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Abstract
A quad output, triple monolithic buck converter and boost controller reference 
design is presented that applies to automotive electronics such as a telemat-
ics box. The reference design features a fault protection scheme to support 
against input transients such as load dump, cold crank, or reverse battery. 

Introduction
Voltage transients from the energy generated by the car alternator and ignition 
system, or fault events due to external factors such as a car crash, can affect the 
electronic circuitry in an automotive system. Reliability of the electronic circuitry 
may be greatly affected; therefore, protection against these unpredictable events 
must be considered. A telematics box, for example, is an electronic system inside 
the car that requires high reliability and protection.

The power system design in this article is a reference design solution to provide 
protection and reliability to a car electronic module that requires four voltage 
inputs. It features input fault protection against load dump, cold crank, and 
reverse battery. A PowerPath™ controller allows smooth switch-over between the 
main and backup batteries when input fault protection is active. A quad output 
regulator provides four voltage outputs with a triple monolithic buck converter 
and a boost controller. One of the buck outputs can be made to handle high 
output peak current requirements, such as those on a communication module. 
There is a provision for charging the backup battery through a linear battery 
charger when the main battery is active. Figures 1 and 2 show the basic block 
diagram and the evaluation board of the reference design solution.
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Figure 1. Basic block diagram of the reference design.

Figure 2. Evaluation board hardware. 
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Fault Events and Scenarios

Load Dump
Load dump occurs when the alternator system is charging a battery and the 
connection to the battery is lost. A battery may be disconnected because 
of cable degradation, improper connection, or purposeful separation while 
the engine is running, resulting in a load dump. Alternator systems without 
centralized load dump suppression allow the alternator to produce extremely 
high voltages in the event of a sudden battery disconnection. The voltage 
dumped onto the load can go up to 100 V for a 12 V system due to the stator’s high 
inductance and the vehicle’s voltage regulator’s inability to reduce the field 
current rapidly enough.

Battery

– +

t

V

12 V

100 V

Load

Figure 3. A load dump scenario.

Cold Crank
During startup or cranking, the engine requires more power, causing the battery 
voltage to dip. In general, starting an engine in a cold environment is harder than 
starting an engine in a warm environment. This requires the engine to draw more 
power, which results in a larger voltage drop compared to normal cranking. This 
condition is known as cold crank. The waveform in Figure 4 shows the waveform 
during cold crank where the main battery falls below its specified level.
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Figure 4. A sample cold crank scenario.

Reverse Voltage
A reverse voltage or, simply, reverse battery condition covers the human error 
scenario where someone connects a battery with the polarity reversed. This can 
result in destruction unless adequate protection is provided.

Circuit Function
Fault Protection
The LTC4367 serves as a fault protection for the circuit as it disconnects the VBATT 
voltage to VIN when the VBATT voltage is too low, too high, or negative. It has accu-
rate overvoltage and undervoltage comparators to ensure that power is applied 
to the system only if the input supply is within the allowable voltage window. 
The LTC4367 automatically isolates the load from negative input voltages. It can 
operate an overvoltage protection that can go as high as 100 V and undervoltage 
protection that can go as low as –40 V.
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Figure 5. Block diagram of a typical circuit and its function.
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Figure 6. VBATT valid and fault protection window.

Backup Battery
Backup battery charging is possible through the LTC4079, which features a multi-
chemistry battery charger that allows a flexible battery voltage to be used. With 
the reference design circuit, a charging voltage of around 4.2 V is used. To 
avoid overcharging the battery, the LTC4079 also features a charge termination 
capability through a C/10 detector or a set charge timer of around 2 hours 
and 30 minutes.

Automatic switch-over between VBATT and VBACKUP is possible through the LTC4412 
PowerPath controller. This feature allows the LT8603 to maintain an output 
voltage on VOUT4 by having a VIN drawing from either VBATT or VBACKUP. In the event 

of VBATT disconnection or fault detected, the controller allows the current to flow 
from the VBACKUP to the VIN of the LT8603. When no fault is detected, the LTC4412 will 
block the path connecting the VBACKUP to the VIN of the LT8603. Figure 7 shows the 
waveform of the power switch-over event.

In the event of a cold crank, VBATT goes down from 12 V to 2 V. The VBATT path is 
disconnected, and VBACKUP now serves as the VIN of the boost converter in order to 
maintain an 8 V output on VOUT4. When VBATT increases to ~5 V, it will again serve 
as the VIN for the boost converter. VOUT4 will still be maintained at 8 V until VBATT 
reaches 8 V. As VBATT recovers to its original voltage of 12 V, VOUT4 will then follow the 
voltage of VBATT. A small voltage drop on VOUT4 is due to the diode forward voltage. 
The power switch-over allows VOUT1, VOUT2, and VOUT3 to maintain its regulation.

Quad Output Regulator
The LT8603 features a boost regulator, VOUT4, with two high voltage buck regulators, 
VOUT1 and VOUT2, and a low voltage buck regulator, VOUT3. The boost regulator is 
capable of providing power to the buck regulators. The LT8603 provides good 
input and output load regulation at different input voltage levels. Figure 8 shows 
the output regulation of the LT8603.

The high output peak current capability of one of the buck regulator outputs, 
VOUT2, of the LT8603 is used for applications that involve a communication 
module. A typical 3.6 V to 4 V output voltage and an output peak current on-time 
of 0.6 ms over a 4.6 ms period is required for a communication module. On the 
tested conditions shown in Figure 9, the system’s transient behavior is monitored. 
VOUT2 features a good transient response with minimal voltage undershoot 
and overshoot.

Figure 7. Power switch-over event at cold crank.
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Figure 9. High output peak current performance of VOUT2.

Load Dump Response
The input fault protection and power switch-over feature of the reference design 
board allows the LT8603 to operate despite being in a load dump event. Figure 10 
shows a simulated waveform of a load dump condition where VBATT goes as high as 
100 V and the response of the boost, VOUT4, and one of the buck regulators, VOUT3. 
During the overshoot due to load dumping, the 36 V VBATT limit is reached and the 
LTC4367 disconnects the path connecting VBATT to VIN. VOUT4 now sources its VIN 
from VBACKUP to maintain the regulated 8 V level. As VBATT restores to its original 
level, VOUT4 will then follow VBATT.

Figure 8. Output regulation of the LT8603.
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Figure 10. Load dump response.

Circuit Variations and Implementations
The flexibility of the schematic design allows variations on how the circuitry 
can be implemented. The reference design board has “Do Not Install” components 
and path connectors that allow the user to configure the board with either 
Topology 1 or Topology 2. This also allows the configuration of either a boost 
or SEPIC converter on VOUT4 depending on the application. An additional circuit 
option for added input fault protection can be implemented on the LTC4367 for 
150 V transient conditions. More details on the configuration are shown on the 
schematic of the reference design board.

The circuit configuration presented in Figure 5 is Topology 1, which has a 
minimum VBACKUP voltage of 2.5 V, one EMI filter after VIN, and is capable of power 
switch-over through the LTC4412HV. The VIN of the boost controller sources its 

power from VBATT or VBACKUP. During the VBATT valid window, VOUT4 maintains a regulated 
voltage level through the boost converter or follows VBATT as shown in Figure 6. 
Outside the VBATT valid window, VOUT4 sources from VBACKUP in order to maintain a 
regulated set level.

Topology 2 addresses the need for a lower VBACKUP voltage application such as a 
1.5 V level. When there is no input fault, VBATT is directly connected to VOUT4 while 
VBACKUP is the VIN to the boost controller. Additional filters are required on the input  
of the buck regulators for better noise filtering and EMI performance. Power 
switch-over is achieved seamlessly when VBATT falls below or goes above its valid 
window. The minimum VBATT voltage level of the valid window is set to the regulated 
level of VOUT4. During the VBATT valid window, VOUT4 follows VBATT. Outside of the VBATT 
valid window, VBACKUP is used to maintain a regulated set level.

Table 1. Comparison Between Topology 1 and 2

Topology 1 Topology 2

ICs Used LT8603, LTC4412HV, LTC4367, 
LTC4079 LT8603, LTC4367, LTC4079

Backup Battery 
Operation

VBACKUP operates as low as 
2.5 V

VBACKUP operates as low as 
1.5 V

EMI Input Filtering Connected before boost 
regulator

Connected before boost and 
buck regulators input

Minimum VBATT Valid 
Window

VBATT can go as low as the 
VBACKUP level

VBATT must be equal to VOUT4 
regulated set level

Figure 11. Circuit variations.
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Conclusion 
The ever-growing advancement of automotive applications requires more 
reliability and safety considerations. The standards defined by international 
organizations have played a significant role for designers focusing on what 
contributes to the voltage transients that may be harmful or can cause degrada-
tion of the electronic system. In conclusion, the quad output power reference 
design has proven its capability when exposed to the simulated test conditions of 
input overvoltage, undervoltage, and reverse voltage operations. Also, the 
different circuit variations allow flexibility with regards to the backup battery 
operation, minimum battery voltage level, EMI input filtering, and the number of 
components. For more information about the reference design board, contact 
the authors or your local ADI representative.

Reference Design ICs and Files
Attached here are the schematic, PCB Gerber files, and the bill of materi-
als (Topology 1) of the quad output regulator. For evaluation board availability, 
contact the authors or your local ADI representative.
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