
LINEAR TECHNOLOGYLINEAR TECHNOLOGYLINEAR TECHNOLOGY
MArch 2007 VOLUME XVII NUMBER 1

Introduction
Easy Drive™ delta-sigma ADCs are
rich in features but easy to use. The
Easy Drive feature simplifies or elimi-
nates active amplification or filtering
at the inputs. Even the software inter-
face is significantly less complicated
than other ADCs (see sidebar on page
6). Overall, much of the traditional
complexity around an ADC, such as
external components and software
timing, is simply gone, saving signifi-
cant design time.

Table 1 lists the features of the 18
available Easy Drive devices, including
1-, 4- or 16-channel versions with I2C

Easy Drive Delta-Sigma
ADCs Deliver Powerful
Features and Reduce
Design Effort

or SPI interfaces. The 24-bit devices
suit very high performance applica-
tions, while 16-bit devices are more
general-purpose. A programmable
gain amplifier (PGA) is available on
the 16-bit devices for intermediate
requirements or where several input
ranges need to be accommodated.

Easy Drive Technology
Simplifies Measurement of
High Impedance Sensors
Delta-Sigma ADCs, with their high
accuracy and high noise immunity,
are ideal for directly measuring many

L, LT, LTC, LTM, Burst Mode, OPTI-LOOP, Over-The-Top and PolyPhase are registered trademarks of Linear Technology
Corporation. Adaptive Power, Bat-Track, BodeCAD, C-Load, DirectSense, Easy Drive, FilterCAD, Hot Swap, LinearView,
µModule, Micropower SwitcherCAD, Multimode Dimming, No Latency ΔΣ, No Latency Delta-Sigma, No RSENSE, Operational
Filter, PanelProtect, PowerPath, PowerSOT, SmartStart, SoftSpan, Stage Shedding, SwitcherCAD, ThinSOT, True Color PWM,
UltraFast and VLDO are trademarks of Linear Technology Corporation. Other product names may be trademarks of the
companies that manufacture the products.

continued on page �

IN THIS ISSUE…

Cover Article

Easy Drive Delta-Sigma ADCs Deliver
Powerful Features and Reduce Design
Effort...1
Mark Thoren

Linear Technology in the News…..........2

Design Features

Current Mode Flyback DC/DC Controller
Provides Tremendous Design Flexibility
..8
Arthur Kelley

Isolated Forward Controllers Offer
Buck Simplicity and Performance......10
Charles Hawkes and Arthur Kelley

Rugged 3.3V RS485/RS422
Transceivers with Integrated
Switchable Termination.....................14
Steven Tanghe and Ray Schuler

Tiny High Efficiency 2A Buck Regulator
Directly Accepts Automotive, Industrial
and Other Wide Ranging Inputs.........18
Kevin Huang

36V Dual 1.4A Monolithic
Step-Down Converter has Start-Up
Tracking and Sequencing..................21
Keith Szolusha

3-Phase Buck Controller Governs
One, Two or Three Outputs................26
Theo Phillips and Teo Yang Long

DESIGN IDEAS
...30–41
(complete list on page 30)

New Device Cameos............................42

Design Tools.......................................43

Sales Offices......................................44

VCC FO

SCK

SDI

GND

= EXTERNAL
OSCILLATOR

= INTERNAL
OSCILLATORLTC2492

4-WIRE
SPI INTERFACE

SDO

12 1

REF+13

REF–14

CH0
8

CH1
9

CH2
10

CH3
11

COM
7

3

5

6

4

2

5V

0.1µF

10µF

CS

5V

IIN
+ = 0

IIN
– = 0

R1
51.1k

R4
51.1k

C4
0.1µF

C3
0.1µF

R3
10k TO 100k

–

+

102k

5V

5V

LT14940.1µF

0.1µF

0.1µF

1k

1k

10k TO 100k

Figure 1. Easy Drive ADCs simplify measurement of high impedance sensors.

by Mark Thoren

Linear Technology Magazine • March 2007 �

DESIGN FEATURES L

rors result. If these resistors have a
1% tolerance, the maximum error in
measured resistance is 1.6Ω due to
a shift in common mode voltage, far
less than the 1% error of the reference
resistors themselves. No amplifier is

types of sensors. Nevertheless, input
sampling currents can overwhelm high
source impedances or low bandwidth,
micropower signal conditioning cir-
cuits. Easy Drive solves this problem
by balancing the input currents, thus
simplifying or eliminating the need for
signal conditioning circuits.

A common application for a delta-
sigma ADC is thermistor measurement.
Figure 1 shows two examples of therm-
istor digitization benefiting from Easy
Drive technology. The first circuit (ap-
plied to input channels CH0 and CH1)
uses two equal reference resistors that
set the input common mode voltage
equal to the reference common mode
voltage and balance the differential
input source resistance. If reference
resistors R1 and R4 are exactly equal,
the input current is zero and no er-

required, making this an ideal solution
in micropower applications.

Easy Drive also enables very low
power, low bandwidth amplifiers to
drive the input of the LTC2492. As
shown in Figure 1, CH2 is driven by
an LT1494. The LT1494 has excellent
DC specs for an amplifier with 1.5µA
supply current, offering maximum
offset voltage of 150µV and an open
loop gain of 100,000. However, its
2kHz bandwidth makes it unsuitable
for driving conventional delta-sigma
ADCs. Adding a 1kΩ, 0.1µF filter solves
this problem by providing a charge
reservoir that supplies the LTC2492
instantaneous current, while the 1kΩ
resistor isolates the capacitive load
from the LT1494. The input sampling
current of conventional delta-sigma
ADCs leads to DC errors as a result

Easy Drive, continued from page �

Table 1. Complete Easy Drive delta-sigma family

Part Number # Inputs Interface Bits Temp PGA 2× Package

LTC2480 1 SPI 16 L L L 3mm × 3mm DFN

LTC2481 1 I2C 16 L L L 3mm × 3mm DFN

LTC2482 1 SPI 16 3mm × 3mm DFN

LTC2483 1 I2C 16 3mm × 3mm DFN

LTC2484 1 SPI 24 L L 3mm × 3mm DFN

LTC2485 1 I2C 24 L L 3mm × 3mm DFN

LTC2486 2/4 SPI 16 L L L 3mm × 4mm 14DFN

LTC2487 2/4 I2C 16 L L L 3mm × 4mm 14DFN

LTC2488 2/4 SPI 16 3mm × 4mm 14DFN

LTC2489 2/4 I2C 16 3mm × 4mm 14DFN

LTC2492 2/4 SPI 24 L L 3mm × 4mm 14DFN

LTC2493 2/4 I2C 24 L L 3mm × 4mm 14DFN

LTC2494 8/16 SPI 16 L L L 5mm × 7mm QFN

LTC2495 8/16 I2C 16 L L L 5mm × 7mm QFN

LTC2496 8/16 SPI 16 5mm × 7mm QFN

LTC2497 8/16 I2C 16 5mm × 7mm QFN

LTC2498 8/16 SPI 24 L L 5mm × 7mm QFN

LTC2499 8/16 I2C 24 L L 5mm × 7mm QFN

Input sampling currents
can overwhelm high

source impedances or low-
bandwidth, micropower

signal conditioning circuits.
Easy Drive solves this
problem by balancing

the input currents, thus
simplifying or eliminating

the need for signal
conditioning circuits.

� Linear Technology Magazine • March 2007

L DESIGN FEATURES

SLEEP DATA INPUT

ACK BY
LTC2499

ACK
LTC2499

ACK
LTC2499

(OPTIONAL 2ND BYTE)
START BY
MASTER

SGL ODDW 01

SCL

SDA

EN A2 A1 A0

7 … 8 9 12 9 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 91

7-BIT ADDRESS IM FAEN2 FB SPD

Figure 5. I2C configuration and data output timing

EOC

CS

SCK
(EXTERNAL)

SDI

SDO

CONVERSION SLEEP DATA INPUT/OUTPUT CONVERSION

MSB

BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BIT 23 BIT 22 BIT 21 BIT 20 BIT 19

SIG

BIT 29

“0”

BIT 30BIT 31

1 0 EN SGL A2 A1 A0 EN2 IM FA FB SPDODD

BIT 18 BIT 17 BIT 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 32

DON'T CAREDON'T CARE

Hi-Z Hi-Z

Figure 3. SPI interface, configuration and data output timing

S ACK DATA Sr DATA TRANSFERRING P

SLEEP DATA INPUT/OUTPUT CONVERSIONCONVERSION

7-BIT ADDRESS R/W

Figure 4. I2C conversion sequence

–

+

–

+

1/2 LTC6078

1/2 LTC6078

1

2

3

5

6

7

∆Σ ADC
WITH

EASY DRIVE
INPUTS

INPUT
MUX

M
UX

OU
TP

M
UX

OU
TN

17

LTC2498

ANALOG
INPUTS

SDI

SCK

SDO

CS

1k

1k

0.1µF

0.1µF

Figure 2. External buffers provide high impedance inputs and amplifier offsets are automatically cancelled.

Linear Technology Magazine • March 2007 �

DESIGN FEATURES L

of incomplete settling in the external
RC network. Linear Technology’s Easy
Drive technology cancels the differen-
tial input current. By balancing the
negative input (CH3) with a 1kΩ-0.1µF
RC network, errors due to the common
mode input current are cancelled.

Complete Easy Drive
Delta-Sigma Family
Easy Drive ADCs are at home in a
vast array of applications. The 24-bit,
16-channel LTC2498 with integrated
temperature sensor is ideal for high
performance data acquisition systems.
It can directly digitize thermocouples
without any signal conditioning and
provide cold junction compensation.
It can also directly measure low level
strain gage outputs. At the same time
it can handle industrial sensor voltages
with the addition of a simple resistive
divider—no active circuitry required.

The 16-bit, 16-channel devices are
suitable for measuring voltages and
currents on large circuit boards that
have several high current supplies.
Up to 16 ground referred measure-
ments can be taken if the COM pin is
grounded to a common point for all
supplies. Using the inputs differential-
ly (up to 8 differential input channels)
allows high side sensing of current
shunts as long as the shunt common
mode voltage is less than or equal to
the ADCs’ supply voltage. Differential
measurements also allow voltages to
be sensed remotely, eliminating errors
due to large ground currents.

Another big advantage of using a
delta-sigma ADC for power supply
measurements is the very strong rejec-
tion of noise and switching transients.
The ADC’s internal SINC4 filter, in
conjunction with a simple 1-pole filter
at the ADC input, is adequate to at-
tenuate switching power supply noise
below the ADC noise floor. What is left
is an extremely accurate measurement
of the DC value of the power supply
voltage or current.

The single channel LTC2482 is
ideal for cost sensitive applications
such as portable medical devices and
consumer products. Don’t be fooled by
its relatively low cost—it is essentially
a perfect 16-bit ADC that shares the

SDI
SCK
SDO

CS

FO

REF+

VCCMUXOUT/
ADCIN

MUXOUT/
ADCIN

5V

0.1µF

REF–

16-BIT ΔΣ ADC
WITH EASY-DRIVE

16-CHANNEL
MUX

TEMPERATURE
SENSOR

IN+

IN–

4-WIRE
SPI INTERFACE

CH15

CH14

•
•
•

CH3

CH2

CH1

CH0

COM

10µF

OSC

100Ω

100Ω

100Ω

100Ω

100Ω

3.35kΩ

Figure 6. Use this setup to quickly sort out which
SDI word is associated with each input channel.

SDI
SCK
SDO

CS

FO

REF+

VCCMUXOUT/
ADCIN

MUXOUT/
ADCIN

5V

0.1µF

REF–

16-BIT ΔΣ ADC
WITH EASY-DRIVE

16-CHANNEL
MUX

TEMPERATURE
SENSOR

IN+

IN–

4-WIRE
SPI INTERFACE

CH15

CH14

•
•
•

CH3

CH2

CH1

CH0

COM

10µF

OSC

100Ω

100Ω

100Ω

4.15kΩ

Figure 7. Use this setup to quickly sort out which SDI word
is associated with each differential input channel.

� Linear Technology Magazine • March 2007

L DESIGN FEATURES

Sample Code Drivers for
Basic Communications with the LTC2448 and LTC2449
// Make sure this structure applies in the
// context of the following functions.
struct fourbytes // Define structure of four consecutive bytes
 { // To allow byte access to a 32-bit int or float.
 int8 te0; //
 int8 te1; // The make32() function in some compilers will
 int8 te2; // also work, but a union of 4 bytes and a 32-bit int
 int8 te3; // is more portable because it is standard C.
 }

// Some defines for I2C communication
#define READ 0x01 // bitwise OR with address for read or write
#define WRITE 0x00

/***
Blocking version of read_LTC2498() function. When called,
it will wait for the LTC2498 to finish converting and then
read data. The longest this function should ever take to return
is the maximum conversion time of the LTC2498. It is a good
idea to use a watchdog when your program has blocking functions
like this.

The spi_readwrite() function simultaneously reads and writes
an 8-bit byte from the SPI port. Most compilers that support
processors that have a hardware SPI port have a similar function.

As a starting point, configure the SPI port for data transitions
on the falling clock edge, valid on the rising edge.

Arguments: channel - channel to program for the next conversion
 config - configuration bits for next conversion

Returns: 32 bit word from the LTC2498 when the conversion finishes
**/
Int32 read_LTC2498(char channel, char config);
	 {
 // Create a union of the four-byte structure and a 32-bit
 // signed integer.
 union	// adc_code.bits32 all 32 bits
 { // adc_code.by.te0 byte 0
 signed int32 bits32; // adc_code.by.te1 byte 1
 struct fourbytes by; // adc_code.by.te2 byte 2
 } adc_code; // adc_code.by.te3 byte 3

	 output_low(CS_); // Lower Chip Select, enabling serial port
	 while(input(SDO)); // Wait for SDO to go low. You can also put a
 // timeout here in case something bad happens
	 adc_code.by.te3 = spi_readwrite(channel);
	 adc_code.by.te2 = spi_readwrite(config);
 adc_code.by.te1 = spi_readwrite(0);
 adc_code.by.te0 = spi_readwrite(0);
 return adc_code.bits32;
 } // end of read_LTC2498()

/***
Non-blocking version of read_LTC2498() function. When called,
it will see if the LTC2498 has finished converting. If so,
data will be read and returned. If not, zero will be returned.
Since all zeros is NOT a valid code from the LTC2498, the calling
program can ignore the return result if zero.

Arguments: channel - channel to program for the next conversion
 config - configuration bits for next conversion

Returns: 32 bit word from the LTC2498 if conversion is done,
 zero if not.
**/

Int32 read_LTC2498(char channel, char config);
	 {
 // Create a union of the four byte structure and a 32 bit
 // signed integer.
 union	// adc_code.bits32 all 32 bits
 { // adc_code.by.te0 byte 0
 signed int32 bits32; // adc_code.by.te1 byte 1
 struct fourbytes by; // adc_code.by.te2 byte 2
 } adc_code; // adc_code.by.te3 byte 3

same 600nV input noise floor as the
24-bit parts. This means it would also
be ideal for a 4½ digit handheld or
bench-top voltmeter with a ±1 count
linearity specification.

Automatic Offset Calibration
of External Buffers/Amplifiers
In addition to the Easy Drive input cur-
rent cancellation, the 16-channel Easy
Drive ADCs allow an external amplifier
to be inserted between the multiplexer
output and the ADC input (see Fig-
ure 2). This is useful in applications
where balanced source impedances
are not possible or where the source
impedance is very high. One pair of
external buffers/amplifers can be
shared between all 17 analog inputs.
The LTC2498 performs an internal
offset calibration every conversion
cycle in order to remove the offset and
drift of the ADC. This calibration is per-
formed through a combination of front
end switching and digital processing.
Since the external amplifier is placed
between the multiplexer and the ADC,
it is inside this correction loop. This
results in automatic removal of the
offset and offset drift of the external
amplifer.

The LTC6078 is an excellent ampli-
fier for this function. It operates with
supply voltages as low as 2.7V and its
voltage noise level is a low 18nV⁄√Hz. The
LTC2498’s Easy Drive inputs allow an
RC network to be added directly to the
output of the LTC6078. The capacitor
reduces the magnitude of the current
spikes seen at the input to the ADC
and the resistor isolates the capacitor
load from the op amp output enabling
stable operation.

Software Interface
The simplicity of the analog interfacing
requirements of Linear Technology’s
Easy Drive ADCs is matched by the
simplicity of their serial interface. The
No Latency architecture eliminates
the annoyance of having to discard
readings after switching channels on
the multichannel devices. The start
of conversion is directly controlled
by the serial interface, so external
signal conditioning or sensor excita-
tion can be switched in at the proper

Linear Technology Magazine • March 2007 �

DESIGN FEATURES L

	 output_low(CS_); // Lower Chip Select, enabling serial port
	 while(input(SDO)); // Wait for SDO to go low. You can also put a
 // timeout here in case something bad happens
	 adc_code.by.te3 = spi_readwrite(channel);
	 adc_code.by.te2 = spi_readwrite(config);
 adc_code.by.te1 = spi_readwrite(0);
 adc_code.by.te0 = spi_readwrite(0);
 return adc_code.bits32;
 } // end of read_LTC2498()

/***
Non-blocking read_LTC2499() function.

the i2c_xxxx() functions do the following:

void i2c_start(void): generate an i2c start or repeat start condition
void i2c_stop(void): generate an i2c stop condition
char i2c_read(boolean): return 8 bit i2c data while generating
 an ack or nack
boolean i2c_write(): send 8 bit i2c data and return ack or
 nack from slave device

These functions are very compiler specific, and can use either a
hardware i2c port or software emulation of an i2c port. This example
uses software emulation.

A good starting point when porting to other processors is to write
your own i2c functions. Note that each processor has its own way of
configuring the i2c port, and different compilers may or may not have
built-in functions for the i2c port.

Arguments: addr - LTC2499 I2C address
 channel - channel to program for the next conversion
 config - configuration bits for next conversion

Returns: 32 bit word from the LTC2499 if conversion is done,
 zero if not.
***/

signed int32 read_LTC2499(char addr, char channel, char config)
 {
 union // adc_code.bits32 all 32 bits
 { // adc_code.by.te0 byte 0
 signed int32 bits32; // adc_code.by.te1 byte 1
 struct fourbytes by; // adc_code.by.te2 byte 2
 } adc_code; // adc_code.by.te3 byte 3

// Start communication with LTC2481:
 i2c_start();
 if(i2c_write(addr | WRITE))// If no acknowledge, return zero
 {
 i2c_stop();
 return 0;
 }
 i2c_write(channel);
 i2c_write(config);
 i2c_start();
 i2c_write(addr | READ);
 adc_code.by.te3 = i2c_read();
 adc_code.by.te2 = i2c_read();
 adc_code.by.te1 = i2c_read();
 adc_code.by.te0 = i2c_read();
 i2c_stop();
 return adc_code.bits32;
 } // End of read_LTC2499()

/***
Note: you can create a non-blocking version of this function
by repeatedly attempting to write the LTC2499 address, sending
a stop condition if there is no acknwoledge to keep the bus free.
When the LTC2499 acknowledges, read the data and return.
**/

time. The implicit offset and gain
calibration that takes place in every
conversion eliminates the need for
complicated internal register set or
calibration cycles. Communication for
both the SPI and I2C interface parts is
a simple read/write operation where
data from one conversion is read as
the configuration for the next channel
is programmed into the ADC.

Figure 3 shows the data input/out-
put operation for the LTC2498. This is
the SPI-interface ADC with the most
channels and features—other SPI
parts have similar interfaces.

Figure 4 shows the data input/
output operation for the LTC2499.
Likewise, this is the most feature-laden
I2C part—other I2C parts have similar
interfaces. Figure 5 shows the details
of writing the channel and configura-
tion to the input registers.

To help the software/firmware de-
signer get started, see the sidebar for C
code drivers for basic communications
with the LTC2448 and LTC2449. These
functions can be easily ported to any
C compiler and can easily be adapted
to the other Easy Drive ADCs.

Try this Trick!
While the Easy Drive serial interface is
easy to program—just read the data for
sample N while programming the chan-
nel for sample N+1—it can still be tricky
to figure out what was just read when
looking at a microcontroller’s registers
through a debugger. Here is a hardware
trick that can significantly reduce code
design headaches. Figure 6 shows a
simple circuit that applies a known
voltage to each single-ended input.
With the values shown, CH0 has a
voltage of 101mV, CH1 202mV, and
so on up to CH15, which produces
1.616V. Figure 7 shows the equivalent
circuit for differential inputs. Use this
setup to quickly sort out which SDI
word is associated with each input
channel. L

Want to know more? Visit:
www.linear.com

or call
1-800-4-LINEAR

