vertical angle) of a LIDAR frame. Most of the 
detections are just noise, but some do correspond to a real object. How can we 
know which is which? While this is difficult to do with just one frame, it becomes 
more feasible after we’ve seen a few frames of data.
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Figure 4. Single vertical slice of LIDAR frame.

The Firefly Process
To understand why, we can model the flashes like this: suppose there’s  
a firefly buzzing around a box, and we see a flash from the firefly at regular 
intervals. Unfortunately, we also see random flashes from the environment,  
and those could occur anywhere. To make matters worse, we sometimes  
miss flashes from the firefly, and the position we measure for the firefly  
is usually not quite perfect. 

The fundamental question we ask is “Given a sequence of flashes, where each 
one is a flash from a single frame, can we tell whether the entire sequence 
came from a firefly or not?” The technical term given to such questions is 
hypothesis testing. The information we have to make a decision is that the 
frames arrive 10 times per second (for a frame rate of 10 fps), and a firefly can  
only move in a physically reasonable way in that time. For instance, a firefly 
cannot travel the length of the box in a frame, as that would be a physically 
unrealistic velocity; and it cannot reverse direction in 2 frames, as that would  
be a physically unrealistic acceleration. 
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Figure 3. Effect of distance on LIDAR return signal.
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Put a different way, the information that we can use is that the track followed 
by a firefly must be a track that a physical object could, indeed, have taken. 
Applying these track-based constraints lets us distinguish those from tracks 
made by noise. The language of hypothesis testing lets us determine and apply 
the mathematical form of the constraints given tracks of any length. Given 
flashes from two and three consecutive frames, the constraints are simply limits  
on the velocity and acceleration of the track. For longer tracks, the constraints  
do not have quite so simple an interpretation but turn out to be quite simple  
to apply.

Results
Figure 5 demonstrates the effectiveness of the technique on two simple scenes. 
The image on the left is the true map of what’s in the frame, with objects like 
the road stripped out for simplicity. The image in the middle shows what we’d 
get from conventional processing with a reasonable threshold, and on the right, 
what we get after the firefly processing. The firefly process detects objects nearly 
300 m away. State-of-the-art LIDAR systems have ranges of about 150 m. 

 
 
 
 

Table 1 shows the detection (%) and number of false positives (per frame) obtained 
from the firefly process and the conventional processing (MF stands for matched 
filter). The detection threshold is set so that we have 99.9% confidence based 
on pre-collected statistics that a particular peak corresponds to an object. However, 
the detection rate is very low. Using the track constraints helps quite a bit.

Table 1. Numerical Results

Cluster Size Length Detect % False Pos.

Firefly 3 
4 
5 
6 
7 
8 
9 
10

67.7 
65.6 
61.5 
58.8 
55.1 
51.6 
46.9 
40.6

3.14 
0.12 
0.04 
0.02 
0.03 
0.02 
0.00 
0.00

MF Peak 99.9% 1 
10 
20 
50

19.1 
18.0 
13.1 
6.7

52.00 
14.34 
0.00 
0.00

Figure 5. Examples of detecting by tracking using the firefly process.
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Conclusion
The firefly process describes a boundary on how objects can move—that is, it 
details the constraints, not on the detector or signal chain, but on the object they 
are measuring. We believe that its power to improve the detection rate holds an 
important lesson: conventional detection and signal chain problems can often 
be greatly improved by utilizing constraints and ideas that come from outside of 
the system we are designing. We hope to continue to leverage such insights in 
designing smarter and more sophisticated signal chains, and continue to gain 
advantages from exploiting unconventional constraints whenever we can.

The author would like to thank Jennifer Tang, Sefa Demirtas, Christopher Barber, 
and Miles Bennett for their contributions to this article.
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