

Maxim > Design Support > Technical Documents > Application Notes > Battery Management > APP 968

Keywords: voltage monitor, voltage detector, voltage converter, charge-pump inverter, voltage tripler

APPLICATION NOTE 968

Load-Disconnect Switch Halts Battery Discharge to Protect Rechargeable Batteries

Jul 09, 1998

Abstract: This design idea shows a voltage detector, the MAX8211, and charge pump inverter, the MAX680, that form a load-disconnect switch. This load-detect switch uses only 8µA and halts battery discharge to protect rechargeable batteries from deep discharge.

Deep discharge can damage a rechargeable battery. The **Figure 1** circuit, by disconnecting the battery from its load, halts battery discharge at a predetermined level of declining terminal voltage. Transistor Q1 acts as the switch. The overall circuit draws about 500μ A when the switch is closed and about 8μ A when the switch is open.

Choosing the upper and lower voltage thresholds V_U and V_L lets you set values for R1, R2, and R3:

 $R1 = R2 \times [(V_L/1.15) - 1]$ R3 = 1.15 × R1/(V_U - V_L)

To start the circuit, battery voltage (V+) must exceed V_U. The micropower voltage detector IC1 then powers IC2, but only while V+ remains above V_L. Otherwise, the loss of power to IC2 removes gate drive from Q1, turning it off. As shown, the circuit disconnects a 3-cell nickel-cadmium battery from its load when V+ reaches a V_L of 3.1V. An approximate 0.5V hysteresis prevents the switch from turning on immediately when the load is removed; V+ must first return to V_U (3.6V).

IC2 is a dual charge-pump inverter that normally converts 5V to 10V. The capacitors C2, C3, and two diodes on the chip's positive-voltage side form a voltage tripler that generates an approximate 2(V+) gate drive for the high-side, floating-source MOSFET switch Q1.

Gate drive declines with battery voltage, causing the on-resistance of Q1 to reach a maximum of $\approx 0.1\Omega$ just before V+ reaches its 3.1V threshold. A 300mA load current at that time will cause a 30mV drop at the disconnect switch; the drop will be 2mV to 3mV less for higher battery voltages. Resistor R4 assures turn-off for Q1 by providing a discharge path for C3.

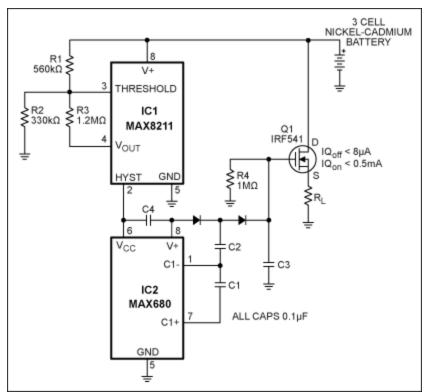


Figure 1. When battery voltage drops below a threshold set by R1 and R2, the voltage-detector chip (IC1) removes power from the charge pump IC2, which turns off the high-side switch Q1 by removing its gate drive.

Related Parts		
MAX680	+5V to ±10V Voltage Converters	Free Samples
MAX8211	Microprocessor Voltage Monitors with Programmable Voltage Detection	Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact
Application Note 968: http://www.maximintegrated.com/an968
APPLICATION NOTE 968, AN968, AN 968, APP968, Appnote968, Appnote 968

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal